EP1314933A1 - Système d'injection multi-étages d'un mélange air/carburant dans une chambre de combustion de turbomachine - Google Patents

Système d'injection multi-étages d'un mélange air/carburant dans une chambre de combustion de turbomachine Download PDF

Info

Publication number
EP1314933A1
EP1314933A1 EP02292866A EP02292866A EP1314933A1 EP 1314933 A1 EP1314933 A1 EP 1314933A1 EP 02292866 A EP02292866 A EP 02292866A EP 02292866 A EP02292866 A EP 02292866A EP 1314933 A1 EP1314933 A1 EP 1314933A1
Authority
EP
European Patent Office
Prior art keywords
injector
fuel supply
fuel
air
internal volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02292866A
Other languages
German (de)
English (en)
Other versions
EP1314933B1 (fr
Inventor
Etienne David
Marion Michau
José Rodrigues
Denis Sandelis
Alain Tiepel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Transmission Systems SAS
Original Assignee
Hispano Suiza SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hispano Suiza SA filed Critical Hispano Suiza SA
Publication of EP1314933A1 publication Critical patent/EP1314933A1/fr
Application granted granted Critical
Publication of EP1314933B1 publication Critical patent/EP1314933B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/106Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet
    • F23D11/107Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet at least one of both being subjected to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes

Definitions

  • the present invention relates to the general field of fuel injection systems in a combustion chamber of a gas turbine engine. It relates more particularly to a system injection device comprising in particular a fuel injector aerodynamics with multi-point fuel supply.
  • injection systems include in particular fuel injectors and air intake means downstream of the injectors.
  • fuel injectors There are two main categories of fuel: so-called “aeromechanical” injectors designed to deliver two fuel flows according to engine speeds, and injectors so-called “aerodynamics" which have only one circuit fuel, regardless of engine speed.
  • injectors so-called “aerodynamics” present, at their end or nose, air supply channels to directly deliver a mixture air / fuel.
  • the present invention relates more particularly to injection systems comprising so-called “aerodynamic” injectors belonging to the latter category.
  • the air intake means known from the prior art usually have primary and secondary tendrils that deliver swirling air flow at the outlet of the fuel injector.
  • a venturi separating these two tendrils accelerates the flow of air from the primary spin and a bowl mounted downstream of the secondary spin allows mounting the injector on the bottom of the combustion chamber while to prevent a rise in the combustion flame of the mixture air / fuel to the injector.
  • This type of injection system has drawbacks.
  • the air / fuel mixture delivered at the injector outlet is not generally not homogeneous, thus increasing polluting emissions of the motor.
  • the fuel flow rate at the injector outlet is also insufficient, especially for low bit rates, which leads risks of coking at the level of the injector's nose and generates heterogeneity of the air / fuel mixture.
  • Low speed of fuel flow also has the disadvantage of increasing the risks of a rise in the combustion flame of the mixture air / fuel to the end of the injector which is detrimental to proper operation of the gas turbine.
  • traces of coking appear between the body of the injector and the bowl.
  • the present invention therefore aims to overcome such drawbacks by proposing an injection system whose fuel injector allows to obtain a better homogenization of the air / fuel mixture and a higher fuel flow speed as it exits.
  • a system for injecting a mixture comprising an injector comprising an axial internal volume which opens to one end by an axial outlet for the air / fuel mixture; a first fuel supply stage with a plurality of first ones fuel supply orifices which open in the internal volume, are distributed around an axis of the injector and are connected by channels supplying fuel to a fuel inlet in the injector; and at least one air supply channel which opens into the internal volume and is connected to an air inlet in the injector, characterized in that the injector further comprises at least a second supply stage fuel with a plurality of second fuel supply ports fuel which open into the internal volume, are distributed around the axis of the injector, and are connected to the fuel inlet in the injector by fuel supply channels which are at least partly combined with the first stage fuel supply channels.
  • the second fuel supply stage multiplies the number of fuel supply points in the internal volume of the injector around its axis.
  • the homogenization of the air / fuel mixture is therefore improved.
  • the second fuel supply ports are axially offset relative to the first fuel supply ports.
  • the second fuel supply orifices preferably have angular positions around the axis of the injector offset from those of the first fuel supply ports.
  • the fuel supply channels are oriented, in their parts terminals adjacent to the first and second supply ports in fuel, substantially tangentially to the wall of the internal volume. This characteristic makes it possible to obtain a setting rotation of the fuel in the internal volume and thus improves the speed flow and homogeneity of the air / fuel mixture.
  • the injector has a rear part in which are formed the air supply channel (s), at least one ring in which the first and second stages are formed fuel supply and which is introduced into a formed housing at the downstream end of the rear part, and a front part which connects to the rear part, the ring being immobilized axially between the part rear and the front part of the injector.
  • each fuel supply stage has four ports fuel supply distributed evenly around the axis of the injector.
  • the system according to the invention further comprises a socket surrounding at least part of the injector, a bowl forming a divergent for mounting the injection system on a chamber bottom combustion, at least one tendril of air interposed between the socket and the bowl, and a venturi formed between the part of the injector surrounded by the sleeve and the bowl.
  • a passage for air is arranged between the socket and the part of the injector surrounded by the socket in order to prevent that coke is formed at the nozzle nose, and air passages are formed in the wall of the divergent bowl.
  • FIG. 1 illustrates an injection system 2 according to the invention mounted in a combustion chamber 4 of a gas turbine engine used in a turbojet engine for example.
  • the combustion chamber 4 for example of the annular type, is delimited by internal and external walls (not shown on the drawing) joined by a chamber back 6.
  • the latter comprises a plurality of openings 6a with axis 8 regularly spaced around the axis of the motor.
  • a system injection device 2 In each of the openings 6a is mounted a system injection device 2 according to the invention intended to inject an air / fuel mixture in the combustion chamber 4.
  • the gases from the combustion of this air / fuel mixture flows downstream in the combustion 4 and are then evacuated to a high-pressure turbine (not shown).
  • annular deflector 10 is mounted in each of the openings 6a.
  • This deflector is arranged in the combustion chamber 4 parallel to the chamber bottom 6.
  • a bowl 20 forming a divergence is also mounted inside the opening 6a. he has a wall 21 flared downstream in the extension of a cylindrical wall 22 arranged coaxially to the axis 8 of the opening 6a. AT its downstream end, the wall 21 of the bowl has a rim 23 which, with a facing wall 24, delimits an annular recess or flange of U-shaped section bowl.
  • the cylindrical wall 22 of the bowl 20 surrounds a venturi 30 of axis 8.
  • the venturi 30 delimits the air flows from a primary spin 32 and a secondary spin 34.
  • the primary spin 32 is arranged upstream of the venturi 30 and delivers an air flow inside the venturi.
  • the spin secondary 34 is arranged upstream of the cylindrical wall 22 of the bowl 20 and delivers an air flow between the venturi 30 and the cylindrical wall 22.
  • the primary spin 32 is integral upstream of a piece of retainer 40 which has an annular groove 42 open on the side of the axis 8 of the opening 6a and in which is mounted a sleeve 44 surrounding at least part of the end or nose of a fuel injector 50.
  • the injection system can also be provided with a fairing typically formed of a cap 46. This fairing makes it possible to minimize the losses of charge the injector bypass air and ensure good chamber bottom feed.
  • the fuel injector 50 of axis X-X merged with axis 8 of the opening 6a is of aerodynamic type, that is to say that it does not deliver only one fuel flow regardless of the operating speed of the motor.
  • the injector is typically formed by a tubular part 52 supplying fuel to an injector nose 54, at which the fuel mixes with air before receiving air from tendrils primary and secondary and to be injected into the combustion chamber 4.
  • the injector nose 54 has an axial internal volume 56 which opens at one end by an axial outlet 58 for mixing air / fuel.
  • Fuel supply channels 62 open into fuel inlet 60 and are connected to a plurality of first ports fuel supply 64 forming a first supply stage in fuel. These first orifices are distributed around the X-X axis of the injector and open into the internal volume 56.
  • At least one channel air supply 66 connected to an air inlet 68 in the injector opens also in internal volume 56.
  • the fuel injector 50 comprises, at the level of its nose 54, at least one second stage fuel supply with a plurality of second ports fuel supply 70 which open into the internal volume 56. These second orifices are distributed around the axis X-X of the injector and are connected to the fuel inlet 60 in the injector by channels fuel supply 72 which are at least partly confused with fuel supply channels 62 of the first stage fuel supply.
  • each supply stage in fuel advantageously comprises four supply ports in fuel 64, 70 connected to the fuel supply channels 62, 72 and evenly distributed around the X-X axis of the injector. Canals supply 62, 72 are preferably arranged alternately with four air supply channels 66.
  • first 64 and second 70 orifices on the one hand, and the supply channel or channels in air 66 open in two coaxial passages, 74 and 76 respectively, formed in internal volume 56. More precisely, the air supply channels 66 open in a central passage 76, and the first and second supply ports in fuel opens in an annular passage 74 surrounding the passage central 76.
  • the passage ring 74 in which the fuel supply orifices open has a decrease in section 74a in the direction of flow of the fuel in order to form a convergent allowing the acceleration of the fuel at its exit from this annular passage.
  • the second stage fuel supply may be axially offset from the first stage, so that the second supply ports in fuel 70 are offset axially with respect to the first orifices fuel supply 64.
  • This offset of the fuel supply stages fuel can be provided when, for reasons of space, it it is not possible to have all the supply ports 64, 70 in the same axial plane.
  • the second supply ports in fuel 70 preferably have angular positions around the axis X-X of the injector offset from those of the first ports fuel supply 64. In this way, the distribution of fuel around the axis of the injector and therefore the homogeneity of the mixture air / fuel are improved.
  • the fuel supply channels 62, 72 include each a first part, respectively 62a and 72a, extending parallel to the X-X axis of the injector and connected to the inlet of fuel 60 in the injector, and a second part, respectively 62b and 72b, which connects the first part to a supply port 64, 70 in fuel.
  • first parts 62a, 72a of the fuel supply channels 62, 72 are at least in part confused.
  • these fuel supply channels are oriented substantially tangentially to the wall of the volume internal 56.
  • FIGS. 3 and 6 The arrangement of the air supply channel (s) 66 is illustrated in particular by FIGS. 3 and 6. These channels open into the internal volume 56 in a direction which is substantially tangential by relation to the wall of the internal volume and which is inclined downstream by relative to a plane normal to the X-X axis of the injector. This provision particular also improves the homogeneity and the speed of flow air / fuel mixture.
  • FIG. 7 illustrates schematically in perspective and exploded the nose 54 of the injector of fuel 50.
  • the injector nose is essentially formed of three parts: a rear part 78 in which the air supply channel (s) 66 are formed, at least one ring 80 in which the first and second stages are formed fuel supply and which is introduced into a housing 82 formed at the downstream end of the rear part, and a front part 84 which connects to the rear part, the ring being immobilized axially between the rear part and the front part.
  • the nose of the injector comprises, at the level of the ring 80, two stages fuel supply.
  • the nose of the injector, and more particularly the ring 80 comprises more than two fuel supply stages so as to further multiply the number of fuel supply points in the internal volume of the injector.
  • the additional floors can be offset axially with respect to each other in order to increase the number of fuel supply points in the internal volume of the injector.
  • FIG. 1 notes that at least one air passage is provided between the socket 44 and the nose portion surrounded by it.
  • This passage allows to realize an anti-coking purge, i.e. it prevents fuel from come to coke at the level of the injector nose, especially for the weak fuel rates.
  • This passage for air can for example be carried out in the form of a plurality of orifices 48 regularly distributed around the nose and opening in the vicinity of the axial outlet 58 thereof in a direction substantially parallel to the axis X-X of the injector 50. In order to accelerate the flow of air passing through these orifices 48, it can be provided for a reduction in cross section of this passage in the direction of flow air.
  • air passage holes 25 are formed in the wall 21 of bowl 20 in order to carry out an anti-coking purge at the level from the bowl. These holes 25 open into the combustion chamber in a direction which can have an inclination relative to the axis X-X and be tangential to the flared wall 21 of the bowl in order to avoid any risk of coking.
  • air passage holes 26 are formed in the facing wall 24 of the bowl flange in order to supply the latter, and more particularly the annular deflector 10, in air. These holes 26 for example open substantially parallel to the axis X-X of the injector so that the air passing through them strikes the flange 23 of the wall 21 of the bowl and flows along the annular deflector 10.
  • the holes 25, 26 and air passage holes 48 of the different elements of the injection system, as well as air slots 36, 38 respectively for the primary 32 and secondary 34 tendrils can be distributed according to N angular sectors of 360 / N ° each. More precisely, for each angular sector, the bowl 20 can for example comprise n air passage holes 25 of identical shape to each other (for example circular, elliptical, ...) and opening parallel to each other. This same principle can be adopted for the other holes and slots of air passage.
  • FIG. 7 schematically illustrates, in a plane P perpendicular to the X-X axis, an example of the distribution of these different air passages.
  • the air passages with an angular sector of 60 ° include: three orifices 48 arranged between the socket 44 and the nose portion surrounded by this one, two air slots 36 for the primary spin, three air slots 38 for the secondary spin, four air passage holes 25 formed in the wall 21 of the bowl, and eight air passage holes 26 formed in the wall in look 24 of the bowl collar.
  • the distribution of these different passages air is regular around the X-X axis. They can be made directly in the foundry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Système d'injection d'un mélange air/carburant dans une chambre de combustion de turbomachine, comprenant un injecteur comportant un volume interne axial (56) qui s'ouvre à une extrémité par une sortie axiale (58) pour le mélange air/carburant, un premier étage d'alimentation en carburant avec une pluralité de premiers orifices d'alimentation en carburant qui s'ouvrent dans le volume interne, sont répartis autour d'un axe (X-X) de l'injecteur et sont reliés par des canaux d'alimentation en carburant (62) à une entrée de carburant (60) dans l'injecteur, et au moins un canal d'alimentation en air (66) qui s'ouvre dans le volume interne et est relié à une entrée d'air dans l'injecteur. L'injecteur comporte en outre au moins un deuxième étage d'alimentation en carburant avec une pluralité de deuxièmes orifices d'alimentation en carburant qui s'ouvrent dans le volume interne, sont répartis autour de l'axe de l'injecteur, et sont reliés à l'entrée de carburant par des canaux d'alimentation en carburant (72) qui sont au moins en partie confondus avec les canaux d'alimentation en carburant du premier étage. <IMAGE>

Description

La présente invention se rapporte au domaine général des systèmes d'injection de carburant dans une chambre de combustion d'un moteur de turbine à gaz. Elle vise plus particulièrement un système d'injection comportant notamment un injecteur de carburant aérodynamique à alimentation multi-points en carburant.
De façon connue, la chambre de combustion d'un moteur de turbine à gaz est pourvue de plusieurs systèmes d'injection lui permettant d'être alimentée en carburant et en air à tous les régimes de fonctionnement du moteur. Les systèmes d'injection comportent notamment des injecteurs de carburant et des moyens d'admission d'air en aval des injecteurs. Il existe deux catégories principales d'injecteurs de carburant : les injecteurs dits « aéromécaniques » conçus pour délivrer deux débits de carburant suivant les régimes du moteur, et les injecteurs dits « aérodynamiques » qui ne comportent qu'un seul circuit de carburant, quel que soit le régime du moteur. En outre, certains injecteurs dits « aérodynamiques » présentent, au niveau de leur extrémité ou nez, des canaux d'alimentation en air afin de délivrer directement un mélange air/carburant. La présente invention vise plus particulièrement les systèmes d'injection comportant des injecteurs dits « aérodynamiques » appartenant à cette dernière catégorie.
Les moyens d'admission d'air connus de l'art antérieur comportent en général des vrilles primaire et secondaire qui délivrent un flux d'air tourbillonnant à la sortie de l'injecteur de carburant. Un venturi séparant ces deux vrilles permet d'accélérer l'écoulement d'air issu de la vrille primaire et un bol monté en aval de la vrille secondaire permet le montage de l'injecteur sur le fond de chambre de combustion tout en visant à empêcher une remontée de la flamme de combustion du mélange air/carburant vers l'injecteur.
Ce type de système d'injection présente des inconvénients. En particulier, le mélange air/carburant délivré en sortie d'injecteur n'est généralement pas homogène, augmentant ainsi les émissions polluantes du moteur. La vitesse d'écoulement du carburant en sortie d'injecteur est en outre insuffisante, notamment pour les faibles débits, ce qui entraíne des risques de cokéfaction au niveau du nez de l'injecteur et engendre une hétérogénéité du mélange air/carburant. Une faible vitesse d'écoulement du carburant a également pour inconvénient d'augmenter les risques d'une remontée de la flamme de combustion du mélange air/carburant jusqu'à l'extrémité de l'injecteur ce qui est préjudiciable au bon fonctionnement de la turbine à gaz. De plus, lors d'allumages répétés sur ce type de système d'injection, on constate que des traces de cokéfaction apparaissent entre le corps de l'injecteur et le bol.
Objet et résumé de l'invention
La présente invention vise donc à pallier de tels inconvénients en proposant un système d'injection dont l'injecteur de carburant permet d'obtenir une meilleure homogénéisation du mélange air/carburant et une plus grande vitesse d'écoulement du carburant à sa sortie.
A cet effet, il est prévu un système d'injection d'un mélange air/carburant dans une chambre de combustion de turbomachine, comprenant un injecteur comportant un volume interne axial qui s'ouvre à une extrémité par une sortie axiale pour le mélange air/carburant ; un premier étage d'alimentation en carburant avec une pluralité de premiers orifices d'alimentation en carburant qui s'ouvrent dans le volume interne, sont répartis autour d'un axe de l'injecteur et sont reliés par des canaux d'alimentation en carburant à une entrée de carburant dans l'injecteur ; et au moins un canal d'alimentation en air qui s'ouvre dans le volume interne et est relié à une entrée d'air dans l'injecteur, caractérisé en ce que l'injecteur comporte en outre au moins un deuxième étage d'alimentation en carburant avec une pluralité de deuxièmes orifices d'alimentation en carburant qui s'ouvrent dans le volume interne, sont répartis autour de l'axe de l'injecteur, et sont reliés à l'entrée de carburant dans l'injecteur par des canaux d'alimentation en carburant qui sont au moins en partie confondus avec les canaux d'alimentation en carburant du premier étage.
De la sorte, le deuxième étage d'alimentation en carburant permet de multiplier le nombre de points d'alimentation en carburant dans le volume interne de l'injecteur autour de l'axe de celui-ci. L'homogénéisation du mélange air/carburant s'en trouve donc améliorée.
Les premiers et deuxièmes orifices d'alimentation en carburant, d'une part, et le ou les canaux d'alimentation en air, d'autre part, s'ouvrent dans deux passages coaxiaux formés dans le volume interne. Selon une disposition avantageuse de l'invention, le passage dans lequel s'ouvrent les orifices d'alimentation en carburant présente une diminution de section dans le sens d'écoulement du carburant. Cette caractéristique permet d'augmenter la vitesse d'écoulement du carburant pour améliorer la tenue de l'injecteur à la cokéfaction, et de rendre la nappe de carburant plus homogène, notamment pour les faibles débits de carburant.
Selon une autre disposition avantageuse de l'invention, les deuxièmes orifices d'alimentation en carburant sont axialement décalés par rapport aux premiers orifices d'alimentation en carburant. Dans ce cas, les deuxièmes orifices d'alimentation en carburant ont de préférence des positions angulaires autour de l'axe de l'injecteur décalées par rapport à celles des premiers orifices d'alimentation en carburant. Ces dispositions avantageuses permettent de favoriser la répartition du carburant autour de l'axe de l'injecteur et donc l'homogénéité du mélange air/carburant.
Selon encore une autre disposition avantageuse de l'invention, les canaux d'alimentation en carburant sont orientés, dans leurs parties terminales adjacentes aux premiers et deuxièmes orifices d'alimentation en carburant, sensiblement tangentiellement par rapport à la paroi du volume interne. Cette caractéristique permet d'obtenir une mise en rotation du carburant dans le volume interne et améliore ainsi la vitesse d'écoulement et l'homogénéité du mélange air/carburant.
De préférence, l'injecteur comporte une partie arrière dans laquelle sont formés le ou les canaux d'alimentation en air, au moins une bague dans laquelle sont formés les premier et deuxième étages d'alimentation en carburant et qui est introduite dans un logement formé à l'extrémité aval de la partie arrière, et une partie avant qui se raccorde à la partie arrière, la bague étant immobilisée axialement entre la partie arrière et la partie avant de l'injecteur.
Selon encore une caractéristique avantageuse de l'invention, chaque étage d'alimentation en carburant comprend quatre orifices d'alimentation en carburant répartis de façon régulière autour de l'axe de l'injecteur.
Le système selon l'invention comporte en outre une douille entourant au moins une partie de l'injecteur, un bol formant divergent pour le montage du système d'injection sur un fond de chambre de combustion, au moins une vrille d'air interposée entre la douille et le bol, et un venturi formé entre la partie de l'injecteur entourée par la douille et le bol. De préférence, un passage pour de l'air est aménagé entre la douille et la partie de l'injecteur entourée par la douille afin d'empêcher que de la coke se forme au niveau du nez de l'injecteur, et des trous de passage d'air sont formés dans la paroi du bol formant divergent.
Brève description des dessins
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
  • la figure 1 est vue en coupe du système d'injection selon l'invention monté dans une chambre de combustion d'un moteur à turbine à gaz ;
  • la figure 2 est une vue en coupe longitudinale d'un mode de réalisation du nez de l'injecteur de carburant équipant le système d'injection selon l'invention ;
  • les figures 3, 4 et 5 sont des vues en coupe de la figure 2 respectivement selon III-III, IV-IV et V-V ;
  • la figure 6 est une vue en coupe selon VI-VI de la figure 3 ;
  • la figure 7 est une vue en perspective et en éclaté du nez de l'injecteur de la figure 2 ; et
  • la figure 8 représente schématiquement un exemple de répartition des différents passages alimentant en air le système d'injection de la figure 1.
Description détaillée d'un mode de réalisation
La figure 1 illustre un système d'injection 2 selon l'invention monté dans une chambre de combustion 4 d'un moteur à turbine à gaz utilisé dans un turboréacteur par exemple.
La chambre de combustion 4, par exemple du type annulaire, est délimitée par des parois interne et externe (non représentées sur le dessin) réunies par un fond de chambre 6. Ce dernier comporte une pluralité d'ouvertures 6a d'axe 8 régulièrement espacées autour de l'axe du moteur. Dans chacune des ouvertures 6a est monté un système d'injection 2 selon l'invention destiné à injecter un mélange air/carburant dans la chambre de combustion 4. Les gaz issus de la combustion de ce mélange air/carburant s'écoulent vers l'aval dans la chambre de combustion 4 et sont ensuite évacués vers une turbine haute-pression (non représentée).
De façon connue en soi, un déflecteur annulaire 10 est monté dans chacune des ouvertures 6a. Ce déflecteur est disposé dans la chambre de combustion 4 parallèlement au fond de chambre 6. Un bol 20 formant divergent est également monté à l'intérieur de l'ouverture 6a. Il comporte une paroi 21 évasée vers l'aval dans le prolongement d'une paroi cylindrique 22 disposée coaxialement à l'axe 8 de l'ouverture 6a. A son extrémité aval, la paroi 21 du bol présente un rebord 23 qui, avec une paroi en regard 24, délimite un renfoncement annulaire ou collerette de bol à section en U.
La paroi cylindrique 22 du bol 20 entoure un venturi 30 d'axe 8. Le venturi 30 délimite les écoulements d'air issus d'une vrille primaire 32 et d'une vrille secondaire 34. La vrille primaire 32 est disposée en amont du venturi 30 et délivre un flux d'air à l'intérieur du venturi. La vrille secondaire 34 est disposée en amont de la paroi cylindrique 22 du bol 20 et délivre un flux d'air entre le venturi 30 et la paroi cylindrique 22.
La vrille primaire 32 est solidaire en amont d'une pièce de retenue 40 qui présente une rainure annulaire 42 ouverte du côté de l'axe 8 de l'ouverture 6a et dans laquelle est montée une douille 44 entourant au moins une partie de l'extrémité ou nez d'un injecteur de carburant 50. Le système d'injection peut en outre être muni d'un carénage typiquement formé d'une casquette 46. Ce carénage permet de minimiser les pertes de charge de l'air de contournement de l'injecteur et de garantir une bonne alimentation du fond de chambre.
L'injecteur de carburant 50, d'axe X-X confondu avec l'axe 8 de l'ouverture 6a, est de type aérodynamique, c'est à dire qu'il ne délivre qu'un seul débit de carburant quel que soit le régime de fonctionnement du moteur. L'injecteur est typiquement formé d'une partie tubulaire 52 alimentant en carburant un nez d'injecteur 54, au niveau duquel le carburant se mélange avec de l'air avant de recevoir l'air des vrilles primaire et secondaire et d'être injecté dans la chambre de combustion 4.
On se réfère aux figures 2 à 6 qui illustrent plus particulièrement un mode de réalisation du nez d'injecteur de carburant du système d'injection selon l'invention.
Le nez d'injecteur 54 comporte un volume interne axial 56 qui s'ouvre à une extrémité par une sortie axiale 58 pour le mélange air/carburant. A l'extrémité du nez opposée à celle comportant la sortie axiale 58, est aménagée au moins une entrée de carburant 60 se présentant sous la forme d'un évidement cylindrique par exemple. Cette entrée 60 est alimentée en carburant par la partie tubulaire de l'injecteur de carburant. Des canaux d'alimentation en carburant 62 débouchent dans l'entrée de carburant 60 et sont reliés à une pluralité de premiers orifices d'alimentation en carburant 64 formant un premier étage d'alimentation en carburant. Ces premiers orifices sont répartis autour de l'axe X-X de l'injecteur et s'ouvrent dans le volume interne 56. Au moins un canal d'alimentation en air 66 relié à une entrée d'air 68 dans l'injecteur s'ouvre également dans le volume interne 56.
Conformément à l'invention, l'injecteur de carburant 50 comporte, au niveau de son nez 54, au moins un deuxième étage d'alimentation en carburant avec une pluralité de deuxièmes orifices d'alimentation en carburant 70 qui s'ouvrent dans le volume interne 56. Ces deuxièmes orifices sont répartis autour de l'axe X-X de l'injecteur et sont reliés à l'entrée de carburant 60 dans l'injecteur par des canaux d'alimentation en carburant 72 qui sont au moins en partie confondus avec les canaux d'alimentation en carburant 62 du premier étage d'alimentation en carburant.
Comme l'illustre la figure 3, chaque étage d'alimentation en carburant comprend avantageusement quatre orifices d'alimentation en carburant 64, 70 reliés aux canaux d'alimentation en carburant 62, 72 et répartis de façon régulière autour de l'axe X-X de l'injecteur. Les canaux d'alimentation 62, 72 sont de préférence disposés en alternance avec quatre canaux d'alimentation en air 66.
Par ailleurs, les premiers 64 et deuxièmes 70 orifices d'alimentation en carburant, d'une part, et le ou les canaux d'alimentation en air 66, d'autre part, s'ouvrent dans deux passages coaxiaux, respectivement 74 et 76, formés dans le volume interne 56. Plus précisément, les canaux d'alimentation en air 66 s'ouvrent dans un passage central 76, et les premiers et deuxièmes orifices d'alimentation en carburant s'ouvrent dans un passage annulaire 74 entourant le passage central 76.
Selon une caractéristique avantageuse de l'invention, le passage annulaire 74 dans lequel s'ouvrent les orifices d'alimentation en carburant présente une diminution de section 74a dans le sens d'écoulement du carburant afin de former un convergent permettant l'accélération du carburant à sa sortie de ce passage annulaire.
De plus, comme illustré sur les figures 2 à 7, le deuxième étage d'alimentation en carburant peut être décalé axialement par rapport au premier étage, de sorte que les deuxièmes orifices d'alimentation en carburant 70 sont décalés axialement par rapport aux premiers orifices d'alimentation en carburant 64. Ce décalage des étages d'alimentation en carburant peut être prévu lorsque, pour des raisons d'encombrement, il n'est pas possible disposer tous les orifices d'alimentation 64, 70 dans le même plan axial. Dans ce cas, les deuxièmes orifices d'alimentation en carburant 70 ont de préférence des positions angulaires autour de l'axe X-X de l'injecteur décalées par rapport à celles des premiers orifices d'alimentation en carburant 64. De la sorte, la répartition du carburant autour de l'axe de l'injecteur et donc l'homogénéité du mélange air/carburant se trouvent améliorées.
Les canaux d'alimentation en carburant 62, 72 comportent chacun une première partie, respectivement 62a et 72a, s'étendant parallèlement à l'axe X-X de l'injecteur et raccordée à l'entrée de carburant 60 dans l'injecteur, et une deuxième partie, respectivement 62b et 72b, qui raccorde la première partie à un orifice 64, 70 d'alimentation en carburant. Sur la figure 2, on remarque bien que les premières parties 62a, 72a des canaux d'alimentation en carburant 62, 72 sont au moins en partie confondues. Comme illustré par les figures 4 et 5, dans leurs parties terminales adjacentes aux premiers 64 et deuxièmes 70 orifices d'alimentation en carburant, ces canaux d'alimentation en carburant sont orientés sensiblement tangentiellement par rapport à la paroi du volume interne 56. Ainsi, le carburant s'écoulant dans ces canaux est mis en rotation avant son introduction dans le volume interne ce qui permet d'augmenter sa vitesse d'écoulement et donc de favoriser l'homogénéité du mélange air/carburant.
La disposition du ou des canaux d'alimentation en air 66 est notamment illustrée par les figures 3 et 6. Ces canaux débouchent dans le volume interne 56 dans une direction qui est sensiblement tangentielle par rapport à la paroi du volume interne et qui est inclinée vers l'aval par rapport à un plan normal à l'axe X-X de l'injecteur. Cette disposition particulière améliore également l'homogénéité et la vitesse d'écoulement du mélange air/carburant.
On décrira maintenant les éléments constitutifs du nez d'injecteur ci-dessus détaillé en se référant à la figure 7 qui illustre schématiquement en perspective et en éclaté le nez 54 de l'injecteur de carburant 50.
Sur cette figure, on voit que le nez d'injecteur est essentiellement formé de trois parties : une partie arrière 78 dans laquelle sont formés le ou les canaux d'alimentation en air 66, au moins une bague 80 dans laquelle sont formés les premier et deuxième étages d'alimentation en carburant et qui est introduite dans un logement 82 formé à l'extrémité aval de la partie arrière, et une partie avant 84 qui se raccorde à la partie arrière, la bague étant immobilisée axialement entre la partie arrière et la partie avant.
Dans le mode de réalisation illustré par les figures 2 à 7, le nez de l'injecteur comporte, au niveau de la bague 80, deux étages d'alimentation en carburant. Bien entendu, on peut imaginer que le nez de l'injecteur, et plus particulièrement la bague 80, comporte plus de deux étages d'alimentation en carburant de façon à multiplier davantage le nombre de points d'alimentation en carburant dans le volume interne de l'injecteur. Dans ce cas, les étages supplémentaires peuvent être décalés axialement les uns par rapport aux autres afin d'accroítre le nombre de points d'alimentation en carburant dans le volume interne de l'injecteur.
D'autres caractéristiques avantageuses du système d'injection selon l'invention sont représentées sur la figure 1. Sur cette figure, on constate qu'au moins un passage pour l'air est aménagé entre la douille 44 et la partie de nez entourée par celle-ci. Ce passage permet de réaliser une purge anti-cokéfaction, c'est à dire qu'il empêche que du carburant ne vienne se cokéfier au niveau du nez de l'injecteur, notamment aux faibles débits de carburant. Ce passage pour l'air peut par exemple être réalisé sous la forme d'une pluralité d'orifices 48 régulièrement répartis autour du nez et débouchant au voisinage de la sortie axiale 58 de celui-ci dans une direction sensiblement parallèle à l'axe X-X de l'injecteur 50. Afin d'accélérer l'écoulement de l'air traversant ces orifices 48, il peut être prévu une diminution de section de ce passage dans le sens d'écoulement de l'air.
En outre, des trous 25 de passage d'air sont formés dans la paroi 21 du bol 20 afin de réaliser une purge anti-cokéfaction au niveau du bol. Ces trous 25 débouchent dans la chambre de combustion dans une direction qui peut présenter une inclinaison par rapport à l'axe X-X et être tangentielle par rapport à la paroi évasée 21 du bol afin d'éviter tout risque de cokéfaction.
De même, des trous 26 de passage d'air sont formés dans la paroi en regard 24 de la collerette de bol afin d'alimenter celle-ci, et plus particulièrement le déflecteur annulaire 10, en air. Ces trous 26 débouchent par exemple de façon sensiblement parallèle à l'axe X-X de l'injecteur de sorte que l'air les traversant vient frapper le rebord 23 de la paroi 21 du bol et s'écoule le long du déflecteur annulaire 10.
Les trous 25, 26 et orifices 48 de passage d'air des différents éléments du système d'injection, ainsi que des fentes d'air 36, 38 respectivement pour les vrilles primaire 32 et secondaire 34 peuvent être répartis selon N secteurs angulaires de 360/N° chacun. Plus précisément, pour chaque secteur angulaire, le bol 20 peut par exemple comporter n trous 25 de passage d'air de formes identiques entre eux (par exemple circulaires, elliptiques, ...) et débouchant parallèlement les uns aux autres. Ce même principe peut être adopté pour les autres trous et fentes de passage d'air. A titre d'exemple, la figure 7 illustre schématiquement, dans un plan P perpendiculaire à l'axe X-X, un exemple de répartition de ces différents passages d'air. Sur cette figure, seuls sont représentés les passages d'air d'un secteur angulaire de 60° ; ils comprennent : trois orifices 48 aménagés entre la douille 44 et la partie de nez entourée par celle-ci, deux fentes d'air 36 pour la vrille primaire, trois fentes d'air 38 pour la vrille secondaire, quatre trous 25 de passage d'air formés dans la paroi 21 du bol, et huit trous 26 de passage d'air formés dans la paroi en regard 24 de la collerette de bol. La répartition de ces différents passages d'air est régulière autour de l'axe X-X. Ils peuvent être réalisés directement en fonderie.

Claims (18)

  1. Système d'injection (2) d'un mélange air/carburant dans une chambre de combustion (4) de turbomachine, comprenant un injecteur (50) comportant :
    un volume interne axial (56) qui s'ouvre à une extrémité par une sortie axiale (58) pour le mélange air/carburant ;
    un premier étage d'alimentation en carburant avec une pluralité de premiers orifices d'alimentation en carburant (64) qui s'ouvrent dans le volume interne, sont répartis autour d'un axe (X-X) de l'injecteur et sont reliés par des canaux d'alimentation en carburant (62) à une entrée de carburant (60) dans l'injecteur ; et
    au moins un canal d'alimentation en air (66) qui s'ouvre dans le volume interne et est relié à une entrée d'air (68) dans l'injecteur,
       caractérisé en ce que l'injecteur comporte en outre au moins un deuxième étage d'alimentation en carburant avec une pluralité de deuxièmes orifices d'alimentation en carburant (70) qui s'ouvrent dans le volume interne, sont répartis autour de l'axe de l'injecteur, et sont reliés à ladite entrée de carburant dans l'injecteur par des canaux d'alimentation en carburant (72) qui sont au moins en partie confondus avec les canaux d'alimentation en carburant (62) dudit premier étage.
  2. Système selon la revendication 1, caractérisé en ce que les premiers et deuxièmes orifices d'alimentation en carburant (64, 70), d'une part, et le ou les canaux d'alimentation en air (66), d'autre part, s'ouvrent dans deux passages coaxiaux (74, 76) formés dans le volume interne.
  3. Système selon la revendication 2, caractérisé en ce que le passage (74) dans lequel s'ouvrent les orifices d'alimentation en carburant (64, 70) présente une diminution de section dans le sens d'écoulement du carburant afin d'accélérer l'écoulement du carburant dans le volume interne.
  4. Système selon l'une des revendications 2 ou 3, caractérisé en ce que le ou les canaux d'alimentation en air (66) s'ouvrent dans un passage central (76) et les orifices d'alimentation en carburant (64, 70) s'ouvrent dans un passage annulaire (74) entourant le passage central.
  5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les deuxièmes orifices d'alimentation en carburant (70) sont axialement décalés par rapport aux premiers orifices d'alimentation en carburant (64).
  6. Système selon la revendication 5, caractérisé en ce que les deuxièmes orifices d'alimentation en carburant (70) ont des positions angulaires autour de l'axe de l'injecteur décalées par rapport à celles des premiers orifices d'alimentation en carburant (64).
  7. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce que, dans leurs parties terminales adjacentes aux premiers (64) et deuxièmes (70) orifices d'alimentation en carburant, les canaux d'alimentation en carburant (62, 72) sont orientés sensiblement tangentiellement par rapport à la paroi du volume interne (56).
  8. Système selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les canaux d'alimentation en carburant (62, 72) comportent une première partie (62a, 72a) s'étendant parallèlement à l'axe de l'injecteur et raccordée à l'entrée de carburant dans l'injecteur, et une deuxième partie (62b, 72b) qui raccorde la première partie à un orifice d'alimentation en carburant (64, 70).
  9. Système selon la revendication 8, caractérisé en ce que la première partie (62a) des canaux d'alimentation en carburant (62) reliés aux premiers orifices d'alimentation en carburant (64) et la première partie (72a) des canaux d'alimentation en carburant (72) reliés aux deuxièmes orifices d'alimentation en carburant (70) sont au moins en partie confondues.
  10. Système selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le ou les canaux d'alimentation en air (66) débouchent dans le volume interne (56) dans une direction qui est sensiblement tangentielle par rapport à la paroi du volume interne et qui est inclinée vers l'aval par rapport à un plan normal à l'axe (X-X) de l'injecteur.
  11. Système selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'injecteur comporte :
    une partie arrière (78) dans laquelle sont formés le ou les canaux d'alimentation en air (66),
    au moins une bague (80) dans laquelle sont formés les premier et deuxième étages d'alimentation en carburant et qui est introduite dans un logement (82) formé à l'extrémité aval de la partie arrière, et
    une partie avant (84) qui se raccorde à la partie arrière, la bague étant immobilisée axialement entre la partie arrière et la partie avant de l'injecteur.
  12. Système selon l'une quelconque des revendications 1 à 11, caractérisé en ce que chaque étage d'alimentation en carburant comprend quatre orifices d'alimentation en carburant (64, 70) répartis de façon régulière autour de l'axe (X-X) de l'injecteur.
  13. Système selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il comporte en outre une douille (44) entourant au moins une partie de l'injecteur (50), un bol (20) formant divergent pour le montage du système d'injection sur un fond de chambre de combustion (6), et au moins une vrille d'air (32, 34) interposée entre la douille et le bol.
  14. Système selon la revendication 13, caractérisé en ce qu'au moins un passage (48) pour de l'air est aménagé entre la douille (44) et la partie de l'injecteur entourée par ladite douille.
  15. Système selon l'une des revendications 13 ou 14, caractérisé en ce qu'un venturi (30) est formé entre la partie de l'injecteur entourée par la douille et le bol (20).
  16. Système selon l'une quelconque des revendications 13 à 15, caractérisé en ce qu'il comporte deux vrilles d'air primaire (32) et secondaire (34).
  17. Système selon l'une quelconque des revendications 13 à 16, caractérisé en ce que des trous de passage d'air (25) sont formés dans la paroi (21) du bol formant divergent.
  18. Système selon l'une quelconque des revendications 13 à 17, caractérisé en ce qu'à son extrémité aval, le bol (20) présente un rebord (23) qui, avec une paroi en regard (24), délimite un renfoncement annulaire à section en U et des trous de passage d'air (26) sont formés dans ladite paroi en regard pour alimenter en air ledit renfoncement.
EP02292866A 2001-11-21 2002-11-19 Système d'injection multi-étages d'un mélange air/carburant dans une chambre de combustion de turbomachine Expired - Lifetime EP1314933B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0115042A FR2832493B1 (fr) 2001-11-21 2001-11-21 Systeme d'injection multi-etages d'un melange air/carburant dans une chambre de combustion de turbomachine
FR0115042 2001-11-21

Publications (2)

Publication Number Publication Date
EP1314933A1 true EP1314933A1 (fr) 2003-05-28
EP1314933B1 EP1314933B1 (fr) 2008-09-17

Family

ID=8869620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02292866A Expired - Lifetime EP1314933B1 (fr) 2001-11-21 2002-11-19 Système d'injection multi-étages d'un mélange air/carburant dans une chambre de combustion de turbomachine

Country Status (6)

Country Link
US (1) US6820425B2 (fr)
EP (1) EP1314933B1 (fr)
DE (1) DE60228924D1 (fr)
ES (1) ES2314022T3 (fr)
FR (1) FR2832493B1 (fr)
RU (1) RU2293862C2 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037122A (ja) * 2003-07-16 2005-02-10 General Electric Co <Ge> ガスタービンエンジンの燃焼器を冷却するための方法及び装置
FR2875585A1 (fr) * 2004-09-23 2006-03-24 Snecma Moteurs Sa Systeme aerodynamique a effervescence d'injection air/carburant dans une chambre de combustion de turbomachine
EP1837597A2 (fr) * 2006-03-23 2007-09-26 Ishikawajima-Harima Heavy Industries Co., Ltd. Brûleur pour chambre de combustion et procédé de combustion
EP1873454A1 (fr) * 2006-06-29 2008-01-02 Snecma Agencement à liaison par crabot pour chambre de combustion de turbomachine
EP1873456A1 (fr) 2006-06-29 2008-01-02 Snecma Dispositif d'injection d'un mélange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP1873455A1 (fr) * 2006-06-29 2008-01-02 Snecma Moteurs Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP1873458A1 (fr) * 2006-06-29 2008-01-02 Snecma Agencement pour chambre de combustion de turbomachine ayant un déflecteur à collerette
FR2911667A1 (fr) * 2007-01-23 2008-07-25 Snecma Sa Systeme d'injection de carburant a double injecteur.
FR2911666A1 (fr) * 2007-01-18 2008-07-25 Snecma Sa Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
FR2951246A1 (fr) * 2009-10-13 2011-04-15 Snecma Injecteur multi-point pour une chambre de combustion de turbomachine

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6986255B2 (en) * 2002-10-24 2006-01-17 Rolls-Royce Plc Piloted airblast lean direct fuel injector with modified air splitter
US6976363B2 (en) * 2003-08-11 2005-12-20 General Electric Company Combustor dome assembly of a gas turbine engine having a contoured swirler
FR2875584B1 (fr) * 2004-09-23 2009-10-30 Snecma Moteurs Sa Injecteur a effervescence pour systeme aeromecanique d'injection air/carburant dans une chambre de combustion de turbomachine
US7340900B2 (en) * 2004-12-15 2008-03-11 General Electric Company Method and apparatus for decreasing combustor acoustics
US7316117B2 (en) * 2005-02-04 2008-01-08 Siemens Power Generation, Inc. Can-annular turbine combustors comprising swirler assembly and base plate arrangements, and combinations
US7513098B2 (en) 2005-06-29 2009-04-07 Siemens Energy, Inc. Swirler assembly and combinations of same in gas turbine engine combustors
FR2893390B1 (fr) * 2005-11-15 2011-04-01 Snecma Fond de chambre de combustion avec ventilation
FR2894327B1 (fr) * 2005-12-05 2008-05-16 Snecma Sa Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
FR2903173B1 (fr) * 2006-06-29 2008-08-29 Snecma Sa Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
US20080301276A1 (en) * 2007-05-09 2008-12-04 Ec Control Systems Llc System and method for controlling and managing electronic communications over a network
US8037689B2 (en) * 2007-08-21 2011-10-18 General Electric Company Turbine fuel delivery apparatus and system
FR2932251B1 (fr) * 2008-06-10 2011-09-16 Snecma Chambre de combustion de moteur a turbine a gaz comportant des deflecteurs en cmc
US20110173983A1 (en) * 2010-01-15 2011-07-21 General Electric Company Premix fuel nozzle internal flow path enhancement
JP5558168B2 (ja) 2010-03-30 2014-07-23 三菱重工業株式会社 燃焼器及びガスタービン
US8863525B2 (en) 2011-01-03 2014-10-21 General Electric Company Combustor with fuel staggering for flame holding mitigation
US9592480B2 (en) * 2013-05-13 2017-03-14 Solar Turbines Incorporated Inner premix tube air wipe
US9447976B2 (en) * 2014-01-10 2016-09-20 Solar Turbines Incorporated Fuel injector with a diffusing main gas passage
US10295186B2 (en) * 2014-03-28 2019-05-21 Delavan Inc. Of Des Moines Ia Airblast nozzle with upstream fuel distribution and near-exit swirl
US10184403B2 (en) * 2014-08-13 2019-01-22 Pratt & Whitney Canada Corp. Atomizing fuel nozzle
FR3031798B1 (fr) 2015-01-20 2018-08-10 Safran Aircraft Engines Systeme d'injection de carburant pour turbomachine d'aeronef, comprenant un canal de traversee d'air a section variable
FR3040765B1 (fr) * 2015-09-09 2017-09-29 Snecma Element d'appui pour amortir des deplacements axiaux de traversee coulissante de systeme d'injection pour turbomachine
FR3043173B1 (fr) * 2015-10-29 2017-12-22 Snecma Systeme d'injection aerodynamique pour turbomachine d'aeronef, a melange air/carburant ameliore
US11378275B2 (en) * 2019-12-06 2022-07-05 Raytheon Technologies Corporation High shear swirler with recessed fuel filmer for a gas turbine engine
US11754288B2 (en) 2020-12-09 2023-09-12 General Electric Company Combustor mixing assembly
US11428411B1 (en) * 2021-05-18 2022-08-30 General Electric Company Swirler with rifled venturi for dynamics mitigation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2249243A2 (fr) * 1973-10-26 1975-05-23 Snecma
US4425755A (en) * 1980-09-16 1984-01-17 Rolls-Royce Limited Gas turbine dual fuel burners
JPS608610A (ja) * 1983-06-25 1985-01-17 Iwao Harayama 燃焼装置用バ−ナ
US5167116A (en) * 1989-07-07 1992-12-01 Fuel Systems Textron Inc. Small airblast fuel nozzle with high efficiency inner air swirler
FR2735214A1 (fr) * 1995-06-08 1996-12-13 Snecma Systeme d'injection aerodynamique alimente par un carburant sous forte pression
US6035645A (en) * 1996-09-26 2000-03-14 Societe National D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Aerodynamic fuel injection system for a gas turbine engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691762A (en) * 1970-12-04 1972-09-19 Caterpillar Tractor Co Carbureted reactor combustion system for gas turbine engine
US3724207A (en) * 1971-08-05 1973-04-03 Gen Motors Corp Combustion apparatus
GB1421399A (en) * 1972-11-13 1976-01-14 Snecma Fuel injectors
GB1597968A (en) * 1977-06-10 1981-09-16 Rolls Royce Fuel burners for gas turbine engines
US4606190A (en) * 1982-07-22 1986-08-19 United Technologies Corporation Variable area inlet guide vanes
FR2685452B1 (fr) * 1991-12-24 1994-02-11 Snecma Dispositif d'injection de carburant pour une chambre de combustion de turbomachine.
US5437158A (en) * 1993-06-24 1995-08-01 General Electric Company Low-emission combustor having perforated plate for lean direct injection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2249243A2 (fr) * 1973-10-26 1975-05-23 Snecma
US4425755A (en) * 1980-09-16 1984-01-17 Rolls-Royce Limited Gas turbine dual fuel burners
JPS608610A (ja) * 1983-06-25 1985-01-17 Iwao Harayama 燃焼装置用バ−ナ
US5167116A (en) * 1989-07-07 1992-12-01 Fuel Systems Textron Inc. Small airblast fuel nozzle with high efficiency inner air swirler
FR2735214A1 (fr) * 1995-06-08 1996-12-13 Snecma Systeme d'injection aerodynamique alimente par un carburant sous forte pression
US6035645A (en) * 1996-09-26 2000-03-14 Societe National D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Aerodynamic fuel injection system for a gas turbine engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 124 (M - 383) 29 May 1985 (1985-05-29) *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037122A (ja) * 2003-07-16 2005-02-10 General Electric Co <Ge> ガスタービンエンジンの燃焼器を冷却するための方法及び装置
US7506496B2 (en) 2004-09-23 2009-03-24 Snecma Effervescent aerodynamic system for injecting an air/fuel mixture into a turbomachine combustion chamber
FR2875585A1 (fr) * 2004-09-23 2006-03-24 Snecma Moteurs Sa Systeme aerodynamique a effervescence d'injection air/carburant dans une chambre de combustion de turbomachine
EP1640661A2 (fr) * 2004-09-23 2006-03-29 Snecma Système aérodynamique à effervescence d'injection air/carburant dans une chambre de combustion de turbomachine
EP1640661A3 (fr) * 2004-09-23 2006-04-19 Snecma Système aérodynamique à effervescence d'injection air/carburant dans une chambre de combustion de turbomachine
EP1837597A2 (fr) * 2006-03-23 2007-09-26 Ishikawajima-Harima Heavy Industries Co., Ltd. Brûleur pour chambre de combustion et procédé de combustion
US7913494B2 (en) 2006-03-23 2011-03-29 Ishikawajima-Harima Heavy Industries Co., Ltd. Burner for combustion chamber and combustion method
EP1837597A3 (fr) * 2006-03-23 2010-12-15 IHI Corporation Brûleur pour chambre de combustion et procédé de combustion
EP1873455A1 (fr) * 2006-06-29 2008-01-02 Snecma Moteurs Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
US7908865B2 (en) 2006-06-29 2011-03-22 Snecma Device for injecting a mixture of air and fuel, and combustion chamber and turbomachine provided with such a device
FR2903172A1 (fr) * 2006-06-29 2008-01-04 Snecma Sa Agencement pour chambre de combustion de turbomachine ayant un defecteur a collerette
FR2903171A1 (fr) * 2006-06-29 2008-01-04 Snecma Sa Agencement a liaison par crabot pour chambre de combustion de turbomachine
FR2903170A1 (fr) * 2006-06-29 2008-01-04 Snecma Sa Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
US7926281B2 (en) 2006-06-29 2011-04-19 Snecma Device for injecting a mixture of air and fuel, and combustion chamber and turbomachine provided with such a device
FR2903169A1 (fr) * 2006-06-29 2008-01-04 Snecma Sa Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP1873454A1 (fr) * 2006-06-29 2008-01-02 Snecma Agencement à liaison par crabot pour chambre de combustion de turbomachine
US7478534B2 (en) 2006-06-29 2009-01-20 Snecma Arrangement with a twist-lock coupling for a turbomachine combustion chamber
EP1873458A1 (fr) * 2006-06-29 2008-01-02 Snecma Agencement pour chambre de combustion de turbomachine ayant un déflecteur à collerette
US7823392B2 (en) 2006-06-29 2010-11-02 Snecma Turbomachine combustion chamber arrangement having a collar deflector
EP1873456A1 (fr) 2006-06-29 2008-01-02 Snecma Dispositif d'injection d'un mélange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
FR2911666A1 (fr) * 2007-01-18 2008-07-25 Snecma Sa Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP1953455A1 (fr) * 2007-01-23 2008-08-06 Snecma Système d'injection de carburant à double injecteur
FR2911667A1 (fr) * 2007-01-23 2008-07-25 Snecma Sa Systeme d'injection de carburant a double injecteur.
RU2468297C2 (ru) * 2007-01-23 2012-11-27 Снекма Система впрыска топлива в камеру сгорания газотурбинного двигателя, камера сгорания, оснащенная такой системой, и газотурбинный двигатель
FR2951246A1 (fr) * 2009-10-13 2011-04-15 Snecma Injecteur multi-point pour une chambre de combustion de turbomachine
WO2011045486A1 (fr) * 2009-10-13 2011-04-21 Snecma Injecteur multi-point pour une chambre de combustion de turbomachine
CN102575844A (zh) * 2009-10-13 2012-07-11 斯奈克玛 用于涡轮发动机的燃烧室的多点喷射器
CN102575844B (zh) * 2009-10-13 2014-12-31 斯奈克玛 用于涡轮发动机的燃烧室的多点喷射器
RU2543097C2 (ru) * 2009-10-13 2015-02-27 Снекма Многоточечный инжектор для камеры сгорания турбомашины
US9046271B2 (en) 2009-10-13 2015-06-02 Snecma Multipoint injector for a turbine engine combustion chamber

Also Published As

Publication number Publication date
RU2293862C2 (ru) 2007-02-20
DE60228924D1 (de) 2008-10-30
FR2832493B1 (fr) 2004-07-09
EP1314933B1 (fr) 2008-09-17
US6820425B2 (en) 2004-11-23
ES2314022T3 (es) 2009-03-16
US20030131600A1 (en) 2003-07-17
FR2832493A1 (fr) 2003-05-23

Similar Documents

Publication Publication Date Title
EP1314933B1 (fr) Système d&#39;injection multi-étages d&#39;un mélange air/carburant dans une chambre de combustion de turbomachine
CA2420313C (fr) Systeme d&#39;injection multi-modes d&#39;un melange air/carburant dans une chambre de combustion
EP2671028B1 (fr) Injecteur de chambre de combustion de turbine a gaz a double circuit de carburant et chambre de combustion equipee d&#39;au moins un tel injecteur
FR2931203A1 (fr) Injecteur de carburant pour turbine a gaz et son procede de fabrication
CA2572857C (fr) Refroidissement d&#39;un dispositif d&#39;injection multimode pour chambre de combustion, notamment d&#39;un turboreacteur
EP1806535B1 (fr) Système d&#39;injection multimode pour chambre de combustion, notamment d&#39;un turboréacteur
CA2646959C (fr) Systeme d&#39;injection d&#39;un melange d&#39;air et de carburant dans une chambre de combustion de turbomachine
EP0818658A1 (fr) Chambre de combustion anti-nox à injection de carburant de type annulaire
EP2026002A1 (fr) Injecteur multipoint pour turbomachine
CA2593186A1 (fr) Dispositif d&#39;injection d&#39;un melange d&#39;air et de carburant, chambre de combustion et turbomachine munies d&#39;un tel dispositif
FR2536465A1 (fr) Ensemble d&#39;injecteur de combustible a air souffle
EP0828115A1 (fr) Système d&#39;injection de carburant pour une chambre de combustion
EP3368826B1 (fr) Systeme d&#39;injection aerodynamique pour turbomachine d&#39;aeronef, a melange air/carburant ameliore
WO2014147325A1 (fr) Systeme d&#39;injection pour chambre de combustion de turbomachine comportant une paroi annulaire a profil interne convergent
FR2636376A1 (fr) Dispositif de prelevement de gaz chauds dans une chambre de combustion et tete d&#39;injection equipee d&#39;un dispositif de prelevement
EP3784958B1 (fr) Système d&#39;injection pour une chambre annulaire de combustion de turbomachine
EP3887720A1 (fr) Systeme d&#39;injection pour turbomachine, comprenant une vrille et des trous tourbillonnaires de bol melangeur
FR3078142A1 (fr) Chambre de combustion comportant deux types d&#39;injecteurs dans lesquels les organes d&#39;etancheite ont un seuil d&#39;ouverture different
WO2021019172A1 (fr) Chambre de combustion comportant des systèmes d&#39;injection secondaires et procédé d&#39;alimentation en carburant
FR2972225A1 (fr) Injecteur pour tete d&#39;injection d&#39;une chambre de combustion
FR2673705A1 (fr) Chambre de combustion de turbomachine munie d&#39;un dispositif anti-cokefaction du fond de ladite chambre.
FR3031798A1 (fr) Systeme d&#39;injection de carburant pour turbomachine d&#39;aeronef, comprenant un canal de traversee d&#39;air a section variable
WO2020136359A1 (fr) Nez d&#39;injecteur pour turbomachine comprenant un circuit primaire de carburant agencé autour d&#39;un circuit secondaire de carburant
FR3099231A1 (fr) Injecteur de carburant a circuit de purge pour une turbomachine d’aeronef
FR3067444A1 (fr) Architecture de combustion de carburant de turbomachine comportant des moyens de deflexion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021123

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60228924

Country of ref document: DE

Date of ref document: 20081030

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2314022

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090618

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120419 AND 20120425

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SNECMA

Effective date: 20120816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60228924

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60228924

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE, DE

Effective date: 20121005

Ref country code: DE

Ref legal event code: R081

Ref document number: 60228924

Country of ref document: DE

Owner name: SNECMA, FR

Free format text: FORMER OWNER: HISPANO SUIZA, COLOMBES, FR

Effective date: 20121005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20121114

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151023

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20151026

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161119

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211020

Year of fee payment: 20

Ref country code: DE

Payment date: 20211020

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211020

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60228924

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20221118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221118