US20030107327A1 - Control circuit drive circuit for a plasma panel - Google Patents

Control circuit drive circuit for a plasma panel Download PDF

Info

Publication number
US20030107327A1
US20030107327A1 US10/169,895 US16989502A US2003107327A1 US 20030107327 A1 US20030107327 A1 US 20030107327A1 US 16989502 A US16989502 A US 16989502A US 2003107327 A1 US2003107327 A1 US 2003107327A1
Authority
US
United States
Prior art keywords
column
transistor
voltage
current
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/169,895
Other versions
US7122968B2 (en
Inventor
Celine Mas
Gilles Troussel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics France SAS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to STMICROELECTRONICS S.A. reassignment STMICROELECTRONICS S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENOIT, ERIC, MAS, CELINE, TROUSSEL, GILLES
Assigned to STMICROELECTRONICS S.A. reassignment STMICROELECTRONICS S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENOIT, ERIC, MAS, CELINE, TROUSSEL, GILLES
Publication of US20030107327A1 publication Critical patent/US20030107327A1/en
Application granted granted Critical
Publication of US7122968B2 publication Critical patent/US7122968B2/en
Assigned to STMICROELECTRONICS S.A. reassignment STMICROELECTRONICS S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENOIT, ERIC, MAS, CELINE, TROUSSEL, GILLES
Assigned to STMICROELECTRONICS FRANCE reassignment STMICROELECTRONICS FRANCE CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STMICROELECTRONICS SA
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge

Definitions

  • the present invention relates to plasma screens and more specifically to the control of cells of a plasma screen.
  • a plasma screen is a screen of array type, formed of cells arranged at the intersections of lines and columns.
  • a cell includes a cavity filled with a rare gas, and at least two control electrodes.
  • To create a light point on the screen by using a given cell, the cell is selected by applying a potential difference between its control electrodes, after which the cell gas is ionized, generally by means of a third control electrode. This ionization goes along with an emission of ultraviolet rays.
  • the creation of the light point is obtained by excitation of a red, green, or blue luminescent material by the ultraviolet rays.
  • FIG. 1 shows a conventional structure of a plasma screen formed of cells 2 .
  • Each cell 2 has two control electrodes (not shown) respectively connected to a line 4 and to a column 6 .
  • Each cell 2 is represented by its equivalent capacitor.
  • a line control circuit 8 includes, for each line 4 , a line activation/deactivation block 10 having an output connected to the considered line.
  • a column control circuit 12 includes, for each column 6 , a column control block 14 having an output terminal O connected to the considered column 6 .
  • Each block 14 includes an input terminal E.
  • Circuit 12 also includes a memorization register 16 connected to receive column control signals (COL) from means not shown. Register 16 includes as many Q outputs as there are blocks 14 .
  • Each Q output is coupled to input terminal E of a block 14 via a logic switch 18 .
  • All logic switches 18 (here, AND gates) are controlled by a same enable signal VAL, provided by means not shown.
  • Circuits 8 and 12 are conventionally integrated on a same semiconductor chip of a control circuit.
  • the cells of a plasma screen are activated line by line.
  • the non-activated lines are submitted to a quiescent voltage (for example, 150 V).
  • the activated line is brought to an activation voltage (for example, 0 V), the columns being at a deactivation voltage GND (0 V).
  • an activation voltage for example, 0 V
  • the corresponding columns are brought from deactivation voltage GND to an activation voltage VPP (80 V) for a predetermined duration.
  • VPP 80 V
  • the columns corresponding to the selected cells are each submitted to a voltage square pulse of same amplitude and of same duration.
  • the columns corresponding to the unselected cells of the activated line are maintained at voltage GND.
  • the cells to be activated are submitted, during the voltage square pulse, to a column-line voltage equal to VPP-GND (80 V) and the cells that must not be activated are submitted to a column-line voltage equal to GND-GND (0 V). All non-activated lines are at the quiescent voltage (150 V). The column voltage being either 0 V or 80 V, the cells of the non-activated lines are reverse biased and are not submitted to a voltage likely to start the gas ionization.
  • FIG. 2 shows a conventional column control block 14 .
  • An N-type MOS transistor T 1 has its drain connected to voltage VPP and its source connected to output terminal O.
  • An N-type MOS transistor T 2 has its drain connected to output terminal O and its source connected to voltage GND.
  • a zener diode 20 is connected by its cathode to the gate of transistor T 1 and by its anode to the source of transistor T 1 .
  • a P-type MOS transistor T 3 has its source connected to voltage VPP and its drain connected to the gate of transistor T 1 .
  • An N-type MOS transistor T 4 has its drain connected to the gate of transistor T 1 and its source connected to ground (GND).
  • P-type MOS transistors T 5 , T 6 have their sources connected to voltage VPP.
  • the gate of transistor T 5 is connected to the drain of transistor T 6 and the gate of transistor T 6 is connected to the drain of transistor T 5 .
  • An N-type MOS transistor T 7 has its source connected to ground and its drain connected to the drain of transistor T 5 .
  • An N-type MOS transistor T 8 has its source connected to ground and its drain connected to the drain of transistor T 6 .
  • the gate of transistor T 3 is connected to the drain of transistor T 6 .
  • the gates of transistors T 2 , T 4 , and T 7 are connected to input terminal E via an inverter 22 .
  • the gate of transistor T 8 is connected to the output of inverter 22 via an inverter 24 .
  • Output terminal O is connected to a column 6 .
  • a capacitor C 2 connects column 6 to ground.
  • Capacitor C 2 is the equivalent capacitor of column 6 . It is mainly formed of a first component corresponding to the capacitance between the selected column and the screen lines, and of a second component corresponding to the capacitance between the selected column and its neighboring lines. Capacitance C 2 does not have a constant value, as will be seen hereafter.
  • Block 14 is provided to submit column 6 to a voltage square pulse when its input E receives a logic “1” (for example, a voltage VDD equal to 5 V), then a logic “0” (0 V).
  • a logic “1” for example, a voltage VDD equal to 5 V
  • block 14 charges capacitor C 2 to a voltage substantially equal to VPP (which will be called VPP for simplicity).
  • VPP which will be called VPP for simplicity
  • block 14 discharges capacitor C 2 and the voltage of column 6 switches from VPP to GND.
  • the value of the capacitor C 2 of a column 6 depends on the voltages to which the neighboring columns located on either side of this column 6 are submitted.
  • the capacitor C 2 of this column has a maximum value if none of the two neighboring columns is submitted to a voltage square pulse.
  • Capacitor C 2 has a minimum value if the two neighboring columns are submitted to a voltage square pulse, and a value substantially equal to half of the sum of the maximum and minimum values, which will be called hereafter the median value, if only one of the neighboring columns is also submitted to a voltage square pulse.
  • the rise and fall times of the voltage square pulse provided to each selected column be smaller than a predetermined maximum duration.
  • the maximum rise time of the voltage square pulse may be different from the maximum fall time of the voltage square pulse. For simplicity, they will be assumed to be equal.
  • the maximum admissible rise/fall duration of the voltage square pulse and the different values of capacitance C 2 are features of each type of plasma screen.
  • blocks 14 are provided, to each provide (and receive) a predetermined current enabling charging (and discharging) the capacitor C 2 with the maximum capacitance of the considered screen type in a time shorter than the maximum admissible rise/fall duration of the voltage square pulse for this type of screen.
  • transistors T 1 and T 2 are sized to be run through by this predetermined current when on.
  • block 14 provides or absorbs the preceding predetermined current for a variable duration depending on the selection of the neighboring columns.
  • each block 14 introduces, when capacitance C 2 has its minimum value, intense variations in the current consumption for very short durations, which are likely to create electromagnetic disturbances on the power supply and the ground of the control circuit, which is not desirable.
  • control circuit having its blocks 14 sized to control a screen of a specific type may not be usable to control another type of screen.
  • An object of the present invention is to provide a circuit for controlling cells of a plasma screen having an operation which is rather unlikely to create electromagnetic disturbances.
  • Another object of the present invention is to provide such a control circuit which can easily be adapted to various types of plasma screens.
  • the present invention provides a circuit for controlling a plasma screen formed of cells arranged at the intersections of lines and columns, including, for each screen column, a column control block enabling selection of the column associated therewith by applying to said column a voltage square pulse during which said column is brought to a first voltage substantially equal to a first predetermined voltage, then to a second voltage substantially equal to a second predetermined voltage, said column having a different capacitance according to whether the neighboring columns are selected or not, each column control block including a first means adapted to charging the capacitor of said column in a first predetermined duration when said column is brought to said first voltage, and a second means for discharging the capacitor of said column in a second predetermined duration when said column is brought to said second voltage, the second means is controlled by a control means as a function of an estimation of the capacitance of said column obtained from data indicating the selection or the non-selection of the columns adjacent to said columns.
  • FIG. 1 previously described, schematically shows a plasma screen provided with a control circuit
  • FIG. 2 previously described, schematically shows a conventional column control block of a control circuit
  • FIG. 3 schematically shows a first embodiment of a column control block according to the present invention
  • FIG. 4 schematically shows an element of the control block of FIG. 3;
  • FIG. 5 schematically illustrates the operation of the control means of FIG. 3;
  • FIG. 6 shows in more detail an example of forming of the control block of FIG. 3;
  • FIG. 7 schematically shows a second embodiment of a column control block according to the present invention.
  • FIG. 8 schematically shows the variable current source of FIG. 7.
  • each column control block includes means for having the rise and/or fall time of the voltage square pulse provided to each column take a same predetermined value whatever the value of the capacitor of said column.
  • FIG. 3 shows a column control block 14 ′ according to a first embodiment of the present invention.
  • Block 14 ′ has an output terminal O connected to a column 6 .
  • Column 6 is grounded via a capacitor C 2 .
  • Block 14 ′ includes transistors T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 , and T 8 and inverters 22 and 24 substantially connected as in FIG. 2.
  • a capacitor C is connected between the gate of transistor T 1 and the ground.
  • a constant current source CS 1 has a first terminal connected to voltage VPP and a second terminal connected to the source of transistor T 3 .
  • the gate of transistor T 2 is connected to an output terminal O 28 of a control means 28 .
  • Control means 28 has an input terminal E 28 connected to the output of inverter 22 .
  • FIG. 4 schematically shows an embodiment of current source CS 1 of FIG. 3.
  • Current source CS 1 includes a P-type MOS transistor T 9 , having its source connected to voltage VPP and its drain connected to the source of transistor T 3 .
  • a P-type MOS transistor T 10 has its source connected to voltage VPP and its drain connected to its gate.
  • the gate of transistor T 9 is connected to the gate of transistor T 10 so that the current flowing through transistor T 9 is proportional (to simplify, it is considered to be equal) to the current flowing through transistor T 10 .
  • a constant current source CS 2 has a first terminal connected to the drain of transistor T 10 and a second terminal connected to ground.
  • Constant current I 2 flowing through current source CS 2 is reproduced in transistor T 9 , and determines the value of current I 1 generated by current source CS 1 .
  • Current I 2 determines the rise time of the voltage square pulse to which column 6 is submitted.
  • Current source CS 2 may be adjustable to provide different constant currents I 2 and adjust the rise time of the voltage square pulse to the features of different types of plasma screens.
  • Transistor T 10 and current source CS 2 may be common to all the current sources CS 1 of all the column control blocks 14 ′ of a control circuit. In this case, each block 14 ′ will only include a transistor T 9 having its gate connected to the gate of common transistor T 10 .
  • a switch for example an N-type MOS transistor, between current source CS 2 and transistor T 10 .
  • Such a switch would enable deactivating of current source CS 1 when block 14 ′ is not desired to be used, for example, in a screen cell ionization hold phase, and thus to limit the consumption of the control circuit.
  • Control means 28 When input terminal E of the column control block receives a logic “0”, transistors T 8 , T 5 , T 3 , and T 1 turn off and transistors T 7 , T 6 , and T 4 turn on.
  • Control means 28 is activated and it submits the gate of transistor T 2 to an activation voltage selected from among three predetermined activation voltages. According to the present invention, the activation voltage provided by means 28 is different according to whether the value of capacitor C 2 is maximum, median, or minimum, so that transistor T 2 is respectively run through by a maximum, median, or minimum current and that the discharge duration of capacitor C 2 is constant.
  • Control means 28 includes three control terminals Q i , Q i ⁇ 1 , Q i+1 .
  • Terminal Q i is connected to the Q output of register 16 , which is coupled to input E of control block 14 ′ of the considered column 6 , said to be of rank i.
  • Terminal Q i ⁇ 1 is connected to the Q output of register 16 , which is coupled to control block 14 ′ of the preceding column, of rank i ⁇ 1.
  • Terminal Q i+1 is connected to output Q of register 16 , which is coupled to the control block 14 ′ of the next column, of rank i+1.
  • FIG. 5 illustrates the operation of control means 28 of FIG. 3.
  • block 14 ′ controls the rising of the voltage square pulse and output terminal O 28 is grounded to turn transistor T 2 off.
  • output terminal O 28 is grounded to turn transistor T 2 off.
  • the column 6 coupled to control block 14 ′ is not selected.
  • Output terminal O 28 then takes a logic value “1”, transistor T 2 is turned on and connects capacitor C 2 to ground.
  • control block 141 controls the falling of the voltage square pulse.
  • output O 28 is brought to a voltage V min .
  • Voltages V max , V med , and V min smaller than voltage VDD, are chosen to control transistor T 2 so that it is respectively run through by currents Imax, I med , and I min adapted to discharging capacitor C 2 from voltage VPP to ground in a constant time, when capacitance C 2 respectively has its maximum, median, and minimum value.
  • V max , V med , and V min can be generated by adjustable voltage sources, to adapt the control circuit to different types of plasma screens.
  • FIG. 6 shows in further detail an example of a structure of control block 14 ′.
  • means 28 is formed by means of inverters, of NAND, X-OR gates, and of transistors assembled as switches, but those skilled in the art will easily form a means 28 having the same functions by means of other elements.
  • the gate of transistor T 4 is connected at the output of inverter 22 via two series-connected inverters 23 , 25 .
  • FIG. 7 schematically shows a column control block 14 ′′ according to a second embodiment of the present invention.
  • Block 14 ′′ includes an input terminal E and an output terminal O.
  • Block 14 ′′ includes a P-type MOS transistor T 11 , having its source connected to voltage VPP and its drain connected to terminal O.
  • An N-type MOS transistor T 2 has its source connected to ground and its drain connected to the drain of transistor T 11 .
  • the gate of transistor T 2 is connected to output O 28 of a control means 28 having three control terminals Q i , Q i ⁇ 1 , Q i+1 Terminals Q i , Q i ⁇ 1 , Q i+1 are connected to register 16 as described in relation with FIG. 3.
  • Means 28 has an input terminal E 28 connected to terminal E via an inverter 22 .
  • a P-type MOS transistor T 12 has its source connected to voltage VPP and its drain connected to the gate of transistor T 11 .
  • Transistor T 12 forms a current mirror with a P-type MOS transistor T 13 having its source connected to voltage VPP and having an interconnected drain and source. The drain of transistor T 13 is connected to the drain of an N-type transistor T 7 having its source connected to ground and its gate connected to the output of inverter 22 .
  • a P-type MOS transistor T 14 has its source connected to voltage VPP and its drain connected to its gate and to the gate of a transistor T 11 .
  • the drain of transistor T 14 is connected to the drain of an N-type MOS transistor T 15 , having its gate connected via an inverter 24 to the output of inverter 22 .
  • a variable current source CS 3 has a first terminal connected to the source of transistor T 15 and a second terminal connected to ground.
  • Current source CS 3 includes three control terminals connected to terminals Q i , Q i ⁇ 1 , and Q i+1
  • Current source CS 3 is provided to provide a current I 3 likely to take three different values I 3 max , I 3 med , and I 3 min according to the values of the signals received on terminals Q i , Q i ⁇ 1 , and Q i+1 .
  • the current flowing through transistor T 11 proportional to current I 3 running through current source CS 3 , determines the rise time of the voltage square pulse provided to column 6 .
  • control means 28 is controlled according to the Q outputs of register 16 and it submits the gate of transistor T 2 to an activation voltage selected from among three predetermined voltages, so that the discharge duration of capacitor C 2 is constant.
  • FIG. 8 very schematically shows an embodiment of current source CS 3 of FIG. 7.
  • Current source CS 3 includes a first terminal E 3 connected to the source of transistor T 15 .
  • An N-type MOS transistor T 16 has its drain connected to terminal E 3 .
  • Transistor T 16 is assembled as a switch. The gate of transistor T 16 is connected to the output of a buffer circuit 56 .
  • An N-type MOS transistor T 18 has its drain connected to the source of transistor T 16 and its source connected to ground.
  • An N-type MOS transistor T 20 has its drain connected to terminal E 3 .
  • Transistor T 20 is assembled as a switch. The gate of transistor T 20 is connected to the output of a buffer circuit 58 .
  • An N-type MOS transistor T 22 has its drain connected to the source of transistor T 20 and its source connected to ground.
  • An N-type MOS transistor T 24 has its drain connected to terminal E 3 .
  • Transistor T 24 is assembled as a switch. The gate of transistor T 24 is connected to the output of a buffer circuit 60 .
  • An N-type MOS transistor T 26 has its drain connected to the source of transistor T 24 and its source connected to ground.
  • An N-type MOS transistor T 28 has its source connected to ground and its drain connected to supply voltage VDD via a constant current source CS 4 .
  • the gate and drain of transistor T 28 are interconnected.
  • the gates of transistors T 26 , T 22 , and T 18 are connected to the gate of transistor T 28 .
  • Transistors T 26 , T 22 , and T 18 each behave as a constant current source.
  • a decoder 64 has three outputs D 1 , D 2 , and D 3 respectively connected to control buffer circuits 56 , 58 , and 60 . Decoder 64 has three input terminals corresponding to control terminals Q i ⁇ 1 , Q i , and Q i+1 of constant current source CS 3 .
  • decoder 64 The operation of decoder 64 is the following. When only terminal Q i is at “1”, output D 3 is at “1” and outputs D 2 , D 1 are at “0”. When terminal Q i and only one of terminals Q i ⁇ 1 and Q i+1 are at “1”, output D 2 is at “1” and outputs D 3 , D 1 are at “0”. When terminals Q i , Q i ⁇ 1 , and Q i+1 are at “1”, output D 1 is at “1” and outputs D 3 , D 2 are at “0”.
  • Transistor T 24 is on and transistors T 20 and T 16 are off when capacitance C 2 has a maximum value.
  • Transistor T 20 is on and transistors T 24 and T 16 are off when capacitor C 2 has a median value.
  • Transistor T 16 is on and transistors T 24 and T 20 are off when capacitance C 2 has a minimum value.
  • the channel width and length of transistors T 26 , T 22 , and T 18 are provided in such a way that these transistors are respectively run through by currents I 3 max , I 3 med , and I 3 min .
  • Current source CS 4 may be fixed, or may be adjustable to adjust the rise time of the voltage square pulse to different types of plasma screens.
  • column control blocks 14 ′ and 14 ′′ are given as an example only, and those skilled in the art will easily adapt the present invention to other embodiments using other elements having equivalent functions.
  • the MOS transistors may be replaced with bipolar transistors.
  • column control blocks 14 ′ and 14 ′′ provide voltage square pulses having constant rise and fall times.
  • these two aspects may be dissociated from each other and it is possible to provide a column control block providing voltage square pulses in which only the rise time is constant or only the fall time is constant, without departing from the field of the present invention.
  • the described embodiments apply to plasma screens in which the capacitor C 2 of each column 6 can take three values, only the influence of the columns adjacent to the selected column having been considered.
  • the influence of other columns neighboring the selected column may be taken into account, those skilled in the art easily adapting the present invention to the case where capacitance C 2 can take more than three values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

The invention concerns a drive circuit for a plasma panel consisting of cells arranged at the intersections of lines and columns, comprising, for each column of the panel, a column drive unit (14′) for selecting the column by applying a voltage window, said column having a different capacitance (C2) depending on whether or not the neighbouring columns are selected, each drive unit (14′) comprising first means (T1, C, CS1) for changing the capacitance in a first predetermined time interval during the low-to-high transition of the voltage window, and second means (T2, 28) for discharging said capacitance in a second predetermined time interval during the high-to-low transition of the voltage window, the second means being controlled on the basis of an estimation of said capacitance obtained from data (Q
Figure US20030107327A1-20030612-P00900
i−1, Q i+1?) indicating whether or not the neighbouring columns of said columns have been selected.

Description

  • The present invention relates to plasma screens and more specifically to the control of cells of a plasma screen. [0001]
  • A plasma screen is a screen of array type, formed of cells arranged at the intersections of lines and columns. A cell includes a cavity filled with a rare gas, and at least two control electrodes. To create a light point on the screen, by using a given cell, the cell is selected by applying a potential difference between its control electrodes, after which the cell gas is ionized, generally by means of a third control electrode. This ionization goes along with an emission of ultraviolet rays. The creation of the light point is obtained by excitation of a red, green, or blue luminescent material by the ultraviolet rays. [0002]
  • FIG. 1 shows a conventional structure of a plasma screen formed of [0003] cells 2. Each cell 2 has two control electrodes (not shown) respectively connected to a line 4 and to a column 6. Each cell 2 is represented by its equivalent capacitor. A line control circuit 8 includes, for each line 4, a line activation/deactivation block 10 having an output connected to the considered line. A column control circuit 12 includes, for each column 6, a column control block 14 having an output terminal O connected to the considered column 6. Each block 14 includes an input terminal E. Circuit 12 also includes a memorization register 16 connected to receive column control signals (COL) from means not shown. Register 16 includes as many Q outputs as there are blocks 14. Each Q output is coupled to input terminal E of a block 14 via a logic switch 18. All logic switches 18 (here, AND gates) are controlled by a same enable signal VAL, provided by means not shown. Circuits 8 and 12 are conventionally integrated on a same semiconductor chip of a control circuit.
  • Conventionally, the cells of a plasma screen are activated line by line. The non-activated lines are submitted to a quiescent voltage (for example, 150 V). The activated line is brought to an activation voltage (for example, 0 V), the columns being at a deactivation voltage GND (0 V). Then, to activate selected cells in the activated line, the corresponding columns are brought from deactivation voltage GND to an activation voltage VPP (80 V) for a predetermined duration. Thus, the columns corresponding to the selected cells are each submitted to a voltage square pulse of same amplitude and of same duration. The columns corresponding to the unselected cells of the activated line are maintained at voltage GND. Thus, the cells to be activated are submitted, during the voltage square pulse, to a column-line voltage equal to VPP-GND (80 V) and the cells that must not be activated are submitted to a column-line voltage equal to GND-GND (0 V). All non-activated lines are at the quiescent voltage (150 V). The column voltage being either 0 V or 80 V, the cells of the non-activated lines are reverse biased and are not submitted to a voltage likely to start the gas ionization. [0004]
  • FIG. 2 shows a conventional [0005] column control block 14. An N-type MOS transistor T1 has its drain connected to voltage VPP and its source connected to output terminal O. An N-type MOS transistor T2 has its drain connected to output terminal O and its source connected to voltage GND. A zener diode 20 is connected by its cathode to the gate of transistor T1 and by its anode to the source of transistor T1. A P-type MOS transistor T3 has its source connected to voltage VPP and its drain connected to the gate of transistor T1. An N-type MOS transistor T4 has its drain connected to the gate of transistor T1 and its source connected to ground (GND). P-type MOS transistors T5, T6 have their sources connected to voltage VPP. The gate of transistor T5 is connected to the drain of transistor T6 and the gate of transistor T6 is connected to the drain of transistor T5. An N-type MOS transistor T7 has its source connected to ground and its drain connected to the drain of transistor T5. An N-type MOS transistor T8 has its source connected to ground and its drain connected to the drain of transistor T6. The gate of transistor T3 is connected to the drain of transistor T6. The gates of transistors T2, T4, and T7 are connected to input terminal E via an inverter 22. The gate of transistor T8 is connected to the output of inverter 22 via an inverter 24. Output terminal O is connected to a column 6. In FIG. 2, a capacitor C2 connects column 6 to ground. Capacitor C2 is the equivalent capacitor of column 6. It is mainly formed of a first component corresponding to the capacitance between the selected column and the screen lines, and of a second component corresponding to the capacitance between the selected column and its neighboring lines. Capacitance C2 does not have a constant value, as will be seen hereafter.
  • [0006] Block 14 is provided to submit column 6 to a voltage square pulse when its input E receives a logic “1” (for example, a voltage VDD equal to 5 V), then a logic “0” (0 V). When input E receives a logic “1”, block 14 charges capacitor C2 to a voltage substantially equal to VPP (which will be called VPP for simplicity). When input E receives a logic “0”, block 14 discharges capacitor C2 and the voltage of column 6 switches from VPP to GND. The value of the capacitor C2 of a column 6 depends on the voltages to which the neighboring columns located on either side of this column 6 are submitted. Thus, when a column 6 is submitted to the voltage square pulse, the capacitor C2 of this column has a maximum value if none of the two neighboring columns is submitted to a voltage square pulse. Capacitor C2 has a minimum value if the two neighboring columns are submitted to a voltage square pulse, and a value substantially equal to half of the sum of the maximum and minimum values, which will be called hereafter the median value, if only one of the neighboring columns is also submitted to a voltage square pulse.
  • It is important for the proper operation of a plasma screen that the rise and fall times of the voltage square pulse provided to each selected column be smaller than a predetermined maximum duration. The maximum rise time of the voltage square pulse may be different from the maximum fall time of the voltage square pulse. For simplicity, they will be assumed to be equal. The maximum admissible rise/fall duration of the voltage square pulse and the different values of capacitance C[0007] 2 are features of each type of plasma screen. For a given type of screen, blocks 14 are provided, to each provide (and receive) a predetermined current enabling charging (and discharging) the capacitor C2 with the maximum capacitance of the considered screen type in a time shorter than the maximum admissible rise/fall duration of the voltage square pulse for this type of screen. Especially, transistors T1 and T2 are sized to be run through by this predetermined current when on.
  • However, when capacitance C[0008] 2 has its median value or its minimum value, the rise/fall durations of the voltage square pulse are shorter than the rise/fall durations observed for the maximum capacitance C2. Accordingly, block 14 provides or absorbs the preceding predetermined current for a variable duration depending on the selection of the neighboring columns. As a result, each block 14 introduces, when capacitance C2 has its minimum value, intense variations in the current consumption for very short durations, which are likely to create electromagnetic disturbances on the power supply and the ground of the control circuit, which is not desirable.
  • Further, a control circuit having its [0009] blocks 14 sized to control a screen of a specific type may not be usable to control another type of screen.
  • An object of the present invention is to provide a circuit for controlling cells of a plasma screen having an operation which is rather unlikely to create electromagnetic disturbances. [0010]
  • Another object of the present invention is to provide such a control circuit which can easily be adapted to various types of plasma screens. [0011]
  • To achieve these objects, the present invention provides a circuit for controlling a plasma screen formed of cells arranged at the intersections of lines and columns, including, for each screen column, a column control block enabling selection of the column associated therewith by applying to said column a voltage square pulse during which said column is brought to a first voltage substantially equal to a first predetermined voltage, then to a second voltage substantially equal to a second predetermined voltage, said column having a different capacitance according to whether the neighboring columns are selected or not, each column control block including a first means adapted to charging the capacitor of said column in a first predetermined duration when said column is brought to said first voltage, and a second means for discharging the capacitor of said column in a second predetermined duration when said column is brought to said second voltage, the second means is controlled by a control means as a function of an estimation of the capacitance of said column obtained from data indicating the selection or the non-selection of the columns adjacent to said columns.[0012]
  • The foregoing and other objects, features and advantages of the present invention will be discussed in detail in the following non-limiting description of specific embodiments, in conjunction with the accompanying drawings, in which: [0013]
  • FIG. 1, previously described, schematically shows a plasma screen provided with a control circuit; [0014]
  • FIG. 2, previously described, schematically shows a conventional column control block of a control circuit; [0015]
  • FIG. 3 schematically shows a first embodiment of a column control block according to the present invention; [0016]
  • FIG. 4 schematically shows an element of the control block of FIG. 3; [0017]
  • FIG. 5 schematically illustrates the operation of the control means of FIG. 3; [0018]
  • FIG. 6 shows in more detail an example of forming of the control block of FIG. 3; [0019]
  • FIG. 7 schematically shows a second embodiment of a column control block according to the present invention; and [0020]
  • FIG. 8 schematically shows the variable current source of FIG. 7.[0021]
  • The present invention provides a control circuit in which each column control block includes means for having the rise and/or fall time of the voltage square pulse provided to each column take a same predetermined value whatever the value of the capacitor of said column. [0022]
  • Same references represent same elements in the different drawings. Only those elements necessary to the understanding of the present invention have been shown in the following drawings. [0023]
  • FIG. 3 shows a [0024] column control block 14′ according to a first embodiment of the present invention. Block 14′ has an output terminal O connected to a column 6. Column 6 is grounded via a capacitor C2. Block 14′ includes transistors T1, T2, T3, T4, T5, T6, T7, and T8 and inverters 22 and 24 substantially connected as in FIG. 2. Further, according to the present invention, a capacitor C is connected between the gate of transistor T1 and the ground. A constant current source CS1 has a first terminal connected to voltage VPP and a second terminal connected to the source of transistor T3. The gate of transistor T2 is connected to an output terminal O28 of a control means 28. Control means 28 has an input terminal E28 connected to the output of inverter 22.
  • When input terminal E receives a logic “1”, transistors T[0025] 7, T6, and T4 turn off, transistors T8, T5, and T3 turn on and the current I1 provided by constant current source CS1 charges capacitor C. It is assumed that at the beginning, capacitor C is discharged. The charge of capacitor C occurs at constant current and the gate voltage of transistor T1 changes from 0 to a maximum value (substantially VPP) in a constant duration. Transistor T1 is connected as a voltage follower. The voltage of output terminal O increases with the gate voltage of transistor T1, in a constant duration, whatever the value of capacitor C2 of column 6. The rise time of the voltage square pulse thus is constant.
  • FIG. 4 schematically shows an embodiment of current source CS[0026] 1 of FIG. 3. Current source CS1 includes a P-type MOS transistor T9, having its source connected to voltage VPP and its drain connected to the source of transistor T3. A P-type MOS transistor T10 has its source connected to voltage VPP and its drain connected to its gate. The gate of transistor T9 is connected to the gate of transistor T10 so that the current flowing through transistor T9 is proportional (to simplify, it is considered to be equal) to the current flowing through transistor T10. A constant current source CS2 has a first terminal connected to the drain of transistor T10 and a second terminal connected to ground. Constant current I2 flowing through current source CS2 is reproduced in transistor T9, and determines the value of current I1 generated by current source CS1. Current I2 determines the rise time of the voltage square pulse to which column 6 is submitted. Current source CS2 may be adjustable to provide different constant currents I2 and adjust the rise time of the voltage square pulse to the features of different types of plasma screens. Transistor T10 and current source CS2 may be common to all the current sources CS1 of all the column control blocks 14′ of a control circuit. In this case, each block 14′ will only include a transistor T9 having its gate connected to the gate of common transistor T10. Further, it is possible to arrange a switch, for example an N-type MOS transistor, between current source CS2 and transistor T10. Such a switch would enable deactivating of current source CS1 when block 14′ is not desired to be used, for example, in a screen cell ionization hold phase, and thus to limit the consumption of the control circuit.
  • When input terminal E of the column control block receives a logic “0”, transistors T[0027] 8, T5, T3, and T1 turn off and transistors T7, T6, and T4 turn on. Control means 28 is activated and it submits the gate of transistor T2 to an activation voltage selected from among three predetermined activation voltages. According to the present invention, the activation voltage provided by means 28 is different according to whether the value of capacitor C2 is maximum, median, or minimum, so that transistor T2 is respectively run through by a maximum, median, or minimum current and that the discharge duration of capacitor C2 is constant. Control means 28 includes three control terminals Qi, Qi−1, Qi+1. Terminal Qi is connected to the Q output of register 16, which is coupled to input E of control block 14′ of the considered column 6, said to be of rank i. Terminal Qi−1 is connected to the Q output of register 16, which is coupled to control block 14′ of the preceding column, of rank i−1. Terminal Qi+1 is connected to output Q of register 16, which is coupled to the control block 14′ of the next column, of rank i+1.
  • FIG. 5 illustrates the operation of control means [0028] 28 of FIG. 3. When input terminal E28 receives a logic “0”, block 14′ controls the rising of the voltage square pulse and output terminal O28 is grounded to turn transistor T2 off. When input terminal E28 receives a logic “1” and when terminal Qi receives a logic “0”, the column 6 coupled to control block 14′ is not selected. Output terminal O28 then takes a logic value “1”, transistor T2 is turned on and connects capacitor C2 to ground. When input terminal E28 receives a logic “1” and terminal Qi receives a logic “1”, control block 141 controls the falling of the voltage square pulse. When input terminal E28 receives a logic “1”, terminal Qi receives a logic “1” and terminals Qi−1 and Qi+1 receives a logic “0” (none of the columns neighboring column 6 is selected), output O28 is brought to a voltage Vmax. When input terminal E28 receives a logic “1”, terminal Qi receives a logic “1” and only one of terminals Qi−1 and Qi+1 receives a logic “0” (only one of the columns next to column 6 is selected), output O28 is brought to a voltage Vmed. When input terminal E28 receives a logic “1”, and terminals Qi, Qi−1 and Qi+1 receive a logic “1” (the two columns next to column 6 are also selected), output O28 is brought to a voltage Vmin. Voltages Vmax, Vmed, and Vmin, smaller than voltage VDD, are chosen to control transistor T2 so that it is respectively run through by currents Imax, Imed, and Imin adapted to discharging capacitor C2 from voltage VPP to ground in a constant time, when capacitance C2 respectively has its maximum, median, and minimum value.
  • It should be noted that voltages V[0029] max, Vmed, and Vmin can be generated by adjustable voltage sources, to adapt the control circuit to different types of plasma screens.
  • FIG. 6 shows in further detail an example of a structure of [0030] control block 14′. In FIG. 6, means 28 is formed by means of inverters, of NAND, X-OR gates, and of transistors assembled as switches, but those skilled in the art will easily form a means 28 having the same functions by means of other elements. Further, in FIG. 6, the gate of transistor T4 is connected at the output of inverter 22 via two series-connected inverters 23, 25.
  • FIG. 7 schematically shows a [0031] column control block 14″ according to a second embodiment of the present invention. Block 14″ includes an input terminal E and an output terminal O. Block 14″ includes a P-type MOS transistor T11, having its source connected to voltage VPP and its drain connected to terminal O. An N-type MOS transistor T2 has its source connected to ground and its drain connected to the drain of transistor T11. The gate of transistor T2 is connected to output O28 of a control means 28 having three control terminals Qi, Qi−1, Qi+1 Terminals Qi, Qi−1, Qi+1 are connected to register 16 as described in relation with FIG. 3. Means 28 has an input terminal E28 connected to terminal E via an inverter 22. A P-type MOS transistor T12 has its source connected to voltage VPP and its drain connected to the gate of transistor T11. Transistor T12 forms a current mirror with a P-type MOS transistor T13 having its source connected to voltage VPP and having an interconnected drain and source. The drain of transistor T13 is connected to the drain of an N-type transistor T7 having its source connected to ground and its gate connected to the output of inverter 22. A P-type MOS transistor T14 has its source connected to voltage VPP and its drain connected to its gate and to the gate of a transistor T11. The drain of transistor T14 is connected to the drain of an N-type MOS transistor T15, having its gate connected via an inverter 24 to the output of inverter 22. A variable current source CS3 has a first terminal connected to the source of transistor T15 and a second terminal connected to ground. Current source CS3 includes three control terminals connected to terminals Qi, Qi−1, and Qi+1 Current source CS3 is provided to provide a current I3 likely to take three different values I3 max, I3 med, and I3 min according to the values of the signals received on terminals Qi, Qi−1, and Qi+1. The current flowing through transistor T11, proportional to current I3 running through current source CS3, determines the rise time of the voltage square pulse provided to column 6.
  • When input terminal E of the column control block is at a logic “0”, transistors T[0032] 7, T13, and T12 are on, transistors T15, T14, and T11 are off and means 28 is activated. As in the preceding block 14′, control means 28 is controlled according to the Q outputs of register 16 and it submits the gate of transistor T2 to an activation voltage selected from among three predetermined voltages, so that the discharge duration of capacitor C2 is constant.
  • When input terminal E receives a logic “1”, transistors T[0033] 7, T12, T13, and T2 are off and transistors T15, T14 and T11 are on. The current flowing through transistor T11 charges capacitor C2. The three currents I3 max, I3 med, and I3 min are adapted to ensuring a predetermined constant rise duration of the voltage square pulse when capacitance C2 respectively has its maximum, median and minimum value.
  • FIG. 8 very schematically shows an embodiment of current source CS[0034] 3 of FIG. 7. Current source CS3 includes a first terminal E3 connected to the source of transistor T15. An N-type MOS transistor T16 has its drain connected to terminal E3. Transistor T16 is assembled as a switch. The gate of transistor T16 is connected to the output of a buffer circuit 56. An N-type MOS transistor T18 has its drain connected to the source of transistor T16 and its source connected to ground. An N-type MOS transistor T20 has its drain connected to terminal E3. Transistor T20 is assembled as a switch. The gate of transistor T20 is connected to the output of a buffer circuit 58. An N-type MOS transistor T22 has its drain connected to the source of transistor T20 and its source connected to ground. An N-type MOS transistor T24 has its drain connected to terminal E3. Transistor T24 is assembled as a switch. The gate of transistor T24 is connected to the output of a buffer circuit 60. An N-type MOS transistor T26 has its drain connected to the source of transistor T24 and its source connected to ground. An N-type MOS transistor T28 has its source connected to ground and its drain connected to supply voltage VDD via a constant current source CS4. The gate and drain of transistor T28 are interconnected. The gates of transistors T26, T22, and T18 are connected to the gate of transistor T28. Transistors T26, T22, and T18 each behave as a constant current source. A decoder 64 has three outputs D1, D2, and D3 respectively connected to control buffer circuits 56, 58, and 60. Decoder 64 has three input terminals corresponding to control terminals Qi−1, Qi, and Qi+1 of constant current source CS3.
  • The operation of [0035] decoder 64 is the following. When only terminal Qi is at “1”, output D3 is at “1” and outputs D2, D1 are at “0”. When terminal Qi and only one of terminals Qi−1 and Qi+1 are at “1”, output D2 is at “1” and outputs D3, D1 are at “0”. When terminals Qi, Qi−1, and Qi+1 are at “1”, output D1 is at “1” and outputs D3, D2 are at “0”.
  • Transistor T[0036] 24 is on and transistors T20 and T16 are off when capacitance C2 has a maximum value. Transistor T20 is on and transistors T24 and T16 are off when capacitor C2 has a median value. Transistor T16 is on and transistors T24 and T20 are off when capacitance C2 has a minimum value. The channel width and length of transistors T26, T22, and T18 are provided in such a way that these transistors are respectively run through by currents I3 max, I3 med, and I3 min. Current source CS4 may be fixed, or may be adjustable to adjust the rise time of the voltage square pulse to different types of plasma screens.
  • The present invention is likely to have various alterations, modifications, and improvements which will readily occur to those skilled in the art. In particular, the elements used to form column control blocks [0037] 14′ and 14″ are given as an example only, and those skilled in the art will easily adapt the present invention to other embodiments using other elements having equivalent functions. For example, the MOS transistors may be replaced with bipolar transistors.
  • Further, in the described embodiments, column control blocks [0038] 14′ and 14″ provide voltage square pulses having constant rise and fall times. However, these two aspects may be dissociated from each other and it is possible to provide a column control block providing voltage square pulses in which only the rise time is constant or only the fall time is constant, without departing from the field of the present invention.
  • Moreover, the described embodiments apply to plasma screens in which the capacitor C[0039] 2 of each column 6 can take three values, only the influence of the columns adjacent to the selected column having been considered. Of course, the influence of other columns neighboring the selected column may be taken into account, those skilled in the art easily adapting the present invention to the case where capacitance C2 can take more than three values.

Claims (10)

1. A circuit for controlling a plasma screen formed of cells (2) arranged at the intersections of lines (4) and columns (6), including, for each screen column, a column control block (14′, 14″) enabling selection of the column associated therewith by applying to said column a voltage square pulse during which said column is brought to a first voltage substantially equal to a first predetermined voltage (VPP), then to a second voltage substantially equal to a second predetermined voltage (GND), said column having a different capacitance (C2) according to whether the neighboring columns are selected or not, wherein each column control block (14′, 14″) includes a first means adapted to charging the capacitor of said column in a first predetermined duration when said column is brought to said first voltage, and a second means for discharging the capacitor of said column in a second predetermined duration when said column is brought to said second voltage, characterized in that the second means is controlled by a control means (28) as a function of an estimation of the capacitance of said column obtained from data (Qi−1, Qi+1) indicating the selection or the non-selection of the columns adjacent to said column.
2. The control circuit of claim 1, wherein the second means includes a first transistor (T2), enabling flowing of a current for discharging the capacitor of said column towards the second voltage, the current flowing through the first transistor (T2) being controlled according to the estimation of the capacitance of said column so that the discharge time of the capacitor of said column corresponds to the second predetermined duration.
3. The control circuit of claim 2, wherein the control means (28) provides the control terminal of the first transistor (T2) with a control voltage depending on the estimation of the capacitance of said column.
4. The control circuit of claim 3, wherein said control voltage is further adjustable to adjust the discharge time of the capacitor of said column.
5. The control circuit of any of claims 1 to 4, wherein the first means is controlled as a function of an estimation of the capacitance of said column obtained from data (Qi−1, Qi+1) indicating the selection or the non-selection of the columns neighboring said column.
6. The control circuit of claim 5, wherein the first means includes:
a second transistor (T11) enabling flowing of a current in said column,
a third transistor (T14) connected to form with the second transistor (T11) a current mirror, the current flowing through the third transistor determining the current flowing through the second transistor, and
a first current source (CS3), the current provided by the first current source running through the third transistor (T14) and taking a value which depends on the column capacitance, so that the current running through the second transistor (T11) charges the capacitor of said column in the first predetermined duration.
7. The control circuit of claim 6, wherein the first current source (CS3) is further adjustable to adjust the charge time of the capacitor of said column.
8. The control circuit of any of claims 1 to 4, wherein the first means includes a fourth transistor (T1) connected as a voltage follower enabling flowing of a current for charging the capacitor of said column, the fourth transistor receiving on its control terminal a voltage switching from the second voltage to the first voltage during the first predetermined duration.
9. The control circuit of claim 8, wherein the first means includes a capacitor (C) connected between the control terminal of the fourth transistor and the second voltage, and a second current source (CS1) connected between the first voltage and the control terminal of the fourth transistor, adapted to providing a constant current to said capacitor and charging it during the first predetermined duration.
10. The control circuit of claim 9, wherein the second current source (CS1) is adjustable to adjust the charge time of said capacitor (C), and wherein the second current source (CS1) includes a fifth transistor (T9) connected to provide the charge current of said capacitor (C), a sixth transistor (T10) connected to form with the fifth transistor a current mirror, the current flowing through the sixth transistor (T10) determining the current flowing through the fifth transistor (T9), and a third current source (CS2) connected to set the current flowing through the sixth transistor (T10), the sixth transistor (T10) and the third current source (CS2) being possibly common to all column control blocks (14′) of the plasma screen, and a switch being connectable in series with the third current source to deactivate it.
US10/169,895 2000-11-14 2001-11-14 Control circuit drive circuit for a plasma panel Expired - Lifetime US7122968B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0014600A FR2816746A1 (en) 2000-11-14 2000-11-14 Column control circuit for plasma screen, comprises constant current source, voltage follower transistor and capacitor to charge the column capacity in preset time and means for discharge
FR00/14600 2000-11-14
PCT/FR2001/003574 WO2002041292A1 (en) 2000-11-14 2001-11-14 Control circuit drive circuit for a plasma panel

Publications (2)

Publication Number Publication Date
US20030107327A1 true US20030107327A1 (en) 2003-06-12
US7122968B2 US7122968B2 (en) 2006-10-17

Family

ID=8856400

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/169,895 Expired - Lifetime US7122968B2 (en) 2000-11-14 2001-11-14 Control circuit drive circuit for a plasma panel

Country Status (5)

Country Link
US (1) US7122968B2 (en)
EP (1) EP1342228A1 (en)
JP (1) JP2004514177A (en)
FR (1) FR2816746A1 (en)
WO (1) WO2002041292A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070183183A1 (en) * 2006-01-20 2007-08-09 Stmicroelectronics Sa Method and device for controlling a matrix plasma display screen
EP1862999A2 (en) * 2006-05-29 2007-12-05 St Microelectronics S.A. Control of a plasma screen
US20080024397A1 (en) * 2006-07-26 2008-01-31 Tetsuro Oomori Output driver and diplay device
US20080122743A1 (en) * 2006-11-29 2008-05-29 Stmicroelectronics S.A. Method of controlling a matrix screen and corresponding device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078935A (en) * 2004-09-13 2006-03-23 Renesas Technology Corp Address electrode driving circuit of plasma display device
JP2006330228A (en) * 2005-05-25 2006-12-07 Renesas Technology Corp Plasma display device and semiconductor integrated circuit device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492957A (en) * 1981-06-12 1985-01-08 Interstate Electronics Corporation Plasma display panel drive electronics improvement
US4496879A (en) * 1980-07-07 1985-01-29 Interstate Electronics Corp. System for driving AC plasma display panel
US4550274A (en) * 1980-07-07 1985-10-29 Interstate Electronics Corporation MOSFET Sustainer circuit for an AC plasma display panel
US5081400A (en) * 1986-09-25 1992-01-14 The Board Of Trustees Of The University Of Illinois Power efficient sustain drivers and address drivers for plasma panel
US5909199A (en) * 1994-09-09 1999-06-01 Sony Corporation Plasma driving circuit
US6642663B2 (en) * 2000-12-06 2003-11-04 Nec Corporation Method and circuit for driving plasma display panel, and plasma display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3176916D1 (en) * 1980-07-07 1988-11-24 Interstate Electronics Corp Plasma display panel drive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496879A (en) * 1980-07-07 1985-01-29 Interstate Electronics Corp. System for driving AC plasma display panel
US4550274A (en) * 1980-07-07 1985-10-29 Interstate Electronics Corporation MOSFET Sustainer circuit for an AC plasma display panel
US4492957A (en) * 1981-06-12 1985-01-08 Interstate Electronics Corporation Plasma display panel drive electronics improvement
US5081400A (en) * 1986-09-25 1992-01-14 The Board Of Trustees Of The University Of Illinois Power efficient sustain drivers and address drivers for plasma panel
US5909199A (en) * 1994-09-09 1999-06-01 Sony Corporation Plasma driving circuit
US6642663B2 (en) * 2000-12-06 2003-11-04 Nec Corporation Method and circuit for driving plasma display panel, and plasma display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070183183A1 (en) * 2006-01-20 2007-08-09 Stmicroelectronics Sa Method and device for controlling a matrix plasma display screen
US8525755B2 (en) * 2006-01-20 2013-09-03 Stmicroelectronics Sa Method and device for controlling a matrix plasma display screen
EP1862999A2 (en) * 2006-05-29 2007-12-05 St Microelectronics S.A. Control of a plasma screen
EP1862999A3 (en) * 2006-05-29 2008-10-08 St Microelectronics S.A. Control of a plasma screen
US8138993B2 (en) 2006-05-29 2012-03-20 Stmicroelectronics Sa Control of a plasma display panel
US20080024397A1 (en) * 2006-07-26 2008-01-31 Tetsuro Oomori Output driver and diplay device
US20080122743A1 (en) * 2006-11-29 2008-05-29 Stmicroelectronics S.A. Method of controlling a matrix screen and corresponding device
US7876290B2 (en) * 2006-11-29 2011-01-25 Stmicroelectronics S.A. Method of controlling a matrix screen and corresponding device

Also Published As

Publication number Publication date
FR2816746A1 (en) 2002-05-17
EP1342228A1 (en) 2003-09-10
WO2002041292A1 (en) 2002-05-23
JP2004514177A (en) 2004-05-13
US7122968B2 (en) 2006-10-17

Similar Documents

Publication Publication Date Title
US5438290A (en) Low power driver circuit for an AC plasma display panel
US6937213B2 (en) Method and device for driving plasma display panel
US7375722B2 (en) Driving circuit and display device
KR100324579B1 (en) Semiconductor device
JP3365310B2 (en) Power output circuit for plasma screen cell control
GB2343067A (en) A shift register for driving an LCD pixel row
US7242372B2 (en) Plasma display apparatus
US6211865B1 (en) Driving apparatus of plasma display panel
US8068102B2 (en) Drive voltage supply circuit
US7122968B2 (en) Control circuit drive circuit for a plasma panel
EP1750243B1 (en) Drive circuit and display apparatus including the same
US20060250739A9 (en) Power supply circuit
JP2005122142A (en) Method for driving electroluminescence display panel selectively subjected to preliminary charging
KR20050014672A (en) Display apparatus driving circuitry
US8138993B2 (en) Control of a plasma display panel
US8339388B2 (en) Controlling an energy recovery stage of a plasma screen
US6853146B2 (en) Method and circuit for controlling a plasma panel
KR100775840B1 (en) Plasma Display Panel Device
JP2000195283A (en) Multistage pulse generation circuit for flash memory
US4716406A (en) Sequential selection circuit
JP4172539B2 (en) Method and apparatus for driving plasma display panel
US9501966B2 (en) Gate driver with multiple slopes for plasma display panels
US7671854B2 (en) High-potential output stage
JPH1026952A (en) Capacitive load drive circuit and display device
JPS6331094Y2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: STMICROELECTRONICS S.A., FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAS, CELINE;TROUSSEL, GILLES;BENOIT, ERIC;REEL/FRAME:013381/0795

Effective date: 20020912

AS Assignment

Owner name: STMICROELECTRONICS S.A., FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAS, CELINE;TROUSSEL, GILLES;BENOIT, ERIC;REEL/FRAME:013799/0491

Effective date: 20020912

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: STMICROELECTRONICS S.A., FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAS, CELINE;TROUSSEL, GILLES;BENOIT, ERIC;SIGNING DATES FROM 20110202 TO 20110204;REEL/FRAME:025752/0914

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12

AS Assignment

Owner name: STMICROELECTRONICS FRANCE, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:STMICROELECTRONICS SA;REEL/FRAME:066357/0327

Effective date: 20230126