EP1330488A2 - Beschichtung von biologisch abbaubaren formkörpern - Google Patents

Beschichtung von biologisch abbaubaren formkörpern

Info

Publication number
EP1330488A2
EP1330488A2 EP01915350A EP01915350A EP1330488A2 EP 1330488 A2 EP1330488 A2 EP 1330488A2 EP 01915350 A EP01915350 A EP 01915350A EP 01915350 A EP01915350 A EP 01915350A EP 1330488 A2 EP1330488 A2 EP 1330488A2
Authority
EP
European Patent Office
Prior art keywords
film
biodegradable
approximately
starch
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01915350A
Other languages
English (en)
French (fr)
Inventor
Norbert Kaiser
Anneliese Kesselring
Thomas KÖBLITZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APACK AG fur biologische Verpackungen
Original Assignee
APACK AG fur biologische Verpackungen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APACK AG fur biologische Verpackungen filed Critical APACK AG fur biologische Verpackungen
Publication of EP1330488A2 publication Critical patent/EP1330488A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the invention relates to a biodegradable molded body based on a composite formed from starch and biodegradable fiber material, and to a method for producing the same.
  • Packaging materials are produced in large quantities in industry, trade and in the household.
  • fast food chains sell large quantities of food such as hamburgers, French fries, bratwurst etc. as well as hot and cold drinks in plastic packaging such as packaging based on polyethylene, polypropylene, polystyrene, etc.
  • Plastic-based packaging is also widely used in retail.
  • fruit in plastic trays is offered for sale in advance.
  • apples or peaches are also transported and offered in carriers provided with hemispherical depressions.
  • an apple or a peach is placed in each hemispherical recess. These carriers are increasingly made of plastic.
  • plastic containers made in the form of cups, plates, cups, bowls, boxes and carriers of all types have the advantage that they are light in weight.
  • a light weight of these containers is advantageous with regard to the transport costs incurred, both when transporting the unfilled containers themselves and when transporting goods stored in these containers, such as fruit.
  • the containers made of plastic are regularly disposed of after being used once. Due to the wide range of applications and the large number of pieces in which these containers are used regularly, these containers lead to a considerable amount of waste. It is extremely disadvantageous that these containers made of plastic have an extraordinary longevity. There are currently essentially two methods for disposing of these plastic containers.
  • the plastic containers contained in the waste are burned in a waste incineration plant.
  • This approach is disadvantageous.
  • the manufacture of plastic containers is based on the consumption of petroleum, ie a non-renewable source of raw materials.
  • this procedure requires the construction of further waste incineration plants or the greater use of existing waste incineration plants.
  • environmental awareness means that the construction of new waste incineration plants can hardly be implemented today. In this respect, there are increasing disposal difficulties with regard to the steadily growing amount of waste.
  • the plastic containers are reprocessed as the starting material for new plastic containers to be produced.
  • This procedure first requires the plastic containers to be produced in a single variety and, finally, after the plastic containers have been used, a complicated separation of the containers depending on the type of plastic used. Since the plastic containers are still used in particular for fast food chains, the containers must be cleaned of food waste, fat, ketchup, etc. after use. However, such a procedure is complex and costly, so that the used containers are regularly incinerated in a waste incineration plant in accordance with the above-mentioned method.
  • Shaped bodies based on starch are known in the prior art which are partially or fully biodegradable.
  • PCT / EP95 / 00285 discloses a process for the production of moldings in which a viscous mass of biodegradable fiber material, water and starch is baked in a baking mold to form a fiber-starch composite. Waste paper, recycled material or biodegradable fiber material is used as fiber material, which is previously shredded while being crushed.
  • the proportion of starch to water in the viscous mass is preferably 1: 3 to 1: 2.
  • US 5,607,983 discloses a method for producing a biodegradable molded body. Short vegetable fibers, vegetable fiber powder, gelling material, water, blowing agent and auxiliary agents are stirred into a dough and then heated at a temperature of 150 ° C to 200 ° C for 2 to 3 minutes and then dried for 20 minutes at a temperature of 120 ° C ,
  • thermoplastic or destructurized starches a biodegradable hydrophobic polymer and a biodegradable fibrous or capsule-like material that has the ability to capillary-bind water.
  • a dough can be produced from cellulose-containing and protein-containing materials as well as water, which is then shaped and then baked to provide a decomposable, disposable article.
  • the disposable article produced by this process consists of a protein structure in which cellulose is embedded.
  • a method for dispersing cellulose-containing fibers in water is known from EP 0 683 831 B1.
  • This method allows the use of interconnected cellulosic fibers, such as e.g. exist in paper material.
  • an aqueous dispersion of cellulose-containing fibers hydrocolloids, such as Starch, vegetable or animal protein added under strong mechanical action to provide a highly viscous mass in which the cellulose-containing fibers are torn apart and distributed in the viscous mass.
  • starch-based molded articles can be used as containers for moist or wet goods, i.e. not be used for drinks or food or only to a very limited extent.
  • the object of the present invention is to provide a biodegradable molded body which has improved resistance to moisture or liquids. There is also a need for a method for producing such a shaped body.
  • the object of the present invention is achieved by a biodegradable molded body based on a composite formed from starch and biodegradable fiber material, the molded body being at least partially provided with a coating, the coating providing a radiation of energy in a wavelength range from approximately 10 nm to about 400 nm curable or cured film.
  • starch is understood to mean natural starch, chemically and / or physically modified starch, technically produced or genetically modified starch and mixtures thereof.
  • corn starch are used, for example from corn, waxy maize, wheat, barley, rye. Oats, millet, rice, etc or manioc or sorghum is of course also the starch contained in legumes such as beans or peas or starch contained in fruits such as chestnuts, acorns or bananas.
  • the starch contained in roots or tubers can also be used
  • the potato starch contains advantageously j e 200 to 400 anhydroglucose units, a phosphorus Esther group
  • the negatively charged phosphate groups are the anhydroglucose Emheit connected to the C6-Pos ⁇ t ⁇ on
  • the negatively charged phosphate groups cause over the mutual repulsion a detangling of the individual potato-amylopectm molecules.
  • the branches of the amylopectin molecules are largely unfolded or stretched out due to the mutual repulsion of the negatively charged phosphate groups.
  • esterified phosphate groups causes a high viscosity of potato-strong water mixtures
  • biodegradable fiber material is understood to mean, in particular, vegetable and animal fibers.
  • vegetable fibers are preferably cellulose-containing fibers.
  • Animal fibers include so-called protein fibers such as for example wool, hair or silk understood
  • Vegetable fibers which can be of different lengths and widths are particularly preferably used.
  • plant fibers which have a length in the range from approximately 50 ⁇ m to approximately 3000 ⁇ m, preferably from approximately 100 ⁇ m to approximately 2000 ⁇ m, further preferably from approximately 150 ⁇ m to about 1500 microns, more preferably from about 200 microns to about 900 microns, most preferably from 300 microns to about 600 microns
  • the width of the plant fibers can range from about 5 microns to about 100 microns, preferably from about 10 microns to about 60 ⁇ m, particularly preferably from approximately 15 ⁇ m to approximately 45 ⁇ m, are mainly the fibers made from wood, hemp or cotton.
  • Such fibers can be produced in a manner known to the person skilled in the art
  • biodegradable shaped bodies can also contain further additives on the basis of a composite formed from strong and biodegradable fiber material.
  • the shaped body can contain protein
  • the following explanations relate to biodegradable moldings produced using protein.
  • moldings which do not contain any additive in the form of protein can also be used in the present invention.
  • the following explanations also apply to moldings which are produced without the addition of protein
  • a dry mixture containing strong, biodegradable fiber material and protein can be used in the manufacture of the biodegradable molded body
  • protein is understood to mean biopolymers based on amino acids. All so-called proteinogenic amino acids, that is to say the amino acids which are usually involved in protein synthesis, come into question as well as the so-called non-proteinogenic amino acids which are usually not involved in the synthesis of proteins
  • protein is also understood to mean peptides or polypeptides.
  • protein in the context of the invention also includes naturally occurring protein, chemically modified protein, enzymatically modified protein, recombinant protein, protein hydrolyzates or mixtures thereof.
  • the protein can be of vegetable or animal origin sem
  • the dry mix which comprises strong, biodegradable fiber material and protein, surprisingly enables the baking time to be reduced by up to 35%, preferably up to 50%. Furthermore, the use of protein in the dry mix enables the material requirement in the production of moldings to be reduced by up to 10 wt% to 20 wt%
  • the dry mixture containing the protein is first mixed with the addition of water to form a baking mass or a dough.
  • the baking mass produced from the dry mixture is creamy, foamy and voluminous and thus has a lower density to produce a certain volume when using a dry mixture containing protein, less baked material is required compared to a dry mixture which does not contain any protein
  • a certain volume of bakeable mass (baking mass, dough) is placed in a baking pan.
  • bakeable mass dough
  • These baking tins are known from the waffle baking technique
  • Increased volume of the bakable mass based on the protein-containing dry mixture thus reduces the material requirement. Since the shaped bodies produced using the dry mixture are produced in very large numbers, a reduction in the material requirement by up to 10% by weight to 20% by weight means an enormous reduction in costs.
  • the molded body produced using the protein-containing dry mixture has a more closed surface.
  • a more closed surface is particularly advantageous with regard to the thermal insulation ability of the molded body.
  • the protein can be selected from the group consisting of naturally occurring protein, chemically modified protein, enzymatically modified protein, recombinant protein, protein hydrolyzates and mixtures thereof.
  • the dry mix preferably contains about 0.5 to about 12% by weight, more preferably about 2 to about 10% by weight and most preferably about 4 to about 8% by weight of protein.
  • proteins of animal origin such as actin, myoglobin, myosin, hemoglobin, collagen, elastin, immunoglobulins, keratins, fibroin, conchagens, ossein, albumins, caseins, FPC (fish protein concentrate) can be used as proteins.
  • Prolamines such as e.g. Gliadin, Secalin, Hordein, Zein and corn and soy protein can be used. Soy protein in particular has proven to be extremely suitable. Soy protein is also extremely advantageously available commercially in large quantities at low cost.
  • Hydrophobic proteins are preferably used as proteins. Hydrophobic proteins are characterized by a high proportion of uncharged amino acids in the amino acid sequence. In particular, these proteins contain high proportions of glycine, alanine, valine, leucine, isoleucine, phenylalanine, tryptophan, proline and methionine, all of which give the protein a hydrophobic character.
  • proteins listed above are only an exemplary selection to illustrate the invention. Of course, other proteins or protein mixtures can also be used. Essential criterion is that the price of the protein to be used or the protein mixture is low in view of the very large numbers of moldings to be produced.
  • Casein alkali caseinate, alkaline earth caseinate, casein hydrolyzate and mixtures thereof can also be used as protein.
  • casein is used regularly in the form isolated from milk. It is of course also possible to use the ⁇ , ⁇ and ⁇ subunits of casein separately or in certain combinations thereof.
  • Usable casein is commercially available as acid casein from the company BMI-Landshut.
  • the casein can be used as such or as an alkali caseinate or alkaline earth caseinate.
  • Calcium caseinate has proven to be particularly useful. Calcium caseinate that can be used is commercially available as Caseinato Di Calcio from the company BMI-Landshut.
  • the protein-containing dry mixture can comprise further additives.
  • additives make it possible to influence the properties of the biodegradable molded article produced from the dry mixture.
  • hydrophobicizing agents, whitening agents, food colors, flavorings etc. can be contained in the dry mixture as additives.
  • the dry mixture preferably contains up to 10% by weight, preferably 0.3 to 5% by weight, particularly preferably 0.9 to 1.8% by weight of additive.
  • additive includes any compounds that are suitable for influencing the product properties of the molded body. These additives are preferably completely or essentially completely biodegradable. Preferred examples of these additives are hydrophobizing agents, whitening agents, colorants, food colors, flavorings, etc.
  • Hydrophobizing agents are constituents which impart hydrophobic properties to the shaped body produced from the dry mixture.
  • Whiteners are compounds that are used to lighten the color of the moldings.
  • blue dyes are used as dyes, which are used, for example, for coloring fruit bowls or fruit carriers.
  • the following blue dyes can be used, for example: natural colors or lacquered colors.
  • Green dyes are also used, for example, which are used for coloring shells to hold plants. Following green Dyes can be used, for example, natural colors or lacquered colors
  • Food colors are dyes used for the color design of the packaging of food.
  • the flavoring can be used in the sense of the invention, in particular any biodegradable flavoring which, for example, imparts a certain smell and / or taste to the molded body made from the dry mixture
  • hydrophobizing agents are fluoroalkyl polymers, the term "fluoroalkyl polymers" indicating that they are polymers which are composed of, in particular, recurring alkyl units, it being possible for example for one or more, possibly even all, hydrogen atoms to be replaced by fluorine atoms
  • a hydrophobizing agent based on a perfluoroalkyl acrylate copolymer can be used
  • the whitening agent can be a compound having at least one disulfone group.
  • Such compounds are well known to the person skilled in the art in this technical field.
  • An example of such a disulfonic acid compound is 4,4'-bis (1,3,5-t ⁇ aziny lammo) st ⁇ lben- 2,2 'disulfonic acid
  • a baked mass is produced from the dry mixture by adding water and / or gelatinized starch
  • baking mass is understood to mean a baking mass or a dough which can be baked in baking devices known from waffle baking technology, such as, for example, baking tongs to form a shaped body.
  • the bakable mass is, for example, placed in a heated baking mold of such a known baking device, whereupon distributes the bakeable mass in the baking mold and fills it completely.
  • the baking capable mass present in the baking mold releases water or water vapor when heated, which escapes from the baking mold through the provided outlet channels. During this process, the bakeable mass is solidified, providing the desired shaped body
  • the baked mass can be prepared by adding water and optionally additives, if these are not already contained in the dry mixture, with mixing, such as stirring or kneading, from the dry mixture
  • the baked mass preferably contains about 3% to about 15% by weight. preferably about 5% by weight to about 10% by weight, most preferably 7.8% by weight to about 9.8% by weight of biodegradable fiber material, preferably cellulose-containing fibers
  • the bakeable mass preferably contains about 6% by weight to about 30% by weight, preferably about 10% by weight to about 20% by weight, most preferably about 16.1% by weight to about 20.05% by weight of native starch
  • the bakeable mass preferably contains about 2% by weight to about 10% by weight, preferably about 4% by weight to about 8% by weight, most preferably about 5.4% by weight to 6.8% by weight of pregelatinized starch
  • the baked mass preferably contains about 45% to about 90%, preferably about 60% to about 80%, more preferably about 60% to about 75%, most preferably about 63% % to about 71% by weight of water
  • Protein in the baked mass is preferably in an amount of up to 10% by weight, preferably up to about 5% by weight. More preferably contain up to about 3% by weight protein, most preferably up to about 2% by weight
  • Pre-gelatinized starch can be produced from about 90 to about 99.9% by weight and about 0.1 to about 10% by weight of native starch, more preferably from about 95% by weight of water and about 5% by weight of native starch A starch suspension is first produced from these two components. This starch suspension can then be heated and then cooled to give pre-gelatinized starch
  • the heating is preferably carried out to a temperature at which the water suspension of starch granules changes into a paste-like form.
  • This temperature is also known as the Kofler gelatinization temperature.
  • the Kofler gelatinization temperature is between 56 and 66 ° C for potato starch and between 62 and 72 ° C for corn starch
  • the suspension is kept in this temperature range, for example, for a period of about 10 minutes.
  • the pre-gelatinized starch is then cooled.
  • the temperature to which cooling is preferably about 50 ° C. or less
  • the starch suspension or slurry can also be gelatinized with steam in a so-called jet cooker.
  • the bakable mass can of course also be produced without using the dry mixture described above.
  • the respective individual components i.e. Starch, biodegradable fiber material, protein and optionally additives can be mixed with water in any order to prepare the bakable mass.
  • a dough can first be made from starch, biodegradable fiber material and water, to which protein and optionally additives are then added.
  • a bakable mass is preferably characterized by a homogeneous distribution of all components and a viscosity required for the respective purpose.
  • the viscosity of the bakable mass can be adjusted via the proportion of water added to the dry mixture consisting of starch, biodegradable fiber material and protein and optionally additives.
  • the viscosity of the bakable mass which is preferably to be set for the particular molded article to be produced can be determined by a few experiments. Depending on the shape, the size and the respective wall thickness of the molded body to be produced or the size of the baking mold used in each case for baking the molded body, it may be advantageous to adjust the viscosity of the baking mixture accordingly.
  • the baked mass produced is then baked.
  • the bakeable mass is placed in a baking dish and heated at a temperature of preferably about 100 C to about 200 ° C C., particularly preferably at about 150 ° C in a closed baking mold.
  • the baking pan is designed depending on the shape of the desired end product, for example in the form of a bowl or a cup.
  • the baking mold can be formed by at least two baking plates, ie an upper and a lower baking plate, which are accommodated in a baking tongs, the inner surface of the baking plates being kept spaced apart in a closed, locked state of the baking mold to form a mold cavity. The mold cavity will then filled in by the bakeable mass.
  • the baking mold has specially shaped evaporation openings for discharging the water vapor.
  • a plurality of baking tongs can also be used for the simultaneous production of a plurality of shaped bodies. Such baking devices are based on the waffle baking technology known per se.
  • the duration of the baking process is essentially determined by the size of the shaped body to be baked and by the wall thickness of the shaped body set in each case.
  • the baking time is usually between 10 s and approximately 100 s, preferably approximately 30 s to approximately 80 s, more preferably 60 s to 70 s.
  • a fat-containing release agent can be added to the bakeable mass itself or during the preparation of the bakeable mass from the protein-containing dry mixture. Of course, it is also possible to put the fat-containing release agent directly into the baking mold immediately before the baking process.
  • native starch and cellulose fibers were placed in a fluidized bed system on a Conidur floor with an area of 1862 cm 2 (26.6 cm x 70.0 cm). The total dumping height was approximately 225 mm.
  • Potato starch (powdered goods) with a moisture content of about 16% by weight was used as the native starch.
  • Cellulose fibers with a length of approximately 600 ⁇ m and a width of approximately 30 ⁇ m were used as the biodegradable fiber material.
  • the native potato starch and the cellulose fibers were mixed dry in a fluidized bed. Warm air at a temperature of about 70 ° C. and a volume flow of 480 m 3 / h was passed through the starch-cellulose fiber mixture from below the floor to produce a fluidized bed.
  • Pre-gelatinized starch was sprayed from above the fluidized bed at a spray rate of 65 g / min for 5 minutes through two nozzles, each with a nozzle diameter of 0.8 mm and a spray pressure of 1.2 bar.
  • the temperature of the sprayed solution of pre-gelatinized starch was below 50 ° C.
  • the product obtained was a granulate in which starch and cellulose fibers are evenly connected to one another. (The product temperature was 42 ° C and the product moisture was 8.6% by weight.)
  • the bakeable mass indicated above was portioned and, as indicated below, 0.5% by weight to 10% by weight, preferably 0.5% by weight to 2% by weight, protein, i.e. for example, soy, casein or calcium caseinate.
  • the protein was homogeneously distributed in the proportions given below in the bakable mass by mixing.
  • the amount of protein wt .-% refers to 100 wt .-% of the above baked mass.
  • the biodegradable moldings produced by this process have a residual moisture content of about 6% by weight after the baking process, which increases to about 10% by weight residual moisture after storage of the moldings at ambient humidity. Setting a residual moisture content of about 10% by weight has proven to be advantageous with regard to the flexibility of the molded articles produced. It has been shown that a residual moisture content of about 10% by weight makes the moldings more flexible.
  • the more closed surface of the moldings enables a moisture and grease-repellent coating to be reliably applied in the form of a varnish.
  • the moldings can have wall thicknesses of approximately 1.6 to 1.8 mm.
  • moldings with thinner wall thicknesses such as, for example, from approximately 0.8 to approximately 1.4 mm or thicker wall thicknesses such as, for example, from approximately 2.0 to approximately 3.2 mm can also be produced.
  • the biodegradable moldings are extremely advantageously made from renewable raw materials and can be completely or essentially completely biodegradable.
  • the dry mix or bakeable mass is not subject to the "Green Dot" system created in Germany for the disposal of packaging.
  • a manufacturer of the above-mentioned shaped bodies in the form of packaging material does not have to make the mandatory contributions to the "Green Dot" disposal system in the case of conventional packaging.
  • the shaped bodies produced in accordance with the above explanations have a fiber material-starch composite or, if protein is used, a fiber material-starch-protein composite.
  • a film is understood to mean a coherent layer which is arranged on the surface of the biodegradable moldings.
  • the substances that make up the film, i.e. the film-forming material are preferably applied to the shaped body in the form of solutions, dispersions or suspensions and can of course also partially penetrate into the pore structure of the shaped body.
  • lacquers which cure under the influence of UV light can be used as the film-forming material.
  • hardening is understood to mean that the applied film-forming material hardens to form a stable surface layer (so-called lacquer hardening).
  • lacquer hardening the applied film-forming material crosslinks.
  • the coating applied in the form of a film has sufficient resistance to moisture and liquids for normal use of the moldings.
  • the biodegradable moldings according to the invention can be used, for example, as cups or plates for drinks and dishes.
  • the biodegradable molded articles according to the invention can also be used as storage containers for fresh meat or raw fish, for example.
  • the radiated energy is in a wavelength range from approximately 200 nm to approximately 350 nm.
  • the radiated energy is more preferably in a wavelength range from approximately 240 nm to approximately 320 nm.
  • a short curing time of the applied coating is very advantageous in a manufacturing process that is geared towards high throughput quantities.
  • the moldings according to the invention are articles which are produced in very large numbers. Shortening the manufacturing time enables an increase in productivity and thus a reduction in manufacturing costs.
  • a mercury vapor lamp such as an Hg low-pressure lamp, can be used as the light source.
  • the film is produced from film-forming material which is selected from the group consisting of acrylic resin, polyester resin, polyurethane resin, alkyd resin, silicon lacquers, natural lacquers and mixtures thereof.
  • film-forming material which is selected from the group consisting of acrylic resin, polyester resin, polyurethane resin, alkyd resin, silicon lacquers, natural lacquers and mixtures thereof.
  • any lacquer which can be hardened by irradiation with ultraviolet light (UV light) can be used.
  • the resins listed above are understood to be paints which can be cured by exposure to UV light or UV radiation (so-called UV paints).
  • Acrylate resin or acrylic resin are resins which are obtained by homo- or copolymerization of (meth) acrylic acid esters.
  • methyl methacrylate can be used.
  • polyester resin for example, polycondensation products of di- and polyvalent carboxylic acids, e.g. Phthalic acid, adipic acid, trimelitic anhydride, and alcohols, e.g. Glycerin, trimethylolpropane, neopentyl glycol, butanediols, etc. can be used.
  • unsaturated polyesters can also be produced from unsaturated dicarboxylic acids. These resins are also known as unsaturated polyester resins (UP resins).
  • Resins based on polyisocyanate and polyhydroxy compounds are used as the polyurethane resin.
  • Alkyd resins are polyester resins modified with natural fats and oils and / or synthetic fatty acids.
  • alkyd resins can be used for the esterification of di- and polyfunctional alcohols such as ethylene glycol, 1,2-propylene glycol, glycerol, trimethylolpropane, pentaerythritol, dipentaerythritol.
  • Etc. with dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, dimer fatty acid, etc. or their anhydrides and saturated and unsaturated fatty acids.
  • Silicon paints are paints that form an SiO 2 matrix when exposed to UV light.
  • Natural lacquers are more preferably used. Linseed oil is particularly preferably used. Dried substances (siccatives) can also be added to the linseed oil (varnish).
  • the aforementioned film-forming materials can also contain additives.
  • the film-forming material can comprise photosensitizers or photoinitiators, such as, for example, acetophenone, benzophenone, thioxanone or their derivatives.
  • dyes can also be used as additives for coloring the moldings.
  • the dyes can also act as photosensitizers at the same time.
  • the cured film preferably has a layer thickness of approximately 10 ⁇ m to approximately 100 ⁇ m, preferably approximately 20 ⁇ m to approximately 60 ⁇ m.
  • the moldings according to the invention have a very thin coating, which is extremely advantageous. This leads to a very low material requirement and further reduces the manufacturing costs. Furthermore, the moldings can thus be made extremely lightweight. In view of the large numbers in which the moldings are manufactured and delivered, they decrease due to the
  • Wavelength range from about 10 nm to about 400 nm, preferably from about 200 nm to about 350 nm, is cured.
  • the film-forming material which is specified in more detail above, is applied to the shaped body in a solvent.
  • the film-forming material can be applied by dipping, pouring, rolling, spraying or electrostatic coating.
  • the film-forming material is preferably sprayed on.
  • the film-forming material in the form of small droplets, the shaped body can be coated evenly.
  • spraying enables the molded body to be coated even in areas with difficult-to-access shapes, such as in corners or edges.
  • the layer thickness can simply be set via the control or regulation of the spraying time or the set droplet size. Furthermore, the spraying process can be repeated, i.e. one or more further layers are applied in a second or further spray pass.
  • the paint particles are charged electrostatically and applied to the molded body.
  • the film formers can be used in aqueous or solvent dispersions, e.g. EPC (electrophoretic powder coating), APS (aqueous powder suspension), PLW (powder coating in water), NAD (non-aqueous dispersion) or ESTA.
  • the film-forming material can be dissolved in the solvent or can also form a dispersion, suspension or emulsion with the solvent.
  • the solvent is preferably water and / or organic solvents.
  • Ether alcohols aliphatics, alcohols, aromatics, halogenated hydrocarbons, esters, hydroaromatics, ketones, terpene hydrocarbons or mixtures thereof can be used as organic solvents.
  • Preferred organic solvents are alcohols, such as e.g. Ethanol.
  • step (c) is provided between step (a) and step (b), in which the solvent is largely removed.
  • a drying step is provided before the film-forming material is cured.
  • Drying can be done by irradiation with infrared radiation (so-called infrared drying).
  • the shaped bodies provided with the film-forming material can be transported through a drying tunnel in which infrared radiators are arranged.
  • the infrared light can be, for example, in the wavelength range from 1 ⁇ m to 3 ⁇ m.
  • Heating elements such as e.g. Heating coils can be arranged.
  • a drying chamber can also be used, for example with heating elements, e.g. Heating coils, and / or infrared radiators is equipped.
  • heating elements e.g. Heating coils, and / or infrared radiators is equipped.
  • Drying in the form of convection drying can also be carried out.
  • heated gases such as air or inert gases, e.g. e.g. Noble gases (argon) or nitrogen are passed over the moldings (so-called nozzle drying). These heated gases absorb the solvent, e.g. water, and thus cause the shaped body to dry, i.e. Removal of the solvent used.
  • the film-forming material remains on the surface of the molding.
  • the drying process takes about 20 minutes.
  • nozzle drying at 70 ° C it takes about 5 minutes to dry a comparable molded article.
  • infrared radiation the drying time is reduced to about 1 to 3 seconds.
  • the shaped body is arranged in an inert gas atmosphere, preferably a nitrogen atmosphere, and irradiation with infrared radiation, the drying period is reduced to less than one second.
  • High-frequency radiators that emit microwaves can also be used for drying. Even when using high frequency emitters, drying times of less than one second are obtained.
  • the film-forming material is preferably cured by irradiation with energy in a wavelength range from approximately 240 nm to approximately 320 nm.
  • the coating applied to the biodegradable shaped bodies is cured within 2 to 5 seconds without drying.
  • the shaped body is arranged in an atmosphere enriched with inert gas during the hardening in step (b).
  • Nitrogen gas is preferably used as the inert gas.
  • the molded body is arranged in step (b) in an atmosphere enriched with an inert gas, for example an atmosphere enriched with nitrogen, the time required for curing when irradiating energy in a wavelength range from about 240 nm to about 320 nm is reduced by up to fivefold.
  • an atmosphere enriched with nitrogen for example an atmosphere enriched with nitrogen
  • the shaped bodies coated with film-forming material can be guided on high-speed conveying devices through an atmosphere enriched with nitrogen or preferably a nitrogen atmosphere with simultaneous irradiation of UV light, preferably in the wavelength range from 240 nm to 320 nm, the coating or the UV varnish is cured.
  • the coating can of course only be applied to selected sides or surfaces of the molded body.
  • a molded body in the form of a bowl or a tray can only be coated on the inside.
  • the molded body can also be coated on all sides.
  • a molded body designed as a cup can be coated both on the inside and on the outside.
  • the present invention relates to the use of a film curable or irradiated by irradiation of energy in a wavelength range from approximately 10 nm to approximately 400 nm for coating biodegradable molded articles based on a composite formed from starch and biodegradable fiber material.
  • the UV lacquers listed above make it extremely advantageous to process biodegradable moldings in a simple and very efficient manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wrappers (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung betrifft einen biologisch abbaubaren Formkörper auf Basis eines aus Stärke und biologisch abbaubarem Fasermaterial gebildeten Verbundes, wobei der Formkörper wenigstens teilweise mit einer Beschichtung versehen ist, wobei die Beschichtung einen durch Einstrahlung von Energie in einem Wellenlängenbereich von etwa 10 nm bis etwa 400 nm härtbaren oder gehärteten Film umfaßt. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung eines solchen Formkörpers.

Description

Beschichtung von biologisch abbaubaren Formkörpern
Die Erfindung betrifft einen biologisch abbaubaren Formkörper auf Basis eines aus Stärke und biologisch abbaubarem Fasermaterial gebildeten Verbundes sowie ein Verfahren zur Herstellung desselben.
In der Industrie, im Handel und im Haushalt fallen in großen Mengen Verpackungsmaterialien an. Beispielsweise werden in Schnellimbissketten in großen Mengen Speisen wie beispielsweise Hamburger, Pommes Frites, Bratwurst etc. sowie warme und kalte Getränke in Kunststoffverpackungen wie beispielsweise Verpackungen auf Basis von Polyethylen, Polypropylen, Polystyrol, etc. verkauft. Weiterhin finden Verpackungen auf Kunststoffbasis auch im Handel eine breite Verwendung. So wird beispielsweise Obst in Kunststoffschalen vorpoπioniert zum Verkauf angeboten. Weiterhin werden beispielsweise Äpfel oder Pfirsiche auch in mit halbkugelförmigen Vertiefungen versehenen Trägern transportiert und angeboten. Dabei wird in jede halbkugelförmige Vertiefung beispielsweise ein Apfel oder ein Pfirsich gelegt. Diese Träger werden zunehmend aus Kunststoff gefertigt.
Die vorgenannten in Form von Bechern, Tellern, Tassen, Schalen, Schachteln und Trägern aller Art gefertigten Behälter aus Kunststoff haben den Vorteil, daß sie ein geringes Gewicht aufweisen. Ein geringes Gewicht dieser Behälter ist im Hinblick auf die anfallenden Transportkosten zum einen beim Transport der ungefüllten Behälter selbst als auch beim Transport von in diesen Behältern gelagertem Gut, wie beispielsweise Obst, von Vorteil.
Die aus Kunststoff gefertigten Behälter werden regelmäßig nach einmaligem Gebrauch in den Abfall gegeben. Aufgrund der vielfältigen Anwendungsmöglichkeiten und aufgrund der großen Stückzahlen, in denen diese Behälter regelmäßig verwendet werden, führen diese Behälter zu einem beträchtlichen Abfallaufkommen. Äußerst nachteilig ist, daß diese aus Kunststoff gefertigten Behälter eine außerordentliche Langlebigkeit aufweisen. Zur Entsorgung dieser Kunststoffbehälter stehen derzeit im wesentlichen zwei Verfahren zur Verfügung.
Bei dem ersten Verfahren werden die im Abfall enthaltenen Kunststoffbehälter in einer Müllverbrennungsanlage verbrannt. Diese Vorgehensweise ist nachteilig. Zum einen basiert die Herstellung der Kunststoffbehälter auf dem Verbrauch von Erdöl, d.h. einer nicht erneuerbaren Rohstoffquelle. Weiterhin erfordert diese Vorgehensweise den Bau von weiteren Müllverbrennungsanlagen bzw. die stärkere Nutzung von bereits vorhandenen Müllverbrennungsanlagen. Im Zuge des gestiegenen öffentlichen Umweltbewußtseins ist jedoch der Bau von neuen Müllverbrennungsanlagen heute kaum noch durchzusetzen. Insofern bestehen im Hinblick auf das stetig wachsende Abfallaufkommen zunehmend Entsorgungsschwierigkeiten.
Bei dem zweiten Verfahren werden die Kunststoffbehälter einer Wiederaufbereitung als Ausgangsmaterial für neu herzustellende Kunststoffbehälter zugeführt. Diese Vergehensweise erfordert jedoch zunächst eine sortenreine Herstellung der Kunststoffbehälter und schließlich nach dem Gebrauch der Kunststoffbehälter eine aufwendige Trennung der Behälter in Abhängigkeit der jeweils verwendeten Kunststoffsorte. Da die Kunststoffbehälter weiterhin insbesondere bei Schnellimbissketten verwendet werden, müssen die Behälter nach dem Gebrauch von Speiseresten, Fett, Ketchup, etc. gereinigt werden. Eine solche Vorgehensweise ist jedoch aufwendig und kostenintensiv, so daß die gebrauchten Behälter regelmäßig gemäß dem vorstehend aufgeführten Verfahren in einer Müllverbrennungsanlage verbrannt werden.
Im Hinblick auf die mit Kunststoffbehältern verbundenen Nachteile wird seit geraumer Zeit versucht, biologisch abbaubare Behälter herzustellen, die als Teller, Tasse, Tablett, Träger, etc. bei den oben angegebenen Verwendungen eingesetzt werden können.
Im Stand der Technik sind Formkorper auf Stärkebasis bekannt, die teilweise oder vollständig biologisch abbaubar sind.
Aus der PCT/EP95/00285 (WO 96/23026) ist ein Verfahren zur Herstellung von Formkörpern bekannt, bei dem eine viskose Masse aus biologisch abbaubarem Fasermaterial, Wasser und Stärke unter Ausbildung eines Fasermaterial-Stärke- Verbundes in einer Backform gebacken wird. Als Fasermaterial wird dabei Altpapier, Recyclingmaterial oder biologisch abbaubares Fasermaterial verwendet, das zuvor unter Zerkleinerung zerfasert wird. Bevorzugt beträgt der Anteil von Stärke zu Wasser in der viskosen Masse 1:3 bis 1 :2.
Die US 5,607,983 offenbart ein Verfahren zum Herstellen eines biologisch abbaubaren Formkörpers. Dabei werden kurze Pflanzenfasern, Pflanzenfaserpulver, Geliermaterial, Wasser, Treibmittel und Hilfsmittel zu einem Teig verrührt und dann bei einer Temperatur von 150°C bis 200 °C für 2 bis 3 Minuten erhitzt und nachfolgend für 20 Minuten bei einer Temperatur von 120°C getrocknet.
Aus der WO 95/04104 ist ein Verfahren zum Herstellen eines im wesentlichen biologisch abbaubaren Polymerschaumes bekannt, wobei thermoplastische oder destrukturierte Stärken, ein biologisch abbaubares hydrophobes Polymer sowie ein biologisch abbaubares faserartiges oder kapselartiges Material, welches die Fähigkeit besitzt, Wasser kapillaraktiv einzubinden, gemischt wird.
Aus der DE 40 09 408 AI ist bekannt, daß aus cellulosehaltigen und eiweißhaltigen Materialien sowie Wasser ein Teig hergestellt werden kann, der anschließend geformt und dann gebacken wird, um einen verrottbaren Wegwerfartikel bereitzustellen. Der nach diesem Verfahren hergestellte Wegwerfartikel besteht aus einem Eiweißgerüst, in das Cellulose eingelagert ist.
Aus der EP 0 683 831 Bl ist ein Verfahren zum Dispergieren cellulosehaltiger Fasern in Wasser bekannt. Dieses Verfahren erlaubt die Verwendung von miteinander verbundenen cellulosehaltigen Fasern, wie diese z.B. in Papiermaterial vorliegen. Bei einem Feststoffgehalt von bis zu 80% werden einer wässrigen Dispersion aus cellulosehaltigen Fasern Hydrokolloide, wie z.B. Stärke, pflanzliches oder tierisches Protein, unter starker mechanischer Einwirkung zugesetzt, um eine hochviskose Masse bereitzustellen, in der die cellulosehaltigen Fasern auseinandergerissen und in der viskosen Masse verteilt werden.
Nachteilig bei Formkörper auf Stärkebasis ist deren Empfindlichkeit gegenüber Feuchtigkeit bzw. Flüssigkeiten. Somit können diese Formkorper auf Stärkebasis als Behälter für feuchte oder nasse Güter, d.h. beispielsweise für Getränke oder Speisen nicht bzw. nur sehr eingeschränkt verwendet werden.
Aufgabe der vorliegenden Erfindung ist es, einen biologisch abbaubaren Formkörper bereitzustellen, der gegenüber Feuchtigkeit bzw. Flüssigkeiten eine verbesserte Beständigkeit aufweist. Weiterhin besteht ein Bedürfnis an einem Verfahren zur Herstellung eines solchen Formkörpers.
Die Aufgabe der vorliegenden Erfindung wird durch einen biologisch abbaubaren Formkörper auf Basis eines aus Stärke und biologisch abbaubarem Fasermaterial gebildeten Verbundes, wobei der Formkörper wenigstens teilweise mit einer Beschichtung versehen ist, wobei die Beschichtung einen durch Einstrahlung von Energie in einem Wellenlängenbereich von etwa 10 nm bis etwa 400 nm härtbaren oder gehärteten Film umfaßt, gelöst.
Im Sinne der Erfindung wird unter dem Begriff "Stärke" natürliche Stärke, chemisch und/oder physikalisch modifizierte Stärke, technisch hergestellte oder gentechnisch veränderte Stärke sowie Gemische davon verstanden. Als Stärke kann Getreidestärke verwendet werden, die beispielsweise aus Mais, Wachsmais, Weizen, Gerste, Roggen. Hafer, Hirse, Reis, etc oder Maniok oder Sorghum stammt Selbstverständlich kann auch die m Leguminosen wie Bohnen oder Erbsen enthaltene Starke oder in die Fruchten wie beispielsweise Kastanien, Eicheln oder Bananen enthaltene Starke verwendet werden Weiterhin ist die aus Wurzeln oder Knollen enthaltene Starke verwendbar
Besonders geeignet ist Kartoffelstarke Die Kartoffelstarke enthalt vorteilhaft auf je 200 bis 400 Anhydroglucose-Einheiten eine Phosphoresthergruppe Die negativ geladenen Phosphatgruppen sind dabei mit der C6-Posιtιon der Anhydroglucose-Emheit verbunden Bei der Herstellung einer backfähigen Masse aus der Trockenmischung bewirken die negativ geladenen Phosphatgruppen über die gegenseitige Abstoßung eine Entwirrung der einzelnen Kaitoffel-Amylopektm-Molekule Über die gegenseitige Abstoßung der negativ geladenen Phosphatgruppen liegen die Verzweigungen der Amylopektin-Molekule weitgehend entfaltet bzw ausgestreckt vor Dieses Vorhandensein von veresterten Phosphatgruppen bewirkt eine hohe Viskosität von Kartoffelstarke- Wasser-Mischungen
Unter dem Begriff "biologisch abbaubarem Fasermaterial" werden insbesondere pflanzliche und tierische Fasern verstanden Als pflanzliche Fasern werden im Sinne der Erfindung bevorzugt cellulosehaltige Fasern verwendet Cellulosehaltige Fasern smd dabei Fasern jeglicher Art, die Cellulose enthalten oder aus Cellulose bestehen Unter tierischen Fasern werden sog Eiweiß fasern wie beispielsweise Wolle, Haare oder Seiden verstanden
Besonders bevorzugt werden Pflanzenfasern verwendet, die m unterschiedlichen Langen und Breiten vorliegen können Insbesondere werden Pflanzenfasern verwendet, die eine Lange im Bereich von etwa 50 μm bis etwa 3000 μm, bevorzugt von etwa 100 μm bis etwa 2000 μm, weiter bevorzugt von etwa 150 μm bis etwa 1500 μm, noch bevorzugter von etwa 200 μm bis etwa 900 μm, am bevorzugtesten von 300 μm bis etwa 600 μm, aufweist Die Breite der Pflanzenfasern kann in einem Bereich von etwa 5 μm bis etwa 100 μm, bevorzugt von etwa 10 μm bis etwa 60 μm, besonders bevorzugt von etwa 15 μm bis etwa 45 μm, liegen Hauptsächlich werden die Fasern aus Holz, Hanf oder Baumwolle hergestellt Solche Fasern können in einer dem Fachmann bekannten Weise her 'g6e'stellt werden
Des weiteren können die biologisch abbaubaren Formkorper auf Basis eines aus Starke und biologisch abbaubarem Fasermateπal gebildeten Verbundes auch weitere Zusatzstoffe enthalten Beispielsweise kann der Formkorper Protein enthalten Die nachfolgenden Erläuterungen beziehen sich auf unter Verwendung von Protein hergestellte biologisch abbaubare Formkorpern Selbstverständlich können bei der vorliegenden Erfindung auch Fomkorper verwendet werden, die keinen Zusatz m Form von Protein enthalten Insofern gelten die nachstehenden Ausfuhrungen auch für Formkorper die ohne Proteinzusatz hergestellt werden
Bei der Herstellung des biologisch abbaubaren Formkorpers kann ein Trockenmischung verwendet werden, die Starke, biologisch abbaubares Fasermateπal und Protein enthalt
Unter dem Begriff "Protein" werden Biopolymere auf Basis von Aminosäuren verstanden Als Aminosäuren kommen dabei sämtliche sog proteinogenen Aminosäuren, d h die gewohnlich am Proteinaufbau beteiligten Aminosäuren m Frage, als auch die sog nicht proteinogenen Aminosäuren, die üblicherweise nicht am Aufbau von Proteinen beteiligt sind
Unter dem Begriff "Protein" werden auch Peptide oder Polypeptide verstanden Weiterhin umfaßt der Begriff "Protein" im Sinne der Erfindung natürlich vorkommendes Protein, chemisch modifiziertes Protein, enzymatisch modifiziertes Protein, rekombinantes Protein, Proteinhydrolysate oder Gemische davon Das Protein kann dabei pflanzlichen oder tierischen Ursprungs sem
Die Trockenmischung, die Starke, biologisch abbaubares Fasermaterial und Protein umfaßt, ermöglicht überraschenderweise eine Verkürzung der Backzeitdauer von bis 35 %, bevorzugt bis zu 50% Weiterhin ermöglicht die Verwendung von Protein in der Trockenmischung eine Verringerung des Materialbedarfs bei der Herstellung von Formkorpern um bis zu 10 Gew - % bis 20 Gew -%
Um biologisch abbaubare Formkorper herzustellen, wird die protemhaltige Trockenmischung unter Zugabe von Wasser zunächst zu einer backfahigen Masse bzw zu einem Teig vermengt Dabei ist die aus der Trockenmischung hergestellte backfahige Masse cremig, schaumig sowie voluminös und weist somit eine geringere Dichte auf Zur Herstellung eines bestimmten Volumens an backfahiger Masse wird bei Verwendung einer proteinhaltigen Trockenmischung somit weniger Material benotigt, verglichen mit einer Trockenmischung, die kein Protein umfaßt
Zur Herstellung eines biologisch abbaubaren Formkorpers wird ein bestimmtes Volumen an backfahiger Masse (Backmasse, Teig) in eine Backform gegeben Diese Backformen sind aus der Waffelbacktechnik bekannt Da in eine solche Backform jeweils ein bestimmtes Volumen an backfahiger Masse eingefüllt wird, fuhrt das vergrößerte Volumen der auf der proteinhaltigen Trockenmischung basierenden backfähigen Masse somit zu einer Verringerung des Materialbedarfs. Da die unter Verwendung der Trockenmischung hergestellten Formkörper in sehr großen Stückzahlen hergestellt werden, bedeutet eine Verringerung des Materialbedarfs um bis zu 10 Gew.- % bis 20 Gew.-% eine enorme Kostensenkung.
Weiterhin weist der unter Verwendung der proteinhaltigen Trockenmischung hergestellte Formkörper eine geschlossenere Oberfläche auf. Eine geschlossenere Oberfläche ist insbesondere im Hinblick auf die thermische Isolationsfähigkeit des Formkörpers von Vorteil.
Das Protein kann aus der Gruppe ausgewählt werden, die aus natürlich vorkommendem Protein, chemisch modifiziertem Protein, enzymatisch modifiziertem Protein, rekombinantem Protein, Proteinhydrolysaten und Gemischen davon besteht.
In der Trockenmischung sind bevorzugt etwa 0,5 bis etwa 12 Gew.- % , besonders bevorzugt etwa 2 bis etwa 10 Gew.-% und am meisten bevorzugt etwa 4 bis etwa 8 Gew.- % Protein enthalten.
Beispielsweise können als Protein Proteine tierischen Ursprungs wie beispielsweise Actin, Myoglobin, Myosin, Hämoglobin, Collagen, Elastin, Immunglobuline, Keratine, Fibroin, Conchagene, Ossein, Albumine, Caseine, FPC (Fischmehl, engl. : fish protein concentrate) verwendet werden.
Als Proteine pflanzlichen Ursprungs können Prolamine wie z.B. Gliadin, Secalin, Hordein, Zein sowie Mais- und Soja-Protein verwendet werden. Insbesondere Soja- Protein hat sich als äußerst geeignet erwiesen. Weiterhin ist Soja-Protein äußerst vorteilhaft in großen Mengen preisgünstig im Handel erhältlich.
Bevorzugt werden als Proteine hydrophobe Proteine verwendet. Hydrophobe Proteine zeichnen sich dabei durch einen hohen Anteil ungeladener Aminosäuren in der Aminosäuresequenz aus. Insbesondere enthalten diese Proteine hohe Anteile an Glycin, Alanin, Valin, Leucin, Isoleucin, Phenylalanin, Tryptophan, Prolin und Methionin, wobei diese dem Protein insgesamt einen hydrophoben Charakter verleihen.
Dem Fachmann ist klar, daß die vorstehend aufgeführten Proteine nur eine beispielhafte Auswahl zur Veranschaulichung der Erfindung sind. Selbstverständlich können auch weitere Proteine oder Proteinmischungen verwendet werden. Wesentliches Kriterium ist, daß im Hinblick auf die sehr großen Stückzahlen der herzustellenden Formkörper der Preis des einzusetzenden Proteins oder der Proteinmischung gering ist.
Weiterhin ist als Protein Casein, Alkalicaseinat, Erdalkalicaseinat, Caseinhydrolysat und Gemischen davon verwendbar.
Das Casein wird dabei regelmäßig in der aus Milch isolierten Form verwendet. Es ist natürlich auch möglich, die α-,ß- und γ- Untereinheiten von Casein separat bzw. in bestimmten Kombinationen davon einzusetzen. Verwendbares Casein ist im Handel als Säurekasein von dem Unternehmen BMI-Landshut erhältlich. Das Casein kann dabei als solches bzw. auch als Alkalicaseinat bzw. Erdalkalicaseinat verwendet werden. Als besonders verwendbar hat sich das Calciumcaseinat erwiesen. Verwendbares Calciumcaseinat ist im Handel als Caseinato Di Calcio von dem Unternehmen BMI- Landshut erhältlich.
Weiterhin kann die proteinhaltige Trockenmischung weitere Additive umfassen. Über diese Additive ist es möglich, die Eigenschaften des aus der Trockenmischung hergestellten biologisch abbaubaren Formkörpers zu beeinflussen. Beispielsweise können als Additive Hydrophobisierungsmittel, Weißmacher, Lebensmittelfarben, Aromastoffe etc. in der Trockenmischung enthalten sein.
Bevorzugt enthält die Trockenmischung bis zu 10 Gew.-%, bevorzugt 0,3 bis 5 Gew.- %, besonders bevorzugt 0,9 bis 1,8 Gew.- % Additiv.
Der Begriff "Additiv" umfaßt dabei jegliche Verbindungen, die zur Beeinflussung der Produkteigenschaften des Formkörpers geeignet sind. Vorzugsweise sind diese Additive vollständig bzw. im wesentlichen vollständig biologisch abbaubar. Bevorzugte Beispiele dieser Additive sind Hydrophobisierungsmittel, Weißmacher, Farbstoffe, Lebensmittelfarben, Aromastoffe, etc.
Bei Hydrophobisierungsmitteln handelt es sich um Bestandteile, die dem aus der Trockenmischung hergestellten Formkörper hydrophobe Eigenschaften verleihen. Weißmacher sind Verbindungen, die zur Farbaufhellung der Formkörper eingesetzt werden. Als Farbstoffe finden beispielsweise blaue Farbstoffe Verwendung, die beispielsweise zur Färbung von Obstschalen oder Obstträgern verwendet werden. Folgende Blau-Farbstoffe können beispielsweise verwendet werden: Naturfarben oder verlackte Farben. Auch werden beispielsweise grüne Farbstoffe verwendet, die zur Färbung von Schalen zur Aufnahme von Pflanzen eingesetzt werden. Folgende Grün- Farbstoffe können beispielsweise verwendet werden Naturfarben oder verlackte Farben
Bei Lebensmittelfarben handelt es sich um zur farblichen Gestaltung der Verpackung von Lebensmitteln eingesetzte Farbstoffe Als Aromastoff kann im Sinne der Erfindung jeder insbesondere biologisch abbaubare Aromastoff verwendet werden, der beispielsweise dem aus der Trockenmischung hergestellten Formkorper einen bestimmten Geruch und/oder Geschmack verleiht
Ein besonders bevorzugtes Beispiel für Hydrophobisierungsmittel sind Fluoralkylpolymere, wobei der Ausdruck "Fluoralkyspolymere" darauf hinweist, daß es sich um Polymere handelt, die aus insbesondere wiederkehrenden Alkylemheiten aufgebaut sind, wobei em oder mehrere, gegebenenfalls sogar alle, Wasserstoffatome durch Fluoratome ersetzt sein können Beispielsweise kann em auf einem Perfluoralkylakrylat-Copolymer basierendes Hydrophobisierungsmittel verwendet werden
Der Weißmacher kann eine Verbindung mit wenigstens einer Disulfon-Gruppe sein Solche Verbindungen sind dem auf diesem technischen Gebiet einschlagigen Fachmann bestens bekannt Em Beispiel einer solchen Disulfonsaure-Verbmdung ist 4,4'-Bιs (1,3,5 -tπaziny lammo) stιlben-2 , 2 ' -disulf onsaure
Aus der Trockenmischung wird durch Zugabe von Wasser und/oder verkleisterter Starke eine backfahige Masse hergestellt
Unter dem Begriff "backfahige Masse" wird eine Backmasse oder ein Teig verstanden, der in aus der Waffelbacktechnolgie bekannten Backvorπchtungen wie z B Backzangen unter Ausbildung eines Formkorpers gebacken werden kann Die backfahige Masse wird beispielsweise in eine beheizte Backform einer solchen bekannten Backvorrichtung gegeben, worauf sich die backfahige Masse in der Backform verteilt und diese vollständig ausfüllt Die in der Backform vorliegende backfahige Masse gibt unter Warmebeauf schlagung Wasser bzw Wasserdampf ab, der aus der Backform durch vorgesehene Auslaßkanale austritt Wahrend dieses Vorgangs erfolgt die Verfestigung der backfahigen Masse unter Bereitstellung des gewünschten Formkorpers
Die backfahige Masse kann durch Zugabe von Wasser und gegebenenfalls Additiven, soweit diese nicht bereits m der Trockenmischung enthalten sind, unter Vermengen, wie beispielsweise Ruhren oder Kneten, aus der Trockenmischung, zubereitet werden Vorzugsweise enthalt die backfahige Masse etwa 3 Gew - % bis etwa 15 Gew - %. bevorzugt etwa 5 Gew - % bis etwa 10 Gew -% , am bevorzugtesten 7,8 Gew - % bis etwa 9,8 Gew -% biologisch abbaubares Fasermaterial, bevorzugt cellulosehaltige Fasern
Weiterhin enthalt die backfahige Masse bevorzugt etwa 6 Gew - % bis etwa 30 Gew - % , bevorzugt etwa 10 Gew -% bis etwa 20 Gew -%, am bevorzugtesten etwa 16, 1 Gew - % bis etwa 20,05 Gew -% native Starke
Des weiteren enthalt die backfahige Masse bevorzugt etwa 2 Gew -% bis etwa 10 Gew -%, bevorzugt etwa 4 Gew -% bis etwa 8 Gew -%, am bevorzugtesten etwa 5,4 Gew - % bis 6,8 Gew -% vorverkleisterte Starke
Weiterhin enthalt die backfahige Masse bevorzugt etwa 45 Gew - % bis etwa 90 Gew - % , bevorzugt etwa 60 Gew - % bis etwa 80 Gew - % , noch bevorzugter etwa 60 Gew - % bis etwa 75 Gew - %, am bevorzugtesten etwa 63 Gew -% bis etwa 71 Gew -% Wasser
Protein ist in der backfahigen Masse bevorzugt in einer Menge von bis zu 10 Gew -%, bevorzugt bis zu etwa 5 Gew -%. noch bevorzugter etwa bis zu 3 Gew -% Protein, am bevorzugtesten bis zu etwa 2 Gew - % enthalten
Die vorstehenden Angaben in Gewichtsprozent sind jeweils auf das Gesamtgewicht der backfahigen Masse bezogen
Vorverkleisterte Starke kann dabei aus etwa 90 bis etwa 99,9 Gew -% und etwa 0, 1 bis etwa 10 Gew -% nativer Starke, weiter bevorzugt aus etwa 95 Gew - % Wasser und etwa 5 Gew -% nativer Starke hergestellt werden Dabei wird aus diesen beiden Komponenten zunächst eine Starkesuspension hergestellt Diese Starkesuspension kann dann erhitzt und anschließend abgekühlt werden, um vorverkleisterte Starke zu ergeben
Das Erhitzen erfolgt vorzugsweise auf eine Temperatur bei der die wassπge Suspension von Starkekornchen in eine kleisterartige Form übergeht Diese Temperatur ist auch als Kofler-Gelatimsierungstemperatur bekannt Die Kofler-Gelatmisierungstemperatur hegt für Kartoffelstarke zwischen 56 und 66 °C und für Maisstarke zwischen 62 und 72 °C Die Suspension wird dabei beispielsweise über einen Zeitraum von etwa 10 Minuten m diesem Temperaturbereich gehalten Anschließend wird die vorverkleisterte Starke abgekühlt Die Temperatur, auf die abgekühlt wird, betragt vorzugsweise etwa 50 °C oder weniger Die vorstehende Beschreibung zur Herstellung von vorverkleisterter Stärke ist lediglich als ein beispielhaftes Herstellungsverfahren zu verstehen. Dem Fachmann sind selbstverständlich weitere Verfahren zur Herstellung von vorverkleisterter Stärke bekannt, die bei der vorliegenden Erfindung verwendet werden können. Beispielsweise kann die Stärkesuspension bzw. -aufschlämmung auch mit Dampf in einem sogenannten Jetcooker gelatinisiert werden.
Die backfähige Masse kann selbstverständlich auch ohne Verwendung der der vorstehend beschriebenen Trockenmischung hergestellt werden. Die jeweiligen Einzelkomponenten, d.h. Stärke, biologisch abbaubares Fasermaterial, Protein und gegebenenfalls Additive können in einer beliebigen Reihenfolge mit Wasser unter Zubereitung der backfähigen Masse vermengt werden. Dabei kann beispielsweise zunächst ein Teig aus Stärke, biologisch abbaubarem Fasermaterial und Wasser hergestellt werden, zu dem dann Protein und gegebenenfalls Additive zugegeben werden.
Eine backfähige Masse zeichnet sich bevorzugt durch eine homogene Verteilung sämtlicher Bestandteile und eine für den jeweiligen Zweck erforderliche Viskosität aus. Die Viskosität der backfähigen Masse kann über den Anteil an zugegebenen Wasser zu der aus Stärke, biologisch abbaubares Fasermaterial und Protein sowie gegebenenfalls Additiven bestehenden Trockenmischung eingestellt werden. Die für den jeweilig herzustellenden Formkörper bevorzugt einzustellende Viskosität der backfähigen Masse kann durch wenige Versuche ermittelt werden. In Abhängigkeit von der Form, der Größe und der jeweiligen Wandstärke des herzustellenden Formkörpers bzw. der Größe der jeweils verwendeten Backform zum Backen des Formkörpers kann es vorteilhaft sein, die Viskosität der Backmischung entsprechend einzustellen.
Die hergestellte backfähige Masse wird dann gebacken. Hierzu wird die backfähige Masse in eine Backform gegeben und bei einer Temperatur von bevorzugt etwa 100CC bis etwa 200 °C, besonders bevorzugt bei etwa 150°C in einer geschlossenen Backform erwärmt.
Die Backform ist dabei in Abhängigkeit von der Form des gewünschten Endprodukts ausgebildet, beispielsweise in Form einer Schale oder eines Bechers. Die Backform kann durch mindestens zwei Backplatten, d.h. eine obere und eine untere Backplatte gebildet sein, die in einer Backzange aufgenommen sind, wobei die Innenoberfläche der Backplatten in einem geschlossenen verriegelten Zustand der Backform unter Bildung eines Formhohlraums beabstandet gehalten werden. Der Formhohlraum wird dann durch die backfähige Masse ausgefüllt. Die Backform besitzt zum Ausleiten des Wasserdampfs speziell ausgeformte Ausdampf Öffnungen. Für die gleichzeitige Herstellung einer Mehrzahl von Formkörpern können auch eine Mehrzahl von Backzangen verwendet werden. Solche Vorrichtungen zum Backen basieren auf der an sich bekannten Technologie des Waffelbackens.
Die Zeitdauer des Backvorgangs wird im wesentlichen von der Größe des zu backenden Formkörpers als auch von der jeweils eingestellten Wandstärke des Formkörpers bestimmt. Üblicherweise liegt die Backzeit zwischen 10 s und etwa 100 s, bevorzugt bei etwa 30 s bis etwa 80 s, weiter bevorzugt bei 60 s bis 70 s.
Ein fetthaltiges Trennmittel kann zu der backfähigen Masse selbst bzw. während der Zubereitung der backfähigen Masse aus der proteinhaltigen Trockenmischung zugegeben werden. Selbstverständlich ist es aber auch möglich, das fetthaltige Trennmittel unmittelbar vor dem Backvorgang direkt in die Backform zu geben.
Nachfolgend wird die Herstellung einer backfähigen Masse zur Herstellung biologisch abbaubarer Formkörper auf Basis eines aus Stärke und biologisch abbaubarem Fasermaterial gebildeten Verbundes näher erläutert.
Zur Herstellung einer backfähigen Masse wurden native Stärke und Cellulosefasern in eine Wirbelschichtanlage auf einen Conidurboden mit einer Fläche von 1862 cm2 (26,6 cm x 70,0 cm) gegeben. Die Schütthöhe betrug insgesamt etwa 225 mm. Als native Stärke wurde Kartoffelstärke (Puderware) mit einem Feuchtigkeitsgehalt von etwa 16 Gew.- % verwendet. Als biologisch abbaubares Fasermaterial wurden Cellulosefasern mit einer Länge von etwa 600 μm und einer Breite von etwa 30 μm eingesetzt.
Die native Kartoffelstärke und die Cellulosefasern wurden in einer Wirbelschicht trocken gemischt. Dabei wurde von unterhalb des Bodens Warmluft mit einer Temperatur von etwa 70°C und einem Volumenstrom von 480 m3/h durch die Stärke-Cellulosefaser-Mischung geleitet, um eine Wirbelschicht zu erzeugen.
Von oberhalb der Wirbelschicht wurde vorverkleisterte Stärke mit einer Sprührate von 65 g/min für 5 Minuten über zwei Düsen mit jeweils einem Düsendurchmesser von 0,8 mm und einem Sprühdruck von 1 ,2 bar eingesprüht. Die Temperatur der eingesprühten Lösung aus vorverkleisterter Stärke lag unterhalb von 50°C. Das erhaltene Produkt war ein Granulat, bei dem Stärke und Cellulosefasern gleichmäßig miteinander verbunden sind. (Die Produkttemperatur lag bei 42°C, und die Produktfeuchtigkeit lag bei 8,6 Gew.- % .)
Das so hergestellte Granulat wurde mit Wasser vermengt, so daß die nachfolgend angegebenen Konzentrationsbereiche eingestellt wurden:
Die vorstehend angegebene backfähige Masse wurde portioniert und wie nachfolgend angegeben 0,5 Gew.- % bis 10 Gew.- %, bevorzugt 0,5 Gew.-% bis 2 Gew.- % , Protein, d.h. beispielsweise Soja, Casein bzw. Calciumcaseinat versetzt. Das Protein wurde dabei in den jeweils unten angegebenen Anteilen in der backfähigen Masse durch Mischen homogen verteilt. Die zugegebene Menge an Protein Gew.-% bezieht sich auf 100 Gew.- % der oben angegebenen backfähigen Masse.
Die über dieses Verfahren hergestellten biologisch abbaubaren Formkörper weisen nach dem Backvorgang einen Restfeuchtegehalt von etwa 6 Gew.- % auf, der nach Lagerung der Formkörper bei Umgebungsfeuchtigkeit auf etwa 10 Gew.-% Restfeuchtegehalt ansteigt. Das Einstellen eines Restfeuchtegehalts von etwa 10 Gew.-% hat sich im Hinblick auf die Biegsamkeit der hergestellten Formkörper als vorteilhaft erwiesen. Es hat sich nämlich gezeigt, daß ein Restfeuchtegehalt von etwa 10 Gew.-% die Formkörper biegsamer macht.
Die geschlossenere Oberfläche der Formkörper ermöglicht eine zuverlässiger Aufbringung einer feuchtigkeits- und fettabweisenden Beschichtung in Form einer Lackierung.
Unter Verwendung der proteinhaltigen Trockenmischung bzw. der proteinhaltigen backfähigen Masse lassen sich preisgünstig qualitativ hochwertige, biologisch abbaubare Formkörper herstellen. Beispielsweise können die Formkörper von etwa Wandstärken 1 ,6 bis 1 ,8 mm aufweisen. Selbstverständlich können auch Formkörper mit dünneren Wndstärken wie beispielsweise von etwa 0,8 bis etwa 1 ,4 mm oder dickeren Wandstärken wie beispielsweise von etwa 2,0 bis etwa 3,2 mm hergestellt werden. Die biologisch abbaubaren Formkörper sind äußerst vorteilhaft aus erneuerbaren Rohstoffen hergestellt und lassen sich vollständig bzw. im wesentlichen vollständig biologisch abbauen. Insofern unterfallen die aus der Trockenmischung bzw. backfähigen Masse nicht dem in Deutschland geschaffenen System "Grüner Punkt" zur Entsorgung von Verpackungen. D.h. , ein Hersteller der vorgenannten Formkörper in Form von Verpackungsmaterial muß nicht die bei herkömmlichen Verpackungen Pflichtbeiträge an das Entsorgungssystem "Grüner Punkt" abführen.
Die entsprechend den vorstehenden Erläuterungen hergestellten Formkörper weisen einen Fasermaterial-Stärke-Verbund bzw. bei Verwendung von Protein einen Faserrnaterial-Stärke-Protein-Verbund auf.
Unter einem Film wird im Sinne der Erfindung eine zusammenhängende Schicht verstanden, die auf der Oberfläche der biologisch abbaubaren Formkörper angeordnet ist. Die den Film aufbauenden Stoffe, d.h. das filmbildende Material, werden bevorzugt in Form von Lösungen, Dispersionen oder Suspensionen auf den Formkörper aufgebracht und können dabei natürlich auch teilweise in die Porenstruktur des Formkörpers eindringen. Als filmbildendes Material können beispielsweise Lacke, die unter Einstrahlung von UV-Licht aushärten, verwendet werden.
Unter Härtung wird im Sinne der Erfindung verstanden, daß das aufgebrachte filmbildende Material zu einer stabilen Oberflächenschicht aushärtet (sog. Lackhärtung). Bei der Härtung des filmbildenden Materials, beispielsweise eines Lackes, tritt eine Vernetzung des aufgebrachten filmbildenden Materials ein.
Die in Form eines Films aufgebrachte Beschichtung weist eine für den üblichen Gebrauch der Formkörper ausreichende Beständigkeit gegenüber Feuchtigkeit und Flüssigkeiten auf. Das heißt, die erfindungsgemäßen biologisch abbaubaren Formkörper können beispielsweise als Becher oder Teller für Getränke und Speisen verwendet werden. Weiterhin können die erfindungsgemäßen biologisch abbaubaren Formkorper auch als Bevorratungsbehältnisse für beispielsweise Frischfleisch oder rohen Fisch verwendet werden.
Bevorzugt ist, daß die eingestrahlte Energie in einem Wellenlängenbereich von etwa 200 nm bis etwa 350 nm liegt. Weiter bevorzugt liegt die eingestrahlte Energie in einem Wellenlängenbereich von etwa 240 nm bis etwa 320 nm liegt. Die Verwendung von Strahlung mit einer Wellenlänge von 10 nm bis 400 nm, d.h. von Ultraviolett-Strahlung, ermöglicht äußerst vorteilhaft ein Aushärten der aufgebrachten Beschichtung innerhalb weniger Sekunden.
Eine kurze Aushärtungszeit der aufgebrachten Beschichtung ist bei einem auf hohe Durchsatzmengen ausgerichteten Herstellungsverfahren sehr vorteilhaft. Die erfindungsgemäßen Formkörper sind Artikel, die in sehr großen Stückzahlen hergestellt werden. Eine Verkürzung der Herstellungszeit ermöglicht eine Erhöhung der Produktivität und somit eine Verringerung der Herstellungskosten.
Als Lichtquelle kann beispielsweise eine Quecksilberdampf- Lampe, wie zum Beispiel eine Hg-Niederdrucklampe, verwendet werden.
Gemäß einer bevorzugten Weiterbildung ist der Film aus filmbildendem Material erzeugt, das aus der Gruppe, die aus Acrylatharz, Polyesterharz, Polyurethanharz, Alkydharz, Siliciumlacken, Naturlacken und Mischungen davon besteht, ausgewählt wird. Im Sinne der Erfindung ist jeder Lack, der durch Einstrahlung von ultraviolettem Licht (UV-Licht) härtbar ist, verwendbar. Des weiteren werden unter den vorstehend aufgeführten Harzen im Sinne der Erfindung Lacke verstanden, die durch Einstrahlung von UV-Licht bzw. UV-Strahlung härtbar sind (sog. UV-Lacke).
Acrylatharz oder Acrylharz sind Harze, die durch Homo- oder Copolymerisation von (Meth)acrylsäureestern erhalten werden. Beispielsweise kann Methylmethacrylat verwendet werden.
Als Polyesterharz können beispielsweise Polykondensationsprodukte aus zwei- und mehrwertigen Carbonsäuren, z.B. Phthalsäure, Adipinsäure, Trimelithsäureanhydrid, und Alkoholen, z.B. Glycerin, Trimethylolpropan, Neopentylglykol, Butandiole, etc. , verwendet werden. Es können aber auch ungesättigte Polyester aus ungesättigten Dicarbonsäuren hergestellt werden. Diese Harze sind auch als ungesättigte Polyesterharze (UP-Harze) bekannt.
Als Polyurethanharz finden Harze auf Basis von Polyisocyanat und Polyhydroxy Verbindungen Verwendung .
Alkydharze sind mit natürlichen Fetten und Ölen und/oder synthetischen Fettsäuren modifizierte Polyesterharze. Beispielsweise können Alkydharze verwendet werden, die bei der Veresterung von di- und polyfunktionellen Alkoholen wie z.B. Ethylenglykol, 1.2-Propylenglykol, Glycerin, Trimethylolpropan, Pentaerythrit, Dipentaerythrit. etc. mit Dicarbonsäuren wie z.B. Phthalsäure, Isophthalsäure, Terephthalsäure, Maleinsäure, Adipinsäure, Dimerfettsäure, etc. bzw. deren Anhydriden sowie gesättigten und ungesättigten Fettsäuren erhalten werden.
Siliciumlacke sind Lacke, die bei Einstrahlung von UV-Licht eine SiO2-Matrix ausbilden.
Weiter bevorzugt werden Naturlacke verwendet. Besonders bevorzugt wird Leinöl verwendet. Dem Leinöl können beispielsweise noch Trockenstoffe (Sikkative) zugesetzt sein (Firnis).
Die vorgenannten filmbildenden Materialien können weiterhin Zusatzstoffe enthalten. Beispielsweise können das filmbildende Material Photosensibilatoren oder Photoinitiatoren, wie beispielsweise Acetophenon, Benzophenon, Thioxanton oder deren Derivate, umfassen.
Des weiteren können als Zusatzstoffe auch Farbstoffe zur Färbung der Formkörper verwendet werden. Die Farbstoffe können auch gleichzeitig als Photosensibilatoren wirken.
Bevorzugt weist der gehärtete Film eine Schichtdicke von etwa 10 μm bis etwa 100 μm, bevorzugt von etwa 20 μm bis etwa 60 μm, auf.
Äußerst vorteilhaft weisen die erfindungsgemäßen Formkörper eine sehr dünne Beschichtung auf. Dies führt zu einem sehr geringen Materialbedarf und verringert weiterhin die Herstellungskosten. Des weiteren können die Formkörper somit äußerst leichtgewichtig hergestellt werden. Im Hinblick auf die großen Stückzahlen, in denen die Formkörper hergestellt und ausgeliefert werden, verringern sich aufgrund der
Gewichtsreduktion die Transportkosten.
Weiterhin wird die der Erfindung zugrundeliegende Aufgabe durch Bereitstellung eines
Verfahren zur Herstellung eines biologisch abbaubaren Formkörpers gelöst, wobei
(a) filmbildendes Material in einem Lösungsmittel auf den Formkörper aufgebracht wird, (b) das filmbildende Material durch Einstrahlung von Energie in einem
Wellenlängenbereich von etwa 10 nm bis etwa 400 nm, bevorzugt von etwa 200 nm bis etwa 350 nm, gehärtet wird. Das filmbildende Material, das oben näher spezifiziert ist, wird in einem Lösungsmittel auf den Formkörper aufgebracht. Das filmbildende Material kann dabei durch Tauchen, Gießen, Walzen, Sprühen oder elektrostisches Beschichten aufgebracht werden.
Bevorzugt wird das filmbildende Material aufgesprüht. Durch Aufbringung des filmbildenden Materials in Form von kleinen Tröpfchen kann der Formkörper gleichmäßig beschichtet werden. Insbesondere ermöglicht das Aufsprühen ein Beschichten des Formkorpers auch in Bereichen mit schwer zugänglicher Formgebung, wie beispielsweise in Ecken oder Kanten.
Sofern eine bestimmte Schichtdicke erwünscht wird, kann im Fall des Aufsprühens die Schichtdicke einfach über die Steuerung bzw. Regelung der Sprühzeit oder der eingestellten Tropf chengröße eingestellt werden. Des weiteren kann der Sprühvorgang wiederholt werden, d.h. in einem zweiten oder weiteren Sprühdurchgang eine bzw. mehrere weitere Schicht(en) aufgebracht werden.
Bei einem elektrostatischen Beschichten bzw. einer elektrostatischen Lackierung werden die Lackteilchen elektrostatisch aufgeladen und auf den Formkörper aufgebracht. Dabei können die Filmbildner in wässrigen oder Lösungsmittel-Dispersionen, wie z.B. EPC (electrophoretic powder coating), APS (aqueous powder Suspension), PLW( Pulverlack in Wasser), NAD (non aqueous dispersion) oder ESTA, aufgebracht werden.
Das filmbildende Material (Filmbildner) kann dabei in dem Lösungsmittel gelöst sein oder aber auch mit dem Lösungsmittel eine Dispersion, Suspension oder Emulsion bilden.
Bevorzugt ist das Lösungsmittel Wasser und/oder organische Lösungsmittel.
Als organische Lösungsmittel können Etheralkohole, Aliphaten, Alkohole, Aromaten, halogenierte Kohlenwasserstoffe, Ester, Hydroaromaten, Ketone, Terpenkohlen- wasserstoffe oder Mischungen davon verwendet werden.
Bevorzugt werden als organisches Lösungsmittel Alkohole, wie z.B. Ethanol, eingesetzt.
Im Hinblick auf die Arbeitssicherheit sowie aus ökologischen Gesichtspunkten wird Wasser als Lösungsmittel bevorzugt. Gemäß einer weiteren bevorzugten Ausführungsform ist zwischen Schritt (a) und Schritt (b) ein Trocknungsschritt (c) vorgesehen, bei dem das Lösungsmittel weitgehend abgezogen wird.
Insbesondere bei Verwendung von Wasser als Lösungsmittel ist vor dem Härten des filmbildenden Materials ein Trocknungsschritt vorgesehen.
Das Trocknen kann dabei durch Einstrahlung von Infrarot-Strahlung erfolgen (sog. Infrarottrocknung). Dabei können die mit dem filmbildenden Material versehenen Formkörper durch einen Trocknungstunnel, in dem Infrarotstrahler angeordnet sind, transportiert werden. Das Infrarotlicht kann dabei beispielsweise im Wellenlängenbereich von 1 μm bis 3 μm liegen. In dem Trocknungstunnel können auch Heizelemente, wie z.B. Heizwendeln, angeordnet sein.
Selbstverständlich kann auch eine Trocknungskammer verwendet werden, die beispielsweise mit Heizelementen, z.B. Heizwendeln, und/oder Infrarrotstrahlern ausgestattet ist.
Weiterhin kann eine Trocknung in Form von Konvektionstrocknung erfolgen. Dabei können beispielsweise erwärmte Gase, wie zum Beispiel Luft oder Inertgase, d.h. z.B. Edelgase (Argon) oder Stickstoff über die Formkörper geleitet werden (sog. Düsentrocknung). Diese erwärmten Gase nehmen das Lösungsmittel, beispielsweise Wasser auf, und bewirken somit eine Trocknung des Formkörpers, d.h. Entfernung des verwendeten Lösungsmittels. Auf der Oberfläche des Formkörpers verbleibt das filmbildende Material.
Bei Trocknung des Formkörpers in einer Trocknungskammer bei 50 °C dauert der Trocknungvorgang etwa 20 Minuten. Bei Verwendung einer Düsentrocknung bei 70 °C dauert die Trocknung eines vergleichbaren Formkörpers etwa 5 Minuten. Bei Verwendung von Infrarotstrahlung verkürzt sich der Trocknungszeitraum auf etwa 1 bis 3 Sekunden. Bei Anordnung des Formkörpers in einer Inertgasatmosphäre, bevorzugt einer Stickstoffatmosphäre, und Einstrahlung von Infrarotstrahlung verkürzt sich der Trocknungszeitraum auf weniger als eine Sekunde. Zur Trocknung können auch Hochfrequenzstrahler verwendet werden, die Mikrowellen abstrahlen. Auch bei Verwendung von Hochfrequenzstrahlern werden Trocknungszeiten von weniger als einer Sekunde erhalten.
Bevorzugt wird das filmbildende Material durch Einstrahlung von Energie in einem Wellenlängenbereich von etwa 240 nm bis etwa 320 nm gehärtet. Bei Verwendung von filmbildenden Materialien in organischen Lösungsmitteln und Einstrahlung von Energie in einem Wellenlängenbereich von etwa 240 nm bis etwa 320 nm wird die auf die biologisch abbaubaren Formkörper aufgebrachte Beschichtung ohne Trocknung innerhalb von 2 bis 5 Sekunden ausgehärtet.
Gemäß einer bevorzugten Ausführungsform ist der Formkörper während des Härtens im Schritt (b) in einer mit Inertgas angereicherten Atmosphäre angeordnet. Bevorzugt wird als Inertgas Stickstoffgas verwendet.
Bei Anordnung des Formköφers im Schritt (b) in einer mit Inertgas angereicherten Atmosphäre, beispielsweise mit Stickstoff angereicherten Atmosphäre, verkürzt sich die für die Härtung erforderliche Zeit bei der Einstrahlung von Energie in einem Wellenlängenbereich von etwa 240 nm bis etwa 320 nm um das bis zu Fünffache. Je größer der Anteil an Inertgas, bevorzugt Stickstoff, in der Atmosphäre ist, um so kürzer ist der für die Härtung des filmbildenden Materials, bevorzugt des UV-Lackes, erforderliche Zeitraum.
Insofern können die mit filmbildendem Material beschichteten Formköφern auf schnellaufenden Fördereinrichtungen durch eine mit Stickstoff angereicherte Atmosphäre bzw. bevorzugt eine Stickstoff-Atmosphäre unter gleichzeitiger Einstrahlung von UV-Licht, bevorzugt im Wellenlängenbereich von 240 nm bis 320 nm, geführt werden, wobei die Beschichtung bzw. der UV-Lack ausgehärtet wird.
Mit dem erfindungsgemäßen Verfahren können somit äußerst vorteilhaft sehr effektiv biologisch abbaubare Formköφer auf Basis eines Fasermaterial-Stärke-Verbundes mit einer flüssigkeitsbeständigen Beschichtung versehen werden.
Die Beschichtung kann selbstverständlich nur auf ausgewählten Seiten bzw. Oberflächen des Formköφers aufgebracht werden. Beispielsweise kann ein Formköφer in der Form eines Napfes oder eines Tabletts nur auf der Innenseite beschichtet werden bzw. sein. Selbstverständlich kann der Formköφer auch allseitig beschichtet werden bzw. sein. Beispielsweise kann ein als Becher ausgebildeter Formköφer sowohl auf der Innenseite als auch auf der Außenseite beschichtet werden bzw. sein.
Weiterhin betrifft die vorliegende Erfindung die Verwendung eines durch Einstrahlung von Energie in einem Wellenlängenbereich von etwa 10 nm bis etwa 400 nm härtbaren oder gehärteten Films zur Beschichtung von biologisch abbaubarer Formköφer auf Basis eines aus Stärke und biologisch abbaubarem Fasermaterial gebildeten Verbundes. Äußerst vorteilhaft ermöglichen die oben aufgeführten UV-Lacke eine verfahrensmäßig einfache und sehr effiziente Beschichtung von biologisch abbaubaren Formköφern.

Claims

Patentansprüche
1. Biologisch abbaubarer Formköφer auf Basis eines aus Stärke und biologisch abbaubarem Fasermaterial gebildeten Verbundes, dadurch gekennzeichnet, daß der Formköφer wenigstens teilweise mit einer Beschichtung versehen ist, wobei die Beschichtung einen durch Einstrahlung von Energie in einem Wellenlängenbereich von etwa 10 nm bis etwa 400 nm härtbaren oder gehärteten Film umfaßt.
2. Biologisch abbaubarer Formköφer nach Anspruch 1 , dadurch gekennzeichnet, daß die eingestrahlte Energie von etwa 200 nm bis etwa 350 nm liegt.
3. Biologisch abbaubarer Formköφer nach Anspruch 2, dadurch gekennzeichnet, daß die eingestrahlte Energie in einem Wellenlängenbereich von etwa 240 nm bis etwa 320 nm liegt.
4. Biologisch abbaubarer Formköφer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Film aus filmbildendem Material erzeugt ist, das aus der Gruppe, die aus Acrylatharz, Polyesterharz, Polyurethan, Alkydharz, Siliciumlacken, Naturlacken und Mischungen davon besteht, ausgewählt wird.
5. Biologisch abbaubarer Formköφer nach Anspruch 4, dadurch gekennzeichnet, daß das filmbildende Material Leinöl ist.
6. Biologisch abbaubarer Formköφer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der gehärtete Film eine Schichtdicke von etwa 10 μm bis etwa 100 μm, bevorzugt von etwa 20 μm bis etwa 60 μm, aufweist.
7. Verfahren zur Herstellung eines biologisch abbaubaren Formköφers nach einem der Ansprüche 1 bis 6, wobei
(a) filmbildendes Material in einem Lösungsmittel auf den Formköφer aufgebracht wird, (b) das filmbildende Material durch Einstrahlung von Energie in einem Wellenlängenbereich von etwa 10 nm bis etwa 400 nm, bevorzugt von etwa 200 nm bis etwa 350 nm, gehärtet wird.
8. Verfahren nach Anspruch 7, wobei das filmbildende Material im Schritt (a) durch Tauchen, Gießen, Walzen, Sprühen oder elektrostatisches Beschichten aufgebracht wird.
9. Verfahren nach Anspruch 7 oder 8, wobei das Lösungsmittel Wasser und/ oder Alkohol ist.
10. Verfahren nach einem der Ansprüche 7 bis 9, wobei zwischen Schritt (a) und Schritt (b) ein Trocknungsschritt (c) vorgesehen ist, bei dem das Lösungsmittel weitgehend abgezogen wird.
11. Verfahren nach einem der Ansprüche 7 bis 10, wobei das filmbildende Material durch Einstrahlung von Energie in einem Wellenlängenbereich von etwa 240 nm bis etwa 320 nm gehärtet wird.
12. Verfahren nach einem der Ansprüche 7 bis 11, wobei der Formköφer während des Härtens im Schritt (b) in einer mit Inertgas angereicherten Atmosphäre angeordnet ist.
13. Verwendung eines durch Einstrahlung von Energie in einem Wellenlängenbereich von etwa 10 nm bis etwa 400 nm härtbaren oder gehärteten Films zur Beschichtung von biologisch abbaubarer Formköφer auf Basis eines aus Stärke und biologisch abbaubarem Fasermaterial gebildeten Verbundes.
EP01915350A 2000-03-15 2001-03-15 Beschichtung von biologisch abbaubaren formkörpern Withdrawn EP1330488A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10012686 2000-03-15
DE10012686A DE10012686A1 (de) 2000-03-15 2000-03-15 Beschichtung von biologisch abbaubaren Formkörpern
PCT/EP2001/002948 WO2001068763A2 (de) 2000-03-15 2001-03-15 Beschichtung von biologisch abbaubaren formkörpern

Publications (1)

Publication Number Publication Date
EP1330488A2 true EP1330488A2 (de) 2003-07-30

Family

ID=7634859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01915350A Withdrawn EP1330488A2 (de) 2000-03-15 2001-03-15 Beschichtung von biologisch abbaubaren formkörpern

Country Status (4)

Country Link
EP (1) EP1330488A2 (de)
AU (1) AU4246901A (de)
DE (1) DE10012686A1 (de)
WO (1) WO2001068763A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1037033C2 (nl) 2009-06-11 2010-12-15 Ingenia Holding B V Vormdeel alsmede toepassing van een dergelijk vormdeel.
DE202012101536U1 (de) 2012-04-25 2012-05-31 Janet Händler Gebrauchsgegenstand aus biologisch abbaubarem Kunststoff, insbesondere zur Verwendung als Outdoor-Geschirr
CN103965519B (zh) * 2014-05-16 2016-05-04 齐鲁工业大学 一种再生纤维素增强淀粉薄膜的制备方法
IT202000001663A1 (it) * 2020-01-29 2021-07-29 Intercos Italiana Cialda di prodotto cosmetico con supporto ecologico e suo processo di fabbricazione.
IT202000001678A1 (it) * 2020-01-29 2021-07-29 Intercos Italiana Supporto ecologico per prodotti cosmetici e relativi processi di formazione.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634844B2 (ja) * 1989-03-30 1994-05-11 勝次 竹野 ゴルフ用ティ
US5046730A (en) * 1990-12-10 1991-09-10 Bio Dynamics, Ltd. Golf tee
AT399883B (de) * 1993-07-29 1995-08-25 Markus Dipl Ing Rettenbacher Formkörper aus bzw. mit einem umweltverträglichen werkstoff, verfahren zu dessen herstellung sowie dessen verwendung
DE9422084U1 (de) * 1994-01-27 1998-02-05 FVP Formverpackung GmbH, 01445 Radebeul Verpackung
CN1127817A (zh) * 1995-01-26 1996-07-31 拉比多秤和机器工场有限公司 由可生物降解材料生产成型体的方法和成型体
DE19518247A1 (de) * 1995-05-18 1996-11-21 Stoess & Co Gelatine Wasserresistentes Barrierematerial

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0168763A2 *

Also Published As

Publication number Publication date
WO2001068763A3 (de) 2003-05-15
WO2001068763A2 (de) 2001-09-20
DE10012686A1 (de) 2001-09-27
AU4246901A (en) 2001-09-24

Similar Documents

Publication Publication Date Title
EP2836558B1 (de) Abbaubares material aus biologischen komponenten
EP0672080B1 (de) Verfahren zur herstellung von verrottbaren, dünnwandigen formkörpern auf stärkebasis
Lawton Zein: A history of processing and use
DE3043914C2 (de)
DE69630045T2 (de) Biologisch abbaubare werkstoffe auf basis von korn-protein und verfahren zur herstellung
DE69721782T2 (de) Formen von klappbaren, stärkehaltigen Gegenständen
EP0850270B1 (de) Verfahren zur herstellung von formkörpern mit barriereschicht aus biologisch abbaubarem material und formkörper
DE60211583T2 (de) Verfahren zum Kochen/Trocknen von amylosereichen Stärken
EP0850269B1 (de) Verfahren zur herstellung von formkörpern aus biologisch abbaubarem material und formkörper
WO1990014935A1 (de) Verfahren zur herstellung von neuen formkörpern, insbesondere für strukturelemente, isolierungen und/oder verpackung, vorrichtung zur durchführung des verfahrens sowie insbesondere danach bzw. damit erhaltener formkörper
CA2575786C (en) Low temperature molding process for making solid biodegradable articles
EP0474095A1 (de) Zusammensetzung für das Formen biologisch abbaubarer Gebrauchsgegenstände und Verfahren zur Herstellung derselben
EP1330488A2 (de) Beschichtung von biologisch abbaubaren formkörpern
DE69835927T2 (de) Extrusion von Proteinhydrolysaten
DE69734527T2 (de) Verfahren zur herstellung von polymerdispersionen
US20030143417A1 (en) Composition for producing biological degradable shaped bodies and method for producing such a composition
EP1252229A1 (de) Zusammensetzung zur herstellung von biologisch abbaubaren formkörpern sowie verfahren zur herstellung einer solchen zusammensetzung
WO2003020803A2 (de) Haftfähige biologisch abbaubare folie und damit beschichteter formkörper
US20230189861A1 (en) Granulate of only natural constitutions; granulate for the manufacture of composable products and method for manufacturing the granulate and the products obtained therefrom
WO1997043485A1 (de) Formteil bestehend aus strohfasern, papierfasern und einem bindemittel sowie verfahren zur herstellung eines derartigen formteils
DE19903375C1 (de) Zusammensetzung zur Herstellung von biologisch abbaubaren Formkörpern, Verfahren und Verwendung
AT398077B (de) Biologisch abbaubares verpackungs- füll-und polstermaterial mit geringer dichte, verfahren zu seiner herstellung und seine verwendung
AT403645B (de) Verfahren zum wasserabweisenden bzw. wasserdichten beschichten von formkörpern
DE10020461A1 (de) Folienbeschichteter Formkörper
Rashid Sulthan et al. Science and Technology of Shellacs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011123

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIC1 Information provided on ipc code assigned before grant

Ipc: 7B 65D 65/46 B

Ipc: 7C 08L 3/02 A

Ipc: 7C 08L 1/02 B

19U Interruption of proceedings before grant

Effective date: 20030321

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20040204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031001