EP1342101A1 - Procede radar a impulsions, detecteur radar a impulsions et systeme correspondant - Google Patents

Procede radar a impulsions, detecteur radar a impulsions et systeme correspondant

Info

Publication number
EP1342101A1
EP1342101A1 EP01998845A EP01998845A EP1342101A1 EP 1342101 A1 EP1342101 A1 EP 1342101A1 EP 01998845 A EP01998845 A EP 01998845A EP 01998845 A EP01998845 A EP 01998845A EP 1342101 A1 EP1342101 A1 EP 1342101A1
Authority
EP
European Patent Office
Prior art keywords
radar
time
time slot
time slots
radar sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01998845A
Other languages
German (de)
English (en)
Inventor
Karl-Heinz Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1342101A1 publication Critical patent/EP1342101A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/22Systems for measuring distance only using transmission of interrupted, pulse modulated waves using irregular pulse repetition frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0231Avoidance by polarisation multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0235Avoidance by time multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area

Definitions

  • Pulse radar method as well as pulse radar sensor and system
  • the invention is based on a pulse radar method, in particular for motor vehicles, in which interference signals are observed.
  • the cause of this interference is the high bandwidth of the radar pulses from the SRR. Broadband is necessary in principle in order to ensure a spatial resolution of the radar sensors.
  • a radar sensor transmits at least one radar pulse and receives the echo signal (s). This measurement function is used for the actual obstacle detection. The second measuring function is used for location detection d. H. the radar sensor observes the electromagnetic environment during the remaining time slots of the time frame. On the basis of the interference signals occurring per time slot, it is observed whether a respective time slot is free of interference or not. A decision is then made as to whether the radar sensor should continue to transmit and receive in this time slot or switch to one of the other time slots in the time frame.
  • the average interference emission is reduced. This reduces the electromagnetic pollution.
  • a radar sensor and possibly further radar sensors discard his / her measurements if interference occurs in the time slot (s) used for the transmission and reception mode. This leads to reliable measurements.
  • radar sensors randomly search for little disturbed or undisturbed time slots and maintain such time slots until interference occurs there.
  • Radar sensors belonging to a common system or vehicle, particularly if they are arranged adjacent, are advantageously precontrolled according to claim 8 in such a way that they occupy different time slots within the time frame. A complex search for undisturbed time slots is then unnecessary.
  • Claim 11 shows an advantageous embodiment of a
  • Pulse radar sensor in particular for carrying out the method according to the invention, with which a simple change of a time slot for the transmission and reception of the radar pulses is possible. All that is required is a reversal depending on an evaluated signal.
  • Claim 12 shows how an evaluation of radar pulses with respect to interference can be carried out in a simple manner.
  • Claims 14 to 16 show measures which effectively reduce mutual interference from radar sensors.
  • the simultaneous use of different time slots for different radar sensors and the use of different polarizations results in a high level of immunity to interference within a system.
  • FIG. 1 shows a basic structure of a radar sensor for performing the method according to the invention
  • FIG. 2 shows the staggered use of time slots by different radar sensors
  • Figure 3 shows the mutual interference of radar sensors of two vehicles.
  • a microwave carrier oscillator 2 generates a carrier frequency in the radar sensor 1.
  • trigger pulse-controlled fast switches 3 and 4 in particular diode switches, the continuous signal of the carrier oscillator 2
  • the vibration packet formed via the switch 3 is emitted via an antenna 5. After reflection on a possible obstacle, parts of this signal are collected by the receiving antenna 6 and fed to a mixer 7.
  • This mixer 7 mixes the vibration packet formed via the switch 4 with the received signal.
  • the mixer 7 provides an output signal 8 when the received and the scanning signal coincide (via switch 4). With the help of a controllable pulse delay 9, the sampling pulse is compared to the
  • the pulse delay 9 is controlled by a control voltage 14. The size of the
  • Delay is determined by the known relationship between the two sizes.
  • the output signal 8 of the mixer 7 is passed to a control unit 13 via a bandpass amplifier 12.
  • the control unit 13 evaluates this echo signal.
  • the delay time at which the mixer 7 delivers an output signal is then equal to the transit time of the waves between the radar sensor 1 and the obstacle. From the known propagation speed of the electromagnetic waves and the measured time, the distance of the obstacle is determined.
  • the control unit 13 which can be a microprocessor, supplies trigger pulses 18 which, after appropriate preparation, are passed to the switches 3 and 4 as their trigger signals 10 and 11.
  • the trigger pulses 18 are passed on the one hand via a pulse port 15 and a pulse shaper 16 to the switch 3 and on the other hand via the pulse delay 9 and pulse shaper 17 to the switch 4.
  • a time frame 20 is specified in accordance with FIG. 2, which is shown in FIG.
  • Time slots 21, 22, 23, 24 is divided. After the first time frame 20 has elapsed, another time frame begins again with the time slot 21.
  • the time frame 20 specifies the cycle time of the measurements.
  • Evaluating echoes corresponds to one of these time slots, e.g. B. Time slot 21.
  • the monitoring phase ie the time of the remaining time slots 22, 23, 24 within the time frame 20, is used to observe interference which is caused in particular by other radar sensors and allows one or more other radar sensors to carry out their measurements without being disturbed.
  • a measurement phase (time slot) and three monitoring phases (remaining time slots) for each radar sensor were assumed as an example. This means that four different radar sensors 401, 402 as well as 411 and 412 can be operated without interference. As shown in FIG. 2, their measurement phases are accommodated in different time slots 21, ..., 24. Any integer ratios of monitoring and measuring phases are of course possible.
  • Absolute speed of a vehicle can be and the higher the relative speed change, the shorter a time frame 20 must be).
  • the specification of the time frame 20 and the time slots 21,..., 24 is determined by the control unit 13 through the repetition frequency of the trigger pulses 18 or through the pulse gate 15.
  • the pulse gate 15 realized for example by an AND circuit which receives 18 gate signals 19 from the control unit in addition to the trigger pulses, the trigger pulses can be forwarded or suppressed and thus the measurement phase can be switched on or off - suppression or transmission of the radar pulses.
  • the impulse gate 15 can also be an integral part of the control unit 13, or by internal ones
  • Signal linkage can be implemented within the microprocessor.
  • Each radar sensor is designed so that interference can be detected.
  • the scanning function of the radar sensor is constantly in operation (triggering of switch 4 in every time slot).
  • control unit 13 can be supplied with an interface signal 30 in order to ensure that the radar sensors of this system all have their measurement phase in different time slots and do not interfere with one another.
  • the interference from other radar sensors is expressed by impulses, the temporal distribution of which is random.
  • the mixed output signal 8 is monitored for amplitudes that exceed a certain threshold. If this happens with a certain frequency, it is assumed that another radar sensor is transmitting in this phase. The observing radar sensor will avoid this area as a measurement phase.
  • echo and shock pulses occur simultaneously. If the number of pulses is approximately constant, it can be assumed that there are no interference signals. If the number of impulses fluctuates and is high, then there is a high likelihood of fault impulses. The measurement must then be discarded and restarted after an agreed time.
  • the interference signal is observed in a measurement cycle and the interference areas are determined, then it can be predicted which time slots may not be used by the radar sensors involved.
  • the observing radar sensor can synchronize to a free time slot in the next measuring cycle, e.g. B. time slot 21 and keep this in the further measurements.
  • a threshold value decider is necessary to detect whether there are faults in the other time slots of the time frame. If several radar sensors are disturbed, the measurement in both radar sensors is rejected.
  • the radar sensors again detect free time slots. To avoid the next free Time slot is used again by several radar sensors, the sensors begin to transmit in a free time slot at random.
  • the measurement and monitoring function of the radar sensors can be controlled in a central control device or in the radar sensor itself.
  • a processor (control device 13) in the radar sensor is necessary for this.
  • neighboring sensors can be triggered (pre-controlled) by a common control device so that they use different time slots.
  • This common control device can
  • antennas of different polarization with different radar sensors that are susceptible to interference, in particular antennas with 45 ° polarization for mutual purposes Decoupling.
  • This method assumes that there is no effective polarization rotation due to the installation of the sensors behind the bumpers or other panels. The rotation of the polarization would reduce the suppression again.
  • the simultaneous use of the time slot method and the 45 ° polarization results in a very high level of interference resistance for the system.
  • FIG. 3 shows schematically the interference with two vehicles 40 and 41, each with two sensors 401 and 402 or 411 and 412.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'invention concerne un procédé radar par impulsions, notamment pour automobiles, selon lequel il est prévu des intervalles temporels (21, , 24) d'un cadre temporel (20). Pendant un intervalle temporel, un détecteur radar (1) émet au moins une impulsion radar et reçoit le(s) signal(aux) d'écho. Pendant les autres intervalles (22, 23, 24), le détecteur radar (1) observe si des signaux parasites interviennent. Sur la base des signaux parasites apparus par intervalle temporel (21, , 24), il est décidé de savoir si le détecteur radar (1) doit poursuivre son mode émetteur et récepteur dans l'intervalle temporel (21) prédéfini ou s'il doit le changer dans un des autres intervalles temporels (22, 23, 24) du cadre temporel (20). Ce procédé s'applique au fonctionnement de plusieurs détecteurs radar, sans induire de parasites.
EP01998845A 2000-12-01 2001-10-13 Procede radar a impulsions, detecteur radar a impulsions et systeme correspondant Ceased EP1342101A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10059673A DE10059673A1 (de) 2000-12-01 2000-12-01 Impuls-Radarverfahren sowie Impuls-Radarsensor und System
DE10059673 2000-12-01
PCT/DE2001/003932 WO2002044750A1 (fr) 2000-12-01 2001-10-13 Procede radar a impulsions, detecteur radar a impulsions et systeme correspondant

Publications (1)

Publication Number Publication Date
EP1342101A1 true EP1342101A1 (fr) 2003-09-10

Family

ID=7665377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01998845A Ceased EP1342101A1 (fr) 2000-12-01 2001-10-13 Procede radar a impulsions, detecteur radar a impulsions et systeme correspondant

Country Status (5)

Country Link
US (1) US6888491B2 (fr)
EP (1) EP1342101A1 (fr)
JP (1) JP4102666B2 (fr)
DE (1) DE10059673A1 (fr)
WO (1) WO2002044750A1 (fr)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059673A1 (de) * 2000-12-01 2002-06-06 Bosch Gmbh Robert Impuls-Radarverfahren sowie Impuls-Radarsensor und System
JP2005530164A (ja) * 2002-06-18 2005-10-06 アーデーツエー・オートモテイブ・デイスタンス・コントロール・システムズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 物体検出用システムにおける妨害を抑制するための方法
DE10347364A1 (de) * 2003-10-11 2005-05-12 Valeo Schalter & Sensoren Gmbh Verfahren zum Detektieren eines Hindernisses in dem Detektionsbereich einer Detektionsvorrichtung
DE102004026182A1 (de) * 2004-05-28 2005-12-22 Robert Bosch Gmbh Verfahren zur Reduzierung von Störsignaleinflüssen auf ein Hochfrequenzmessgerät, sowie Hochfrequenzmessgerät
JP2006135891A (ja) * 2004-11-09 2006-05-25 Oki Electric Ind Co Ltd 無線通信方法
US7327308B2 (en) * 2005-04-28 2008-02-05 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D. Programmable method and test device for generating target for FMCW radar
DE112006001114T5 (de) * 2005-05-16 2008-04-30 Murata Manufacturing Co. Ltd. Radargerät
JP4923439B2 (ja) * 2005-05-20 2012-04-25 株式会社デンソー レーダ干渉抑制方法
DE102005052369A1 (de) * 2005-10-31 2007-05-03 Robert Bosch Gmbh Messgerät
DE102005056800A1 (de) 2005-11-29 2007-05-31 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Radarsystems und Radarsystem
JP2007232498A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd 障害物検知システム
JP4519797B2 (ja) * 2006-03-30 2010-08-04 富士通テン株式会社 車載レーダ装置及び車載レーダ管制システム
US7714770B2 (en) * 2007-07-16 2010-05-11 Honeywell International Inc. Filtering NAGC response to noise spikes
US7518547B2 (en) * 2007-07-16 2009-04-14 Honeywell International Inc. Method and system of interference detection for radar altimeters
DE102007046645A1 (de) * 2007-09-28 2009-04-02 Robert Bosch Gmbh Messvorrichtung
DE102008040024A1 (de) * 2008-06-30 2009-12-31 Robert Bosch Gmbh Steuerungsnetzwerk für Kraftfahrzeuge
JP5703441B2 (ja) * 2010-11-16 2015-04-22 パナソニックIpマネジメント株式会社 レーダ装置
CN104205182B (zh) 2012-03-20 2018-03-09 飞利浦灯具控股公司 照明设备的控制
JP6190140B2 (ja) * 2012-06-21 2017-08-30 古野電気株式会社 物標探知装置および物標探知方法
WO2014090270A1 (fr) * 2012-12-10 2014-06-19 Fujitsu Technology Solutions Intellectual Property Gmbh Dispositif capteur, procede de fonctionnement d'un dispositif capteur et une utilisation d'un dispositif capteur
JP6334507B2 (ja) * 2013-02-12 2018-05-30 古野電気株式会社 レーダ装置、及び干渉抑制方法
DE102014203723A1 (de) * 2014-02-28 2015-09-03 Robert Bosch Gmbh Verfahren zum Betrieb von mobilen Plattformen
FR3020491B1 (fr) * 2014-04-24 2016-05-27 Hugues Body Dispositif de gestion de stationnement de vehicules et procede de gestion mettant en oeuvre ce dispositif
DE102014014307A1 (de) * 2014-09-25 2016-03-31 Audi Ag Verfahren zum Betrieb einer Mehrzahl von Radarsensoren in einem Kraftfahrzeug und Kraftfahrzeug
US10101436B2 (en) * 2014-10-31 2018-10-16 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for bandwidth selection for radar transmission
CN105652245B (zh) * 2015-12-29 2019-03-15 北京华航无线电测量研究所 一种固态脉冲压缩雷达宽距离覆盖方法
US10261179B2 (en) * 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
WO2017175190A1 (fr) 2016-04-07 2017-10-12 Uhnder, Inc. Transmission adaptative et annulation de brouillage pour radar mimo
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
US9599702B1 (en) 2016-04-25 2017-03-21 Uhnder, Inc. On-demand multi-scan micro doppler for vehicle
US9806914B1 (en) 2016-04-25 2017-10-31 Uhnder, Inc. Successive signal interference mitigation
US9791551B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Vehicular radar system with self-interference cancellation
US9945935B2 (en) 2016-04-25 2018-04-17 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
WO2017187243A1 (fr) 2016-04-25 2017-11-02 Uhnder, Inc. Système de détection de radar de véhicule utilisant un générateur de nombres aléatoires vrais à haut débit
US9772397B1 (en) 2016-04-25 2017-09-26 Uhnder, Inc. PMCW-PMCW interference mitigation
US10573959B2 (en) 2016-04-25 2020-02-25 Uhnder, Inc. Vehicle radar system using shaped antenna patterns
EP3449272B1 (fr) 2016-04-25 2022-11-02 Uhnder, Inc. Système radar de véhicule comportant un système radar et de communication partagé, et procédé de gestion d'un tel système au sein d'un véhicule
US9791564B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Adaptive filtering for FMCW interference mitigation in PMCW radar systems
US9753121B1 (en) 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
WO2018051288A1 (fr) 2016-09-16 2018-03-22 Uhnder, Inc. Configuration de radar virtuel pour réseau 2d
US10317511B2 (en) 2016-11-15 2019-06-11 Veoneer Us, Inc. Systems and methods for synchronizing processor operations over a communications network
US10908272B2 (en) 2017-02-10 2021-02-02 Uhnder, Inc. Reduced complexity FFT-based correlation for automotive radar
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
WO2018146632A1 (fr) 2017-02-10 2018-08-16 Uhnder, Inc. Mise en mémoire tampon de données radar
US10983206B2 (en) * 2017-11-07 2021-04-20 FLIR Belgium BVBA Low cost high precision GNSS systems and methods
US11114321B2 (en) 2017-08-17 2021-09-07 Tokyo Electron Limited Apparatus and method for real-time sensing of properties in industrial manufacturing equipment
EP3444628A1 (fr) * 2017-08-18 2019-02-20 Nxp B.V. Unité radar, circuit intégré et procédés de détection et d'atténuation des interférences mutuelles
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
JP7357191B2 (ja) 2018-06-18 2023-10-06 東京エレクトロン株式会社 製造装置における特性の低干渉でのリアルタイム感知
US11656321B2 (en) * 2018-07-23 2023-05-23 Richwave Technology Corp. Method of microwave motion detection with adaptive frequency control and related devices
US11474225B2 (en) 2018-11-09 2022-10-18 Uhnder, Inc. Pulse digital mimo radar system
US11681017B2 (en) 2019-03-12 2023-06-20 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
WO2021061106A1 (fr) 2019-09-24 2021-04-01 Intel Corporation Procédés et appareil destinés à gérer une coordination radar automobile
US11899126B2 (en) 2020-01-13 2024-02-13 Uhnder, Inc. Method and system for multi-chip operation of radar systems
JP7412588B2 (ja) * 2020-03-17 2024-01-12 華為技術有限公司 信号処理方法および装置ならびに記憶媒体
DE102020107372A1 (de) * 2020-03-18 2021-09-23 HELLA GmbH & Co. KGaA Verfahren zum Betreiben eines Radarsystems
US11822003B2 (en) * 2021-03-01 2023-11-21 Qualcomm Incorporated Methods and systems for adjusting radar parameters based on congestion measurements
KR102628228B1 (ko) * 2021-06-15 2024-01-23 현대모비스 주식회사 레이더 신호 처리 시스템 및 처리 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2871346A (en) * 1954-05-13 1959-01-27 Sanders Associates Inc Noise comparison signal detecting system
US3497815A (en) * 1967-11-28 1970-02-24 Us Navy Automatic noise rejection apparatus
JPS4856083A (fr) * 1971-11-12 1973-08-07
US3801979A (en) * 1972-04-26 1974-04-02 J Chisholm Integrated collision avoidance, dme, telemetry, and synchronization system
US4370652A (en) * 1980-07-02 1983-01-25 Sperry Corporation Control systems for radar receivers
GB2088667B (en) * 1980-09-27 1985-02-20 Marconi Co Ltd A radar system emloying pulses of different types
JPS59187279A (ja) * 1983-04-07 1984-10-24 Nec Corp 干渉除去方式
JPS61133885A (ja) * 1984-12-04 1986-06-21 Nec Corp 複合パルスレ−ダのパルス間干渉除去方式
US4709236A (en) * 1985-05-08 1987-11-24 Westinghouse Electric Corp. Selectable doppler filter for radar systems
US5017921A (en) * 1989-12-13 1991-05-21 Grumman Aerospace Corporation Radar system and a method for operating a radar system
DE4412770A1 (de) * 1994-04-13 1995-10-19 Siemens Ag Mikrowellen-Linsenantennenanordnung für Kraftfahrzeug-Abstandswarnradar
DE19631590C2 (de) * 1996-08-05 1999-09-23 Bosch Gmbh Robert Verfahren zur Behandlung von Störsignalen bei einem Kraftfahrzeug-Radarsystem und Kraftfahrzeug-Radarsystem hierfür
US5828333A (en) * 1997-01-21 1998-10-27 Northrop Grumman Corporation Multiple access diplex doppler radar
DE10059673A1 (de) * 2000-12-01 2002-06-06 Bosch Gmbh Robert Impuls-Radarverfahren sowie Impuls-Radarsensor und System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0244750A1 *

Also Published As

Publication number Publication date
US20040066323A1 (en) 2004-04-08
US6888491B2 (en) 2005-05-03
JP2004529317A (ja) 2004-09-24
JP4102666B2 (ja) 2008-06-18
WO2002044750A1 (fr) 2002-06-06
DE10059673A1 (de) 2002-06-06

Similar Documents

Publication Publication Date Title
EP1342101A1 (fr) Procede radar a impulsions, detecteur radar a impulsions et systeme correspondant
EP1058126B1 (fr) Dispositif de détection à distance
EP2693230B1 (fr) Capteur radar pour un véhicule automobile, véhicule automobile et procédé de communication
EP1601991B1 (fr) Procede et dispositif de re gulation adaptative de puissance
EP1395846B1 (fr) Procede et dispositif pour l'auto-etalonnage d'un ensemble de capteurs radar
DE19744185B4 (de) Einrichtung zur Abstandsmessung mittels Ultraschall
DE102007013266B4 (de) Radarvorrichtung
EP2626722B1 (fr) Capteur optoélectronique et procédé destiné à la détection et la détermination de l'éloignement d'objets
DE102010061382A1 (de) Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
DE19963006A1 (de) Verfahren und Vorrichtung zur Erfassung und Auswertung von Objekten im Umgebungsbereich eines Fahrzeuges
DE19829762A1 (de) Verfahren zum Betrieb eines Radarsystems
WO2006069924A1 (fr) Systeme de radar pour la surveillance de cibles dans differentes zones de distance
WO2012113366A1 (fr) Procédé et système de capteurs radar pour détecter l'emplacement et la vitesse d'objets par rapport à un emplacement de mesure, en particulier d'un véhicule
WO2000068707A1 (fr) Dispositif pour la detection d'objets dans l'environnement d'un vehicule
DE102010024328B4 (de) Radarvorrichtung mit situationsadaptiver Modulationsumschaltung und Steuerungsverfahren
EP2414862B1 (fr) Dispositif de détection radar multifaisceaux et procédé de détermination d'une distance
WO2004053520A2 (fr) Dispositif de mesure de la distance et de la vitesse d'objets
WO2016050629A1 (fr) Capteur radar
DE19963005A1 (de) Verfahren und Vorrichtung zur Erfassung und Auswertung von Objekten im Umgebungsbereich eines Fahrzeuges
EP3258296B1 (fr) Barriere de micro-ondes de reflexion
DE2308812B2 (de) Puls-Doppler-Radareinrichtung zur Verhinderung von Kfz-Kollisionen
DE3782856T2 (de) Radar, geschuetzt gegen regenechos und verfahren zum schutz eines radars gegen regenechos.
WO2014180609A1 (fr) Procédé permettant de surveiller l'environnement d'un dispositif, en particulier d'un dispositif mobile
DE60125776T2 (de) Einrichtung zur überwachung eines bereichs
WO2019101506A1 (fr) Procédé de fonctionnement d'un capteur lidar et capteur lidar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20061123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20090915