EP1342101A1 - Procede radar a impulsions, detecteur radar a impulsions et systeme correspondant - Google Patents
Procede radar a impulsions, detecteur radar a impulsions et systeme correspondantInfo
- Publication number
- EP1342101A1 EP1342101A1 EP01998845A EP01998845A EP1342101A1 EP 1342101 A1 EP1342101 A1 EP 1342101A1 EP 01998845 A EP01998845 A EP 01998845A EP 01998845 A EP01998845 A EP 01998845A EP 1342101 A1 EP1342101 A1 EP 1342101A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radar
- time
- time slot
- time slots
- radar sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/023—Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/10—Systems for measuring distance only using transmission of interrupted, pulse modulated waves
- G01S13/22—Systems for measuring distance only using transmission of interrupted, pulse modulated waves using irregular pulse repetition frequency
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/023—Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
- G01S7/0231—Avoidance by polarisation multiplex
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/023—Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
- G01S7/0235—Avoidance by time multiplex
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/0209—Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9327—Sensor installation details
- G01S2013/93275—Sensor installation details in the bumper area
Definitions
- Pulse radar method as well as pulse radar sensor and system
- the invention is based on a pulse radar method, in particular for motor vehicles, in which interference signals are observed.
- the cause of this interference is the high bandwidth of the radar pulses from the SRR. Broadband is necessary in principle in order to ensure a spatial resolution of the radar sensors.
- a radar sensor transmits at least one radar pulse and receives the echo signal (s). This measurement function is used for the actual obstacle detection. The second measuring function is used for location detection d. H. the radar sensor observes the electromagnetic environment during the remaining time slots of the time frame. On the basis of the interference signals occurring per time slot, it is observed whether a respective time slot is free of interference or not. A decision is then made as to whether the radar sensor should continue to transmit and receive in this time slot or switch to one of the other time slots in the time frame.
- the average interference emission is reduced. This reduces the electromagnetic pollution.
- a radar sensor and possibly further radar sensors discard his / her measurements if interference occurs in the time slot (s) used for the transmission and reception mode. This leads to reliable measurements.
- radar sensors randomly search for little disturbed or undisturbed time slots and maintain such time slots until interference occurs there.
- Radar sensors belonging to a common system or vehicle, particularly if they are arranged adjacent, are advantageously precontrolled according to claim 8 in such a way that they occupy different time slots within the time frame. A complex search for undisturbed time slots is then unnecessary.
- Claim 11 shows an advantageous embodiment of a
- Pulse radar sensor in particular for carrying out the method according to the invention, with which a simple change of a time slot for the transmission and reception of the radar pulses is possible. All that is required is a reversal depending on an evaluated signal.
- Claim 12 shows how an evaluation of radar pulses with respect to interference can be carried out in a simple manner.
- Claims 14 to 16 show measures which effectively reduce mutual interference from radar sensors.
- the simultaneous use of different time slots for different radar sensors and the use of different polarizations results in a high level of immunity to interference within a system.
- FIG. 1 shows a basic structure of a radar sensor for performing the method according to the invention
- FIG. 2 shows the staggered use of time slots by different radar sensors
- Figure 3 shows the mutual interference of radar sensors of two vehicles.
- a microwave carrier oscillator 2 generates a carrier frequency in the radar sensor 1.
- trigger pulse-controlled fast switches 3 and 4 in particular diode switches, the continuous signal of the carrier oscillator 2
- the vibration packet formed via the switch 3 is emitted via an antenna 5. After reflection on a possible obstacle, parts of this signal are collected by the receiving antenna 6 and fed to a mixer 7.
- This mixer 7 mixes the vibration packet formed via the switch 4 with the received signal.
- the mixer 7 provides an output signal 8 when the received and the scanning signal coincide (via switch 4). With the help of a controllable pulse delay 9, the sampling pulse is compared to the
- the pulse delay 9 is controlled by a control voltage 14. The size of the
- Delay is determined by the known relationship between the two sizes.
- the output signal 8 of the mixer 7 is passed to a control unit 13 via a bandpass amplifier 12.
- the control unit 13 evaluates this echo signal.
- the delay time at which the mixer 7 delivers an output signal is then equal to the transit time of the waves between the radar sensor 1 and the obstacle. From the known propagation speed of the electromagnetic waves and the measured time, the distance of the obstacle is determined.
- the control unit 13 which can be a microprocessor, supplies trigger pulses 18 which, after appropriate preparation, are passed to the switches 3 and 4 as their trigger signals 10 and 11.
- the trigger pulses 18 are passed on the one hand via a pulse port 15 and a pulse shaper 16 to the switch 3 and on the other hand via the pulse delay 9 and pulse shaper 17 to the switch 4.
- a time frame 20 is specified in accordance with FIG. 2, which is shown in FIG.
- Time slots 21, 22, 23, 24 is divided. After the first time frame 20 has elapsed, another time frame begins again with the time slot 21.
- the time frame 20 specifies the cycle time of the measurements.
- Evaluating echoes corresponds to one of these time slots, e.g. B. Time slot 21.
- the monitoring phase ie the time of the remaining time slots 22, 23, 24 within the time frame 20, is used to observe interference which is caused in particular by other radar sensors and allows one or more other radar sensors to carry out their measurements without being disturbed.
- a measurement phase (time slot) and three monitoring phases (remaining time slots) for each radar sensor were assumed as an example. This means that four different radar sensors 401, 402 as well as 411 and 412 can be operated without interference. As shown in FIG. 2, their measurement phases are accommodated in different time slots 21, ..., 24. Any integer ratios of monitoring and measuring phases are of course possible.
- Absolute speed of a vehicle can be and the higher the relative speed change, the shorter a time frame 20 must be).
- the specification of the time frame 20 and the time slots 21,..., 24 is determined by the control unit 13 through the repetition frequency of the trigger pulses 18 or through the pulse gate 15.
- the pulse gate 15 realized for example by an AND circuit which receives 18 gate signals 19 from the control unit in addition to the trigger pulses, the trigger pulses can be forwarded or suppressed and thus the measurement phase can be switched on or off - suppression or transmission of the radar pulses.
- the impulse gate 15 can also be an integral part of the control unit 13, or by internal ones
- Signal linkage can be implemented within the microprocessor.
- Each radar sensor is designed so that interference can be detected.
- the scanning function of the radar sensor is constantly in operation (triggering of switch 4 in every time slot).
- control unit 13 can be supplied with an interface signal 30 in order to ensure that the radar sensors of this system all have their measurement phase in different time slots and do not interfere with one another.
- the interference from other radar sensors is expressed by impulses, the temporal distribution of which is random.
- the mixed output signal 8 is monitored for amplitudes that exceed a certain threshold. If this happens with a certain frequency, it is assumed that another radar sensor is transmitting in this phase. The observing radar sensor will avoid this area as a measurement phase.
- echo and shock pulses occur simultaneously. If the number of pulses is approximately constant, it can be assumed that there are no interference signals. If the number of impulses fluctuates and is high, then there is a high likelihood of fault impulses. The measurement must then be discarded and restarted after an agreed time.
- the interference signal is observed in a measurement cycle and the interference areas are determined, then it can be predicted which time slots may not be used by the radar sensors involved.
- the observing radar sensor can synchronize to a free time slot in the next measuring cycle, e.g. B. time slot 21 and keep this in the further measurements.
- a threshold value decider is necessary to detect whether there are faults in the other time slots of the time frame. If several radar sensors are disturbed, the measurement in both radar sensors is rejected.
- the radar sensors again detect free time slots. To avoid the next free Time slot is used again by several radar sensors, the sensors begin to transmit in a free time slot at random.
- the measurement and monitoring function of the radar sensors can be controlled in a central control device or in the radar sensor itself.
- a processor (control device 13) in the radar sensor is necessary for this.
- neighboring sensors can be triggered (pre-controlled) by a common control device so that they use different time slots.
- This common control device can
- antennas of different polarization with different radar sensors that are susceptible to interference, in particular antennas with 45 ° polarization for mutual purposes Decoupling.
- This method assumes that there is no effective polarization rotation due to the installation of the sensors behind the bumpers or other panels. The rotation of the polarization would reduce the suppression again.
- the simultaneous use of the time slot method and the 45 ° polarization results in a very high level of interference resistance for the system.
- FIG. 3 shows schematically the interference with two vehicles 40 and 41, each with two sensors 401 and 402 or 411 and 412.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
L'invention concerne un procédé radar par impulsions, notamment pour automobiles, selon lequel il est prévu des intervalles temporels (21, , 24) d'un cadre temporel (20). Pendant un intervalle temporel, un détecteur radar (1) émet au moins une impulsion radar et reçoit le(s) signal(aux) d'écho. Pendant les autres intervalles (22, 23, 24), le détecteur radar (1) observe si des signaux parasites interviennent. Sur la base des signaux parasites apparus par intervalle temporel (21, , 24), il est décidé de savoir si le détecteur radar (1) doit poursuivre son mode émetteur et récepteur dans l'intervalle temporel (21) prédéfini ou s'il doit le changer dans un des autres intervalles temporels (22, 23, 24) du cadre temporel (20). Ce procédé s'applique au fonctionnement de plusieurs détecteurs radar, sans induire de parasites.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10059673A DE10059673A1 (de) | 2000-12-01 | 2000-12-01 | Impuls-Radarverfahren sowie Impuls-Radarsensor und System |
DE10059673 | 2000-12-01 | ||
PCT/DE2001/003932 WO2002044750A1 (fr) | 2000-12-01 | 2001-10-13 | Procede radar a impulsions, detecteur radar a impulsions et systeme correspondant |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1342101A1 true EP1342101A1 (fr) | 2003-09-10 |
Family
ID=7665377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01998845A Ceased EP1342101A1 (fr) | 2000-12-01 | 2001-10-13 | Procede radar a impulsions, detecteur radar a impulsions et systeme correspondant |
Country Status (5)
Country | Link |
---|---|
US (1) | US6888491B2 (fr) |
EP (1) | EP1342101A1 (fr) |
JP (1) | JP4102666B2 (fr) |
DE (1) | DE10059673A1 (fr) |
WO (1) | WO2002044750A1 (fr) |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10059673A1 (de) * | 2000-12-01 | 2002-06-06 | Bosch Gmbh Robert | Impuls-Radarverfahren sowie Impuls-Radarsensor und System |
JP2005530164A (ja) * | 2002-06-18 | 2005-10-06 | アーデーツエー・オートモテイブ・デイスタンス・コントロール・システムズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | 物体検出用システムにおける妨害を抑制するための方法 |
DE10347364A1 (de) * | 2003-10-11 | 2005-05-12 | Valeo Schalter & Sensoren Gmbh | Verfahren zum Detektieren eines Hindernisses in dem Detektionsbereich einer Detektionsvorrichtung |
DE102004026182A1 (de) * | 2004-05-28 | 2005-12-22 | Robert Bosch Gmbh | Verfahren zur Reduzierung von Störsignaleinflüssen auf ein Hochfrequenzmessgerät, sowie Hochfrequenzmessgerät |
JP2006135891A (ja) * | 2004-11-09 | 2006-05-25 | Oki Electric Ind Co Ltd | 無線通信方法 |
US7327308B2 (en) * | 2005-04-28 | 2008-02-05 | Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D. | Programmable method and test device for generating target for FMCW radar |
DE112006001114T5 (de) * | 2005-05-16 | 2008-04-30 | Murata Manufacturing Co. Ltd. | Radargerät |
JP4923439B2 (ja) * | 2005-05-20 | 2012-04-25 | 株式会社デンソー | レーダ干渉抑制方法 |
DE102005052369A1 (de) * | 2005-10-31 | 2007-05-03 | Robert Bosch Gmbh | Messgerät |
DE102005056800A1 (de) | 2005-11-29 | 2007-05-31 | Valeo Schalter Und Sensoren Gmbh | Verfahren zum Betreiben eines Radarsystems und Radarsystem |
JP2007232498A (ja) * | 2006-02-28 | 2007-09-13 | Hitachi Ltd | 障害物検知システム |
JP4519797B2 (ja) * | 2006-03-30 | 2010-08-04 | 富士通テン株式会社 | 車載レーダ装置及び車載レーダ管制システム |
US7714770B2 (en) * | 2007-07-16 | 2010-05-11 | Honeywell International Inc. | Filtering NAGC response to noise spikes |
US7518547B2 (en) * | 2007-07-16 | 2009-04-14 | Honeywell International Inc. | Method and system of interference detection for radar altimeters |
DE102007046645A1 (de) * | 2007-09-28 | 2009-04-02 | Robert Bosch Gmbh | Messvorrichtung |
DE102008040024A1 (de) * | 2008-06-30 | 2009-12-31 | Robert Bosch Gmbh | Steuerungsnetzwerk für Kraftfahrzeuge |
JP5703441B2 (ja) * | 2010-11-16 | 2015-04-22 | パナソニックIpマネジメント株式会社 | レーダ装置 |
CN104205182B (zh) | 2012-03-20 | 2018-03-09 | 飞利浦灯具控股公司 | 照明设备的控制 |
JP6190140B2 (ja) * | 2012-06-21 | 2017-08-30 | 古野電気株式会社 | 物標探知装置および物標探知方法 |
WO2014090270A1 (fr) * | 2012-12-10 | 2014-06-19 | Fujitsu Technology Solutions Intellectual Property Gmbh | Dispositif capteur, procede de fonctionnement d'un dispositif capteur et une utilisation d'un dispositif capteur |
JP6334507B2 (ja) * | 2013-02-12 | 2018-05-30 | 古野電気株式会社 | レーダ装置、及び干渉抑制方法 |
DE102014203723A1 (de) * | 2014-02-28 | 2015-09-03 | Robert Bosch Gmbh | Verfahren zum Betrieb von mobilen Plattformen |
FR3020491B1 (fr) * | 2014-04-24 | 2016-05-27 | Hugues Body | Dispositif de gestion de stationnement de vehicules et procede de gestion mettant en oeuvre ce dispositif |
DE102014014307A1 (de) * | 2014-09-25 | 2016-03-31 | Audi Ag | Verfahren zum Betrieb einer Mehrzahl von Radarsensoren in einem Kraftfahrzeug und Kraftfahrzeug |
US10101436B2 (en) * | 2014-10-31 | 2018-10-16 | The United States Of America As Represented By The Secretary Of The Army | Method and apparatus for bandwidth selection for radar transmission |
CN105652245B (zh) * | 2015-12-29 | 2019-03-15 | 北京华航无线电测量研究所 | 一种固态脉冲压缩雷达宽距离覆盖方法 |
US10261179B2 (en) * | 2016-04-07 | 2019-04-16 | Uhnder, Inc. | Software defined automotive radar |
WO2017175190A1 (fr) | 2016-04-07 | 2017-10-12 | Uhnder, Inc. | Transmission adaptative et annulation de brouillage pour radar mimo |
US9846228B2 (en) | 2016-04-07 | 2017-12-19 | Uhnder, Inc. | Software defined automotive radar systems |
US9599702B1 (en) | 2016-04-25 | 2017-03-21 | Uhnder, Inc. | On-demand multi-scan micro doppler for vehicle |
US9806914B1 (en) | 2016-04-25 | 2017-10-31 | Uhnder, Inc. | Successive signal interference mitigation |
US9791551B1 (en) | 2016-04-25 | 2017-10-17 | Uhnder, Inc. | Vehicular radar system with self-interference cancellation |
US9945935B2 (en) | 2016-04-25 | 2018-04-17 | Uhnder, Inc. | Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation |
WO2017187243A1 (fr) | 2016-04-25 | 2017-11-02 | Uhnder, Inc. | Système de détection de radar de véhicule utilisant un générateur de nombres aléatoires vrais à haut débit |
US9772397B1 (en) | 2016-04-25 | 2017-09-26 | Uhnder, Inc. | PMCW-PMCW interference mitigation |
US10573959B2 (en) | 2016-04-25 | 2020-02-25 | Uhnder, Inc. | Vehicle radar system using shaped antenna patterns |
EP3449272B1 (fr) | 2016-04-25 | 2022-11-02 | Uhnder, Inc. | Système radar de véhicule comportant un système radar et de communication partagé, et procédé de gestion d'un tel système au sein d'un véhicule |
US9791564B1 (en) | 2016-04-25 | 2017-10-17 | Uhnder, Inc. | Adaptive filtering for FMCW interference mitigation in PMCW radar systems |
US9753121B1 (en) | 2016-06-20 | 2017-09-05 | Uhnder, Inc. | Power control for improved near-far performance of radar systems |
WO2018051288A1 (fr) | 2016-09-16 | 2018-03-22 | Uhnder, Inc. | Configuration de radar virtuel pour réseau 2d |
US10317511B2 (en) | 2016-11-15 | 2019-06-11 | Veoneer Us, Inc. | Systems and methods for synchronizing processor operations over a communications network |
US10908272B2 (en) | 2017-02-10 | 2021-02-02 | Uhnder, Inc. | Reduced complexity FFT-based correlation for automotive radar |
US11454697B2 (en) | 2017-02-10 | 2022-09-27 | Uhnder, Inc. | Increasing performance of a receive pipeline of a radar with memory optimization |
WO2018146632A1 (fr) | 2017-02-10 | 2018-08-16 | Uhnder, Inc. | Mise en mémoire tampon de données radar |
US10983206B2 (en) * | 2017-11-07 | 2021-04-20 | FLIR Belgium BVBA | Low cost high precision GNSS systems and methods |
US11114321B2 (en) | 2017-08-17 | 2021-09-07 | Tokyo Electron Limited | Apparatus and method for real-time sensing of properties in industrial manufacturing equipment |
EP3444628A1 (fr) * | 2017-08-18 | 2019-02-20 | Nxp B.V. | Unité radar, circuit intégré et procédés de détection et d'atténuation des interférences mutuelles |
US11105890B2 (en) | 2017-12-14 | 2021-08-31 | Uhnder, Inc. | Frequency modulated signal cancellation in variable power mode for radar applications |
JP7357191B2 (ja) | 2018-06-18 | 2023-10-06 | 東京エレクトロン株式会社 | 製造装置における特性の低干渉でのリアルタイム感知 |
US11656321B2 (en) * | 2018-07-23 | 2023-05-23 | Richwave Technology Corp. | Method of microwave motion detection with adaptive frequency control and related devices |
US11474225B2 (en) | 2018-11-09 | 2022-10-18 | Uhnder, Inc. | Pulse digital mimo radar system |
US11681017B2 (en) | 2019-03-12 | 2023-06-20 | Uhnder, Inc. | Method and apparatus for mitigation of low frequency noise in radar systems |
WO2021061106A1 (fr) | 2019-09-24 | 2021-04-01 | Intel Corporation | Procédés et appareil destinés à gérer une coordination radar automobile |
US11899126B2 (en) | 2020-01-13 | 2024-02-13 | Uhnder, Inc. | Method and system for multi-chip operation of radar systems |
JP7412588B2 (ja) * | 2020-03-17 | 2024-01-12 | 華為技術有限公司 | 信号処理方法および装置ならびに記憶媒体 |
DE102020107372A1 (de) * | 2020-03-18 | 2021-09-23 | HELLA GmbH & Co. KGaA | Verfahren zum Betreiben eines Radarsystems |
US11822003B2 (en) * | 2021-03-01 | 2023-11-21 | Qualcomm Incorporated | Methods and systems for adjusting radar parameters based on congestion measurements |
KR102628228B1 (ko) * | 2021-06-15 | 2024-01-23 | 현대모비스 주식회사 | 레이더 신호 처리 시스템 및 처리 방법 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2871346A (en) * | 1954-05-13 | 1959-01-27 | Sanders Associates Inc | Noise comparison signal detecting system |
US3497815A (en) * | 1967-11-28 | 1970-02-24 | Us Navy | Automatic noise rejection apparatus |
JPS4856083A (fr) * | 1971-11-12 | 1973-08-07 | ||
US3801979A (en) * | 1972-04-26 | 1974-04-02 | J Chisholm | Integrated collision avoidance, dme, telemetry, and synchronization system |
US4370652A (en) * | 1980-07-02 | 1983-01-25 | Sperry Corporation | Control systems for radar receivers |
GB2088667B (en) * | 1980-09-27 | 1985-02-20 | Marconi Co Ltd | A radar system emloying pulses of different types |
JPS59187279A (ja) * | 1983-04-07 | 1984-10-24 | Nec Corp | 干渉除去方式 |
JPS61133885A (ja) * | 1984-12-04 | 1986-06-21 | Nec Corp | 複合パルスレ−ダのパルス間干渉除去方式 |
US4709236A (en) * | 1985-05-08 | 1987-11-24 | Westinghouse Electric Corp. | Selectable doppler filter for radar systems |
US5017921A (en) * | 1989-12-13 | 1991-05-21 | Grumman Aerospace Corporation | Radar system and a method for operating a radar system |
DE4412770A1 (de) * | 1994-04-13 | 1995-10-19 | Siemens Ag | Mikrowellen-Linsenantennenanordnung für Kraftfahrzeug-Abstandswarnradar |
DE19631590C2 (de) * | 1996-08-05 | 1999-09-23 | Bosch Gmbh Robert | Verfahren zur Behandlung von Störsignalen bei einem Kraftfahrzeug-Radarsystem und Kraftfahrzeug-Radarsystem hierfür |
US5828333A (en) * | 1997-01-21 | 1998-10-27 | Northrop Grumman Corporation | Multiple access diplex doppler radar |
DE10059673A1 (de) * | 2000-12-01 | 2002-06-06 | Bosch Gmbh Robert | Impuls-Radarverfahren sowie Impuls-Radarsensor und System |
-
2000
- 2000-12-01 DE DE10059673A patent/DE10059673A1/de not_active Withdrawn
-
2001
- 2001-10-13 WO PCT/DE2001/003932 patent/WO2002044750A1/fr active Application Filing
- 2001-10-13 US US10/433,350 patent/US6888491B2/en not_active Expired - Fee Related
- 2001-10-13 JP JP2002546241A patent/JP4102666B2/ja not_active Expired - Fee Related
- 2001-10-13 EP EP01998845A patent/EP1342101A1/fr not_active Ceased
Non-Patent Citations (1)
Title |
---|
See references of WO0244750A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20040066323A1 (en) | 2004-04-08 |
US6888491B2 (en) | 2005-05-03 |
JP2004529317A (ja) | 2004-09-24 |
JP4102666B2 (ja) | 2008-06-18 |
WO2002044750A1 (fr) | 2002-06-06 |
DE10059673A1 (de) | 2002-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1342101A1 (fr) | Procede radar a impulsions, detecteur radar a impulsions et systeme correspondant | |
EP1058126B1 (fr) | Dispositif de détection à distance | |
EP2693230B1 (fr) | Capteur radar pour un véhicule automobile, véhicule automobile et procédé de communication | |
EP1601991B1 (fr) | Procede et dispositif de re gulation adaptative de puissance | |
EP1395846B1 (fr) | Procede et dispositif pour l'auto-etalonnage d'un ensemble de capteurs radar | |
DE19744185B4 (de) | Einrichtung zur Abstandsmessung mittels Ultraschall | |
DE102007013266B4 (de) | Radarvorrichtung | |
EP2626722B1 (fr) | Capteur optoélectronique et procédé destiné à la détection et la détermination de l'éloignement d'objets | |
DE102010061382A1 (de) | Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten | |
DE19963006A1 (de) | Verfahren und Vorrichtung zur Erfassung und Auswertung von Objekten im Umgebungsbereich eines Fahrzeuges | |
DE19829762A1 (de) | Verfahren zum Betrieb eines Radarsystems | |
WO2006069924A1 (fr) | Systeme de radar pour la surveillance de cibles dans differentes zones de distance | |
WO2012113366A1 (fr) | Procédé et système de capteurs radar pour détecter l'emplacement et la vitesse d'objets par rapport à un emplacement de mesure, en particulier d'un véhicule | |
WO2000068707A1 (fr) | Dispositif pour la detection d'objets dans l'environnement d'un vehicule | |
DE102010024328B4 (de) | Radarvorrichtung mit situationsadaptiver Modulationsumschaltung und Steuerungsverfahren | |
EP2414862B1 (fr) | Dispositif de détection radar multifaisceaux et procédé de détermination d'une distance | |
WO2004053520A2 (fr) | Dispositif de mesure de la distance et de la vitesse d'objets | |
WO2016050629A1 (fr) | Capteur radar | |
DE19963005A1 (de) | Verfahren und Vorrichtung zur Erfassung und Auswertung von Objekten im Umgebungsbereich eines Fahrzeuges | |
EP3258296B1 (fr) | Barriere de micro-ondes de reflexion | |
DE2308812B2 (de) | Puls-Doppler-Radareinrichtung zur Verhinderung von Kfz-Kollisionen | |
DE3782856T2 (de) | Radar, geschuetzt gegen regenechos und verfahren zum schutz eines radars gegen regenechos. | |
WO2014180609A1 (fr) | Procédé permettant de surveiller l'environnement d'un dispositif, en particulier d'un dispositif mobile | |
DE60125776T2 (de) | Einrichtung zur überwachung eines bereichs | |
WO2019101506A1 (fr) | Procédé de fonctionnement d'un capteur lidar et capteur lidar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030701 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20061123 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20090915 |