EP1323202A2 - Installation de piles a combustible assurant une meilleure exploitation du gaz de reaction - Google Patents

Installation de piles a combustible assurant une meilleure exploitation du gaz de reaction

Info

Publication number
EP1323202A2
EP1323202A2 EP01971682A EP01971682A EP1323202A2 EP 1323202 A2 EP1323202 A2 EP 1323202A2 EP 01971682 A EP01971682 A EP 01971682A EP 01971682 A EP01971682 A EP 01971682A EP 1323202 A2 EP1323202 A2 EP 1323202A2
Authority
EP
European Patent Office
Prior art keywords
fuel cell
flow
process gas
cell system
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01971682A
Other languages
German (de)
English (en)
Inventor
Meike Reizig
Rolf BRÜCK
Joachim Gro E
Jörg-Roman KONIECZNY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH, Siemens AG filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP1323202A2 publication Critical patent/EP1323202A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell system with improved utilization of the reaction gas in the process gas, containing a fuel cell stack through which the process gas flows.
  • a fuel cell stack consists of several fuel cell units and is also called a stack in technical terminology.
  • process gas which does not have to consist of 100% reaction gas, is initially still rich in reaction gas, e.g. Hydrogen / oxygen, is consumed. It is therefore converted into a process gas with a lower proportion of reaction gas and a higher proportion of exhaust gas / product water, because reaction gas is emitted to the gas diffusion layer of the electrode on the active cell surface of each individual fuel cell unit and product water from the gas diffusion layer of the electrode is absorbed by the process gas stream on the cathode side.
  • reaction gas e.g. Hydrogen / oxygen
  • reaction gas and the accumulation of waste gas / product water in the process gas stream take place at the outer flow interfaces, so that the decline in reaction gas is not constant across the flow cross-section, but is less in the middle of the flow than in the flow boundary area.
  • transition currents run transversely to the main flow direction, the driving force of which, e.g. is the diffusion, and bring the reaction gas from the middle of the flow into the flow edge area.
  • the mass transfer due to the latter transition flows is determined by two variables, namely area and driving force, whereby the driving force in the direction of flow increases marginally due to increasing depletion, whereas the area that significantly influences the exchange of fluid from the center of the flow to the edge area remains constant due to the constant cross-section of the distribution channels.
  • the mass transfer coefficient ß which can be taken as a measure of the exchange of fluid particles from the center of the flow and from the flow edge, is almost constant within a stack.
  • the resulting exchange is far too low to compensate for the increasing depletion of reaction gas in the flow edge area in the direction of flow.
  • the active cell areas in the rear area of a fuel cell stack are therefore often overflowed with process gas which has only a small residual concentration of reaction gas in the flow edge area and show a falling effectiveness and a falling efficiency.
  • the object of the invention is therefore to construct more powerful and effective stacks with better reaction gas utilization, so that a maximum of reaction gas from the process gas is made available to the active cell areas.
  • variable means that the coefficient ß is not only due to the concentration gradient within the flow cross-section is changed, but that by generating turbulence and / or U deflections in the flow, the area that the transition current must flow through in order to achieve exchange between the middle and edge of the flow is varied.
  • the distribution channels advantageously have structures, such as stumbling edges and deflections, through which the main flow direction of the process gas is directed toward the active cell area.
  • the invention is particularly suitable for implementation in PEM fuel cells or HT-PEM fuel cells.
  • These are fuel cells that work with proton exchange (proton exchange membrane) and have a polymer electrolyte membrane.
  • Such fuel cells can advantageously be operated at temperatures between 60 and 300 ° C., the range above 120 ° C. being assigned to the HT-PEM fuel cell.
  • the mass transfer coefficient ß can be changed by converting the laminar flow prevailing in the distribution channels into a turbulent flow. For example, this is done by structures that divert parts of the flow, create a cross flow and / or turbulence within the distribution channels. In a cross-sectional plane of a distribution channel through which process gas flows, either parts of the external flow to the inside and / or parts of the internal flow directed outwards and mixed with it. Structures for suitable distribution channels are known from WO 91/01807 AI, WO 96/09892 AI or WO 91/01178 AI especially for catalyst arrangements, the disclosure of which is adopted for the application according to the invention.
  • the structures can have different angles to the outer wall of the distribution channel, angles between 20 ° and 90 ° to the main flow direction, in particular angles between 30 ° and 60 °, being preferred.
  • the structures can therefore be simple elevations, such as the "stumbling edges * mentioned within the channel, caused by the turbulence in the flow. This causes an increase in the number of Reynolds and thus an improved mass transport and exchange of fluid particles in the middle of the flow and the area around the flow.
  • a trip bulge is generally referred to as a bulge, which can be either flat or steep, thick or thin pointed, curved or round etc., all variants of flow obstacles being able to be implemented according to the invention.
  • the height and shape of the edge determines the extent of the deflection and can vary within the stack and even within the fuel cell unit, so that the structuring of the distribution channels of the stack can even be adapted to small changes in concentration.
  • the change in the mass transfer coefficient ß can be designed by constructive measures on the distribution channel in such a way that mass transport increases in the direction of flow. This at least partially compensates for the depletion of reaction gas in the flow edge area of the process gas.
  • the deflections in the distribution channel are arranged in such a way that they direct the main flow direction of the process gas flow onto the active cell surface, so that the process gas does not flow over the active cell surface as before, but rather flows towards the active cell surface and thus essentially improved occupation and utilization of the reactive places in the gas diffusion layer is achieved. This forces the process gas flow to at least partially flow through the electrode coating.
  • a cross-sectional tapering of the distribution channels can be used to change the mass transfer coefficient ⁇ , so that the reaction gas utilization in the rear area of the stack is optimized in the distribution channel, even without the formation of further structures.
  • the tapering can also take place periodically, so that a smaller cross-section is followed by a larger one and vice versa and, for example, the flow velocity does not increase on average.
  • a vorteilhaf ⁇ th aspect of the periodic rejuvenation and corresponds causes the tapering of one channel to widen an adjacent channel and vice versa.
  • a larger distribution channel cross section is generally advantageous on the cathode side, because there the volume of the process gas is absorbed by. 2 moles of water increases for only 1 mole of oxygen.
  • a general tapering of the anode-side distribution channel cross section can be advantageous because hydrogen is consumed there.
  • a change in the channel cross section is advantageous.
  • the “rear area * of a stack” is the fuel cell unit (s) in which the concentration of reaction gas in the process gas, in particular in the outer flow edge area, approaches asymptotically zero, so that a good utilization of the active cell area, ie the Reaction sites in the gas diffusion layer is no longer guaranteed. This area also corresponds to the end of the channel.
  • “Structure of a distribution channel * is understood to mean its design on the inside, ie the surface that has a direct direct influence on the process gas flow in the channel.
  • Process gas * is understood to mean the fluid that is introduced into the fuel cell stack for conversion on the active cell surface. It comprises at least a portion of the reaction gas and can still contain inert gas, product water (liquid and / or gaseous) and other constituents.
  • “Fuel cell stack *” is a stack of at least two fuel cell units, preferably polymer membrane electrolyte fuel cells (PEM or HT-PEM) units (conventional or strip cells), the process gas supply channels, each a membrane with an electrode coating on both sides and at least one pole plate to limit the Include fuel cell unit and to form distribution channels for distributing the process gas on the active cell surface.
  • PEM polymer membrane electrolyte fuel cells
  • HT-PEM polymer membrane electrolyte fuel cells
  • fuel cell unit * both a conventional fuel cell, i.e. with a large-area membrane, also referred to as a so-called “strip cell unit”, which has a small membrane area.
  • At least one distribution and / or supply channel of a fuel cell unit is adapted to its arrangement within the stack such that, depending on the degree of consumption of the process gas encountering it, the cross section and / or the structure and shape of the distribution channel result in more or less great turbulence in the process gas flow.
  • a contact between the gas diffusion layer and the internal flow of the process gas can also be established by the periodic displacement of the gas diffusion layer. Please note that the electrical contact within the gas conducting layer must not be interrupted.
  • Curve a) shows the decrease in reaction gas in the flow boundary region, which is the same according to the prior art and according to the invention, because the invention brings about an improvement in the use of reaction gas from the center of the flow.
  • the Reak Use gas in the flow boundary area according to curve a) is optimal anyway, ie it approaches the concentration zero asymptotically because the flow boundary area comes into contact with the reaction sites to be occupied in the gas conducting layer.
  • the situation is different for the center of the flow, which according to the prior art, which as a rule has round distribution channels without an internal structure and a constant cross section, hardly shows a decrease in the concentration of reaction gas over the length of the distribution channel, which among other things is also reflected in the high percentage of reaction gas in the fuel cell exhaust gas. For example, up to 17% of hydrogen can be present in the anode exhaust gas. This is unused fuel, which results in unnecessarily high fuel consumption.
  • curve b) shows a concentration overhang. This concentration overhang in the middle of the flow, which still exists at the end of the channel, is specially marked by the distance ⁇ l and should be as small as possible so that only a little reaction gas with the exhaust gas leaves the stack.
  • curve c) is to be seen, with which a drop in the concentration of reaction gas in the middle of the flow in a channel according to the invention is variable
  • Mass transfer coefficient ß has transverse to the direction of flow, is shown.
  • the ⁇ in curve c i.e. the concentration difference ⁇ 2 within the flow cross-section in a novel distribution channel according to the invention is much smaller here than in the prior art. This means that fuel can be saved to a considerable extent.
  • the invention thus optimizes the utilization of reaction gas by adapting and structuring the distribution channels of the process gas stream, so that the laminar flow of the smooth channels is converted into a turbulent flow and from there an increase in the mass transfer coefficient ⁇ in the flow direction results.
  • the latter can be used particularly advantageously with PEM or HT-PEM fuel cells. If there are stumbling edges and / or deflections in the distribution channels of the pole plates, the main flow direction is directed towards the active surface of the fuel cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

La présente invention concerne une installation de piles à combustible comprenant un empilement de piles à combustible et assurant une meilleure exploitation du gaz de réaction, au moyen de coefficients de transfert de masse variables à l'intérieur de cet empilement. L'exploitation du gaz de réaction est optimisée grâce à l'adaptation et à l'organisation des canaux de distribution du flux de gaz de processus, de façon que l'écoulement laminaire des canaux lisses soit transformé en un écoulement turbulent, ce qui résulte en une augmentation des coefficients de transfert de masse beta dans la zone arrière de l'empilement. Dans un mode de réalisation préféré de la présente invention, des bords de butée et des systèmes de déviation sont pourvus dans les canaux de distribution des plaques polaires et permettent de dévier la direction principale d'écoulement sur la surface active des piles.
EP01971682A 2000-09-12 2001-08-29 Installation de piles a combustible assurant une meilleure exploitation du gaz de reaction Withdrawn EP1323202A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10045098 2000-09-12
DE10045098A DE10045098A1 (de) 2000-09-12 2000-09-12 Brennstoffzellenanlage mit verbesserter Reaktionsgasausnutzung
PCT/DE2001/003319 WO2002023653A2 (fr) 2000-09-12 2001-08-29 Installation de piles a combustible assurant une meilleure exploitation du gaz de reaction

Publications (1)

Publication Number Publication Date
EP1323202A2 true EP1323202A2 (fr) 2003-07-02

Family

ID=7655945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01971682A Withdrawn EP1323202A2 (fr) 2000-09-12 2001-08-29 Installation de piles a combustible assurant une meilleure exploitation du gaz de reaction

Country Status (7)

Country Link
US (1) US20030152822A1 (fr)
EP (1) EP1323202A2 (fr)
JP (1) JP2004509438A (fr)
CN (1) CN1455967A (fr)
CA (1) CA2422052A1 (fr)
DE (1) DE10045098A1 (fr)
WO (1) WO2002023653A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081316B2 (en) * 2002-04-30 2006-07-25 General Motors Corporation Bipolar plate assembly having transverse legs
DE10323644B4 (de) * 2003-05-26 2009-05-28 Daimler Ag Brennstoffzelle mit Anpasssung der lokalen flächenspezifischen Gasströme
DE102008017600B4 (de) * 2008-04-07 2010-07-15 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Gasverteilerfeldplatte mit verbesserter Gasverteilung für eine Brennstoffzelle und eine solche enthaltende Brennstoffzelle
GB2499412A (en) 2012-02-15 2013-08-21 Intelligent Energy Ltd A fuel cell assembly
DE102016107906A1 (de) * 2016-04-28 2017-11-02 Volkswagen Aktiengesellschaft Bipolarplatte aufweisend Reaktantengaskanäle mit variablen Querschnittsflächen, Brennstoffzellenstapel sowie Fahrzeug mit einem solchen Brennstoffzellenstapel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134473A (en) * 1980-03-25 1981-10-21 Toshiba Corp Unit cell for fuel cell
JPS6240169A (ja) * 1985-08-13 1987-02-21 Mitsubishi Electric Corp 燃料電池
JPS63190255A (ja) * 1987-02-02 1988-08-05 Hitachi Ltd 燃料電池構造
JPH02129858A (ja) * 1988-11-10 1990-05-17 Sanyo Electric Co Ltd 燃料電池の冷却板
US5403559A (en) * 1989-07-18 1995-04-04 Emitec Gesellschaft Fuer Emissionstechnologie Device for cleaning exhaust gases of motor vehicles
DE8909128U1 (de) * 1989-07-27 1990-11-29 Emitec Gesellschaft für Emissionstechnologie mbH, 5204 Lohmar Wabenkörper mit internen Anströmkanten, insbesondere Katalysatorkörper für Kraftfahrzeuge
JPH03238760A (ja) * 1990-02-15 1991-10-24 Ngk Insulators Ltd 固体電解質型燃料電池
US5902558A (en) * 1994-09-26 1999-05-11 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Diskwise-constructed honeycomb body, in particular catalyst carrier body and apparatus for catalytic conversion of exhaust gases
DE19808331C2 (de) * 1998-02-27 2002-04-18 Forschungszentrum Juelich Gmbh Gasverteiler für eine Brennstoffzelle
JP3632468B2 (ja) * 1998-04-22 2005-03-23 トヨタ自動車株式会社 燃料電池用ガスセパレータおよび該燃料電池用ガスセパレータを用いた燃料電池
GB9814120D0 (en) * 1998-07-01 1998-08-26 British Gas Plc Cooling of fuel cell stacks
DE19835759A1 (de) * 1998-08-07 2000-02-17 Opel Adam Ag Brennstoffzelle
DE19853911A1 (de) * 1998-11-23 2000-05-25 Forschungszentrum Juelich Gmbh Brennstoffzelle mit Zuführung eines Betriebsmittels über eine gelochte Platte
DE19936011A1 (de) * 1999-08-04 2001-02-15 Wolfgang Winkler Verfahren und Vorrichtung zur Erhöhung der Leistungsdichte von tubularen oxidkeramischen Brennstoffzellen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0223653A2 *

Also Published As

Publication number Publication date
CN1455967A (zh) 2003-11-12
US20030152822A1 (en) 2003-08-14
JP2004509438A (ja) 2004-03-25
WO2002023653A2 (fr) 2002-03-21
CA2422052A1 (fr) 2003-03-10
WO2002023653A3 (fr) 2002-09-06
DE10045098A1 (de) 2002-04-04

Similar Documents

Publication Publication Date Title
EP0876686B1 (fr) Cellule electrochimique refroidie par liquide et munie de canaux de distribution
EP3378117B1 (fr) Plaque bipolaire à sections d'étanchéité asymétriques et empilement de piles à combustible muni d'une telle plaque bipolaire
WO2017186770A1 (fr) Plaque bipolaire comportant des canaux à gaz réactif présentant des surfaces de section transversale variables, empilement de pile à combustible et véhicule équipé d'un tel empilement de pile à combustible
DE102008033211A1 (de) Bipolarplatte für eine Brennstoffzellenanordnung, insbesondere zur Anordnung zwischen zwei benachbarten Membran-Elektroden-Anordnungen
DE112006003413T5 (de) Separator für Brennstoffzellen
DE102011012812A1 (de) Wasserstoffverteilungseinsatz für pem-brennstoffzellenstapel
DE102016111638A1 (de) Bipolarplatte mit variabler Breite der Reaktionsgaskanäle im Eintrittsbereich des aktiven Bereichs, Brennstoffzellenstapel und Brennstoffzellensystem mit solchen Bipolarplatten sowie Fahrzeug
DE102008055808A1 (de) Hydrophile Behandlung von Bipolarplatten für einen stabilen Brennstoffzellenstapelbetrieb bei Niedrigleistung
DE102009009177B4 (de) Wiederholeinheit für einen Brennstoffzellenstapel, Brennstoffzellenstapel und deren Verwendung
DE102011014154B4 (de) Strömungsfeldplatte für Brennstoffzellenanwendungen
EP1323202A2 (fr) Installation de piles a combustible assurant une meilleure exploitation du gaz de reaction
DE102008052945B4 (de) Brennstoffzellenstapel und Verfahren zu dessen Herstellung
EP2156495A1 (fr) Unité récurrente pour empilement de piles à combustible
DE102004057447B4 (de) Versorgungsplatte sowie deren Verwendung
DE102005037093A1 (de) Brennstoffzelle mit Fluidführungskanälen mit sich gegenläufig ändernden Strömungsquerschnitten
DE102006046725B4 (de) Anordnung zur elektrochemischen Umwandlung sowie Verfahren zum Betrieb dieser
DE102016200802A1 (de) Flusskörper-Gasdiffusionsschicht-Einheit für eine Brennstoffzelle, Brennstoffzellenstapel, Brennstoffzellensystem und Kraftfahrzeug
DE102006041296A1 (de) Scheibenelement für eine Stromabnehmerplatte oder Bipolarplatte einer Brennstoffzelle
DE102009043208B4 (de) Materialauslegung, um eine Leistungsfähigkeit einer Brennstoffzelle bei hoher Mittentemperatur mit ultradünnen Elektroden zu ermöglichen
DE102007061128B4 (de) Verfahren zur hydrophilen Behandlung für zusammengebaute PEMFC-Stapel und System zum Abscheiden eines hydrophilen Materials
DE102021206582A1 (de) Brennstoffzellenstapel mit einer Vielzahl von Einzelzellen
EP2263279B1 (fr) Plaque de distributeur de gaz à distribution améliorée du gaz pour une pile à combustible, et pile à combustible comprenant une telle plaque
DE112010002746T5 (de) Reaktionsschicht für Brennstoffzelle
EP2399312B1 (fr) Couche de catalyseur à utiliser dans une pile à combustible et son procédé de réalisation
EP1381101A2 (fr) Système de distribution de fluide et méthode de fabrication d'un système de distribution de fluide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REIZIG, MEIKE

Inventor name: BRUECK, ROLF

Inventor name: KONIECZNY, JOERG-ROMAN

Inventor name: GRO E, JOACHIM

R17D Deferred search report published (corrected)

Effective date: 20020906

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040302