US20060250739A9 - Power supply circuit - Google Patents

Power supply circuit Download PDF

Info

Publication number
US20060250739A9
US20060250739A9 US11/317,519 US31751905A US2006250739A9 US 20060250739 A9 US20060250739 A9 US 20060250739A9 US 31751905 A US31751905 A US 31751905A US 2006250739 A9 US2006250739 A9 US 2006250739A9
Authority
US
United States
Prior art keywords
terminal
capacitor
voltage
voltages
current limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/317,519
Other versions
US20060139830A1 (en
US7365592B2 (en
Inventor
Ryuichi Hirayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Assigned to CASIO COMPUTER CO., LTD. reassignment CASIO COMPUTER CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIRAYAMA, HYUICHI
Publication of US20060139830A1 publication Critical patent/US20060139830A1/en
Publication of US20060250739A9 publication Critical patent/US20060250739A9/en
Application granted granted Critical
Publication of US7365592B2 publication Critical patent/US7365592B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters

Definitions

  • the present invention relates to a power supply circuit and a method of driving the same and, more particularly, to a power supply circuit which includes a charge pump circuit and generates a predetermined voltage, and a method of driving the same.
  • some circuits such as display driving circuits require a plurality of power supply voltages when they are driven.
  • An example of a power supply circuit which supplies a plurality of power supply voltages is a power supply circuit including a charge pump circuit. This power supply circuit has one or a plurality of capacitors, and adds capacitor charge voltages to generate another voltage.
  • This charge pump type power supply circuit used in a display driving circuit and the like is so designed that the connections between the capacitor and a plurality of power supply voltages are periodically switched. This switching of the connections between the capacitor and a plurality of voltages is controlled by on/off operation of switches.
  • FIGS. 4A and 4B are schematic views showing an example of a conventional charge pump type power supply circuit.
  • a power supply circuit 900 includes switches SW 1 to SW 4 and capacitors C 1 and C 2 .
  • the switch SW 1 has one terminal to which a voltage VCC is applied, and the other terminal connected to a terminal C 1 M.
  • the switch SW 2 has one terminal connected to the terminal C 1 M, and the other terminal to which a voltage VSS (GND) is applied.
  • the switch SW 3 has one terminal to which a voltage VDC is applied, and the other terminal connected to a terminal C 1 P.
  • the switch SW 4 has one terminal connected to the terminal C 1 P, and the other terminal connected to a terminal VOUT.
  • the capacitor C 1 has one terminal connected to the terminal C 1 M, and the other terminal connected to the terminal C 1 P.
  • the capacitor C 2 has one terminal connected to the terminal VOUT, and the other terminal to which the voltage VSS is applied.
  • the switches SW 2 and SW 3 are turned on, and the switches SW 1 and SW 4 are turned off. Since the potential of the terminal C 1 P is set at VDC and that of the terminal C 1 M is set at VSS, the capacitor C 1 is charged to the voltage VDC.
  • the power supply circuit 900 can supply a predetermined voltage from the output terminal VOUT.
  • a transient current flows from the power supply to each capacitor albeit for a short time during a period immediately after each switch is turned on to apply each individual voltage to the capacitor.
  • This transient current is a very large electric current if the line between the capacitor and power supply has a low resistance. If this transient current is generated in the charge pump type power supply circuit, latch-up occurs in transistors forming the switches or in a control circuit, thereby making the power supply circuit inoperable. Also, the large electric current flowing from the power supply circuit causes defective operation of the power supply, so an operation error of the circuit occurs.
  • the present invention has the advantage that the reliability of a power supply circuit including a charge pump circuit can be improved by suppressing a transient current when the power supply circuit is in operation, thereby preventing the power supply circuit from being inoperative by latch-up or preventing a defective operation of the power supply circuit caused by an overcurrent.
  • a power supply circuit comprises:
  • a selecting section for controlling said plurality of switching section to periodically select one of said plurality of voltages and apply the selected voltage to one terminal and the other terminal of the capacitor
  • the selecting section comprises a member for applying the selected voltage to one terminal and the other terminal of the capacitor across a resistor, during a current limiting period immediately after the application of the selected one of said plurality of voltages to one terminal and another terminal of the capacitor is started.
  • the power supply circuit preferably further comprises a signal generating section for outputting a driving pulse signal which controls the plurality of switching sections, and a counting section for counting pulses of the output driving pulse signal from the signal generating section, the current limiting period is set on the basis of the count of the counting section, and the current limiting period has a time of 1 to 30 msec.
  • the capacitor preferably comprises first and second capacitors, the plurality of voltages comprise first, second, and third voltages, and the selecting section comprises first selecting a member for alternately selecting the first and second voltages as a voltage to be applied to one terminal of the first capacitor, in accordance with the driving pulse signal, and a second selecting member for alternately selecting application of the third voltage to the other terminal of the first capacitor, and connection of one terminal of the second capacitor to the other terminal of the first capacitor, in accordance with the driving pulse signal.
  • the first selecting member may also comprise means for inserting the resistor between one terminal of the first capacitor and the first voltage during the current limiting period, and directly connecting one terminal of the first capacitor and the first voltage after the current limiting period has passed
  • the second selecting member may also comprise means for inserting the resistor between the other terminal of the first capacitor and the third voltage during the current limiting period, and directly connecting one terminal of the first capacitor and the first voltage after the current limiting period has passed.
  • the first selecting member may also comprise means for inserting the resistor between one terminal of the first capacitor and the first voltage, and directly connecting one terminal of the first capacitor and the first voltage, and means for inserting the resistor with respect to the other terminal of the first capacitor in the second selecting member, and directly connecting the other terminal of the first capacitor in the second switching section.
  • a power supply circuit driving method comprising:
  • the power supply circuit comprising a capacitor
  • the above driving method preferably comprises a step of counting pulses of a driving pulse signal related to the periodic selection of the plurality of voltages, and setting the current limiting period on the basis of the count, and the current limiting period has a time of 1 to 30 msec.
  • the capacitor comprises first and second capacitors, the plurality of voltages comprises first, second, and third voltages, and the step of periodically selecting one of the plurality of voltages and applying the selected voltage to one terminal and the other terminal of the capacitor comprises a step of periodically selecting one of the first and second voltages as a voltage to be applied to one terminal of the first capacitor, and a step of periodically selecting one of application of the third voltage to the other terminal of the first capacitor, and connection of one terminal of the second capacitor to the other terminal of the first capacitor.
  • the step of periodically selecting one of the first and second voltages as a voltage to be applied to one terminal of the first capacitor comprises a step of inserting the resistor between one terminal of the first capacitor and the first voltage during the current limiting period, and a step of directly connecting one terminal of the first capacitor and the first voltage after the current limiting period has passed, and the step of periodically selecting one of the application of the third voltage to the other terminal of the first capacitor, and the connection of one terminal of the second capacitor to the other terminal of the first capacitor comprises a step of inserting the resistor between the other terminal of the first capacitor and the third voltage during the current limiting period, and a step of directly connecting the other terminal of the first capacitor and the third voltage after the current limiting period has passed.
  • FIGS. 1A and 1B are views for explaining an embodiment of a power supply circuit according to the present invention, in which FIG. 1A shows an arrangement and FIG. 1B shows the states of switches;
  • FIG. 2 is a circuit diagram showing an example of a practical arrangement of the power supply circuit according to the embodiment
  • FIG. 3 is a flowchart for explaining the operation of the power supply circuit according to the embodiment.
  • FIGS. 4A and 4B are schematic views showing an example of a conventional power supply circuit.
  • the present invention is not limited to this configuration.
  • the power supply circuit may also include three or more capacitors.
  • FIGS. 1A and 1B are views for explaining the embodiment of the power supply circuit according to the present invention.
  • FIG. 1A shows an arrangement
  • FIG. 1B shows the states of switches.
  • a power supply circuit 100 includes switches SW 1 to SW 6 and capacitors C 1 and C 2 .
  • the switch SW 1 has one terminal to which a voltage VCC is applied, and the other terminal connected to a terminal C 1 M.
  • the switch SW 5 has one terminal to which the voltage VCC is applied via a resistor R 1 , and the other terminal connected to the terminal C 1 M.
  • the switch SW 2 has one terminal connected to the terminal C 1 M, and the other terminal to which a voltage VSS (GND) is applied.
  • the switch SW 3 has one terminal to which a voltage VDC is applied, and the other terminal connected to a terminal C 1 P.
  • the switch SW 6 has one terminal to which the voltage VDC is applied via a resistor R 2 , and the other terminal connected to the terminal C 1 P.
  • the switch SW 4 has one terminal connected to the terminal C 1 P, and the other terminal connected to a terminal VOUT.
  • the capacitor C 1 has one terminal connected to the terminal C 1 M, and the other terminal connected to the terminal C 1 P.
  • the capacitor C 2 has one terminal connected to the terminal VOUT, and the other terminal to which the voltage VSS is applied.
  • the switches SW 1 to SW 6 form a switching means or section according to the present invention.
  • the potential of the terminal C 1 P becomes a potential (VDC ⁇ VR 2 ) which is lower than the voltage VDC by a voltage drop ⁇ VR 2 across the resistor R 2 , so the capacitor C 1 is charged to the voltage (VDC ⁇ VR 2 ). Then, in a second period, the switches SW 4 and SW 5 are turned on, and the switches SW 1 , SW 2 , SW 3 , and SW 6 are turned off.
  • the voltage VCC is applied to the terminal C 1 M via the resistor R 1 , and the potential of the terminal C 1 M becomes a potential (VCC ⁇ VR 1 ) which is lower than the voltage VCC by a voltage drop ⁇ VR 1 across the resistor R 1 , and the terminal C 1 P is connected to one terminal of the capacitor C 2 . Since the voltage (VDC ⁇ VR 2 ) is held in the capacitor C 1 , the potential of the terminal C 1 P becomes (VDC ⁇ VR 2 +VCC ⁇ VR 1 ). Consequently, the voltage (VDC ⁇ VR 2 +VCC ⁇ VR 1 ) is applied to one terminal of the capacitor C 2 to charge it to this voltage. During the period in which the elapsed time t has not reached the predetermined current limiting period T 0 yet, the operations in the first and second periods described above are repeated to hold the voltage of the capacitor C 2 .
  • the voltage in the capacitor C 2 is held by repeating the operations in the first and second periods described above, and the voltage VGH is output from the output terminal VOUT.
  • the operation is substantially the same as the power supply circuit 900 according to the prior art.
  • the voltages VCC and VDC are supplied to the individual terminals of the capacitor C 1 via the resistors R 1 and R 2 , respectively. This makes it possible to reduce the transient current flowing from the power supply of each of the voltages VCC and VDC to the capacitor C 1 . In this manner, it is possible to suppress latch-up and prevent an operation error.
  • the current limiting period T 0 is set in accordance with, e.g., the time constants of the transient currents related to charging of the capacitors C 1 and C 2 and the upper limits of electric currents which can be supplied from the power supplies. These time constants and upper limits correspond to the resistance values of the resistors R 1 and R 2 and the capacitance values of the capacitors C 1 and C 2 . Also, when this power supply circuit is to be used as a power supply circuit of a display driving circuit, the current limiting period T 0 must be set to a time which does not interfere with the operation of the display driving circuit. In this case, the current limiting time T 0 is set to approximately 1 to 30 msec.
  • FIG. 2 is a circuit diagram showing an example of a practical arrangement of the power supply circuit according to this embodiment.
  • a power supply circuit 100 includes a timing generator TG, a counter circuit 10 , inverters 11 and 12 , PMOSs 13 , 15 , and 19 , NMOSs 14 , 16 , and 20 , a NAND circuit 17 , an AND circuit 18 , resistors R 1 and R 2 , capacitors C 1 and C 2 , and a diode D.
  • the timing generator TG generates and outputs a driving pulse signal CP for setting the operation periods (the first and second periods described above) of the power supply circuit 100 .
  • the driving pulse signal CP is output to the inverters 11 and 12 , NAND circuit 17 , and counter circuit 10 .
  • the output terminal of the inverter 11 is connected to the gate terminals of the NMOS 14 and PMOS 19 , and to one input terminal of the AND circuit 18 .
  • An output signal from the inverter 11 is SINV 1 .
  • the PMOS 19 has a drain terminal connected to one terminal of the resistor R 1 , and a source terminal connected to a terminal C 1 M. A voltage VCC is applied to the other terminal of the resistor R 1 .
  • the NMOS 14 has a drain terminal connected to the terminal C 1 M, and a source terminal to which a voltage VSS is applied.
  • the output terminal of the inverter 12 is connected to the gate terminals of the PMOS 15 and NMOS 20 .
  • An output signal from the inverter 12 is SINV 2 .
  • the PMOS 15 has a drain terminal connected to an output terminal VOUT, and a source terminal connected to a terminal C 1 P.
  • the NMOS 20 has a drain terminal connected to the terminal C 1 P, and a source terminal connected to one terminal of the resistor R 2 .
  • a voltage VDC is applied to the other terminal of the resistor R 2 .
  • the PMOS 13 , NMOS 14 , PMOS 19 , NMOS 16 , PMOS 15 , and NMOS 20 correspond to SW 1 , SW 2 , SW 5 , SW 3 , SW 4 , and SW 6 , respectively, shown in FIG. 1 .
  • the counter circuit 10 counts the pulses of the driving pulse signal CP since the start of driving of the power supply circuit 100 , and outputs a low-level signal SCNT during a period in which the count is equal to or smaller than a predetermined number n ( n is an integer of 1 or more). If the pulse count of the driving pulse signal CP exceeds n , the counter circuit 10 outputs a high-level signal SCNT.
  • the period during which the count is n or less corresponds to the current limiting period T 0 described above.
  • the output signal SCNT from the counter circuit 10 is input to one terminal of the NAND circuit 17 and the other terminal of the AND circuit 18 .
  • the output terminal of the NAND circuit 17 is connected to the gate terminal of the PMOS 13 or SW 1 .
  • An output signal from the NAND circuit 17 is SP.
  • the PMOS 13 has a drain terminal to which the voltage VCC is applied, and a source terminal connected to the terminal C 1 M.
  • the output terminal of the AND circuit 18 is connected to the gate terminal of the NMOS 16 or SW 3 .
  • the NMOS 16 has a drain terminal connected to the terminal C 1 P, and a source terminal to which the voltage VDC is applied.
  • An output signal from the AND circuit 18 is SN.
  • the capacitor C 1 has one terminal connected to the terminal C 1 M, and the other terminal connected to the terminal C 1 P.
  • the capacitor C 2 has one terminal connected to the output terminal VOUT, and the other terminal to which the voltage VSS is applied.
  • the diode D has an anode terminal to which the voltage VDC is applied, and a cathode terminal connected to the output terminal VOUT.
  • FIG. 3 is a timing chart for explaining the operation of the power supply circuit according to this embodiment.
  • the counter circuit 10 In response to the start of driving of the power supply circuit 100 , the counter circuit 10 counts the pulses of the driving pulse signal CP. In this embodiment, the low levels (the trailing edges) of the driving pulse signal CP are counted up. During the period in which the count is n or less, the counter circuit 10 outputs the low-level signal SCNT. Accordingly, the signal SN changes to high level, and the signal SP changes to low level, so the PMOS 13 and NMOS 16 are turned off.
  • the signals SINV 1 and SINV 2 change to high level, so the NMOSs 14 and 20 are turned on, and the PMOSs 15 and 19 are turned off. Accordingly, the potential of the terminal C 1 P becomes a potential (VDC ⁇ VR 2 ) which is lower than the voltage VDC by a voltage drop ⁇ VR 2 across the resistor R 2 . This voltage (VDC ⁇ VR 2 ) is applied to the other terminal of the capacitor C 1 , and the electric charges are held in it.
  • the driving pulse signal CP changes to high level (the second period) at time t 2
  • the signals SINV 1 and SINV 2 change to low level, so the PMOSs 15 and 19 are turned on, and the NMOSs 14 and 20 are turned off.
  • the potential of the terminal C 1 M becomes a potential (VCC ⁇ VR 1 ) which is lower than the voltage VCC by a voltage drop ⁇ VR 1 across the resistor R 1 .
  • the voltage (VCC ⁇ VR 1 ) is applied to one terminal of the capacitor C 1 . Since the electric charges which are held when the voltage (VDC ⁇ VR 2 ) is applied is still held in the capacitor C 1 , the potential of the terminal C 1 P becomes (VDC ⁇ VR 2 )+(VCC ⁇ VR 1 ).
  • the potential of one terminal of the capacitor C 2 also becomes (VDC ⁇ VR 2 )+(VCC ⁇ VR 1 ), so the electric charges are held in the capacitor C 2 . Accordingly, the output terminal VOUT outputs the voltage (VDC ⁇ VR 2 )+(VCC ⁇ VR 1 ).
  • the output voltage from the output terminal VOUT is maintained at (VDC ⁇ VR 2 )+(VCC ⁇ VR 1 ) by repeating the above operation.
  • the signal SCNT changes to high level and keeps it after that. Since the signal SN changes from low level to high level, the NMOS 16 is turned on.
  • the signal SP is kept at high level, so the PMOS 13 is kept off.
  • the driving pulse signal CP is at low level, the signals SINV 1 and SINV 2 change to high level. That is, the NMOSs 14 and 20 are turned on, and the PMOSs 15 and 19 are turned off. Although the NMOS 20 is turned on accordingly, the NMOS 16 is also turned on, so the voltage VDC is directly applied to the terminal C 1 P, instead of a voltage applied across the resistor R 2 .
  • the voltage VDC is added to the voltage held in the capacitor C 1 to set the potential of the terminal C 1 P at ⁇ VDC+(VCC ⁇ VR 1 ) ⁇ .
  • the driving pulse signal CP changes to high level at time t 4
  • the signal SN changes to low level to turn off the NMOS 16 .
  • the signal SP changes to low level to turn on the PMOS 13 . Since the signals SINV 1 and SINV 2 change to low level, the PMOSs 15 and 19 are turned on, and the NMOSs 14 and 20 are turned off. Although the PMOS 19 is turned on accordingly, the PMOS 13 is also turned on, so the voltage VCC is directly applied to the terminal C 1 M, instead of a voltage applied across the resistor R 1 .
  • the output terminal VOUT outputs the voltage (VDC+VCC). This operation is repeated after time t 4 , and the output terminal VOUT keeps outputting the voltage (VDC+VCC).
  • the voltages are applied to the individual terminals of the capacitors C 1 via the resistors R 1 and R 2 , so the value of the transient current can be reduced. This makes it possible to prevent latch-up and an operation error of the circuit, and improve the reliability of the power supply circuit.
  • the power supply circuit 100 of this embodiment is an adder type circuit.
  • the power supply circuit 100 may also be another form of a charge pump type power supply circuit, provided that the power supply voltages are applied to the two terminals of a capacitor across resistors during a predetermined period after the start of driving of the power supply circuit.
  • both the NMOSs 16 and 20 are turned on if the driving pulse signal CP is at low level, and both the PMOSs 13 and 19 are turned on if the driving pulse signal CP is at high level.
  • the voltages VDC and VCC are applied to the terminals C 1 P and C 1 M via the resistors R 1 and R 2 , respectively.
  • a resistor may also be inserted only in one of these paths. That is, it is possible to provide only the resistor R 1 in the power supply circuit 100 , and omit the resistor R 2 , NMOS 20 , and AND circuit 18 , thereby connecting the output terminal of the inverter 12 to the gate terminal of the NMOS 16 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A power supply circuit includes at least one capacitor, a plurality of switching members, a power supply which outputs a plurality of voltages and a selecting section for controlling said plurality of switching sections to periodically select one of said plurality of voltages and apply the selected voltage to one terminal and the other terminal of the capacitor. The selecting section includes a member for applying the selected voltage to one terminal and the other terminal of the capacitor across a resistor, during a current limiting period immediately after the application of the selected one of said plurality of voltages to one terminal and another terminal of the capacitor is started.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2004-380377, filed Dec. 28, 2004, the entire contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a power supply circuit and a method of driving the same and, more particularly, to a power supply circuit which includes a charge pump circuit and generates a predetermined voltage, and a method of driving the same.
  • 2. Description of the Related Art
  • Of various types of circuits, some circuits such as display driving circuits require a plurality of power supply voltages when they are driven. An example of a power supply circuit which supplies a plurality of power supply voltages is a power supply circuit including a charge pump circuit. This power supply circuit has one or a plurality of capacitors, and adds capacitor charge voltages to generate another voltage.
  • This charge pump type power supply circuit used in a display driving circuit and the like is so designed that the connections between the capacitor and a plurality of power supply voltages are periodically switched. This switching of the connections between the capacitor and a plurality of voltages is controlled by on/off operation of switches.
  • FIGS. 4A and 4B are schematic views showing an example of a conventional charge pump type power supply circuit.
  • As shown in FIG. 4A, a power supply circuit 900 includes switches SW1 to SW4 and capacitors C1 and C2. The switch SW1 has one terminal to which a voltage VCC is applied, and the other terminal connected to a terminal C1M. The switch SW2 has one terminal connected to the terminal C1M, and the other terminal to which a voltage VSS (GND) is applied. The switch SW3 has one terminal to which a voltage VDC is applied, and the other terminal connected to a terminal C1P. The switch SW4 has one terminal connected to the terminal C1P, and the other terminal connected to a terminal VOUT. The capacitor C1 has one terminal connected to the terminal C1M, and the other terminal connected to the terminal C1P. The capacitor C2 has one terminal connected to the terminal VOUT, and the other terminal to which the voltage VSS is applied.
  • In the power supply circuit 900 as shown in FIG. 4B, in a first period, the switches SW2 and SW3 are turned on, and the switches SW1 and SW4 are turned off. Since the potential of the terminal C1P is set at VDC and that of the terminal C1M is set at VSS, the capacitor C1 is charged to the voltage VDC.
  • Then, in a second period, the switches SW1 and SW4 are turned on, and the switches SW2 and SW3 are turned off. Accordingly, the potential of the terminal C1M is set at VCC, and the terminal C1P is connected to one terminal of the capacitor C2. Since the voltage VDC is held in the capacitor C1, the potential of the terminal C1P becomes (VDC+VCC), so a voltage (VDC+VCC=VGH) is applied to one terminal of the capacitor C2 to charge it to the voltage VGH. As a result, the output terminal VOUT outputs the voltage VGH.
  • Then, when the switches SW1 and SW4 are turned off and the switches SW2 and SW3 are turned on again in the first period, the voltage in the capacitor C2 is held, and the output voltage from the output terminal VOUT is also maintained. By periodically charging the capacitor C2 by repeating the above operation, the power supply circuit 900 can supply a predetermined voltage from the output terminal VOUT.
  • In the charge pump type power supply circuit as described above, in the first and second periods, a transient current flows from the power supply to each capacitor albeit for a short time during a period immediately after each switch is turned on to apply each individual voltage to the capacitor. This transient current is a very large electric current if the line between the capacitor and power supply has a low resistance. If this transient current is generated in the charge pump type power supply circuit, latch-up occurs in transistors forming the switches or in a control circuit, thereby making the power supply circuit inoperable. Also, the large electric current flowing from the power supply circuit causes defective operation of the power supply, so an operation error of the circuit occurs.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention has the advantage that the reliability of a power supply circuit including a charge pump circuit can be improved by suppressing a transient current when the power supply circuit is in operation, thereby preventing the power supply circuit from being inoperative by latch-up or preventing a defective operation of the power supply circuit caused by an overcurrent.
  • To obtain the above advantage, a power supply circuit according to an aspect of the present invention comprises:
  • at least one capacitor;
  • a plurality of switching members;
  • a power supply which outputs a plurality of voltages; and
  • a selecting section for controlling said plurality of switching section to periodically select one of said plurality of voltages and apply the selected voltage to one terminal and the other terminal of the capacitor,
  • wherein the selecting section comprises a member for applying the selected voltage to one terminal and the other terminal of the capacitor across a resistor, during a current limiting period immediately after the application of the selected one of said plurality of voltages to one terminal and another terminal of the capacitor is started.
  • The power supply circuit preferably further comprises a signal generating section for outputting a driving pulse signal which controls the plurality of switching sections, and a counting section for counting pulses of the output driving pulse signal from the signal generating section, the current limiting period is set on the basis of the count of the counting section, and the current limiting period has a time of 1 to 30 msec.
  • The capacitor preferably comprises first and second capacitors, the plurality of voltages comprise first, second, and third voltages, and the selecting section comprises first selecting a member for alternately selecting the first and second voltages as a voltage to be applied to one terminal of the first capacitor, in accordance with the driving pulse signal, and a second selecting member for alternately selecting application of the third voltage to the other terminal of the first capacitor, and connection of one terminal of the second capacitor to the other terminal of the first capacitor, in accordance with the driving pulse signal.
  • The first selecting member may also comprise means for inserting the resistor between one terminal of the first capacitor and the first voltage during the current limiting period, and directly connecting one terminal of the first capacitor and the first voltage after the current limiting period has passed, and the second selecting member may also comprise means for inserting the resistor between the other terminal of the first capacitor and the third voltage during the current limiting period, and directly connecting one terminal of the first capacitor and the first voltage after the current limiting period has passed.
  • In the selecting section, after the current liming period has passed, the first selecting member may also comprise means for inserting the resistor between one terminal of the first capacitor and the first voltage, and directly connecting one terminal of the first capacitor and the first voltage, and means for inserting the resistor with respect to the other terminal of the first capacitor in the second selecting member, and directly connecting the other terminal of the first capacitor in the second switching section.
  • To obtain the above advantage, a power supply circuit driving method according to a second aspect of the present invention, a method of driving a power supply circuit, comprising:
  • the power supply circuit comprising a capacitor;
  • periodically selecting one of a plurality of voltages and applying the selected voltage to one terminal and the other terminal of the capacitor;
  • applying the selected one of said plurality of voltages to one terminal of the capacitor across a resistor, during a current liming period immediately after the application of the selected voltage to one terminal and the other terminal of the capacitor is started; and
  • directly applying one of said plurality of voltages to one terminal and the other terminal of the capacitor after the current limiting period has passed.
  • The above driving method preferably comprises a step of counting pulses of a driving pulse signal related to the periodic selection of the plurality of voltages, and setting the current limiting period on the basis of the count, and the current limiting period has a time of 1 to 30 msec.
  • The capacitor comprises first and second capacitors, the plurality of voltages comprises first, second, and third voltages, and the step of periodically selecting one of the plurality of voltages and applying the selected voltage to one terminal and the other terminal of the capacitor comprises a step of periodically selecting one of the first and second voltages as a voltage to be applied to one terminal of the first capacitor, and a step of periodically selecting one of application of the third voltage to the other terminal of the first capacitor, and connection of one terminal of the second capacitor to the other terminal of the first capacitor.
  • The step of periodically selecting one of the first and second voltages as a voltage to be applied to one terminal of the first capacitor comprises a step of inserting the resistor between one terminal of the first capacitor and the first voltage during the current limiting period, and a step of directly connecting one terminal of the first capacitor and the first voltage after the current limiting period has passed, and the step of periodically selecting one of the application of the third voltage to the other terminal of the first capacitor, and the connection of one terminal of the second capacitor to the other terminal of the first capacitor comprises a step of inserting the resistor between the other terminal of the first capacitor and the third voltage during the current limiting period, and a step of directly connecting the other terminal of the first capacitor and the third voltage after the current limiting period has passed.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • FIGS. 1A and 1B are views for explaining an embodiment of a power supply circuit according to the present invention, in which FIG. 1A shows an arrangement and FIG. 1B shows the states of switches;
  • FIG. 2 is a circuit diagram showing an example of a practical arrangement of the power supply circuit according to the embodiment;
  • FIG. 3 is a flowchart for explaining the operation of the power supply circuit according to the embodiment; and
  • FIGS. 4A and 4B are schematic views showing an example of a conventional power supply circuit.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A power supply circuit and a method of driving the power supply circuit according to the present invention will be described below on the basis of an embodiment shown in the accompanying drawing.
  • Note that a circuit having two capacitors will be explained below as a charge pump type power supply circuit, but the present invention is not limited to this configuration. For example, the power supply circuit may also include three or more capacitors.
  • First, an outline of the arrangement of the power supply circuit according to this embodiment will be explained.
  • FIGS. 1A and 1B are views for explaining the embodiment of the power supply circuit according to the present invention. FIG. 1A shows an arrangement, and FIG. 1B shows the states of switches.
  • In the following explanation, the same reference numerals as in the power supply circuit according to the prior art denote the same parts. As shown in FIG. 1A, a power supply circuit 100 according to this embodiment includes switches SW1 to SW6 and capacitors C1 and C2. The switch SW1 has one terminal to which a voltage VCC is applied, and the other terminal connected to a terminal C1M. The switch SW5 has one terminal to which the voltage VCC is applied via a resistor R1, and the other terminal connected to the terminal C1M. The switch SW2 has one terminal connected to the terminal C1M, and the other terminal to which a voltage VSS (GND) is applied. The switch SW3 has one terminal to which a voltage VDC is applied, and the other terminal connected to a terminal C1P. The switch SW6 has one terminal to which the voltage VDC is applied via a resistor R2, and the other terminal connected to the terminal C1P. The switch SW4 has one terminal connected to the terminal C1P, and the other terminal connected to a terminal VOUT. The capacitor C1 has one terminal connected to the terminal C1M, and the other terminal connected to the terminal C1P. The capacitor C2 has one terminal connected to the terminal VOUT, and the other terminal to which the voltage VSS is applied. In this configuration, the switches SW1 to SW6 form a switching means or section according to the present invention.
  • Next, the operation of the power supply circuit 100 will be explained. First, as shown in FIG. 1B, in a first period during a period in which an elapsed time t from immediately after the power supply circuit 100 starts operating has not reached a preset current limiting period T0 yet, the switches SW2 and SW6 are turned on, and the switches SW1, SW3, SW4, and SW5 are turned off. Therefore, the voltage VDC is applied to the terminal C1P via the resistor R2, and the potential of the terminal C1M is set at VSS (GND). Accordingly, the potential of the terminal C1P becomes a potential (VDC−ΔVR2) which is lower than the voltage VDC by a voltage drop ΔVR2 across the resistor R2, so the capacitor C1 is charged to the voltage (VDC−ΔVR2). Then, in a second period, the switches SW4 and SW5 are turned on, and the switches SW1, SW2, SW3, and SW6 are turned off. Therefore, the voltage VCC is applied to the terminal C1M via the resistor R1, and the potential of the terminal C1M becomes a potential (VCC−ΔVR1) which is lower than the voltage VCC by a voltage drop ΔVR1 across the resistor R1, and the terminal C1P is connected to one terminal of the capacitor C2. Since the voltage (VDC−ΔVR2) is held in the capacitor C1, the potential of the terminal C1P becomes (VDC−ΔVR2+VCC−ΔVR1). Consequently, the voltage (VDC−ΔVR2+VCC−ΔVR1) is applied to one terminal of the capacitor C2 to charge it to this voltage. During the period in which the elapsed time t has not reached the predetermined current limiting period T0 yet, the operations in the first and second periods described above are repeated to hold the voltage of the capacitor C2.
  • In a first period after the elapsed time t from the operation start has passed the current limiting period T0, as shown in FIG. 1B, the switches SW2, SW3, and SW6 are turned on, and the switches SW1, SW4, and SW5 are turned off. Therefore, the voltage VDC is directly applied to the terminal C1P to set the potential of the terminal C1P at VDC, so the capacitor C1 is charged to the voltage VDC. In a second period, the switches SW1, SW4, and SW5 are turned on, and the switches SW2, SW3, and SW6 are turned off, so the voltage VCC is directly applied to the terminal C1M to set the potential of the terminal C1M at VCC. Since the voltage VDC is held in the capacitor C1, the potential of the terminal C1P becomes (VDC+VCC), so a voltage (VDC+VCC=VGH) is applied to one terminal of the capacitor C2 to charge it to the voltage VGH. The voltage in the capacitor C2 is held by repeating the operations in the first and second periods described above, and the voltage VGH is output from the output terminal VOUT.
  • In the power supply circuit 100 according to this embodiment as described above, after the elapsed time t from immediately after the operation start has passed the predetermined current limiting period T0, the operation is substantially the same as the power supply circuit 900 according to the prior art. However, during the period in which the elapsed time t has not reached the current limiting period T0 yet, the voltages VCC and VDC are supplied to the individual terminals of the capacitor C1 via the resistors R1 and R2, respectively. This makes it possible to reduce the transient current flowing from the power supply of each of the voltages VCC and VDC to the capacitor C1. In this manner, it is possible to suppress latch-up and prevent an operation error. The current limiting period T0 is set in accordance with, e.g., the time constants of the transient currents related to charging of the capacitors C1 and C2 and the upper limits of electric currents which can be supplied from the power supplies. These time constants and upper limits correspond to the resistance values of the resistors R1 and R2 and the capacitance values of the capacitors C1 and C2. Also, when this power supply circuit is to be used as a power supply circuit of a display driving circuit, the current limiting period T0 must be set to a time which does not interfere with the operation of the display driving circuit. In this case, the current limiting time T0 is set to approximately 1 to 30 msec.
  • An example of a practical configuration of the power supply circuit according to this embodiment will be described below.
  • FIG. 2 is a circuit diagram showing an example of a practical arrangement of the power supply circuit according to this embodiment. A power supply circuit 100 includes a timing generator TG, a counter circuit 10, inverters 11 and 12, PMOSs 13, 15, and 19, NMOSs 14, 16, and 20, a NAND circuit 17, an AND circuit 18, resistors R1 and R2, capacitors C1 and C2, and a diode D.
  • The timing generator TG generates and outputs a driving pulse signal CP for setting the operation periods (the first and second periods described above) of the power supply circuit 100. The driving pulse signal CP is output to the inverters 11 and 12, NAND circuit 17, and counter circuit 10. The output terminal of the inverter 11 is connected to the gate terminals of the NMOS 14 and PMOS 19, and to one input terminal of the AND circuit 18. An output signal from the inverter 11 is SINV1. The PMOS 19 has a drain terminal connected to one terminal of the resistor R1, and a source terminal connected to a terminal C1M. A voltage VCC is applied to the other terminal of the resistor R1. The NMOS 14 has a drain terminal connected to the terminal C1M, and a source terminal to which a voltage VSS is applied.
  • The output terminal of the inverter 12 is connected to the gate terminals of the PMOS 15 and NMOS 20. An output signal from the inverter 12 is SINV2. The PMOS 15 has a drain terminal connected to an output terminal VOUT, and a source terminal connected to a terminal C1P. The NMOS 20 has a drain terminal connected to the terminal C1P, and a source terminal connected to one terminal of the resistor R2. A voltage VDC is applied to the other terminal of the resistor R2. The PMOS 13, NMOS 14, PMOS 19, NMOS 16, PMOS 15, and NMOS 20 correspond to SW1, SW2, SW5, SW3, SW4, and SW6, respectively, shown in FIG. 1.
  • The counter circuit 10 counts the pulses of the driving pulse signal CP since the start of driving of the power supply circuit 100, and outputs a low-level signal SCNT during a period in which the count is equal to or smaller than a predetermined number n (n is an integer of 1 or more). If the pulse count of the driving pulse signal CP exceeds n, the counter circuit 10 outputs a high-level signal SCNT. The period during which the count is n or less corresponds to the current limiting period T0 described above.
  • The output signal SCNT from the counter circuit 10 is input to one terminal of the NAND circuit 17 and the other terminal of the AND circuit 18. The output terminal of the NAND circuit 17 is connected to the gate terminal of the PMOS 13 or SW1. An output signal from the NAND circuit 17 is SP. The PMOS 13 has a drain terminal to which the voltage VCC is applied, and a source terminal connected to the terminal C1M. The output terminal of the AND circuit 18 is connected to the gate terminal of the NMOS 16 or SW3. The NMOS 16 has a drain terminal connected to the terminal C1P, and a source terminal to which the voltage VDC is applied. An output signal from the AND circuit 18 is SN.
  • The capacitor C1 has one terminal connected to the terminal C1M, and the other terminal connected to the terminal C1P. The capacitor C2 has one terminal connected to the output terminal VOUT, and the other terminal to which the voltage VSS is applied. The diode D has an anode terminal to which the voltage VDC is applied, and a cathode terminal connected to the output terminal VOUT.
  • FIG. 3 is a timing chart for explaining the operation of the power supply circuit according to this embodiment. In response to the start of driving of the power supply circuit 100, the counter circuit 10 counts the pulses of the driving pulse signal CP. In this embodiment, the low levels (the trailing edges) of the driving pulse signal CP are counted up. During the period in which the count is n or less, the counter circuit 10 outputs the low-level signal SCNT. Accordingly, the signal SN changes to high level, and the signal SP changes to low level, so the PMOS 13 and NMOS 16 are turned off.
  • At time t1 at which the driving pulse signal CP is at low level (the first period), the signals SINV1 and SINV2 change to high level, so the NMOSs 14 and 20 are turned on, and the PMOSs 15 and 19 are turned off. Accordingly, the potential of the terminal C1P becomes a potential (VDC−ΔVR2) which is lower than the voltage VDC by a voltage drop ΔVR2 across the resistor R2. This voltage (VDC−ΔVR2) is applied to the other terminal of the capacitor C1, and the electric charges are held in it.
  • Then, when the driving pulse signal CP changes to high level (the second period) at time t2, the signals SINV1 and SINV2 change to low level, so the PMOSs 15 and 19 are turned on, and the NMOSs 14 and 20 are turned off. The potential of the terminal C1M becomes a potential (VCC−ΔVR1) which is lower than the voltage VCC by a voltage drop ΔVR1 across the resistor R1. The voltage (VCC−ΔVR1) is applied to one terminal of the capacitor C1. Since the electric charges which are held when the voltage (VDC−ΔVR2) is applied is still held in the capacitor C1, the potential of the terminal C1P becomes (VDC−ΔVR2)+(VCC−ΔVR1). In addition, the potential of one terminal of the capacitor C2 also becomes (VDC−ΔVR2)+(VCC−ΔVR1), so the electric charges are held in the capacitor C2. Accordingly, the output terminal VOUT outputs the voltage (VDC−ΔVR2)+(VCC−ΔVR1).
  • The output voltage from the output terminal VOUT is maintained at (VDC−ΔVR2)+(VCC−ΔVR1) by repeating the above operation. When the count of the counter circuit 10 reaches n+1 at time t3, the signal SCNT changes to high level and keeps it after that. Since the signal SN changes from low level to high level, the NMOS 16 is turned on.
  • On the other hand, the signal SP is kept at high level, so the PMOS 13 is kept off. Also, since the driving pulse signal CP is at low level, the signals SINV1 and SINV2 change to high level. That is, the NMOSs 14 and 20 are turned on, and the PMOSs 15 and 19 are turned off. Although the NMOS 20 is turned on accordingly, the NMOS 16 is also turned on, so the voltage VDC is directly applied to the terminal C1P, instead of a voltage applied across the resistor R2. The voltage VDC is added to the voltage held in the capacitor C1 to set the potential of the terminal C1P at {VDC+(VCC−ΔVR1)}.
  • Then, when the driving pulse signal CP changes to high level at time t4, the signal SN changes to low level to turn off the NMOS 16. Also, the signal SP changes to low level to turn on the PMOS 13. Since the signals SINV1 and SINV2 change to low level, the PMOSs 15 and 19 are turned on, and the NMOSs 14 and 20 are turned off. Although the PMOS 19 is turned on accordingly, the PMOS 13 is also turned on, so the voltage VCC is directly applied to the terminal C1M, instead of a voltage applied across the resistor R1. Since the voltage VCC is added to the voltage held in the capacitor C1, the potential of the terminal C1P becomes (VDC+VCC), so the voltage (VDC+VCC) is applied to one terminal of the capacitor C2, and the electric charges are held in it. As a result, the output terminal VOUT outputs the voltage (VDC+VCC). This operation is repeated after time t4, and the output terminal VOUT keeps outputting the voltage (VDC+VCC).
  • As described above, during the period in which the count of the counter circuit 10 is n or less, the voltages are applied to the individual terminals of the capacitors C1 via the resistors R1 and R2, so the value of the transient current can be reduced. This makes it possible to prevent latch-up and an operation error of the circuit, and improve the reliability of the power supply circuit.
  • The power supply circuit 100 of this embodiment is an adder type circuit. However, the power supply circuit 100 may also be another form of a charge pump type power supply circuit, provided that the power supply voltages are applied to the two terminals of a capacitor across resistors during a predetermined period after the start of driving of the power supply circuit.
  • Also, after time t3 in the power supply circuit 100, both the NMOSs 16 and 20 are turned on if the driving pulse signal CP is at low level, and both the PMOSs 13 and 19 are turned on if the driving pulse signal CP is at high level. However, it is also possible to turn on the NMOS 16 alone in the former case and the PMOS 13 alone in the latter case.
  • Furthermore, in the power supply circuit 100, the voltages VDC and VCC are applied to the terminals C1P and C1M via the resistors R1 and R2, respectively. However, a resistor may also be inserted only in one of these paths. That is, it is possible to provide only the resistor R1 in the power supply circuit 100, and omit the resistor R2, NMOS 20, and AND circuit 18, thereby connecting the output terminal of the inverter 12 to the gate terminal of the NMOS 16. Alternatively, it is possible to insert only the resistor R2 in the power supply circuit 100, and omit the resistor R1, PMOS 19, and NAND circuit 17, thereby connecting the output terminal of the inverter 11 to the gate terminal of the PMOS 13.

Claims (14)

1. A power supply circuit comprising:
at least one capacitor;
a plurality of switching members;
a power supply which outputs a plurality of voltages; and
a selecting section for controlling said plurality of switching sections to periodically select one of said plurality of voltages and apply the selected voltage to one terminal and the other terminal of the capacitor,
wherein the selecting section comprises a member for applying the selected voltage to one terminal and the other terminal of the capacitor across a resistor, during a current limiting period immediately after the application of the selected one of said plurality of voltages to one terminal and another terminal of the capacitor is started.
2. A circuit according to claim 1, wherein the selecting section comprises a member for, after the current limiting period has passed, periodically selecting one of said plurality of voltages and applying the selected voltage to one terminal and the other terminal of the capacitor by bypassing the resistor.
3. A circuit according to claim 1, which further comprises a signal generator for outputting a driving pulse signal which controls said plurality of switching members, and a counting circuit for counting pulses of the output driving pulse signal from the signal generator, and
in which the current limiting period is set on the basis of the count of the counting circuit.
4. A circuit according to claim 1, wherein the current limiting period has a time of 1 to 30 msec.
5. A circuit according to claim 1, wherein
said at least one capacitor includes first and second capacitors,
said plurality of voltages include first, second, and third voltages, and
the selecting section comprises:
a first selecting member for alternately selecting the first and second voltages as the voltage to be applied to one terminal of the first capacitor, in accordance with the driving pulse signal; and
a second selecting member for alternately selecting application of the third voltage to the other terminal of the first capacitor, and connection of one terminal of the second capacitor to the other terminal of the first capacitor, in accordance with the driving pulse signal.
6. A circuit according to claim 5, wherein the first selecting member comprises a section for inserting the resistor between one terminal of the first capacitor and the first voltage during the current limiting period, and directly connecting one terminal of the first capacitor and the first voltage after the current limiting period has passed.
7. A circuit according to claim 5, wherein the second selecting member comprises a section for inserting the resistor between the other terminal of the first capacitor and the third voltage during the current limiting period, and directly connecting one terminal of the first capacitor and the first voltage after the current limiting period has passed.
8. A circuit according to claim 5, wherein, the first selecting member comprises means for inserting the resistor between one terminal of the first capacitor and the first voltage, and directly connecting one terminal of the first capacitor and the first voltage, and means for inserting the resistor with respect to the other terminal of the first capacitor in the second selecting member, and directly connecting another terminal of the first capacitor in the second selecting member, after the current liming period has passed.
9. A method of driving a power supply circuit, comprising:
the power supply circuit comprising a capacitor;
periodically selecting one of a plurality of voltages and applying the selected voltage to one terminal and the other terminal of the capacitor;
applying the selected one of said plurality of voltages to one terminal of the capacitor across a resistor, during a current liming period immediately after the application of the selected voltage to one terminal and the other terminal of the capacitor is started; and
directly applying one of said plurality of voltages to one terminal and the other terminal of the capacitor after the current limiting period has passed.
10. A method according to claim 9, further comprising counting pulses of a driving pulse signal related to the periodic selection of said plurality of voltages, and setting the current limiting period on the basis of the count.
11. A method according to claim 9, wherein the current limiting period has a time of 1 to 30 msec.
12. A method according to claim 9, wherein
said at least one capacitor comprises first and second capacitors,
said plurality of voltages comprises first, second, and third voltages, and
periodically selecting one of said plurality of voltages and applying the selected voltage to one terminal and the other terminal of the capacitor comprises:
periodically selecting one of the first and second voltages as a voltage to be applied to one terminal of the first capacitor; and
periodically selecting one of application of the third voltage to the other terminal of the first capacitor, and connection of one terminal of the second capacitor to the other terminal of the first capacitor.
13. A method according to claim 11, wherein periodically selecting one of the first and second voltages as a voltage to be applied to one terminal of the first capacitor comprises:
inserting the resistor between one terminal of the first capacitor and the first voltage during the current limiting period, and directly connecting one terminal of the first capacitor and the first voltage after the current limiting period has passed.
14. A method according to claim 11, wherein
periodically selecting one of the application of the third voltage to the other terminal of the first capacitor, and the connection of one terminal of the second capacitor to the other terminal of the first capacitor comprises:
inserting the resistor between the other terminal of the first capacitor and the third voltage during the current limiting period, and directly connecting the other terminal of the first capacitor and the third voltage after the current limiting period has passed.
US11/317,519 2004-12-28 2005-12-23 Power supply circuit Expired - Fee Related US7365592B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-380377 2004-12-28
JP2004380377A JP4396519B2 (en) 2004-12-28 2004-12-28 Power supply circuit and driving method of power supply circuit

Publications (3)

Publication Number Publication Date
US20060139830A1 US20060139830A1 (en) 2006-06-29
US20060250739A9 true US20060250739A9 (en) 2006-11-09
US7365592B2 US7365592B2 (en) 2008-04-29

Family

ID=36611198

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/317,519 Expired - Fee Related US7365592B2 (en) 2004-12-28 2005-12-23 Power supply circuit

Country Status (2)

Country Link
US (1) US7365592B2 (en)
JP (1) JP4396519B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400227B2 (en) * 2005-06-30 2008-07-15 Ge Security, Inc. Fire alarm notification power supply with configurable notification appliance circuits and auxiliary power circuits apparatus and method
DE102006059993A1 (en) * 2006-12-19 2008-06-26 Austriamicrosystems Ag Voltage converter and method for voltage multiplication
JP5143483B2 (en) * 2007-07-03 2013-02-13 ルネサスエレクトロニクス株式会社 Boost circuit and integrated circuit including the boost circuit
KR20110106686A (en) * 2010-03-23 2011-09-29 삼성전자주식회사 A charge pump, a method for controlling the same, and a display driving system comprising the charge pump
EP3404815B1 (en) * 2012-05-14 2020-11-18 ams AG Charge pump circuit and method for generating a supply voltage
US9024678B2 (en) * 2013-05-22 2015-05-05 Infineon Technologies Ag Current sensing circuit arrangement for output voltage regulation
TWI546787B (en) 2014-09-29 2016-08-21 矽創電子股份有限公司 Power supply module, display and related capacitance switching method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043705A (en) * 1998-03-25 2000-03-28 Lucent Technologies Inc. Boost converter having extended holdup time and method of operation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043705A (en) * 1998-03-25 2000-03-28 Lucent Technologies Inc. Boost converter having extended holdup time and method of operation

Also Published As

Publication number Publication date
JP2006187165A (en) 2006-07-13
US20060139830A1 (en) 2006-06-29
JP4396519B2 (en) 2010-01-13
US7365592B2 (en) 2008-04-29

Similar Documents

Publication Publication Date Title
JP4712519B2 (en) Charge pump circuit for high side drive circuit and driver drive voltage circuit
US5963066A (en) Semiconductor device which drives low-voltage driven switching device, using low-voltage direct current power source, a diode and a capacitor
US7365592B2 (en) Power supply circuit
JP2639325B2 (en) Constant voltage generator
KR100947037B1 (en) Semiconductor Device
US7208997B2 (en) Charge pump power supply circuit
US7088084B2 (en) Power supply circuit capable of rapidly changing output voltages
JP2010004093A (en) Output driving circuit
KR101603566B1 (en) Semiconductor device drive circuit and semiconductor device drive unit
JP2002247838A (en) Voltage boosting circuit, and inverter circuit for alleviating voltage between drain and source
US8068102B2 (en) Drive voltage supply circuit
US7859489B2 (en) Current drive circuit for supplying driving current to display panel
US6456513B2 (en) Voltage conversion circuit and control circuit therefor
JP2007294226A (en) Relay driving circuit
US7084697B2 (en) Charge pump circuit capable of completely cutting off parasitic transistors
JP2009081984A (en) Charge pump circuit
US6556066B2 (en) Boosting method and apparatus
US20070171696A1 (en) Recursive device for switching over a high potential greater than a nominal potential of a technology in which the device is made and related system and method
JP3919991B2 (en) Multi-stage pulse generation circuit for flash memory device
WO2021024643A1 (en) Semiconductor device
JPH10247073A (en) Method of driving plasma display
JP5226474B2 (en) Semiconductor output circuit
JP4746205B2 (en) Booster circuit and semiconductor device incorporating the same
JP4865367B2 (en) Semiconductor integrated circuit, display device, and electronic device
JP4281359B2 (en) Charge pump circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: CASIO COMPUTER CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HIRAYAMA, HYUICHI;REEL/FRAME:017415/0321

Effective date: 20051214

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20200429