EP1342955A1 - Système d'injection d'un mélange air carburant dans une chambre de combustion - Google Patents

Système d'injection d'un mélange air carburant dans une chambre de combustion Download PDF

Info

Publication number
EP1342955A1
EP1342955A1 EP03290428A EP03290428A EP1342955A1 EP 1342955 A1 EP1342955 A1 EP 1342955A1 EP 03290428 A EP03290428 A EP 03290428A EP 03290428 A EP03290428 A EP 03290428A EP 1342955 A1 EP1342955 A1 EP 1342955A1
Authority
EP
European Patent Office
Prior art keywords
fuel
air
injection
injection means
circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03290428A
Other languages
German (de)
English (en)
Other versions
EP1342955B1 (fr
Inventor
Gwénaelle Calvez
Didier Feder
Marion Michau
Frédéric Ravet
José Rodrigues
Alain Schuler
Alain Tipiel
Christophe Viguier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA Moteurs SA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Moteurs SA, SNECMA SAS filed Critical SNECMA Moteurs SA
Publication of EP1342955A1 publication Critical patent/EP1342955A1/fr
Application granted granted Critical
Publication of EP1342955B1 publication Critical patent/EP1342955B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion

Definitions

  • the present invention relates to the general field of fuel injection systems in a combustion chamber of a gas turbine engine. It relates more particularly to an injection system of an air / fuel mixture provided with a multi-mode fuel injection making it possible to define at least two independent modes of injection of the air / fuel mixture according to predetermined engine operating regimes. .
  • the fuel injection is carried out, for each injection system, in a single mode by means of a fuel injector.
  • Two air tendrils centered on the fuel injector each deliver a radial air flow downstream of the fuel injection in order to produce the air / fuel mixture intended to be injected and then burned in the combustion chamber.
  • the air flows from the two tendrils are generally delimited by a venturi interposed between these tendrils and a bowl mounted downstream of them accelerates the flow of the air / fuel mixture towards the combustion chamber.
  • the air / fuel mixture obtained by such injection systems must be optimal to allow the combustion chamber to ignite, ensure combustion stability, especially at low engine operating speeds, and limit emissions of pollutant releases. in the atmosphere, in particular in the so-called full throttle engine regime.
  • These requirements imply operating modes which are often incompatible with each other.
  • the stability of the combustion flame, necessary in particular at low engine operating speeds is favored by a heterogeneity of the air / fuel mixture having zones rich in air / fuel mixture close to zones poor in mixture.
  • pollutants such as nitrogen oxides, is limited by combustion in a lean and homogeneous mixture environment.
  • a single-mode fuel injection system such as that described above does not correctly fulfill all of the operating requirements listed above.
  • the fuel injection of these systems takes place in areas where the mass of air introduced is the smallest, which tends to make the air / fuel mixture heterogeneous.
  • Fuel injection reduced to a single point is further optimized for only one or at most two engine operating speeds. In particular, the idling speed of these injection systems is not perfectly guaranteed, which leads to significant levels of carbon monoxide emissions.
  • combustion chambers with two heads, the principle of which consists in separating the combustions at low and at high speed by providing the chamber with fuel injectors distributed over a so-called “pilot” head. and on a so-called “takeoff” head spaced from the previous one both radially and axially.
  • pilot fuel injectors distributed over a so-called “pilot” head.
  • takeoff so-called “takeoff” head spaced from the previous one both radially and axially.
  • the present invention therefore aims to overcome such drawbacks by proposing an injection system comprising a multi-mode injection of the air / fuel mixture which makes it possible to prepare an optimal air / fuel mixture under low speed and high speed conditions in order to limit polluting emissions. It also targets an injection system which limits the risks of coking and prevents any refueling.
  • a system for injecting an air / fuel mixture into a combustion chamber of a gas turbine engine having a longitudinal axis and comprising means for injecting fuel interposed between first and second air injection means, the fuel injection means being arranged in an annular internal cavity of a venturi, the cavity being delimited by a substantially axial upstream wall and by a downstream wall substantially radial, the fuel injection means comprising at least one first fuel intake circuit provided with at least one fuel injection orifice, and a plurality of second fuel intake circuits, independent of the first, each provided with at least one fuel injection orifice so as to define a plurality of independent modes of injection of the air / fuel mixture according to determined engine operating speeds, the syst th of injection being characterized in that the fuel injection orifice of the first fuel intake circuit is formed in the upstream wall of the venturi in order to inject fuel towards the combustion chamber in a general direction substantially perpendicular to a flow of air from the first air injection means, and in that
  • the injection system makes it possible both to generate a homogeneous and lean air / fuel mixture at high speed conditions in order to limit the polluting emissions of nitrogen oxides, and to create gas pockets in proportion stoichiometric at low conditions speed to guarantee the ignition and stability of the combustion flame in the chamber while controlling carbon monoxide emissions.
  • the injection of the air / fuel mixture is carried out in a multi-mode manner according to the operating conditions of the engine.
  • the distribution of fuel in the injection system can thus be perfectly controlled as a function of the mass of air introduced by the air injection means.
  • the injection of fuel in directions perpendicular to the air flows from the air injection means improves the homogenization of the air / fuel mixture.
  • the fuel injection orifices of the first and second fuel intake circuits are regularly distributed around the longitudinal axis and have angular positions offset with respect to each other in order to improve the homogenization of the mixture.
  • a single supply conduit makes it possible to supply fuel to the first and second fuel intake circuits, for example via a plurality of concentric tubes.
  • the fuel supply is carried out by a single conduit which limits the risks of coking by taking advantage of the cooling obtained by the circulation of the fuel in the circuits.
  • Additional means for injecting air or fuel centered on the longitudinal axis of the injection system advantageously make it possible to define additional modes of injecting the air / fuel mixture.
  • These means are mounted on a bowl centered on the longitudinal axis and extending downstream from the first air injection means.
  • FIG. 1 partially illustrates and in section a combustion chamber 10 equipped with a plurality of systems for injecting an air / fuel mixture 12.
  • the combustion chamber 10 is hung on an external casing 14 by fixing means not shown. It is for example of the annular type and is delimited by two annular walls 16, 18 connected upstream by an annular chamber bottom 20.
  • the chamber bottom 20 comprises a plurality of openings regularly spaced circularly around an axis 21 of the gas turbine engine equipped with such a combustion chamber.
  • An injection system 12 according to the invention is mounted in each of these openings.
  • the injection systems prepare an air / fuel mixture intended to be burned in the combustion chamber 10.
  • the gases resulting from this combustion flow downstream in the chamber before supplying a high pressure turbine.
  • the injection system 12 of longitudinal axis X-X, comprises fuel injection means interposed between first and second air injection means.
  • first and second air injection means are preferably constituted respectively by internal 22 and external 24 tendrils arranged radially with respect to the longitudinal axis X-X.
  • These air tendrils of a type known per se, therefore each deliver an air flow in a substantially radial direction.
  • the external spin 24 is mounted so as to be offset radially with respect to the internal spin 22.
  • the fuel injection means are mounted in an annular internal cavity of an annular venturi 26 centered on the longitudinal axis XX of the injection system and delimiting the air flows from the internal 22 and external 24 gimlets.
  • the venturi includes an upstream wall 28 extending in a substantially axial direction from the internal spin 22 and extending by a substantially radial downstream wall 30 connected to the external spin 24.
  • the fuel injection means comprise at least a first fuel intake circuit 32 and a plurality of second fuel intake circuits 34. These first and second circuits are independent of each other and are in particular delimited by the upstream 28 and downstream 30 walls of the venturi 26.
  • the fuel injection means illustrated in FIGS. 1 to 3 comprise a single first and only one second fuel intake circuits. Of course, it is conceivable that these injection means comprise several first and second circuits.
  • the first fuel intake circuit 32 opens towards the combustion chamber 10 in a generally radial direction through at least one fuel injection orifice 36 formed in the upstream wall of the venturi.
  • the second fuel intake circuits 34 open towards the combustion chamber 10 in a generally axial direction generally via at least one fuel injection orifice 38 formed in the downstream wall of the venturi.
  • the fuel present in the first fuel intake circuit 32 is injected into the flow of the air flow generated by the internal spin 22 in a general direction substantially perpendicular to this flow.
  • the fuel present in the second fuel intake circuits 34 is injected into the flow of the air flow generated by the external spin 24 in a general direction substantially perpendicular to this flow.
  • six fuel injection orifices can be provided per fuel intake circuit.
  • the fuel injection orifices 36, 38 of the first and second fuel intake circuits 32, 34 are distributed regularly all around the longitudinal axis XX of the injection system, and the orifices 36 of the first circuits have angular positions offset with respect to the orifices 38 of the second circuits.
  • This characteristic makes it possible to improve the homogeneity of the air / fuel mixture.
  • the injection ports fuel are preferably not arranged opposite the air outlets of the inner and outer tendrils.
  • first and a plurality of second independent fuel intake circuits each provided with at least one fuel injection orifice makes it possible to define a plurality of independent modes of injection of the air / fuel according to determined engine operating speeds.
  • fuel injection means comprising a single first and a single second fuel intake circuit as illustrated in FIGS. 1 to 3
  • a fuel injection carried out by the first circuit 32 may correspond to a engine idle speed, while a fuel injection performed by the first and second circuits may be suitable for a full throttle engine speed.
  • first fuel intake circuits 32a, 32b and two second fuel intake circuits 34a, 34b there are provided two first fuel intake circuits 32a, 32b and two second fuel intake circuits 34a, 34b.
  • the first fuel intake circuits 32a, 32b each have three fuel injection holes 36a, 36b and the second fuel circuits 34a, 34b each also have three fuel injection holes 38a, 38b so that this system injection 12 allows sixteen independent modes of injection of the air / fuel mixture to be defined.
  • the fuel injection orifices 36a, 36b, 38a and 38b of the first and second fuel intake circuits are distributed regularly all around the longitudinal axis XX of the injection system and that 'they have angular positions offset from each other so as to promote the air / fuel mixture.
  • sixteen first and sixteen second fuel intake circuits can be provided, these circuits each being provided with two fuel injection orifices.
  • these fuel injection means make it possible to define 256 independent modes of injection of the air / fuel mixture.
  • the injection system 12 further comprises at least one radial supply duct 40 supplying fuel to both the first and second fuel intake circuits 32, 34.
  • This supply duct 40 advantageously comprises a plurality of tubes, for example concentric, each supplying a fuel intake circuit.
  • the supply duct comprises two tubes 42, 44. More specifically, a first central tube 42 of the duct supplies fuel to the second fuel intake circuit 34, the latter preferably having a torus shape ( Figure 3).
  • a second conduit 44 concentric to the first, supplies fuel to the first circuit 32.
  • the fuel supply to the fuel intake circuits takes place through a single conduit 40 which limits the risks of coking of the fuel.
  • the fuel supply conduits are parallel and independent from each other.
  • the fuel present in the fuel intake circuits is protected from hot gases from the combustion of the air / fuel mixture by means of thermal screens 46 notably interposed between the circuits 32, 34 and the upstream walls 28 and downstream 30 of the venturi 26.
  • the fuel which circulates in the fuel intake circuits also makes it possible to cool the walls of the venturi.
  • the heat shields can also be used to separate the different circuits from each other.
  • the injection system further comprises additional means 48 for injecting air or fuel (shown in dotted lines in FIG. 2) centered on its longitudinal axis XX.
  • additional injection means 48 thus make it possible to define additional modes of injection of the air / fuel mixture.
  • the fuel injection carried out only by these means may correspond to an engine idling speed, and the fuel injection carried out both by these additional means and through the orifices of the first fuel intake circuits can be suitable for a whole range of intermediate speeds.
  • a fuel injection by additional means and by the orifices of the first and second circuits may coincide with a full throttle speed of the engine.
  • the additional means 48 for injecting air or fuel are mounted on a bowl 50 centered on the longitudinal axis X-X and extending downstream from the first air injection means.
  • additional fuel injection means these consist for example of a conventional fuel injector passing through a wall 52 of the bowl 50 forming the bottom.
  • additional air injection means these can be formed by a conventional air spin also passing through the wall 52 of the bowl forming the bottom.
  • a mixing tube 54 is disposed downstream of the external spin 24.
  • This mixing tube has a wall 56 converging downstream and ending in a substantially radial wall 58 extending into the chamber combustion chamber by a deflector 60. This tube makes it possible to accelerate the flow of the air / fuel mixture towards the combustion chamber and to prevent the combustion flame from going upstream.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Système d'injection (12) d'un mélange air/carburant dans une chambre de combustion d'un moteur à turbine à gaz, comportant des moyens d'injection de carburant interposés entre des premiers (22) et seconds moyens d'injection d'air (24), disposés dans une cavité interne d'un venturi (26), et comportant au moins un premier circuit d'admission de carburant (32), et une pluralité de seconds circuits d'admission de carburant (34) indépendants des premiers de façon à définir une pluralité de modes indépendants d'injection du mélange air/carburant, au moins un orifice (36) du premier circuit étant pratiqué dans une paroi amont (28) du venturi afin d'injecter du carburant selon une direction perpendiculaire à un flux d'air issu des premiers moyens d'injection d'air, et au moins un orifice (38) du second circuit étant pratiqué dans une paroi aval (30) du venturi afin d'injecter du carburant selon une direction perpendiculaire à un flux d'air issu des seconds moyens d'injection d'air. <IMAGE>

Description

    Arrière-plan de l'invention
  • La présente invention se rapporte au domaine général des systèmes d'injection de carburant dans une chambre de combustion d'un moteur à turbine à gaz. Elle vise plus particulièrement un système d'injection d'un mélange air/carburant muni d'une injection de carburant multi-modes permettant de définir au moins deux modes indépendants d'injection du mélange air/carburant selon des régimes prédéterminés de fonctionnement du moteur.
  • Dans une chambre de combustion classique d'un moteur à turbine à gaz, l'injection de carburant s'effectue, pour chaque système d'injection, de façon mono-mode par l'intermédiaire d'un injecteur de carburant. Deux vrilles d'air centrées sur l'injecteur de carburant délivrent chacune un flux d'air radial en aval de l'injection de carburant afin de réaliser le mélange air/carburant destiné à être injecté puis brûlé dans la chambre de combustion. Les écoulements d'air issus des deux vrilles sont généralement délimités par un venturi interposé entre ces vrilles et un bol monté en aval de celles-ci accélère l'écoulement du mélange air/carburant vers la chambre de combustion.
  • Le mélange air/carburant obtenu par de tels systèmes d'injection doit être optimal pour permettre l'allumage de la chambre de combustion, assurer une stabilité de la combustion, notamment aux faibles régimes de fonctionnement du moteur, et limiter les émissions de rejets polluants dans l'atmosphère, en particulier en régime dit de plein gaz du moteur. Ces exigences impliquent des modes de fonctionnement souvent incompatibles entre eux. Par exemple, la stabilité de la flamme de combustion, nécessaire notamment aux faibles régimes de fonctionnement du moteur, est favorisée par une hétérogénéité du mélange air/carburant présentant des zones riches en mélange air/carburant proches de zones pauvres en mélange. A l'inverse, la formation de polluants, comme les oxydes d'azote, est limitée par une combustion en milieu de mélange pauvre et homogène.
  • Un système d'injection de carburant mono-mode tel que celui décrit précédemment ne permet pas de remplir correctement toutes les exigences de fonctionnement énumérées ci-dessus. En effet, l'injection de carburant de ces systèmes s'effectue dans des zones où la masse d'air introduite est la plus réduite ce qui a tendance à rendre le mélange air/carburant hétérogène. L'injection de carburant réduite à un seul point est en outre optimisée pour seulement un ou au plus deux régimes de fonctionnement du moteur. En particulier, le régime de fonctionnement au ralenti de ces systèmes d'injection n'est pas parfaitement assuré ce qui conduit à des niveaux importants d'émissions en monoxyde de carbone.
  • Afin de pallier ces inconvénients, il est connu d'utiliser des chambres de combustion à deux têtes dont le principe consiste à séparer les combustions à faible et à haut régime en munissant la chambre d'injecteurs de carburant répartis sur une tête dite « pilote » et sur une tête dite « décollage » espacée de la précédente à la fois radialement et axialement. Bien que cette solution apparaisse satisfaisante, une chambre à deux têtes reste difficile à piloter et onéreuse compte-tenu du doublement du nombre d'injecteurs de carburant par rapport à une chambre de combustion classique simple tête.
  • On connaît également le brevet américain US 5,816,049 qui propose un système d'injection d'un mélange air/carburant dont l'injection de carburant s'effectue de façon multiple par des orifices prévus au niveau d'un venturi délimitant des écoulements d'air issus d'une vrille radiale et d'une vrille axiale et par des orifices débouchant dans le passage de l'écoulement d'air issu de la vrille radiale. Cependant, le système d'injection décrit dans ce brevet présente également des inconvénients. L'alimentation en carburant des orifices d'injection s'effectue notamment par plusieurs conduits d'alimentation ce qui augmente considérablement les risques de cokéfaction du carburant. De plus, la disposition particulière des orifices d'injection de carburant par rapport à l'injection d'air entraîne des risques importants de remontée de carburant.
  • Objet et résumé de l'invention
  • La présente invention vise donc à pallier de tels inconvénients en proposant un système d'injection comportant une injection multi-modes du mélange air/carburant qui permet de préparer un mélange air/carburant optimal aux conditions de faible régime et de régime élevé afin de limiter les émissions polluantes. Elle vise également un système d'injection qui limite les risques de cokéfaction et empêche toute remontée de carburant.
  • A cet effet, il est prévu un système d'injection d'un mélange air/carburant dans une chambre de combustion d'un moteur à turbine à gaz, le système d'injection ayant un axe longitudinal et comportant des moyens d'injection de carburant interposés entre des premiers et des seconds moyens d'injection d'air, les moyens d'injection de carburant étant disposés dans une cavité interne annulaire d'un venturi, la cavité étant délimitée par une paroi amont sensiblement axiale et par une paroi aval sensiblement radiale, les moyens d'injection de carburant comportant au moins un premier circuit d'admission de carburant muni d'au moins un orifice d'injection de carburant, et une pluralité de seconds circuits d'admission de carburant, indépendants des premiers, munis chacun d'au moins un orifice d'injection de carburant de façon à définir une pluralité de modes indépendants d'injection du mélange air/carburant selon des régimes déterminés de fonctionnement du moteur, le système d'injection étant caractérisé en ce que l'orifice d'injection de carburant du premier circuit d'admission de carburant est pratiqué dans la paroi amont du venturi afin d'injecter du carburant vers la chambre de combustion selon une direction générale sensiblement perpendiculaire à un flux d'air issu des premiers moyens d'injection d'air, et en ce que les orifices d'injection de carburant des seconds circuits d'admission de carburant sont pratiqués dans la paroi aval du venturi afin d'injecter du carburant vers la chambre de combustion selon une direction générale sensiblement perpendiculaire à un flux d'air issu des seconds moyens d'injection d'air.
  • De la sorte, le système d'injection permet à la fois de générer un mélange air/carburant homogène et pauvre aux conditions de régime élevé afin de limiter les émissions polluantes d'oxydes d'azote, et de créer des poches de gaz en proportion stoechiométrique aux conditions de faible régime afin de garantir l'allumage et la stabilité de la flamme de combustion dans la chambre tout en maîtrisant les émissions de monoxyde de carbone. L'injection du mélange air/carburant s'effectue de façon multi-modes suivant les conditions de fonctionnement du moteur. La répartition de carburant dans le système d'injection peut ainsi être parfaitement contrôlée en fonction de la masse d'air introduite par les moyens d'injection d'air. De plus, l'injection de carburant selon des directions perpendiculaires aux écoulements d'air issus des moyens d'injection d'air améliore l'homogénéisation du mélange air/carburant.
  • Avantageusement, les orifices d'injection de carburant des premiers et seconds circuits d'admission de carburant sont régulièrement répartis autour de l'axe longitudinal et ont des positions angulaires décalés les uns par rapport aux autres afin d'améliorer l'homogénéisation du mélange.
  • Un conduit unique d'alimentation permet d'alimenter en carburant les premiers et seconds circuits d'admission de carburant par exemple par l'intermédiaire d'une pluralité de tubes concentriques. Ainsi, l'alimentation en carburant s'effectue par un unique conduit ce qui limite les risques de cokéfaction en profitant du refroidissement obtenu par la circulation du carburant dans les circuits.
  • Des moyens supplémentaires d'injection d'air ou de carburant centrés sur l'axe longitudinal du système d'injection permettent avantageusement de définir des modes additionnels d'injection du mélange air/carburant. Ces moyens sont montés sur un bol centré sur l'axe longitudinal et s'étendant vers l'aval depuis les premiers moyens d'injection d'air.
  • Brève description des dessins
  • D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures:
    • la figure 1 est une vue en coupe et partielle d'une chambre de combustion équipée de systèmes d'injection selon un exemple de réalisation de l'invention ;
    • la figure 2 est une vue partielle et agrandie d'un système d'injection de la figure 1 ;
    • la figure 3 est une vue en perspective et en écorché d'un système d'injection de la figure 1 ; et
    • la figure 4 est une vue schématique de face d'un système d'injection selon un autre exemple de réalisation de l'invention.
    Description détaillée d'un mode de réalisation
  • On se réfère à la figure 1 qui illustre partiellement et en coupe une chambre de combustion 10 équipée d'une pluralité de systèmes d'injection d'un mélange air/carburant 12. La chambre de combustion 10 est accrochée sur un carter externe 14 par des moyens de fixation non représentés. Elle est par exemple du type annulaire et est délimitée par deux parois annulaires 16, 18 reliées en amont par un fond de chambre annulaire 20. Le fond de chambre 20 comporte une pluralité d'ouvertures régulièrement espacées de façon circulaire autour d'un axe 21 du moteur à turbine à gaz équipée d'une telle chambre de combustion. Un système d'injection 12 conforme à l'invention est monté dans chacune de ces ouvertures. Les systèmes d'injection préparent un mélange air/carburant destiné à être brûlé dans la chambre de combustion 10. Les gaz issus de cette combustion s'écoulent vers l'aval dans la chambre avant d'alimenter une turbine haute pression.
  • Comme plus particulièrement illustré par la figure 2, le système d'injection 12, d'axe longitudinal X-X, comporte des moyens d'injection de carburant interposés entre des premiers et des seconds moyens d'injection d'air. Ces premiers et seconds moyens d'injection d'air sont de préférence constitués respectivement par des vrilles interne 22 et externe 24 disposées radialement par rapport à l'axe longitudinal X-X. Ces vrilles d'air, de type connu en soi, délivrent donc chacune un flux d'air dans une direction sensiblement radiale. La vrille externe 24 est montée de façon à être décalée radialement par rapport à la vrille interne 22.
  • Les moyens d'injection de carburant sont montés dans une cavité interne annulaire d'un venturi annulaire 26 centré sur l'axe longitudinal X-X du système d'injection et délimitant les écoulements d'air issus des vrilles interne 22 et externe 24. Le venturi comporte notamment une paroi amont 28 s'étendant dans une direction sensiblement axiale depuis la vrille interne 22 et se prolongeant par une paroi aval 30 sensiblement radiale reliée à la vrille externe 24.
  • Les moyens d'injection de carburant comportent au moins un premier circuit d'admission de carburant 32 et une pluralité de seconds circuits 34 d'admission de carburant. Ces premiers et seconds circuits sont indépendants entre eux et sont notamment délimités par les parois amont 28 et aval 30 du venturi 26. Pour des raisons de commodité de représentation, les moyens d'injection de carburant illustrés par les figures 1 à 3 comportent un unique premier et un unique second circuits d'admission de carburant. Bien entendu, on peut envisager que ces moyens d'injection comportent plusieurs premiers et seconds circuits.
  • Le premier circuit d'admission de carburant 32 s'ouvre vers la chambre de combustion 10 dans une direction générale sensiblement radiale par l'intermédiaire d'au moins un orifice d'injection de carburant 36 pratiqué dans la paroi amont du venturi. Les seconds circuits d'admission de carburant 34 s'ouvrent vers la chambre de combustion 10 dans une direction générale sensiblement axiale par l'intermédiaire d'au moins un orifice d'injection de carburant 38 pratiqué dans la paroi aval du venturi. Ainsi, conformément à l'invention, le carburant présent dans le premier circuit d'admission de carburant 32 est injecté dans l'écoulement du flux d'air généré par la vrille interne 22 selon une direction générale sensiblement perpendiculaire à ce flux. De même, le carburant présent dans les seconds circuits d'admission de carburant 34 est injecté dans l'écoulement du flux d'air généré par la vrille externe 24 selon une direction générale sensiblement perpendiculaire à ce flux. A titre d'exemple, il peut être prévu six orifices d'injection de carburant par circuit d'admission de carburant.
  • Selon une caractéristique avantageuse de l'invention, les orifices d'injection de carburant 36, 38 des premiers et seconds circuits d'admission de carburant 32, 34 sont répartis régulièrement tout autour de l'axe longitudinal X-X du système d'injection, et les orifices 36 des premiers circuits ont des positions angulaires décalées par rapport aux orifices 38 des seconds circuits. Cette caractéristique permet d'améliorer l'homogénéité du mélange air/carburant. En outre, les orifices d'injection de carburant ne sont de préférence pas disposés en vis à vis des sorties d'air des vrilles interne et externe.
  • La présence d'au moins un premier et d'une pluralité de seconds circuits d'admission de carburant indépendants munis chacun d'au moins un orifice d'injection de carburant permet de définir une pluralité de modes indépendants d'injection du mélange air/carburant selon des régimes déterminés de fonctionnement du moteur. Par exemple, dans le cas de moyens d'injection de carburant comportant un unique premier et un unique second circuits d'admission de carburant comme illustré sur les figures 1 à 3, une injection de carburant effectuée par le premier circuit 32 peut correspondre à un régime de ralenti du moteur, tandis qu'une injection de carburant réalisée par le premier et le second circuits peut convenir à un régime plein gaz du moteur.
  • Selon un autre exemple de réalisation de l'invention illustré schématiquement sur la figure 4, il est prévu deux premiers circuits d'admission de carburant 32a, 32b et deux seconds circuits d'admission de carburant 34a, 34b. Les premiers circuits d'admission de carburant 32a, 32b comportent chacun trois orifices d'injection de carburant 36a, 36b et les seconds circuits 34a, 34b comportent chacun également trois orifices d'injection de carburant 38a, 38b de sorte que ce système d'injection 12 permet de définir seize modes indépendants d'injection du mélange air/carburant. Sur cette figure, on remarque également que les orifices d'injection de carburant 36a, 36b, 38a et 38b des premiers et seconds circuits d'admission de carburant sont répartis régulièrement tout autour de l'axe longitudinal X-X du système d'injection et qu'ils ont des positions angulaires décalées les uns par rapport aux autres de façon à favoriser le mélange air/carburant.
  • Selon encore un autre exemple de réalisation non représenté sur les figures, il peut être prévu seize premiers et seize seconds circuits d'admission de carburant, ces circuits étant chacun muni de deux orifices d'injection de carburant. De la sorte, ces moyens d'injection de carburant permettent de définir 256 modes indépendants d'injection du mélange air/carburant.
  • Sur les figures 1 et 2, on remarque que le système d'injection 12 selon l'invention comporte en outre au moins un conduit radial d'alimentation 40 alimentant en carburant à la fois les premiers et seconds circuits d'admission de carburant 32, 34. Ce conduit d'alimentation 40 comporte avantageusement une pluralité de tubes, par exemple concentriques, alimentant chacun un circuit d'admission de carburant. Dans le cas illustré par la figure 2, le conduit d'alimentation comporte deux tubes 42, 44. Plus précisément, un premier tube central 42 du conduit alimente en carburant le second circuit d'admission de carburant 34, ce dernier ayant de préférence une forme de tore (figure 3). Un second conduit 44, concentrique au premier, alimente en carburant le premier circuit 32. Dans le cas de plusieurs premiers et plusieurs seconds circuits d'admission de carburant, il est prévu autant de tubes concentriques qu'il y a de circuits. Ainsi, l'alimentation de carburant des circuits d'admission de carburant s'effectue par un conduit unique 40 ce qui limite les risques de cokéfaction du carburant. Alternativement, on peut envisager que les conduits d'alimentation en carburant soient parallèles et indépendants entre eux.
  • Le carburant présent dans les circuits d'admission de carburant est protégé des gaz chauds issus de la combustion du mélange air/carburant par l'intermédiaire d'écrans thermiques 46 notamment interposés entre les circuits 32, 34 et les parois amont 28 et aval 30 du venturi 26. Le carburant qui circule dans les circuits d'admission de carburant permet également de refroidir les parois du venturi. Dans le cas de plusieurs premiers et plusieurs seconds circuits d'admission de carburant, les écrans thermiques peuvent également servir à séparer les différents circuits les uns des autres.
  • Selon une autre caractéristique avantageuse de l'invention, le système d'injection comporte en outre des moyens supplémentaires 48 d'injection d'air ou de carburant (représentés en pointillés sur la figure 2) centrés sur son axe longitudinal X-X. Ces moyens supplémentaires d'injection 48 permettent ainsi de définir des modes additionnels d'injection du mélange air/carburant. Par exemple, dans le cas de moyens supplémentaires d'injection de carburant, l'injection de carburant réalisée uniquement par ces moyens peut correspondre à un régime de ralenti du moteur, et l'injection de carburant effectuée à la fois par ces moyens supplémentaires et par les orifices des premiers circuits d'admission de carburant peut convenir à toute une gamme de régimes intermédiaires. Enfin, une injection de carburant par les moyens supplémentaires et par les orifices des premiers et seconds circuits peut coïncider avec un régime plein gaz du moteur.
  • De préférence, les moyens supplémentaires 48 d'injection d'air ou de carburant sont montés sur un bol 50 centré sur l'axe longitudinal X-X et s'étendant vers l'aval depuis les premiers moyens d'injection d'air. Dans le cas de moyens supplémentaires d'injection de carburant, ceux-ci sont constitués par exemple par un injecteur de carburant classique traversant une paroi 52 du bol 50 formant fond. De même, lorsqu'il s'agit de moyens supplémentaires d'injection d'air, ceux-ci peuvent être formés par une vrille d'air classique traversant également la paroi 52 du bol formant fond.
  • Enfin, on peut également noter qu'un tube de mélange 54 est disposé en aval de la vrille externe 24. Ce tube de mélange comporte une paroi 56 convergeant vers l'aval et se terminant par une paroi 58 sensiblement radiale se prolongeant dans la chambre de combustion par un déflecteur 60. Ce tube permet d'accélérer l'écoulement du mélange air/carburant vers la chambre de combustion et d'empêcher que la flamme de combustion ne remonte vers l'amont.

Claims (11)

  1. Système d'injection (12) d'un mélange air/carburant dans une chambre de combustion (10) d'un moteur à turbine à gaz, ledit système d'injection ayant un axe longitudinal (X-X) et comportant des moyens d'injection de carburant interposés entre des premiers (22) et des seconds moyens d'injection d'air (24), lesdits moyens d'injection de carburant étant disposés dans une cavité interne annulaire (32, 34) d'un venturi (26), ladite cavité étant délimitée par une paroi amont (28) sensiblement axiale et par une paroi aval (30) sensiblement radiale, lesdits moyens d'injection de carburant comportent au moins un premier circuit d'admission de carburant (32) muni d'au moins un orifice d'injection de carburant (36), et une pluralité de seconds circuits d'admission de carburant (34), indépendants des premiers, munis chacun d'au moins un orifice d'injection de carburant (38), de façon à définir une pluralité de modes indépendants d'injection du mélange air/carburant selon des régimes déterminés de fonctionnement du moteur, ledit système d'injection étant caractérisé en ce que l'orifice d'injection de carburant (36) du premier circuit d'admission de carburant est pratiqué dans la paroi amont du venturi afin d'injecter du carburant vers la chambre de combustion selon une direction générale sensiblement perpendiculaire à un flux d'air issu des premiers moyens d'injection d'air (22), et en ce que les orifices d'injection de carburant (38) des seconds circuits d'admission de carburant sont pratiqués dans la paroi aval du venturi afin d'injecter du carburant vers la chambre de combustion selon une direction générale sensiblement perpendiculaire à un flux d'air issu des seconds moyens d'injection d'air (24).
  2. Système selon la revendication 1, caractérisé en ce que les orifices d'injection de carburant (36, 38) desdits premiers et seconds circuits d'admission de carburant (32, 34) sont répartis régulièrement tout autour dudit axe longitudinal.
  3. Système selon l'une des revendications 1 ou 2, caractérisé en ce que l'orifice d'injection de carburant (36) dudit premier circuit d'admission de carburant (32) a une position angulaire décalée par rapport aux orifices d'injection de carburant (38) desdits seconds circuits d'admission de carburant (34).
  4. Système selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les seconds circuits d'admission de carburant (34) ont une forme de tore.
  5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comporte en outre au moins un conduit radial d'alimentation (40) alimentant en carburant les premiers et seconds circuits d'admission de carburant (32, 34).
  6. Système selon la revendication 5, caractérisé en ce que le conduit d'alimentation comporte une pluralité de tubes concentriques (42, 44) alimentant chacun un circuit d'admission de carburant.
  7. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comporte en outre des moyens supplémentaires d'injection d'air (48) centrés sur l'axe longitudinal (X-X) du système d'injection.
  8. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comporte en outre des moyens supplémentaires d'injection de carburant (48) centrés sur l'axe longitudinal (X-X) du système d'injection.
  9. Système selon l'une des revendications 7 ou 8, caractérisé en ce que lesdits moyens supplémentaires d'injection sont montés sur un bol (50) centré sur ledit axe longitudinal et s'étendant vers l'aval depuis les premiers moyens d'injection d'air (22).
  10. Système selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les premiers (22) et seconds moyens d'injection d'air (24) sont disposés radialement par rapport audit axe longitudinal.
  11. Système selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les premiers et les seconds moyens d'injection d'air sont constitués respectivement par une vrille interne (22) et par une vrille externe (24).
EP03290428A 2002-03-07 2003-02-21 Système d'injection d'un mélange air carburant dans une chambre de combustion Expired - Lifetime EP1342955B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0202875A FR2836986B1 (fr) 2002-03-07 2002-03-07 Systeme d'injection multi-modes d'un melange air/carburant dans une chambre de combustion
FR0202875 2002-03-07

Publications (2)

Publication Number Publication Date
EP1342955A1 true EP1342955A1 (fr) 2003-09-10
EP1342955B1 EP1342955B1 (fr) 2008-09-03

Family

ID=27741452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03290428A Expired - Lifetime EP1342955B1 (fr) 2002-03-07 2003-02-21 Système d'injection d'un mélange air carburant dans une chambre de combustion

Country Status (9)

Country Link
US (1) US6799427B2 (fr)
EP (1) EP1342955B1 (fr)
JP (1) JP4188724B2 (fr)
CA (1) CA2420313C (fr)
DE (1) DE60323286D1 (fr)
ES (1) ES2312731T3 (fr)
FR (1) FR2836986B1 (fr)
RU (1) RU2303199C2 (fr)
UA (1) UA76427C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20100378A1 (it) * 2010-05-05 2011-11-06 Avio Spa Gruppo di iniezione per un combustore di una turbina a gas

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340826A1 (de) * 2003-09-04 2005-03-31 Rolls-Royce Deutschland Ltd & Co Kg Homogene Gemischbildung durch verdrallte Einspritzung des Kraftstoffs
DE10348604A1 (de) * 2003-10-20 2005-07-28 Rolls-Royce Deutschland Ltd & Co Kg Kraftstoffeinspritzdüse mit filmartiger Kraftstoffplatzierung
US7065972B2 (en) * 2004-05-21 2006-06-27 Honeywell International, Inc. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions
US8348180B2 (en) 2004-06-09 2013-01-08 Delavan Inc Conical swirler for fuel injectors and combustor domes and methods of manufacturing the same
JP4626251B2 (ja) 2004-10-06 2011-02-02 株式会社日立製作所 燃焼器及び燃焼器の燃焼方法
GB2432655A (en) * 2005-11-26 2007-05-30 Siemens Ag Combustion apparatus
FR2897107B1 (fr) * 2006-02-09 2013-01-18 Snecma Paroi transversale de chambre de combustion munie de trous de multiperforation
US7870737B2 (en) * 2007-04-05 2011-01-18 United Technologies Corporation Hooded air/fuel swirler for a gas turbine engine
DE102007043626A1 (de) 2007-09-13 2009-03-19 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenmagerbrenner mit Kraftstoffdüse mit kontrollierter Kraftstoffinhomogenität
US8215116B2 (en) * 2008-10-02 2012-07-10 General Electric Company System and method for air-fuel mixing in gas turbines
US7712314B1 (en) 2009-01-21 2010-05-11 Gas Turbine Efficiency Sweden Ab Venturi cooling system
US8256226B2 (en) * 2009-04-23 2012-09-04 General Electric Company Radial lean direct injection burner
JP5083302B2 (ja) * 2009-12-14 2012-11-28 株式会社日立製作所 燃焼器とガスタービン燃焼器、及び空気を燃焼器に供給する方法
US8850819B2 (en) 2010-06-25 2014-10-07 United Technologies Corporation Swirler, fuel and air assembly and combustor
JP4894947B2 (ja) * 2010-09-21 2012-03-14 株式会社日立製作所 燃焼器及び燃焼器の燃焼方法
US8973368B2 (en) * 2011-01-26 2015-03-10 United Technologies Corporation Mixer assembly for a gas turbine engine
US9920932B2 (en) * 2011-01-26 2018-03-20 United Technologies Corporation Mixer assembly for a gas turbine engine
RU2456510C1 (ru) * 2011-02-18 2012-07-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Камера сгорания непрерывного действия
JP5772245B2 (ja) * 2011-06-03 2015-09-02 川崎重工業株式会社 燃料噴射装置
US9423137B2 (en) * 2011-12-29 2016-08-23 Rolls-Royce Corporation Fuel injector with first and second converging fuel-air passages
DE102013204307A1 (de) * 2013-03-13 2014-09-18 Siemens Aktiengesellschaft Strahlbrenner mit Kühlkanal in der Grundplatte
RU2527011C1 (ru) * 2013-05-23 2014-08-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Камера сгорания непрерывного действия
US10001281B2 (en) * 2015-04-17 2018-06-19 General Electric Company Fuel nozzle with dual-staged main circuit
EP3098514A1 (fr) * 2015-05-29 2016-11-30 Siemens Aktiengesellschaft Agencement de chambre de combustion
US20160377293A1 (en) * 2015-06-25 2016-12-29 Delavan Inc Fuel injector systems
US9803552B2 (en) * 2015-10-30 2017-10-31 General Electric Company Turbine engine fuel injection system and methods of assembling the same
US10739003B2 (en) 2016-10-03 2020-08-11 United Technologies Corporation Radial fuel shifting and biasing in an axial staged combustor for a gas turbine engine
US10344981B2 (en) * 2016-12-16 2019-07-09 Delavan Inc. Staged dual fuel radial nozzle with radial liquid fuel distributor
US10634355B2 (en) * 2016-12-16 2020-04-28 Delavan Inc. Dual fuel radial flow nozzles
RU185201U1 (ru) * 2017-12-01 2018-11-26 Публичное Акционерное Общество "Одк-Сатурн" Камера сгорания непрерывного действия
EP3762136A4 (fr) * 2018-03-07 2021-03-24 SABIC Global Technologies B.V. Procédé et réacteur de conversion par pyrolyse de gaz d'hydrocarbures
CN113195092B (zh) * 2018-10-23 2022-04-29 沙伯环球技术有限公司 用于烃转化的方法和反应器
US10557630B1 (en) 2019-01-15 2020-02-11 Delavan Inc. Stackable air swirlers
US11725819B2 (en) 2021-12-21 2023-08-15 General Electric Company Gas turbine fuel nozzle having a fuel passage within a swirler
EP4202305A1 (fr) * 2021-12-21 2023-06-28 General Electric Company Buse de carburant et tourbillonneur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816049A (en) * 1997-01-02 1998-10-06 General Electric Company Dual fuel mixer for gas turbine combustor
US6256995B1 (en) * 1999-11-29 2001-07-10 Pratt & Whitney Canada Corp. Simple low cost fuel nozzle support
US6345505B1 (en) * 1998-10-30 2002-02-12 United Technologies Corporation Dual fuel mixing in a multishear fuel injector with a plurality of concentric ducts
EP1193449A2 (fr) * 2000-09-29 2002-04-03 General Electric Company Ensemble de vrilles annulaires

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1306873C (fr) * 1987-04-27 1992-09-01 Jack R. Taylor Injecteur de combustible a faible teneur en coke, pour turbine a gaz
US5623827A (en) * 1995-01-26 1997-04-29 General Electric Company Regenerative cooled dome assembly for a gas turbine engine combustor
FR2752917B1 (fr) * 1996-09-05 1998-10-02 Snecma Systeme d'injection a degre d'homogeneisation avancee

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5816049A (en) * 1997-01-02 1998-10-06 General Electric Company Dual fuel mixer for gas turbine combustor
US6345505B1 (en) * 1998-10-30 2002-02-12 United Technologies Corporation Dual fuel mixing in a multishear fuel injector with a plurality of concentric ducts
US6256995B1 (en) * 1999-11-29 2001-07-10 Pratt & Whitney Canada Corp. Simple low cost fuel nozzle support
EP1193449A2 (fr) * 2000-09-29 2002-04-03 General Electric Company Ensemble de vrilles annulaires

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20100378A1 (it) * 2010-05-05 2011-11-06 Avio Spa Gruppo di iniezione per un combustore di una turbina a gas
EP2385307A1 (fr) * 2010-05-05 2011-11-09 AVIO S.p.A. Ensemble d'injection de chambre de combustion de turbine à gaz et procédé d'alimentation de mélange de carburant de chambre de combustion
CN102242931A (zh) * 2010-05-05 2011-11-16 亚飞欧股份有限公司 燃气轮机燃烧器喷射组件及燃烧器燃料混合物供给方法
US9091444B2 (en) 2010-05-05 2015-07-28 Avio S.P.A. Gas turbine combustor injection assembly, and combustor fuel mixture feed method
CN102242931B (zh) * 2010-05-05 2017-03-01 Ge亚飞欧有限责任公司 燃气轮机燃烧器喷射组件及燃烧器燃料混合物供给方法

Also Published As

Publication number Publication date
US20040025508A1 (en) 2004-02-12
UA76427C2 (en) 2006-08-15
DE60323286D1 (de) 2008-10-16
JP4188724B2 (ja) 2008-11-26
CA2420313A1 (fr) 2003-09-07
FR2836986A1 (fr) 2003-09-12
FR2836986B1 (fr) 2004-11-19
CA2420313C (fr) 2010-05-04
JP2003262337A (ja) 2003-09-19
US6799427B2 (en) 2004-10-05
ES2312731T3 (es) 2009-03-01
RU2303199C2 (ru) 2007-07-20
EP1342955B1 (fr) 2008-09-03

Similar Documents

Publication Publication Date Title
EP1342955B1 (fr) Système d&#39;injection d&#39;un mélange air carburant dans une chambre de combustion
CA2588952C (fr) Chambre de combustion d&#39;une turbomachine
EP1953455B1 (fr) Système d&#39;injection de carburant à double injecteur
EP2671028B1 (fr) Injecteur de chambre de combustion de turbine a gaz a double circuit de carburant et chambre de combustion equipee d&#39;au moins un tel injecteur
CA2899508C (fr) Ensemble de combustion de turbomachine comprenant un circuit d&#39;alimentation de carburant ameliore
CA2398669C (fr) Chambre de combustion annulaire a double tete etagee
EP0828115A1 (fr) Système d&#39;injection de carburant pour une chambre de combustion
FR2921463A1 (fr) Chambre de combustion d&#39;une turbomachine
EP1314933A1 (fr) Système d&#39;injection multi-étages d&#39;un mélange air/carburant dans une chambre de combustion de turbomachine
EP0933594A1 (fr) Chambre de combustion de turbine à gaz fonctionnant au carburant liquide
CA2907533C (fr) Systeme d&#39;injection pour chambre de combustion de turbomachine comportant une paroi annulaire a profil interne convergent
FR2636376A1 (fr) Dispositif de prelevement de gaz chauds dans une chambre de combustion et tete d&#39;injection equipee d&#39;un dispositif de prelevement
EP3368826A1 (fr) Systeme d&#39;injection aerodynamique pour turbomachine d&#39;aeronef, a melange air/carburant ameliore
WO2019207230A1 (fr) Système d&#39;injection pour une chambre annulaire de combustion de turbomachine
FR2695460A1 (fr) Chambre de combustion de turbomachine à plusieurs injecteurs.
FR2694799A1 (fr) Chambre de combustion annulaire conventionnelle à plusieurs injecteurs.
FR2706020A1 (fr) Ensemble de chambre de combustion, notamment pour turbine à gaz; comprenant des zones de combustion et de vaporisation séparées.
EP0718560B1 (fr) Chambre de combustion à deux têtes fonctionnant du ralenti au plein gaz
FR3080672A1 (fr) Prechambre pour chambre de combustion annulaire a ecoulement giratoire pour moteur a turbine a gaz
FR3022986B1 (fr) Procede d&#39;allumage d&#39;une chambre de combustion de turbomachine
FR2888284A3 (fr) Moteur a combustion interne comprenant un injecteur de carburant adapte pour le demarrage dudit moteur
FR3105985A1 (fr) Circuit multipoint d’injecteur amélioré
WO2016116700A1 (fr) Systeme d&#39;injection de carburant pour turbomachine d&#39;aeronef, comprenant un canal de traversee d&#39;air a section variable
FR3114614A1 (fr) Dispositif d’allumage à préchambre pour moteur à combustion interne à allumage commandé
EP4413300A1 (fr) Dispositif d&#39;injection de dihydrogène et d&#39;air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FEDER, DIDIER

Inventor name: MICHAU, MARION

Inventor name: SCHULER, ALAIN

Inventor name: RODRIGUES, JOSE

Inventor name: VIGUIER, CHRISTOPHE

Inventor name: TIPIEL, ALAIN

Inventor name: RAVET, FREDERIC

Inventor name: CALVEZ, GWENAELLE

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CALVEZ, GWENAELLE

Inventor name: FEDER, DIDIER

Inventor name: RODRIGUES, JOSE

Inventor name: SCHULER, ALAIN

Inventor name: VIGUIER, CHRISTOPHE

Inventor name: MICHAU, MARION

Inventor name: TIPIEL, ALAIN

Inventor name: RAVET, FREDERIC

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60323286

Country of ref document: DE

Date of ref document: 20081016

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2312731

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130207

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140222

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220124

Year of fee payment: 20

Ref country code: DE

Payment date: 20220119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220120

Year of fee payment: 20

Ref country code: IT

Payment date: 20220119

Year of fee payment: 20

Ref country code: FR

Payment date: 20220119

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60323286

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230220

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230220