EP1342228A1 - Circuit de commande d'un ecran a plasma - Google Patents

Circuit de commande d'un ecran a plasma

Info

Publication number
EP1342228A1
EP1342228A1 EP01996850A EP01996850A EP1342228A1 EP 1342228 A1 EP1342228 A1 EP 1342228A1 EP 01996850 A EP01996850 A EP 01996850A EP 01996850 A EP01996850 A EP 01996850A EP 1342228 A1 EP1342228 A1 EP 1342228A1
Authority
EP
European Patent Office
Prior art keywords
column
transistor
capacity
current
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01996850A
Other languages
German (de)
English (en)
Inventor
Céline MAS
Gilles Troussel
Eric Benoit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP1342228A1 publication Critical patent/EP1342228A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge

Definitions

  • the present invention relates to plasma screens and more particularly to the control of the cells of a plasma screen.
  • a plasma screen is a matrix type screen, formed of cells arranged at the intersections of rows and columns.
  • a cell comprises a cavity filled with a rare gas, and at least two control electrodes.
  • the cell is selected by applying a potential difference between the control electrodes, then an ionization of the gas in the cell is triggered, generally by means of a third control electrode. This ionization is accompanied by an emission of ultraviolet rays.
  • the creation of the light point is obtained by excitation of a red, green or blue luminescent material by ultraviolet rays.
  • FIG. 1 represents a conventional plasma screen structure formed by cells 2. Each cell 2 has two control electrodes (not shown) respectively connected to a line 4 and to a column 6. Each cell 2 is represented by its equivalent capacity .
  • a line control circuit 8 comprises, for each line 4, a line activation / inactivation block 10, one output of which is connected to the line considered.
  • a column control circuit 12 comprises, for each column 6, a column control block 14 of which an output terminal O is connected to the column 6 considered.
  • Each block 14 includes an input terminal E.
  • the circuit 12 also includes a storage register 16 connected to receive column control signals (COL) from means not shown.
  • the register 16 includes as many outputs Q as there are blocks 14. Each output Q is coupled to the input terminal E of a block 14 by means of a logic switch 18. All the logic switches 18
  • the circuits 8 and 12 are conventionally integrated on the same semiconductor chip of a control circuit.
  • the cells of a plasma screen are activated line by line. Unactivated lines are subject to a resting potential (for example 150 V).
  • the activated line is brought to an activation potential (for example 0 V), the columns being to an inactivation potential GD (0 V).
  • the respective columns are brought potential inactivation GND to a potential VPP 1 activation (e.g. 80 V) for a predetermined time.
  • VPP 1 activation e.g. 80 V
  • the columns corresponding to the non-selected cells of the activated line are kept at GND potential.
  • the cells which must be activated are subjected, during the voltage window, to a column-line voltage equal to VPP - GND (80 V) and the cells which must not be activated are subjected to an equal column-line voltage to GND - GND (0 V). All lines not activated are at rest potential (150 V).
  • the column potential being either 0 V or 80 V, the cells of the non-activated lines are reverse biased and are not subjected to a potential capable of triggering ionization. some gas.
  • FIG. 2 represents a conventional column control block 14.
  • a MOS transistor Tl of type N, has its drain connected to the potential VPP and its source connected to the output terminal O.
  • a MOS transistor T2, of type N has its drain connected to the output terminal O, and its source linked to GND potential.
  • a Zener diode 20 is connected by its cathode to the gate of transistor Tl and by its anode to the source of transistor Tl.
  • An MOS transistor T3, of type P has its source connected to potential VPP and its drain connected to gate of transistor Tl.
  • An MOS transistor T4, of type N has its drain connected to the gate of transistor Tl and its source connected to ground (GND).
  • MOS transistors T5, T6, type P have their sources connected to the VPP potential.
  • the gate of transistor T5 is connected to the drain of transistor T6 and the gate of transistor T6 is connected to the drain of transistor T5.
  • An MOS transistor T7, of type N has its source connected to ground and its drain connected to the drain of transistor T5.
  • An MOS transistor T8, of type N has its source connected to ground and its drain connected to the drain of transistor T6.
  • the gate of transistor T3 is connected to the drain of transistor T6.
  • the gates of the transistors T2, T4 and T7 are connected to the input terminal E via an inverter 22.
  • the gate of the transistor T8 is connected to the output of the inverter 22 via a inverter 24.
  • the output terminal O is connected to a column 6.
  • a capacitor C2 connects the column 6 and the ground.
  • the capacity C2 is the equivalent capacity of column 6. It mainly consists of a first component corresponding to the capacity between the selected column and the rows of the screen, and a second component corresponding to the capacity between the column selected and its neighboring columns.
  • the capacity C2 does not have a constant value, as will be seen later.
  • Block 14 is designed to subject column 6 to a voltage slot when its input E receives a logic "1" (for example a VDD potential equal to 5V), then a logic "0" (0V).
  • a logic "1” for example a VDD potential equal to 5V
  • block 14 charges the capacity C2 at a potential substantially equal to VPP (which is called VPP for simplicity).
  • VPP which is called VPP for simplicity.
  • the block 14 discharges the capacitor C2 and the potential of the column 6 passes from VPP to GND.
  • the value of the capacity C2 of a column 6 depends on the potentials to which the neighboring columns situated on either side of this column are subjected.
  • the capacity C2 of this column has a maximum value if neither of the two neighboring columns is subjected to a voltage slot.
  • the capacitance C2 has a minimum value if the two neighboring columns are subjected to a voltage slot, and a value substantially equal to half the sum of the maximum and minimum values, which will be called hereafter the median value, if l 'only one of the neighboring columns is also subject to a voltage gap.
  • the maximum duration of the rise in the voltage slot may be different from the maximum duration of the fall in the voltage slot. For reasons of simplicity, we will consider that they are equal.
  • the maximum admissible duration of rise / fall of the voltage slot, as well as the different values of the capacitance C2, are characteristics of each type of plasma display.
  • the blocks 14 are provided to each supply (and receive) a predetermined current making it possible to charge (and discharge) the maximum capacity C2 of the type of screen considered in a time less than the maximum admissible duration. rise / fall of the voltage slot for this type of screen.
  • the transistors T1 and T2 are dimensioned to be crossed by this predetermined current when they are conducting.
  • the block 14 supplies or absorbs the preceding predetermined current for a variable duration depending on the selection of the neighboring columns.
  • each block 14 introduces, when the capacitance C2 has its minimum value, intense variations in the current consumption for very short periods, which are capable of creating electromagnetic interference on the supply and the ground of the circuit of command, which is not desirable.
  • a control circuit whose blocks 14 are dimensioned to control a screen of a particular type, may not be usable for controlling another type of screen.
  • An object of the present invention is to provide a plasma screen cell control circuit whose operation is unlikely to create electromagnetic interference.
  • Another object of the present invention is to provide such a control circuit which can easily be adapted to various types of plasma display.
  • the present invention provides a control circuit for a plasma screen consisting of cells arranged at the intersections of rows and columns, comprising, for each column of the screen, a column control block allowing the selection of the column associated with it by applying to said column a voltage window during which said column is brought to a first potential substantially equal to a first predetermined potential and then to a second potential substantially equal to a second predetermined potential, said column having a different capacity depending on whether the neighboring columns are selected or not, each column control block including a first means suitable for charging the capacitor of said column a first predetermined time when said column is brought to said first potential, 'and second means suitable for discharging the capacity of said column in a second predetermined period when said column is brought to said second potential, the second means being controlled by control means as a function of an estimate of the capacity of said column obtained from information indicating the selection or the non-selection of the neighboring columns of said column.
  • FIG. 1, previously described schematically represents a plasma screen provided with a control circuit
  • FIG. 2, previously described schematically represents a conventional column control block of a control circuit
  • FIG. 3 schematically represents a first embodiment of a column control block according to the present invention
  • Figure 4 schematically shows an element of the control unit of Figure 3
  • Figure 5 schematically illustrates the operation of the control means of Figure 3
  • Figure 6 shows in more detail an embodiment of the control unit of Figure 3;
  • FIG. 7 schematically represents a second embodiment of a column control block according to the present invention
  • FIG. 8 schematically represents the variable current source of FIG. 7.
  • each column control block comprises means so that the rise and / or fall time of the voltage slot supplied to each column has the same predetermined value which whatever the value of the capacity of said column.
  • FIG. 3 represents a column control block 14 ′ according to a first embodiment of the present invention.
  • Block 14 ′ has an output terminal O connected to a column 6.
  • Column 6 is connected to ground via a capacitor C2.
  • Block 14 ′ includes transistors Tl, T2, T3, T4, T5, T6, T7 and T8 and inverters 22 and 24 connected substantially as in FIG. 2.
  • a capacitor C is connected between the gate of transistor Tl and the mass.
  • a constant current source CS1 has a first terminal connected to the potential VPP and a second terminal connected to the source of the transistor T3.
  • the gate of transistor T2 is connected to an output terminal 028 of a control means 28.
  • the control means 28 has an input terminal E28 connected to the output of the inverter 22.
  • the transistors T7, T6 and T4 are blocked, the transistors T8, T5 and T3 become conductive and the current II supplied by the constant current source CSl charges the capacitor C. It is assumed that at the start the capacitor C is discharged. The capacitor C is charged at constant current and the potential of the gate of transistor Tl goes from 0 to a maximum value (substantially VPP) in a constant duration.
  • the transistor T1 is connected as a voltage follower.
  • the potential of the output terminal O increases with the potential of the gate of the transistor Tl, in a constant duration whatever the value of the capacitor C2 of the column 6. The rise time of the voltage pulse is thus constant.
  • FIG. 4 schematically represents an embodiment of the current source CSl of FIG. 3.
  • the current source CSl comprises an MOS transistor T9, of type P, whose source is connected to the potential VPP and whose drain is connected to the source of transistor T3.
  • a MOS transistor T10, of type P has its source connected to the potential VPP and its drain connected to its gate.
  • the gate of transistor T9 is connected to the gate of transistor T10 so that the current passing through transistor T9 is proportional (for simplicity, we consider that it is equal) to the current passing through transistor T10.
  • a constant current source CS2 has a first terminal connected to the drain of transistor T10 and a second terminal connected to ground.
  • the constant current 12 passing through the current source CS2 is reproduced in the transistor T9, and fixes the value of the current II produced by the current source CS1.
  • Current 12 determines the rise time of the voltage segment to which column 6 is subjected.
  • the current source CS2 can be adjustable so as to supply different constant currents 12 and to adjust the rise time of the voltage segment to the characteristics of different types of plasma screens.
  • the transistor T10 and the current source CS2 can be common to all the current sources CS1 of all the column control blocks 14 ′ of a control circuit. In this case, each block 14 ′ will only comprise a transistor T9 whose gate is connected to the gate of the common transistor T10.
  • a switch for example an N-type MOS transistor, between the current source CS2 and the transistor T10.
  • a switch for example an N-type MOS transistor, between the current source CS2 and the transistor T10.
  • Such a switch would make it possible to inactivate the current source CS1 when one does not wish to use the block 14 ', for example during a phase of maintenance of the ionization of the cells of the screen, and thus to limit the consumption of the control circuit.
  • the control means 28 is activated and it subjects the gate of the transistor T2 to an activation potential chosen from three predetermined activation potentials.
  • the activation potential provided by the means 28 is different depending on whether the value of the capacitor C2 is maximum, median or minimum, so that the transistor T2 is crossed respectively by a maximum, median or minimum current and that the duration of the discharge of the capacitor C2 is constant.
  • the control means 28 comprises three control terminals Q, Q ⁇ -, Qi + i-
  • the terminal Q is connected to the output Q of the register 16 which is coupled to the input E of the control block 14 'of column 6 considered, called rank i.
  • the terminal 0_i_ ⁇ is connected to the output Q of the register 16 which is coupled to the control block 14 'of the preceding column, of row i-1.
  • the terminal ⁇ 2i + 1 is connected to the output Q of the register 16 which is coupled to the control block 14 ′ of the next column, of rank i + 1.
  • FIG. 5 illustrates the operation of the control means 28 of FIG. 3.
  • the block 14 When the input terminal E28 receives a logic "0”, the block 14 'controls the rise of the voltage slot, and the output terminal 028 is set to ground so as to block transistor T2.
  • the input terminal E28 receives a logic "1” and when the terminal Qj_ receives a logic "0”, the column 6 coupled to the control block 14 'is not selected.
  • the output terminal 028 then takes a logic value "1”, the transistor T2 is turned on and connects the capacitor C2 to ground.
  • the control block 14 When the input terminal E28 receives a logic "1” and the terminal Q ⁇ a logic "1”, the control block 14 'controls the descent of the voltage slot.
  • the output 028 is brought to a potential V m i n .
  • the potentials v max ' v med and v min' lower than the potential VDD, are chosen so as to control the transistor T2 so that it is crossed respectively by currents Imax ' ⁇ med and ⁇ -min Proper to discharge the capacitance C2 of the voltage VPP to ground in a constant time, when the capacitance C2 has its maximum, median and minimum value respectively.
  • FIG. 6 shows in more detail an embodiment of the control block 14 '.
  • the means 28 is produced using inverters, NAND, OR-exclusive gates and transistors mounted as switches, but the person skilled in the art will easily produce a means 28 having the same functions. using other elements.
  • the gate of transistor T4 is connected at the output of the inverter 22 by means of two inverters 23, 25 connected in series.
  • FIG. 7 schematically represents a column control block 14 "according to a second embodiment of the present invention.
  • the block 14" comprises an input terminal E and an output terminal 0.
  • the block 14 “comprises a MOS transistor Tll, of type P, the source of which is connected to the potential VPP and the drain of which is connected to the terminal O.
  • a MOS transistor T2, of type N has its source connected to ground and its drain connected to the drain of the transistor Tll
  • the gate of transistor T2 is connected to output 028 of a control means 28 having three control terminals Q- ⁇ , Q ⁇ - ⁇ , Qi + i-
  • the terminals Q ⁇ , Q ⁇ - ⁇ , Qi + l are connected to the register 16 in the manner described in relation to FIG. 3.
  • the means 28 has an input terminal E28 connected to the terminal E via an inverter 22.
  • a MOS transistor T12 of type P, has its source connected to the potential VPP and its drain connected to the gate of the transistor T11.
  • the transistor T12 forms a current mirror with a transistor MOS T13, type P, the source is connected to the VPP potential and whose drain and grid are connected together.
  • the drain of transistor T13 is connected to the drain of a transistor T7, of type N, the source of which is connected to ground and the gate of which is connected to the output of inverter 5 22.
  • a MOS transistor T14 of type P, has its source connected to the potential VPP and its drain connected to its gate as well as to the gate of the transistor T11.
  • the drain of transistor T14 is connected to the drain of a MOS transistor T15, of type N, the gate of which is connected via an inverter 24 to the output of
  • a variable current source CS3 has a first terminal connected to the source of transistor T15 and a second terminal connected to ground.
  • the current source CS3 has three control terminals connected to the terminals Q ⁇ , Q ⁇ -i and Qi +1 - the current source CS3 is designed to provide a
  • current 13 can take three values ISmax, I3 me d and I3 min different according to the values of the signals received on the terminals Qi, Qi_ ⁇ and Qi + ⁇ .
  • control means 28 is controlled as a function of the outputs Q of the register 16 and it subjects the gate of the transistor T2 to an activation potential chosen from three predetermined potentials so that the duration of the discharge of the capacitor C2 is constant.
  • FIG. 8 schematically represents an embodiment of the current source CS3 of FIG. 7.
  • the current source CS3 comprises a first terminal ⁇ 3 connected to the source of the transistor T15.
  • An MOS transistor T16 of type N, has its drain connected to the terminal E3.
  • the transistor T16 is mounted as a switch.
  • the gate of transistor T16 is connected to the output of a buffer circuit 56.
  • An MOS transistor T18, of type N, has its drain connected to the source of transistor T16 and its source connected to ground.
  • An MOS transistor T20, of type N has its drain connected to the terminal E3.
  • the transistor T20 is mounted as a switch.
  • the gate of transistor T20 is connected to the output of a buffer circuit 58.
  • An MOS transistor T22 of type N, has its drain connected to the source of transistor T20 and its source connected to ground.
  • An MOS transistor T24, of type N has its drain connected to the terminal E3.
  • the transistor T24 is mounted as a switch.
  • the gate of transistor T24 is connected to the output of a buffer circuit 60.
  • An MOS transistor T26, of type N has its drain connected to the source of transistor T24 and its source connected to ground.
  • T28 of type N, has its source connected to ground and its drain connected to potential, supplying VDD via a constant current source CS4.
  • the gate and the drain of transistor T28 are connected together.
  • the gates of transistors T26, T22 and T18 are connected to the gate of transistor T28.
  • the transistors T26, T22 and T18 each behave like a constant current source.
  • a decoder 64 has three outputs D1, D2 and D3 connected respectively so as to control the buffer circuits 56, 58 and 60.
  • the decoder 64 has three input terminals corresponding to the control terminals Q ⁇ - ⁇ , Q ⁇ and Q ⁇ + ⁇ from the current source
  • the operation of the decoder 64 is as follows.
  • the transistor T24 is on and the transistors T20 and T16 are blocked when the capacitor C2 has a maximum value.
  • the transistor T20 is on and the transistors T24 and T16 are blocked when the capacitor C2 has a median value.
  • the transistor T16 is on and the transistors T24 and T20 are blocked when the capacitor C2 has a minimum value.
  • the width and length of the channel of the transistors T26, T22, and T18 are produced so that these transistors are respectively crossed by the currents I3 max , I3 me ⁇ : and I3 mn .
  • the current source CS4 can be fixed, or be adjustable to adjust the rise time of the voltage window to different types of plasma screens.
  • the present invention is susceptible to various variants and modifications which will appear to a person skilled in the art.
  • the MOS transistors could be replaced by bipolar transistors.
  • the column control blocks 14 ′ and 14 ′′ provide voltage slots having constant rise and fall times on the one hand.
  • these two aspects are separable from each other and it is possible to provide a column control unit providing voltage slots of which only the rise time is constant or only the fall time is constant, without leaving of the field of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

L'invention concerne un circuit de commande d'un écran à plasma constitué de cellules disposées aux intersections de lignes et de colonnes, comprenant, pour chaque colonne de l'écran, un bloc (14') de commande de colonne permettant la sélection de la colonne par l'application d'un créneau de tension, ladite colonne présentant une capacité (C2) différente selon que les colonnes voisines sont sélectionnées ou non, chaque bloc (14') de commande comprenant un premier moyen (T1, C, CS1) pour charger ladite capacité en une première durée prédéterminée lors du front montant du créneau de tension, et un second moyen (T2, 28) pour décharger ladite capacité en une seconde durée prédéterminée lors du front descendant du créneau de tension, le second moyen étant commandé en fonction d'une estimation de ladite capacité obtenue à partir d'informations (Qi-1, Qi-1) indiquant la sélection ou la non sélection des colonnes voisines de ladite colonne.

Description

CIRCUIT DE COMMANDE D'UN ECRAN A PLASMA
La présente invention concerne les écrans à plasma et plus particulièrement la commande des cellules d'un écran à plasma.
Un écran à plasma est un écran de type matriciel, formé de cellules disposées aux intersections de lignes et de colonnes. Une cellule comprend une cavité remplie d'un gaz rare, et au moins deux électrodes de commande. Pour créer un point lumineux sur l'écran, en utilisant une cellule donnée, on sélectionne la cellule en appliquant une différence de potentiel entre les électrodes de commande, puis on déclenche une ionisation du gaz de la cellule, généralement au moyen d'une troisième électrode de commande. Cette ionisation s'accompagne d'une émission de rayons ultraviolets. La création du point lumineux est obtenue par excitation d'un matériau luminescent rouge, vert ou bleu par les rayons ultraviolets.
La figure 1 représente une structure classique d'écran à plasma formé de cellules 2. Chaque cellule 2 a deux électrodes de commande (non représentées) respectivement reliées à une ligne 4 et à une colonne 6. Chaque cellule 2 est représentée par sa capacité équivalente. Un circuit 8 de commande de ligne comprend, pour chaque ligne 4, un bloc 10 d' activâtion/inactivation de ligne dont une sortie est reliée à la ligne considérée. Un circuit de commande de colonne 12 comprend, pour chaque colonne 6, un bloc 14 de commande de colonne dont une borne de sortie O est reliée à la colonne 6 considérée. Chaque bloc 14 comprend une borne d'entrée E. Le circuit 12 comprend également un registre de mémorisation 16 connecté pour recevoir des signaux de commande de colonne (COL) à partir de moyens non représentés. Le registre 16 comprend autant de sorties Q qu'il y a de blocs 14. Chaque sortie Q est couplée à la borne d'entrée E d'un bloc 14 par l'intermédiaire d'un commutateur logique 18. Tous les commutateurs logiques 18
(ici des portes ET) sont commandés par un même signal de validation VAL, fourni par des moyens non représentés. Les circuits 8 et 12 sont classiquement intégrés sur une même puce de semiconducteur d'un circuit de commande. Classiquement, les cellules d'un écran à plasma sont activées ligne par ligne. Les lignes non activées sont soumises à un potentiel de repos (par exemple 150 V) . La ligne activée est portée à un potentiel d' activation (par exemple 0 V) , les colonnes étant à un potentiel d' inactivation GD (0 V) . Ensuite, pour activer des cellules choisies de la ligne activée, les colonnes correspondantes sont amenées du potentiel d' inactivation GND à un potentiel d1activation VPP (par exemple 80 V) pendant une durée prédéterminée. Les colonnes correspondant aux cellules choisies sont soumises chacune à un créneau de tension de même amplitude et de même durée. Les colonnes correspondant aux cellules non choisies de la ligne activée sont maintenues au potentiel GND. Ainsi, les cellules qui doivent être activées sont soumises, pendant le créneau de tension, à une tension colonne-ligne égale à VPP - GND (80 V) et les cellules qui ne doivent pas être activées sont soumises à une tension colonne-ligne égale à GND - GND (0 V) . Toutes les lignes non activées sont au potentiel de repos (150 V) . Le potentiel de colonne étant soit 0 V, soit 80 V, les cellules des lignes non activées sont polarisées en inverse et ne sont pas soumises à un potentiel susceptible de déclencher l'ionisation du gaz.
La figure 2 représente un bloc de commande de colonne 14 classique. Un transistor MOS Tl, de type N, a son drain relié au potentiel VPP et sa source reliée à la borne de sortie O. Un transistor MOS T2, de type N, a son drain relié à la borne de sortie O, et sa source reliée au potentiel GND. Une diode Zener 20 est reliée par sa cathode à la grille du transistor Tl et par son anode à la source du transistor Tl. Un transistor MOS T3, de type P, a sa source reliée au potentiel VPP et son drain relié à la grille du transistor Tl. Un transistor MOS T4, de type N, a son drain relié à la grille du transistor Tl et sa source reliée à la masse (GND) . Des transistors MOS T5, T6, de type P, ont leurs sources reliées au potentiel VPP. La grille du transistor T5 est reliée au drain du transistor T6 et la grille du transistor T6 est reliée au drain du transistor T5. Un transistor MOS T7, de type N, a sa source reliée à la masse et son drain relié au drain du transistor T5. Un transistor MOS T8, de type N, a sa source reliée à la masse et son drain relié au drain du transistor T6. La grille du transistor T3 est reliée au drain du transistor T6. Les grilles des transistors T2, T4 et T7 sont reliées à la borne d'entrée E par l'intermédiaire d'un inverseur 22. La grille du transistor T8 est reliée à la sortie de l'inverseur 22 par l'intermédiaire d'un inverseur 24. La borne de sortie O est reliée à une colonne 6. En figure 2, une capacité C2 relie la colonne 6 et la masse. La capacité C2 est la capacité équivalente de la colonne 6. Elle est constituée principalement d'une première composante correspondant à la capacité entre la colonne sélectionnée et les lignes de l'écran, et d'une seconde composante correspondant à la capacité entre la colonne sélectionnée et ses colonnes voisines. La capacité C2 n'a pas une valeur constante, comme on le verra par la suite.
Le bloc 14 est prévu pour soumettre la colonne 6 à un créneau de tension lorsque son entrée E reçoit un "1" logique (par exemple un potentiel VDD égal à 5V) , puis un "0" logique (0V) . Lorsque l'entrée E reçoit un "1" logique, le bloc 14 charge la capacité C2 à un potentiel sensiblement égal à VPP (que l'on appelle VPP par simplicité) . Lorsque l'entrée E reçoit un "0" logique, le bloc 14 décharge la capacité C2 et le potentiel de la colonne 6 passe de VPP à GND. La valeur de la capacité C2 d'une colonne 6 dépend des potentiels auxquels sont soumises les colonnes voisines situées de part et d'autre de cette colonne 6. Ainsi, lorsqu'une colonne 6 est soumise au créneau de tension, la capacité C2 de cette colonne a une valeur maximale si aucune des deux colonnes voisines n'est soumise à un créneau de tension. La capacité C2 a une valeur minimale si les deux colonnes voisines sont soumises à un créneau de tension, et une valeur sensiblement égale à la moitié de la somme des valeurs maximale et minimale, que l'on nommera par la suite valeur médiane, si l'une seulement des colonnes voisines est également soumise à un créneau de tension.
Il est important pour le bon fonctionnement d'un écran à plasma que les temps de montée et de descente du créneau de tension fourni à chaque colonne sélectionnée soient inférieurs à une durée maximale prédéterminée. La durée maximale de montée du créneau de tension peut être différente de la durée maximale de descente du créneau de tension. Pour des raisons de simplicité, on va considérer qu'elles sont égales. La durée maximale admissible de montée/descente du créneau de tension, ainsi que les différentes valeurs de la capacité C2, sont des caractéristiques de chaque type d'écran à plasma. Pour un type d'écran donné, les blocs 14 sont prévus pour fournir (et recevoir) chacun un courant prédéterminé permettant de charger (et de décharger) la capacité C2 maximale du type d'écran considéré en un temps inférieur à la durée maximale admissible de montée/descente du créneau de tension pour ce type d'écran. Notamment, les transistors Tl et T2 sont dimensionnês pour être traversés par ce courant prédéterminé lorsqu'ils sont passants.
Cependant, lorsque la capacité C2 a sa valeur médiane ou sa valeur minimale, les temps de montée/descente du créneau de tension sont inférieurs au temps de montée/descente observés pour la capacité C2 maximale. Par conséquent, le bloc 14 fournit ou absorbe le courant prédéterminé précédent pendant une durée variable dépendant de la sélection des colonnes voisines. Il en résulte que chaque bloc 14 introduit, lorsque la capacité C2 a sa valeur minimale, des variations intenses de la consommation de courant pendant des durées très courtes, qui sont susceptibles de créer des interférences électromagnétiques sur l'alimentation et la masse du circuit de commande, ce qui n'est pas souhaitable. En outre, un circuit de commande dont les blocs 14 sont dimensionnés pour commander un écran d'un type particulier, peut ne pas être utilisable pour commander un autre type d'écran.
Un objet de la présente invention est de prévoir un circuit de commande de cellules d'écran à plasma dont le fonctionnement est peu susceptible de créer des interférences électromagnétiques .
Un autre objet de la présente invention est de prévoir un tel circuit de commande qui puisse facilement être adapté à divers types d'écran à plasma.
Pour atteindre ces objets, la présente invention prévoit un circuit de commande d'un écran à plasma constitué de cellules disposées aux intersections de lignes et de colonnes, comprenant, pour chaque colonne de l'écran, un bloc de commande de colonne permettant la sélection de la colonne qui lui est associée en appliquant à ladite colonne un créneau de tension au cours duquel ladite colonne est portée à un premier potentiel sensiblement égal à un premier potentiel prédéterminé puis à un second potentiel sensiblement égal à un second potentiel prédéterminé, ladite colonne présentant une capacité différente selon que les colonnes voisines sont sélectionnées ou non, chaque bloc de commande de colonne comprenant un premier moyen propre à charger la capacité de ladite colonne en une première durée prédéterminée lorsque ladite colonne est portée audit premier potentiel,' et un second moyen propre à décharger la capacité de ladite colonne en une seconde durée prédéterminée lorsque ladite colonne est portée audit second potentiel, le second moyen étant commandé par un moyen de commande en fonction d'une estimation de la capacité de ladite colonne obtenue à partir d'informations indiquant la sélection ou la non sélection des colonnes voisines de ladite colonne.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1, précédemment décrite, représente schématiquement un écran à plasma muni d'un circuit de commande ; la figure 2, précédemment décrite, représente schématiquement un bloc de commande de colonne classique d'un circuit de commande ; la figure 3 représente schématiquement un premier mode de réalisation d'un bloc de commande de colonne selon la présente invention ; la figure 4 représente schématiquement un élément du bloc de commande de la figure 3 ; la figure 5 illustre schématiquement le fonctionnement du moyen de commande de la figure 3 ; la figure 6 représente plus en détail un exemple de réalisation du bloc de commande de la figure 3 ;
La figure 7 représente schématiquement un second mode de réalisation d'un bloc de commande de colonne selon la présente invention ; et la figure 8 représente schématiquement la source de courant variable de la figure 7.
La présente invention prévoit un circuit de commande dont chaque bloc de commande de colonne comprend des moyens pour que le temps de montée et/ou de descente du créneau de tension fourni à chaque colonne ait une même valeur prédéterminée quelle que soit la valeur de la capacité de ladite colonne.
De mêmes références représentent de mêmes éléments dans les différentes figures. Seuls les éléments nécessaires à la compréhension de la présente invention ont été représentés aux figures suivantes.
La figure 3 représente un bloc de commande de colonne 14 ' selon un premier mode de réalisation de la présente invention. Le bloc 14' a une borne de sortie O reliée à une colonne 6. La colonne 6 est reliée à la masse par 1 ' intermédiaire d'une capacité C2. Le bloc 14 ' comporte des transistors Tl, T2, T3, T4, T5, T6, T7 et T8 et des inverseurs 22 et 24 connectés sensiblement comme en figure 2. En outre, un condensateur C est relié entre la grille du transistor Tl et la masse. Une source de courant constant CSl a une première borne reliée au potentiel VPP et une seconde borne reliée à la source du transistor T3. La grille du transistor T2 est reliée à une borne de sortie 028 d'un moyen de commande 28. Le moyen de commande 28 a une borne d'entrée E28 reliée à la sortie de 1 ' inverseur 22. Lorsque la borne d'entrée E reçoit un "1" logique, les transistors T7, T6 et T4 se bloquent, les transistors T8, T5 et T3 deviennent conducteurs et le courant II fourni par la source de courant constant CSl charge le condensateur C. On suppose qu'au départ le condensateur C est déchargé. La charge du condensateur C se fait à courant constant et le potentiel de la grille du transistor Tl passe de 0 à une valeur maximale (sensiblement VPP) en une durée constante. Le transistor Tl est connecté en suiveur de tension. Le potentiel de la borne de sortie O augmente avec le potentiel de la grille du transistor Tl, en une durée constante quelle que soit la valeur de la capacité C2 de la colonne 6. Le temps de montée du créneau de tension est ainsi constant.
La figure 4 représente schématiquement un mode de réalisation de la source de courant CSl de la figure 3. La source de courant CSl comprend un transistor MOS T9, de type P, dont la source est reliée au potentiel VPP et dont le drain est relié à la source du transistor T3. Un transistor MOS T10, de type P, a sa source reliée au potentiel VPP et son drain relié à sa grille. La grille du transistor T9 est reliée à la grille du transistor T10 de manière que le courant traversant le transistor T9 soit proportionnel (par simplicité, on considère qu'il est égal) au courant traversant le transistor T10. Une source de courant constant CS2 a une première borne reliée au drain du transistor T10 et une seconde borne reliée à la masse. Le courant constant 12 traversant la source de courant CS2 est reproduit dans le transistor T9, et fixe la valeur du courant II produit par la source de courant CSl. Le courant 12 détermine le temps de montée du créneau de tension auquel est soumise la colonne 6. La source de courant CS2 peut être réglable de façon à fournir différents courants constants 12 et à ajuster le temps de montée du créneau de tension aux caractéristiques de différents types d'écrans à plasma. Le transistor T10 et la source de courant CS2 peuvent être communs à toutes les sources de courant CSl de tous les blocs de commande de colonne 14' d'un circuit de commande. Dans ce cas, chaque bloc 14 ' comprendra seulement un transistor T9 dont la grille est reliée à la grille du transistor T10 commun. En outre, il est possible de disposer un commutateur, par exemple un transistor MOS de type N, entre la source de courant CS2 et le transistor T10. Un tel commutateur permettrait d' inactiver la source de courant CSl lorsqu'on ne désire pas utiliser le bloc 14 ' , par exemple lors d'une phase d'entretien de l'ionisation des cellules de l'écran, et ainsi de limiter la consommation du circuit de commande.
Lorsque la borne d'entrée E du bloc de commande de colonne reçoit un "0" logique, les transistors T8, T5, T3 et Tl se bloquent et les transistors T7, T6 et T4 deviennent conducteurs. Le moyen de commande 28 est activé et il soumet la grille du transistor T2 à un potentiel d'activation choisi parmi trois potentiels d' activation prédéterminés. Selon la présente invention, le potentiel d' activation fourni par le moyen 28 est différent selon que la valeur de la capacité C2 est maximale, médiane ou minimale, de manière que le transistor T2 soit traversé respectivement par un courant maximal, médian ou minimal et que la durée de la décharge de la capacité C2 soit constante. Le moyen de commande 28 comporte trois bornes de commande Q , Q±- , Qi+i- La borne Q est reliée à la sortie Q du registre 16 qui est couplée à l'entrée E du bloc de commande 14' de la colonne 6 considérée, dite de rang i. La borne 0_i_ι est reliée à la sortie Q du registre 16 qui est couplée au bloc de commande 14' de la colonne précédente, de rang i-1. La borne <2i+l est reliée à la sortie Q du registre 16 qui est couplée au bloc de commande 14' de la colonne suivante, de rang i+1.
La figure 5 illustre le fonctionnement du moyen de commande 28 de la figure 3. Lorsque la borne d'entrée E28 reçoit un "0" logique, le bloc 14' commande la montée du créneau de tension, et la borne de sortie 028 est mise à la masse de manière à bloquer le transistor T2. Lorsque la borne d' entrée E28 reçoit un "1" logique et lorsque la borne Qj_ reçoit un "0" logique, la colonne 6 couplée au bloc de commande 14' n'est pas sélectionnée. La borne de sortie 028 prend alors une valeur logique "1", le transistor T2 est rendu passant et relie la capacité C2 à la masse. Lorsque la borne d'entrée E28 reçoit un "1" logique et la borne Q^ un "1" logique, le bloc de commande 14' commande la descente du créneau de tension. Lorsque la borne d'entrée E28 reçoit un "1" logique, la borne Qj_ un "1" logique et que les bornes Qi_ι et Q±+χ reçoivent un "0" logique (aucune des colonnes voisines de la colonne 6 n'est sélectionnée) , la sortie 028 est amenée à un potentiel Vmax. Lorsque la borne d'entrée E28 reçoit un "1" logique, la borne Qj_ un "1" logique et que l'une seulement des bornes Qi-i et Q + reçoit un "0" logique (l'une seulement des colonnes voisines de la colonne 6 est sélectionnée) , la sortie 028 est amenée à un potentiel Vme(j. Lorsque la borne d'entrée E28 reçoit un "1" logique, et que les bornes Q±, Q±-i et Q±+ reçoivent un "1" logique (les deux colonnes voisines de la colonne 6 sont également sélectionnées) , la sortie 028 est amenée à un potentiel Vmin. Les potentiels vmax' vmed et vmin' inférieurs au potentiel VDD, sont choisis de manière à commander le transistor T2 pour qu'il soit traversé respectivement par des courants Imax' ^med et ï-min Propres à décharger la capacité C2 de la tension VPP à la masse en un temps constant, lorsque la capacité C2 a respectivement sa valeur maximale, médiane et minimale.
On notera que les potentiels Vmax, Vmecj et Vmj_n peuvent être produits par des sources de tension réglables, de manière à pouvoir adapter le circuit de commande à différents types d'écrans à plasma. la figure 6 représente plus en détail un exemple de réalisation du bloc de commande 14'. En figure 6, le moyen 28 est réalisé à l'aide d'inverseurs, de portes NON-ET, OU-exclusif et de transistors montés en commutateurs, mais l'homme du métier réalisera sans difficultés un moyen 28 ayant les mêmes fonctions à l'aide d'autres éléments. En outre, en figure 6, la grille du transistor T4 est reliée en sortie de l'inverseur 22 par l'intermédiaire de deux inverseurs 23, 25 reliés en série. La figure 7 représente schématiquement un bloc de commande de colonne 14" selon un deuxième mode de réalisation de la présente invention. Le bloc 14" comprend une borne d'entrée E et une borne de sortie 0. Le bloc 14" comprend un transistor MOS Tll, de type P, dont la source est reliée au potentiel VPP et dont le drain est relié à la borne O. Un transistor MOS T2, de type N, a sa source reliée à la masse et son drain relié au drain du transistor Tll. La grille du transistor T2 est reliée à la sortie 028 d'un moyen de commande 28 ayant trois bornes de commande Q-^, Q±-±, Qi+i- Les bornes Q±, Q±-±, Qi+l sont connectées au registre 16 de la manière décrite en relation avec la figure 3. Le moyen 28 a une borne d'entrée E28 reliée à la borne E par l'intermédiaire d'un inverseur 22. Un transistor MOS T12, de type P, a sa source reliée au potentiel VPP et son drain relié à la grille du transistor Tll. Le transistor T12 forme un miroir de courant avec un transistor MOS T13, de type P, dont la source est reliée au potentiel VPP et dont le drain et la grille sont reliés ensemble. Le drain du transistor T13 est relié au drain d'un transistor T7, de type N, dont la source est reliée à la masse et dont la grille est reliée à la sortie de l'inverseur 5 22. Un transistor MOS T14, de type P, a sa source reliée au potentiel VPP et son drain relié à sa grille ainsi qu'à la grille du transistor Tll. Le drain du transistor T14 est relié au drain d'un transistor MOS T15, de type N, dont la grille est reliée par l'intermédiaire d'un inverseur 24 à la sortie de
10 l'inverseur 22. Une source de courant variable CS3 a une première borne reliée à la source du transistor T15 et une seconde borne reliée à la masse. La source de courant CS3 comporte trois bornes de commande reliées aux bornes Q±, Q±-i et Q-i+1- a source de courant CS3 est prévue pour fournir un
15 courant 13 pouvant prendre trois valeurs ISmax, I3med et I3min différentes en fonction des valeurs des signaux reçus sur les bornes Qi, Qi_χ et Qi+χ. Le courant traversant le transistor Tll, proportionnel au courant 13 traversant la source de courant CS3, détermine le temps de montée du créneau de tension fourni à
20 la colonne 6.
Lorsque la borne d'entrée E du bloc de commande de colonne est à un "0" logique, les transistors T7, T13 et T12 sont passants, les transistors T15, T14, et Tll sont bloqués et le moyen 28 est activé. Comme dans le bloc 14' précédent, le
25 moyen de commande 28 est commandé en fonction des sorties Q du registre 16 et il soumet la grille du transistor T2 à un potentiel d'activation choisi parmi trois potentiels prédéterminés pour que la durée de la décharge de la capacité C2 soit constante.
3.0 Lorsque la borne d'entrée E est à un "1" logique, les transistors T7, T12, T13 et T2 sont bloqués et les transistors T15, T14 et Tll sont passants. Le courant traversant le transistor Tll charge la capacité C2. Les trois courant I3max, I3med et I3min sont propres à assurer une durée de montée
35 constante prédéterminée du créneau de tension lorsque la capacité C2 a respectivement sa valeur maximale, médiane et minimale.
La figure 8 représente de manière schématique un mode de réalisation de la source de courant CS3 de la figure 7. La source de courant CS3 comprend une première borne Ξ3 reliée à la source du transistor T15. Un transistor MOS T16, de type N, a son drain relié à la borne E3. Le transistor T16 est monté en commutateur. La grille du transistor T16 est reliée à la sortie d'un circuit tampon 56. Un transistor MOS T18, de type N, a son drain relié à la source du transistor T16 et sa source reliée à la masse. Un transistor MOS T20, de type N, a son drain relié à la borne E3. Le transistor T20 est monté en commutateur. La grille du transistor T20 est reliée à la sortie d'un circuit tampon 58. Un transistor MOS T22, de type N, a son drain relié à la source du transistor T20 et sa source reliée à la masse. Un transistor MOS T24, de type N, a son drain relié à la borne E3. Le transistor T24 est monté en commutateur. La grille du transistor T24 est reliée à la sortie d'un circuit tampon 60. Un transistor MOS T26, de type N, a son drain relié à la source du transistor T24 et sa source reliée à la masse. Un transistor MOS
T28, de type N, a sa source reliée à la masse et son drain relié au potentiel , d'alimentation VDD par l'intermédiaire d'une source de courant constant CS4. La grille et le drain du transistor T28 sont reliés ensemble. Les grilles des transistors T26, T22 et T18 sont reliées à la grille du transistor T28. Les transistors T26, T22 et T18 se comportent chacun comme une source de courant constant. Un décodeur 64 a trois sorties Dl, D2 et D3 connectées respectivement de manière à commander les circuits tampons 56, 58 et 60. Le décodeur 64 a trois bornes d'entrée correspondant aux bornes de commande Q±-±, Q± et Q±+± de la source de courant
CS3.
Le fonctionnement du décodeur 64 est le suivant.
Lorsque seule la borne Q± est à "1", la sortie D3 est à "1" et les sorties D2, Dl sont à "0" . Lorsque la borne Q^ et 1 'une seulement des bornes Q _ι et Qi+χ sont à "1", la sortie D2 est à "1" et les sorties D3, Dl sont à "0". Lorsque les bornes Qi, Qj__ 1 et Qi+ι sont à "1", la sortie Dl est à "1" et les sorties D3, D2 sont à "0".
Le transistor T24 est passant et les transistors T20 et T16 sont bloqués lorsque la capacité C2 a une valeur maximale. Le transistor T20 est passant et les transistors T24 et T16 sont bloqués lorsque la capacité C2 a une valeur médiane. Le transistor T16 est passant et les transistors T24 et T20 sont bloqués lorsque la capacité C2 a une valeur minimale. La largeur et la longueur du canal des transistors T26, T22, et T18 sont réalisées de manière que ces transistors soient respectivement traversés par les courants I3max, I3meα: et I3m n. La source de courant CS4 peut être fixe, ou être réglable pour ajuster le temps de montée du créneau de tension à différents types d'écrans à plasma.
La présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme du métier. En particulier, les éléments utilisés pour réaliser les blocs de commande de colonne 14 ' et 14" ne sont donnés qu' à titre d'exemple, et l'homme du métier adaptera sans difficultés la présente invention à d'autres modes de réalisation utilisant d'autres éléments ayant des fonctions équivalentes. Par exemple, on pourra remplacer les transistors MOS par des transistors bipolaires . En outre, dans les modes de réalisation décrits, les blocs de commande de colonne 14 ' et 14" fournissent des créneaux de tension ayant des temps de montée d'une part, et de descente d'autre part, constants. Cependant, ces deux aspects sont dissociables l'un de l'autre et il est possible de prévoir un bloc de commande de colonne fournissant des créneaux de tension dont seul le temps de montée est constant ou seul le temps de descente est constant, sans sortir du domaine de l'invention.
En outre, les modes de réalisation décrits s'appliquent aux écrans à plasma dans lesquels la capacité C2 de chaque colonne 6 peut prendre trois valeurs, seule l'influence des colonnes adjacentes à la colonne sélectionnée ayant été considérée. Bien entendu, on peut en outre prendre en considération l'influence d'autres colonnes voisines de la colonne sélectionnée, l'homme du métier adaptant sans peine la présente invention au cas où la capacité C2 peut prendre plus de trois valeurs.

Claims

REVENDICATIONS
1. Circuit de commande d'un écran à plasma constitué de cellules (2) disposées aux intersections de lignes (4) et de colonnes (6), comprenant, pour chaque colonne de l'écran, un bloc (14', 14") de commande de colonne permettant la sélection de la colonne qui lui est associée en appliquant à ladite colonne un créneau de tension au cours duquel ladite colonne est portée à un premier potentiel sensiblement égal à un premier potentiel prédéterminé (VPP) puis à un second potentiel sensiblement égal à un second potentiel prédéterminé (GND) , ladite colonne présentant une capacité (C2) différente selon que les colonnes voisines sont sélectionnées ou non, chaque bloc
(14', 14") de commande de colonne comprenant un premier moyen propre à charger la capacité de ladite colonne en une première durée prédéterminée lorsque ladite colonne est portée audit premier potentiel, et un second moyen propre à décharger la capacité de ladite colonne en une seconde durée prédéterminée lorsque ladite colonne est portée audit second potentiel, caractérisé en ce que le second moyen est commandé par un moyen de commande (28) en fonction d'une estimation de la capacité de ladite colonne obtenue à partir d'informations (Q±-±, Q±+±) indiquant la sélection ou la non sélection des colonnes voisines de ladite colonne.
2. Circuit de commande selon la revendication 1, dans lequel le second moyen comprend un premier transistor (T2) , permettant le passage d'un courant de décharge de la capacité de ladite colonne vers le second potentiel, le courant traversant le premier transistor (T2) étant piloté en fonction de l'estimation de la capacité de ladite colonne de sorte que le temps de décharge de la capacité de ladite colonne corresponde à la seconde durée prédéterminée.
3. Circuit de commande selon la revendication 2, dans lequel le moyen de commande (28) est prévu pour fournir à la borne de commande du premier transistor (T2) une tension de commande dépendant de l'estimation de la capacité de ladite colonne .
4. Circuit de commande selon la revendication 3 , dans lequel ladite tension de commande est en outre réglable de manière à pouvoir ajuster le temps de décharge de la capacité de ladite colonne.
5. Circuit de commande selon l'une quelconque des revendications 1 à 4, dans lequel le premier moyen est commandé en fonction d'une estimation de la capacité de ladite colonne obtenue à partir d'informations (Q±-±, Qi+i) indiquant la sélection ou la non sélection des colonnes voisines de ladite colonne .
6. Circuit de commande selon la revendication 5, dans lequel le premier moyen comprend : un deuxième transistor (Tll) permettant le passage d'un courant dans ladite colonne, un troisième transistor (T14) connecté de manière à former avec le deuxième transistor (Tll) un miroir de courant, le courant traversant le troisième transistor déterminant le courant traversant le deuxième transistor, et une première source de courant (CS3) , le courant délivré par la première source de courant traversant le troisième transistor (T14) et prenant une valeur dépendant de l'estimation de la capacité de la colonne, de sorte que le courant traversant le deuxième transistor (Tll) charge la capacité de ladite colonne en la première durée prédéterminée.
7. Circuit de commande selon la revendication 6, dans lequel la première source de courant (CS3) est en outre réglable de manière à pouvoir ajuster le temps de charge de la capacité de ladite colonne.
8. Circuit de commande selon l'une quelconque des revendications 1 à 4, dans lequel le premier moyen comprend un quatrième transistor (Tl) connecté en suiveur de tension permettant le passage d'un courant de charge de la capacité de ladite colonne, le quatrième transistor recevant sur sa borne de commande une tension passant du second potentiel au premier potentiel en la première durée prédéterminée.
9. Circuit de commande selon la revendication 8, dans lequel le premier moyen comprend un condensateur (C) connecté entre la borne de commande du quatrième transistor et le second potentiel, et une deuxième source de courant (CSl) connectée entre le premier potentiel et la borne de commande du quatrième transistor, propre à fournir un courant constant audit condensateur et à le charger pendant la première durée prédéterminée .
10. Circuit de commande selon la revendication 9, dans lequel la deuxième source de courant (CSl) est réglable de manière à pouvoir ajuster le temps de charge dudit condensateur
(C) et dans lequel la deuxième source de courant (CSl) comprend un cinquième transistor (T9) connecté de manière à fournir le courant de charge dudit condensateur (C) , un sixième transistor
(T10) connecté de manière à former avec le cinquième transistor un miroir de courant, le courant traversant le sixième transistor (T10) déterminant le courant traversant le cinquième transistor (T9) , et une troisième source de courant (CS2) connectée de manière à fixer le courant traversant le sixième transistor (T10) , le sixième transistor (T10) et la troisième source de courant (CS2) pouvant être communs à tous les blocs de commande de colonne (14') de l'écran à plasma, et un commutateur pouvant être connecté en série avec la troisième source de courant pour inactiver celle-ci.
EP01996850A 2000-11-14 2001-11-14 Circuit de commande d'un ecran a plasma Withdrawn EP1342228A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0014600A FR2816746A1 (fr) 2000-11-14 2000-11-14 Circuit de commande des cellules d'un ecran a plasma
FR0014600 2000-11-14
PCT/FR2001/003574 WO2002041292A1 (fr) 2000-11-14 2001-11-14 Circuit de commande d'un ecran a plasma

Publications (1)

Publication Number Publication Date
EP1342228A1 true EP1342228A1 (fr) 2003-09-10

Family

ID=8856400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01996850A Withdrawn EP1342228A1 (fr) 2000-11-14 2001-11-14 Circuit de commande d'un ecran a plasma

Country Status (5)

Country Link
US (1) US7122968B2 (fr)
EP (1) EP1342228A1 (fr)
JP (1) JP2004514177A (fr)
FR (1) FR2816746A1 (fr)
WO (1) WO2002041292A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078935A (ja) * 2004-09-13 2006-03-23 Renesas Technology Corp プラズマディスプレイ装置のアドレス電極駆動回路
JP2006330228A (ja) * 2005-05-25 2006-12-07 Renesas Technology Corp プラズマディスプレイ装置および半導体集積回路装置
FR2896610A1 (fr) * 2006-01-20 2007-07-27 St Microelectronics Sa Procede et dispositif de commande d'un ecran a plasma matriciel
US8138993B2 (en) * 2006-05-29 2012-03-20 Stmicroelectronics Sa Control of a plasma display panel
JP2008032812A (ja) * 2006-07-26 2008-02-14 Matsushita Electric Ind Co Ltd 出力駆動装置および表示装置
FR2909212B1 (fr) * 2006-11-29 2009-02-27 St Microelectronics Sa Procede de commande d'un ecran matriciel et dispositif correspondant.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3176916D1 (en) * 1980-07-07 1988-11-24 Interstate Electronics Corp Plasma display panel drive
US4492957A (en) 1981-06-12 1985-01-08 Interstate Electronics Corporation Plasma display panel drive electronics improvement
US4496879A (en) 1980-07-07 1985-01-29 Interstate Electronics Corp. System for driving AC plasma display panel
JPS57172395A (en) 1980-07-07 1982-10-23 Intaasuteito Electonics Corp Control circuit for alternating current plasma panel
US5081400A (en) * 1986-09-25 1992-01-14 The Board Of Trustees Of The University Of Illinois Power efficient sustain drivers and address drivers for plasma panel
JP3395399B2 (ja) * 1994-09-09 2003-04-14 ソニー株式会社 プラズマ駆動回路
JP2002175043A (ja) * 2000-12-06 2002-06-21 Nec Corp プラズマディスプレイパネルの駆動方法、その回路及び表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0241292A1 *

Also Published As

Publication number Publication date
FR2816746A1 (fr) 2002-05-17
JP2004514177A (ja) 2004-05-13
WO2002041292A1 (fr) 2002-05-23
US20030107327A1 (en) 2003-06-12
US7122968B2 (en) 2006-10-17

Similar Documents

Publication Publication Date Title
WO1997025716A1 (fr) Perfectionnement aux registres a decalage utilisant des transistors &#39;mis&#39; de meme polarite
EP0080394A1 (fr) Bascule bistable à stockage non volatil et à repositionnement statique
EP0562905B1 (fr) Circuit à retard variable
EP0880124B1 (fr) Etage de sortie de puissance pour la commande de cellules d&#39;écran à plasma
EP0279712B1 (fr) Circuit de lecture pour mémoire
EP1342228A1 (fr) Circuit de commande d&#39;un ecran a plasma
EP0080395A1 (fr) Bascule bistable à stockage non volatil et à repositionnement dynamique
EP1073203B1 (fr) Dispositif de commande d&#39;un commutateur haute tension de type translateur
FR2525014A1 (fr) Systemes de distribution et de commande de haute tension integres
FR2538193A1 (fr) Interface de sortie pour circuit logique a trois etats dans un circuit integre a transistors mos
EP0267091B1 (fr) Mémoire non-volatile programmable électriquement
EP1862999A2 (fr) Commande d&#39;un écran plasma
EP1307874B1 (fr) Procede et circuit de commande d&#39;un ecran a plasma
FR2826772A1 (fr) Procede et circuit de rafaichissement de cellules de memoire dynamique
EP0757427A1 (fr) Circuit générateur de phases pour circuit d&#39;alimentation négative du type pompe de charge
WO2007057616A2 (fr) Commande d&#39;un etage de recuperation d&#39;energie d&#39;un ecran plasma
CN114170957B (zh) 一种发光二极管显示驱动实现方法
FR2896610A1 (fr) Procede et dispositif de commande d&#39;un ecran a plasma matriciel
EP0187584A1 (fr) Porte logique à coîncidence, et circuits logiques séquentiels mettant en oeuvre cette porte à coîncidence
FR2876516A1 (fr) Amplificateur destine a generer un signal de tension rectangulaire a commutations douces sur une charge capacitive
FR2842917A1 (fr) Dispositif et procede d&#39;ajustement d&#39;un parametre de fonctionnement d&#39;un circuit electronique analogique
FR2783927A1 (fr) Circuit de puissance pour la commande d&#39;un ecran a plasma, module de puissance l&#39;incorporant et procede de test d&#39;un tel module
FR3140471A1 (fr) Dispositif optoélectronique
FR2493021A1 (fr) Cellule de memoire a deux modes de fonctionnement et a faible consommation d&#39;energie
CH689243GA3 (fr) Générateur sonore, notamment pour pièce d&#39;horlogerie.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20071015

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100601