EP1319725A2 - Verfahren zum Herstellen von Warmband - Google Patents

Verfahren zum Herstellen von Warmband Download PDF

Info

Publication number
EP1319725A2
EP1319725A2 EP02025150A EP02025150A EP1319725A2 EP 1319725 A2 EP1319725 A2 EP 1319725A2 EP 02025150 A EP02025150 A EP 02025150A EP 02025150 A EP02025150 A EP 02025150A EP 1319725 A2 EP1319725 A2 EP 1319725A2
Authority
EP
European Patent Office
Prior art keywords
hot
strip
mpa
temperature
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02025150A
Other languages
English (en)
French (fr)
Other versions
EP1319725B1 (de
EP1319725A3 (de
Inventor
Thomas Dr.-Ing. Heller
Werner Zimmermann
Günther Dipl.-Ing. Stich
Bernhard Dr.-Ing. Engl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Stahl AG filed Critical ThyssenKrupp Stahl AG
Publication of EP1319725A2 publication Critical patent/EP1319725A2/de
Publication of EP1319725A3 publication Critical patent/EP1319725A3/de
Application granted granted Critical
Publication of EP1319725B1 publication Critical patent/EP1319725B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment

Definitions

  • Hot strips are increasingly used today Motor vehicle construction for the production of so-called "crash-relevant" components used. It is about components of a motor vehicle that absorb an excessive amount of kinetic energy in an accident and convert it into deformation energy. Around Minimum weight requirements will be met hot strips desired by users, which have a high, strength of at least 800 MPa and a at the same time good cold formability with a thickness of have one to four millimeters.
  • Hot strips intended for this purpose are, for example known from WO 98/40522 and DE 197 19 546 C2.
  • Around to achieve the required strengths contain the known hot strips in each case at least 0.1% by weight Carbon. In this way, strengths of reach up to 1400 MPa. The comparable high However, carbon levels pull a relatively poor one Weldability of the known hot strips.
  • the object of the invention was a to create cost-effective procedures, which enables the properties of high strength, well deformable hot strip on the respective To optimize the intended use.
  • a steel is processed that has low, has sub-peritectic levels of carbon.
  • Such steel can be on a casting and rolling line to thin slabs or on a belt caster shed cast tape.
  • the raw material thus obtained can be made directly to hot strip with low Roll thicknesses from 0.8 mm to 4 mm, for example.
  • the due to the low carbon content Allows good pourability of the invention
  • the steel used allows a continuous ongoing manufacturing process for hot strip production to use. In this way it can be compared to conventional manufacturing method much simplified Process flow inexpensive a hot strip provide that as soon as you leave the Hot strip mill has a thickness, as in particular in automotive engineering for the production of structural elements Body is needed, and at the same time is that its properties after graduation a suitable cooling by choosing one certain reel temperature for each Purpose can be optimized.
  • the low carbon content becomes strength achieved as otherwise only with higher carbon Steels are possible.
  • Hot rolling is ended according to the invention at temperatures above the Ar 3 temperature, since high hot rolling end temperatures have a favorable effect on the rollability and the state of solution of the microalloying elements.
  • the invention is carried out in an intensive, two-stage manner known per se performed cooling of the band.
  • this cooling becomes a pearlite-free, low-carbon bainitic Structure with hardness-increasing proportions of martensite and Preserved austenite.
  • the choice of the reel temperature is essential since according to the invention by the choice of the reel temperature targeted setting of the desired Material properties takes place. In any case tensile strengths of at least 800 MPa are achieved.
  • High reel temperatures of at least 580 ° C lead to a hot strip that has a high yield ratio and associated with it has a high yield strength.
  • Such hot strips are particularly suitable for Manufacture of weakly deformed components in which a high work hardening of the steel due to lack of Deformation is not usable, but in the case of a high energy absorption capacity in the elastic range is needed.
  • the hot strip is used at temperatures in the range of 450 ° C coiled up to 580 ° C, the hot strip obtained has a lower yield strength ratio and therefore one lower yield strength. At the same time they own it procured hot strips produced according to the invention a high solidification capacity even at low Deformation.
  • Hot strips can be made by lowering the reel temperature below 250 ° C, especially below 100 ° C. at such low reel temperatures becomes a hot strip obtained, which has a minimum tensile strength of 900 MPa with a low yield ratio. It thus has the property profile of a Complex phase steel, such as from the WO98 / 40522 is known. In contrast to the known one However, CP steel has one according to the invention significantly lower carbon content and a accordingly improved weldability.
  • the steel 0.05 wt% to 0.07 wt% Contains carbon. It can also be useful to Increasing the hardness of the steel has a Si content of 0.3% by weight to 0.8% by weight, in particular 0.5% by weight to 0.8% by weight. By calcium treatment leaves influence the sulfide form favorably.
  • a compensating furnace must be provided, the primary material before it is hot rolled, passes.
  • the primary material should be in the compensating furnace heated to a temperature above 1050 ° C be high enough Keep microalloying elements in solution.
  • hot strip produced according to the invention is suitable for a Surface finishing, especially for a electrolytic galvanizing or hot-dip galvanizing.
  • Hot strip produced according to the invention in a special way for the production of highly stressed Structural elements for vehicle body construction.
  • elements can be, for example Side impact beams, bumpers, reinforcement elements, Act frame structures, profiles or similar.
  • Hot strip can be produced by cold forming, whereby especially roll profiling for shaping suitable. An additional heat or other Compensation treatment to increase the strength of the components obtained is not regularly required.
  • Hot strip produced according to the invention can be over it roll out to cold strip. Both are suitable hot strip produced according to the invention and also the result thereof rolled cold strip in a special way for a Hot-dip galvanizing.
  • a steel melt with (in% by weight) 0.058% C, 0.61% Si, 1.72% Mn, 0.015% P, 0.001% S, 0.026% Al, 0.0057% N, 0.34% Cr, 0.117% Ti, 0.01% Cu, 0.021% Ni, 0.0028% Ca, rest of iron and unavoidable impurities is in a casting and rolling system has been cast into one strand, from which subsequently in a continuous Process flow thin slabs were divided. As well The thin slabs then have uninterrupted Homogenization of their temperature distribution and their Structure structure one with a temperature above 1050 ° C lying temperature operated compensating furnace go through before continuously in one Hot rolling line for hot strips A1-A5, B1-B10 and C ready have been hot rolled.
  • Hot strips A1-A5, B1-B10 and C are in a first cooling stage with a cooling rate CR of at least 150 K / s have been intensively cooled to an intermediate temperature ZT, on which they then have at least three and at most cooling break of ten seconds without active cooling have been held.
  • a second cooling stage they are Hot strips then from the intermediate temperature ZT Air or under the influence of a coolant accelerated cooled down to a reel temperature HT Service.
  • Table 1 shows the final rolling temperature ET, the cooling rate CR, the intermediate temperature ZT, the reel temperature HT and the thickness D for the hot strips A1-A5, B1-B10 and C.
  • hot strip ET CR ZT HT D [° C] [K / s] [° C] [° C] [Mm]
  • the hot strips A1-A5 coiled at high reel temperatures HT above 580 ° C. each have a pronounced yield strength R e at tensile strengths between 800 MPa and 900 MPa, which is regularly above 690 MPa, in particular above 740 MPa. Accordingly, they have a high energy absorption capacity in the elastic range and are therefore particularly suitable for the production of components that should be able to safely absorb high forces even in the undeformed state or with little deformation.
  • the hot strips B1-B10 coiled in the middle reel temperature range from 450 ° C to 580 ° C also regularly achieve tensile strengths that are above 800 MPa and below 900 MPa.
  • the hot strips B1-B10 have a continuous transition from elastic to plastic deformation, for which a yield strength R p0.2 of less than 690 MPa and a lower yield strength ratio R p0.2 / R m are determined compared to the hot strips A1-A5 has been.
  • the hot strips B1-B10 can therefore be cold-formed particularly well into components that must have a high level of hardening capacity even with little deformation.
  • Hot strips of the type in question are here additional hot strips B11, B12 have been produced.
  • the at their manufacture set Hot strip end temperature ET (900 ° C), cooling rate CR and intermediate temperature ZT (600 ° C) was there comparable to that in the production of hot strips B1 parameters set up to B10.
  • the reel temperature HT in the production of the hot strip B11 was 510 ° C, while on during the production of the hot strip B12 530 ° C was set.
  • the hot bands B11, B12 are then hot-dip galvanized. It is the same Hot strip C e has been subjected to hot-dip galvanizing.
  • hot strips B11, B12 regularly have particularly high strengths R m of at least 880 MPa at annealing temperatures which are less than 800 ° C. If the hot strip C is annealed at annealing temperatures of less than 800 ° C, the strengths R m achieved are at least 900 MPa.
  • the yield strength R e of the galvanized hot strips B11, B12, C is at least at the level of the hot strips B11, B12 and C.
  • the level of uniform elongation A gl and the elongation at break A80 of the galvanized hot strips B11, B12 and C is above the level of the hot strips B11, B12, C from which they were cold-rolled for each of the annealing temperatures.

Abstract

Das erfindungsgemäße Verfahren ermöglicht auf kostengünstig durchführbare Weise, die Eigenschaften von hochfestem, gut verformbarem Warmband auf den jeweiligen Verwendungszweck hin gezielt zu optimieren. Dabei wird ein Stahl verarbeitet, der niedrige, unter-peritektische Gehalte an Kohlenstoff besitzt. Dieser Stahl wird zu Dünnbrammen oder Band vergossen, mit einer mindestens 150 K betragen Abkühlgeschwindigkeit auf eine zwischen 500 °C und 700 °C liegenden Zwischentemperatur abgekühlt und gehaspelt. Durch die Wahl der Haspeltemperatur lassen sich dann die Eigenschaften des erhaltenen Warmbands gezielt einstellen.

Description

Warmbänder werden heute in zunehmenden Maße im Kraftfahrzeugbau für die Herstellung sogenannter "crashrelevanter" Bauelemente verwendet. Es handelt sich dabei um solche Bauteile eines Kraftfahrzeugs, die bei einem Unfall in hohem Maße kinetische Energie aufnehmen und in Verformungsenergie umwandeln. Um diese Anforderungen bei minimiertem Gewicht zu erfüllen, werden von den Verwendern Warmbänder gewünscht, die eine hohe, mindestens 800 MPa betragende Festigkeit und eine gleichzeitig gute Kaltverformbarkeit bei einer Dicke von ein bis vier Millimeter aufweisen.
Für diesen Zweck bestimmte Warmbänder sind beispielsweise aus der WO 98/40522 und der DE 197 19 546 C2 bekannt. Um die geforderten Festigkeiten zu erreichen, enthalten die bekannten Warmbänder jeweils mindestens 0,1 Gew.-% Kohlenstoff. Auf diese Weise lassen sich Festigkeiten von bis zu 1400 MPa erreichen. Die vergleichbar hohen Kohlenstoffgehalte ziehen jedoch eine relativ schlechte Schweißbarkeit der bekannten Warmbänder nach sich. Darüber hinaus lassen sich Stähle, deren Kohlenstoffgehalt im peritektischen Bereich (0,08 Gew.-% bis 1,4 Gew.-%) liegt, nicht auf einer Gießwalzanlage verarbeiten.
Auf einer solchen Gießwalzanlage werden Stahlschmelzen zu einem Strang vergossen, von dem dann in einem kontinuierlichen Verfahrensablauf Dünnbrammen abgeteilt werden, die, erforderlichenfalls nach Durchlauf eines Ausgleichsofens, ebenso kontinuierlich zu Warmband gewalzt werden. Diese Vorgehensweise ermöglicht es, besonders dünne Warmbänder kostengünstig herzustellen.
Aus der DE 199 11 287 C1 ist es zudem bekannt, daß sich durch eine intensive, zweistufige Kühlung des die Warmwalzstaffel verlassenden Warmbandes bei Stählen der voranstehend angegebenen Art eine weitere Steigerung der Festigkeit erreichen läßt. Dazu ist in der ersten Kühlstufe eine mindestens 150 K/s betragende Abkühlrate erforderlich. In der Praxis zeigt sich jedoch, daß diese Maßnahme allein nicht ausreicht, um eine zielgerichtete Abstimmung von Festigkeiten und Verformbarkeit durchführen zu können.
Die Aufgabe der Erfindung bestand darin, ein kostengünstig durchführbares Verfahren zu schaffen, welches es ermöglicht die Eigenschaften von hochfestem, gut verformbarem Warmband auf den jeweiligen Verwendungszweck gezielt zu optimieren.
Diese Aufgabe wird ausgehend von dem voranstehend erläuterten Stand der Technik durch ein Verfahren zum Herstellen vom Warmband mit einer mindestens 800 N/mm2 betragenden Zugfestigkeit gelöst, bei dem in einem kontinuierlichen Arbeitsablauf,
  • ein Stahl, welcher (in Gew.-%) 0,03 bis 0,10 % C, höchstens 0,8 % Si, 1,2 bis 2,0 % Mn, 0,02 bis 0,06 % Al, höchstens 0,5 % Cr, höchstens 0,2 % Ti, höchstens 0,08 % Nb, weniger als 0,005 % Ca, weniger als 0,05 % Cu, weniger als 0,05 % Ni, weniger als 0,02 % P, weniger als 0,005 % S, weniger als 0,01 % N und als Rest Eisen sowie unvermeidbare Verunreinigungen, enthält, zu einem Vormaterial, wie Dünnbrammen oder gegossenes Band, vergossen wird,
  • das Vormaterial bei einer oberhalb der Ar3-Temperatur liegenden Endtemperatur zu einem Warmband warmgewalzt wird,
  • das erhaltene Warmband in einem ersten Kühlabschnitt mit einer Abkühlgeschwindigkeit von mindestens 150 K/s auf eine 500 °C bis 700 °C betragende Zwischentemperatur abgekühlt wird, und
  • das Warmband nach einer drei bis zehn Sekunden dauernden Kühlpause in einem zweiten Kühlabschnitt auf eine Haspeltemperatur gekühlt wird, die nach folgender Maßgabe bestimmt wird (Eigenschaftsangaben jeweils ermittelt für die Bandbreitenmitte in Längsrichtung):
  • a) für Warmbänder mit einer mehr als 690 MPa betragenden Streckgrenze und einer unter 900 MPa liegenden Zugfestigkeit:
  • Haspeltemperatur größer als 580 °C,
  • b) für Warmbänder mit einer höchstens 690 MPa betragenden Streckgrenze und einer unter 900 MPa liegenden Zugfestigkeit:
  • Haspeltemperatur mindestens gleich 450 °C und höchstens gleich 580 °C,
  • c) für Warmbänder mit einer mehr als 900 MPa betragenden Zugfestigkeit:
  • Haspeltemperatur höchstens gleich 250 °C.
Erfindungsgemäß wird ein Stahl verarbeitet, der niedrige, unter-peritektische Gehalte an Kohlenstoff besitzt. Als solcher läßt sich dieser Stahl auf einer Gießwalzanlage zu Dünnbrammen oder auf einer Bandgießanlage zu gegossenem Band vergießen. Das so erhaltene Vormaterial läßt sich auf direktem Wege zu Warmband mit geringen Dicken von beispielsweise 0,8 mm bis 4 mm walzen.
Die aufgrund des niedrigen Kohlenstoffgehaltes ermöglichte gute Vergießbarkeit von erfindungsgemäß verwendetem Stahl ermöglicht es, ein kontinuierlich ablaufendes Herstellverfahren für die Warmbanderzeugung zu nutzen. Auf diese Weise läßt sich bei gegenüber der konventionellen Fertigungsweise wesentlich vereinfachtem Verfahrensablauf kostengünstig ein Warmband bereitstellen, daß schon beim Verlassen der Warmbandstraße eine Dicke besitzt, wie sie insbesondere im Automobilbau zur Herstellung von Strukturelementen der Karosserie benötigt wird, und das gleichzeitig so beschaffen ist, daß seine Eigenschaften nach Absolvierung einer geeigneten Abkühlung durch die Wahl einer bestimmten Haspeltemperatur für den jeweiligen Verwendungszweck optimiert werden können. Trotz des niedrigen Kohlenstoffgehaltes werden dabei Festigkeiten erreicht, wie sie sonst nur bei höher kohlenstoffhaltigen Stählen möglich sind.
Das Warmwalzen wird erfindungsgemäß bei Temperaturen oberhalb der Ar3-Temperatur beendet, da sich hohe Warmwalzendtemperaturen günstig auf die Walzbarkeit und den Lösungszustand der Mikrolegierungselemente auswirken.
Im Anschluß an das Warmwalzen erfolgt erfindungsgemäß in an sich bekannter Weise eine intensive, zweistufig durchgeführte Abkühlung des Bandes. Durch diese Abkühlung wird ein perlitfreies, kohlenstoffarmes bainitisches Gefüge mit härtesteigernden Anteilen an Martensit und Restaustenit erhalten.
Für das Ergebnis des erfindungsgemäßen Verfahrens wesentlich ist die Wahl der Haspeltemperatur, da erfindungsgemäß durch die Wahl der Haspeltemperatur die gezielte Einstellung der gewünschten Werkstoffeigenschaften erfolgt. In jedem Fall werden dabei Zugfestigkeiten von mindestens 800 MPa erreicht.
Hohe Haspeltemperaturen von mindesten 580 °C führen zu einem Warmband, das ein hohes Streckgrenzverhältnis und damit einhergehend eine hohe Streckgrenze besitzt. Derartige Warmbänder eignen sich besonders für die Herstellung von schwach verformten Bauteilen, bei denen ein hohes Work-Hardening des Stahles aufgrund fehlender Verformung nicht nutzbar ist, bei denen aber trotzdem ein hohes Energieaufnahmevermögen im elastischen Bereich benötigt wird.
Wird das Warmband bei Temperaturen im Bereich von 450 °C bis 580 °C gehaspelt, so besitzt das erhaltene Warmband ein niedrigeres Streckgrenzverhältnis und damit eine niedrigere Streckgrenze. Gleichzeitig besitzen die so beschaffenen, erfindungsgemäß erzeugten Warmbänder jedoch ein hohes Verfestigungsvermögen schon bei geringer Verformung.
Es hat sich gezeigt, daß alle Varianten, die im Temperaturbereich von 450 °C bis 650 °C gehaspelt werden, darüber hinaus ein außerordentlich günstiges Verhältnis von Festigkeit und Umformbarkeit aufweisen, wie es bisher nur von Restaustenitstählen bekannt ist.
Eine Steigerung der Festigkeit erfindungsgemäß erzeugter Warmbänder läßt sich durch Absenkung der Haspeltemperatur unter 250 °C, insbesondere unter 100 °C, erreichen. Bei derartig niedrigen Haspeltemperaturen wird ein Warmband erhalten, welches eine Mindestzugfestigkeit von 900 MPa bei einem niedrigen Streckgrenzenverhältnis besitzt. Es besitzt damit etwa das Eigenschaftsprofil eines Complexphasenstahls, wie er beispielsweise aus der WO98/40522 bekannt ist. Im Unterschied zu dem bekannten CP-Stahl weist erfindungsgemäßer Stahl jedoch einen deutlich geringeren Kohlenstoffgehalt und eine dementsprechend verbesserte Schweißbarkeit auf.
Weiter optimierte Verarbeitungseigenschaften eines erfindungsgemäß erzeugten Warmbands lassen sich dadurch erhalten, daß der Stahl 0,05 Gew.-% bis 0,07 Gew.-% Kohlenstoff enthält. Ebenso kann es zweckmäßig sein, zur Erhöhung der Härte des Stahls einen Si-Gehalt von 0,3 Gew.-% bis 0,8 Gew.-%, insbesondere 0,5 Gew.-% bis 0,8 Gew.-% vorzusehen. Durch eine Kalziumbehandlung läßt sich die Sulfidform günstig beeinflussen.
Erforderlichenfalls ist ein Ausgleichsofen vorzusehen, den das Vormaterial, bevor es warmgewalzt wird, durchläuft. In dem Ausgleichsofen sollte das Vormaterial auf eine oberhalb von 1050 °C liegende Temperatur erwärmt werden, um ausreichend hohe Gehalte an Mikrolegierungselementen in Lösung zu halten.
Unabhängig von seinen jeweils gewählten Eigenschaften eignet sich erfindungsgemäß erzeugtes Warmband für eine Oberflächenveredelung, insbesondere für ein elektrolytisches Verzinken oder ein Feuerverzinken.
Aufgrund seines Eigenschaftsprofils eignet sich erfindungsgemäß erzeugtes Warmband in besonderer Weise für die Herstellung von hochbeanspruchten Strukturelementen für den Fahrzeugkarosseriebau. Bei diesen Elementen kann es sich beispielsweise um Seitenaufprallträger, Stoßfänger, Verstärkungselemente, Rahmenstrukturen, Profile oder ähnliches handeln.
Alle Bauteile können aus erfindungsgemäß erzeugtem Warmband durch Kaltumformung erzeugt werden, wobei sich insbesondere das Rollprofilieren für die Formgebung eignet. Eine zusätzliche Wärme- oder sonstige Vergütungsbehandlung zur Erhöhung der Festigkeit der erhaltenen Bauteile ist regelmäßig nicht erforderlich.
Erfindungsgemäß erzeugtes Warmband läßt sich darüber hinaus zu Kaltband walzen. Dabei eignet sich sowohl das erfindungsgemäß erzeugte Warmband als auch das daraus gewalzte Kaltband in besonderer Weise für eine Feuerverzinkung.
So hat sich gezeigt, daß insbesondere dann, wenn die Temperatur in der vor dem Durchlauf des Verzinkungsbades passierten Durchlaufglühe weniger als 800 °C beträgt, das fertig verzinkte Band Festigkeiten von mehr als 850 MPa aufweist. Wird beispielsweise ein Warmband mit besonders hoher Festigkeit erzeugt, indem es erfindungsgemäß bei einer Temperatur von weniger als 250 °C gehaspelt wird, so läßt sich aus diesem Warmband überraschenderweise ein verzinktes Band mit einer Festigkeit von mehr als 900 MPa erzeugen, wenn die Glühung vor dem Durchlauf des Zinkbades auf maximal 780 °C beschränkt wird. Dies gilt sowohl für erfindungsgemäß erzeugte Warm- als auch für daraus gewonnene Kaltbänder.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
Eine Stahlschmelze mit (in Gew.-%) 0,058 % C, 0,61 % Si, 1,72 % Mn, 0,015 % P, 0,001% S, 0,026 % Al, 0,0057 % N, 0,34 % Cr, 0,117 % Ti, 0,01 % Cu, 0,021 % Ni, 0,0028 % Ca, Rest Eisen und unvermeidbare Verunreinigungen ist in einer Gießwalzanlage zu einem Strang vergossen worden, von dem anschließend in einem kontinuierlichen Verfahrensablauf Dünnbrammen abgeteilt wurden. Ebenso unterbrechungsfrei haben die Dünnbrammen dann zur Homogenisierung ihrer Temperaturverteilung und ihrer Gefügestruktur einen mit einer oberhalb von 1050 °C liegenden Temperatur betriebenen Ausgleichsofen durchlaufen, bevor sie kontinuierlich in einer Warmwalzstaffel zu Warmbändern A1-A5, B1-B10 und C fertig warmgewalzt worden sind.
Die die Warmwalzstaffel bei einer Warmwalzendtemperatur ET und einer Dicke D verlassenden Warmbänder A1-A5, B1-B10 und C sind in einer ersten Kühlstufe mit einer mindestens 150 K/s betragenden Abkühlgeschwindigkeit CR auf eine Zwischentemperatur ZT intensiv abgekühlt worden, auf der sie dann über eine mindestens drei und höchstens zehn Sekunden betragende Kühlpause ohne aktive Kühlung gehalten worden sind. In einer zweiten Kühlstufe sind die Warmbänder daraufhin von der Zwischentemperatur ZT an Luft oder unter Einwirkung einer Kühlflüssigkeit beschleunigt bis auf eine Haspeltemperatur HT abgekühlt worden.
In Tabelle 1 sind für die Warmbänder A1-A5, B1-B10 und C jeweils die Endwalztemperatur ET, die Abkühlgeschwindigkeit CR, die Zwischentemperatur ZT, die Haspeltemperatur HT und die Dicke D angegeben.
Warmband ET CR ZT HT D
[°C] [K/s] [°C] [°C] [mm]
A1 880 150 700 610 3,5
A2 880 168 690 605 3,5
A3 900 197 685 605 3,5
A4 900 192 690 610 3,5
A5 900 337 610 585 2,7
B1 900 361 600 565 2,5
B2 900 370 600 560 2,5
B3 900 405 600 555 2,25
B4 900 408 610 520 2,0
B5 900 435 600 545 1,95
B6 900 475 610 550 1,75
B7 900 460 610 560 1,65
B8 900 360 605 540 2,5
B9 900 326 610 540 2,5
B10 900 419 590 525 2,6
C 900 312 600 80 3,0
Die im Zugversuch für die Bandbreitenmitte der fertig hergestellten Warmbänder A1-A5, B1-B10 und C in Längsrichtung jeweils bestimmte Streckgrenze Re bzw. Rp0,2, Zugfestigkeit Rm, Bruchdehnung A5, Gleichmaßdehnung Agl, die Streckgrenzdehnung ARe sowie, soweit ermittelt, der zugehörige n-Wert sind in Tabelle 2 angegeben.
Es bestätigt sich, daß die bei hohen Haspeltemperaturen HT oberhalb von 580 °C gehaspelten Warmbänder A1-A5 bei zwischen 800 MPa und 900 MPa liegenden Zugfestigkeiten jeweils eine ausgeprägte Streckgrenze Re besitzen, die regelmäßig über 690 MPa, insbesondere über 740 MPa liegt. Sie verfügen dementsprechend über ein hohes Energieaufnahmevermögen im elastischen Bereich und eignen sich daher im besonderen Maße zur Herstellung von Bauelementen, die schon im unverformten Zustand bzw. bei geringer Verformung hohe Kräfte sicher aufnehmen können sollen.
Warmband Re Rp0,2 Rm A5 Ag1 ARe n-Wert
[MPa] [%]
A1 748 811 20,3 11,8 2,9 0,125
A2 787 845 20,7 12,6 2,9 0,113
A3 759 829 20,7 11,8 2,4 0,113
A4 752 829 21,5 11,7 2,4 -
A5 773 862 20,6 11,4 2,0 0,103
B1 653 854 18,7 10,6 0 -
B2 663 811 15,1 8,9 0 -
B3 669 864 16,9 9,5 0 -
B4 674 825 16,1 9,3 0 -
B5 617 826 12,8 7,9 0 -
B6 630 824 17,3 9,5 0 -
B7 648 847 18,0 10,3 0 -
B8 610 840 17,6 9,8 0 -
B9 612 834 17,5 9,4 0 -
B10 598 804 17,4 9,8 0 -
C 682 956 12,0 6,0 0 -
Die im mittleren Haspeltemperaturbereich von 450 °C bis 580 °C gehaspelten Warmbänder B1-B10 erreichen ebenso regelmäßig Zugfestigkeiten, die oberhalb von 800 MPa und unterhalb von 900 MPa liegen. Gleichzeitig weisen die Warmbänder B1-B10 einen kontinuierlichen Übergang von der elastischen zur plastischen Verformung auf, für den eine Streckgrenze Rp0,2 von weniger als 690 MPa und ein dementsprechend gegenüber den Warmbändern A1-A5 niedrigeres Streckgrenzverhältnis Rp0,2/Rm ermittelt worden ist. Die Warmbänder B1-B10 lassen sich daher besonders gut zu Bauteilen kaltumformen, die ein hohes Verfestigungsvermögen schon bei geringer Verformung besitzen müssen.
Das bei einer besonders niedrigen Haspeltemperatur gehaspelte Warmband C belegt schließlich, daß sich durch die Wahl von unter 250 °C liegenden Haspeltemperaturen besonders hochfeste Warmbänder erzeugen lassen. Aufgrund seines niedrigen Kohlenstoffgehaltes und seiner gleichzeitig besonders hohen Festigkeit läßt sich ein solches Warmband hervorragend für die Fertigung von Schweißkonstruktionen oder anderen tragenden Strukturelementen verwenden, die in der Lage sein müssen, schon bei einer geringen bzw. ohne eine Verformung hohe Lasten sicher aufnehmen zu können.
Zum Nachweis des Einflusses der erfindungsgemäß vorgegebenen Glühtemperatur beim Feuerverzinken Warmbändern der hier in Rede stehenden Art sind zusätzlich Warmbänder B11,B12 erzeugt worden. Die bei ihrer Herstellung jeweils eingestellte Warmbandendtemperatur ET (900 °C), Abkühlgeschwindigkeit CR und Zwischentemperatur ZT (600 °C) war dabei vergleichbar mit den bei der Erzeugung der Warmbänder B1 bis B10 eingestellten Parameter. Die Haspeltemperatur HT bei der Herstellung des Warmbands B11 betrug 510 °C, während sie bei der Herstellung des Warmbands B12 auf 530 °C eingestellt war. Die Warmbändern B11,B12 sind anschließend feuerverzinkt worden. Ebenso ist das Warmband C e einer Feuerverzinkung unterzogen worden.
Bei der Feuerverzinkung haben die Warmbänder B11,B12,C jeweils einen Durchlaufglühofen durchlaufen, bevor sie in das Verzinkungsbad eingetreten sind. Im Diagramm 1 sind für im Durchlaufglühofen eingestellte Glühtemperaturen von 740 °C, 760 °C, 780 °C, 800 °C, 820 °C und 840 °C die Zugfestigkeiten Rm, im Diagramm 2 für dieselben Glühtemperaturen die Streckgrenze Re, im Diagramm 3 für dieselben Glühtemperaturen die Bruchdehnung A80 und im Diagramm 4 für dieselben Glühtemperaturen die Gleichmaßdehnung Agl aufgetragen.
Es zeigt sich, daß Warmbänder B11,B12 bei Glühtemperaturen, die weniger als 800 °C betragen, regelmäßig besonders hohe Festigkeiten Rm von mindestens 880 MPa besitzen. Wird das Warmband C bei Glühtemperaturen von weniger als 800 °C geglüht, so liegen die erreichten Festigkeiten Rm bei mindestens 900 MPa.
Bei Glühtemperaturen von ≤ 780 °C liegt die Streckgrenze Re der verzinkten Warmbänder B11,B12,C mindestens auf dem Niveau der Warmbänder B11,B12 und C.
Das Niveau der Gleichmaßdehnung Agl und die Bruchdehnung A80 der verzinkten Warmbänder B11,B12 und C liegt für jede der Glühtemperaturen jeweils oberhalb des Niveaus der Warmbänder B11,B12,C, aus denen sie kaltgewalzt worden sind.
Anhand der voranstehend erläuterten Beispiele ist nachgewiesen, daß sich das Gefüge und damit das Streckgrenzenverhältnis bei erfindungsgemäß erzeugtem Warmband durch die im Verzinkungsvorgang eingehaltene Temperaturführung gezielt variieren läßt. Ähnlich Eigenschaften werden auch dann erzielt, wenn man Warmband kaltwalzt und anschließend feuerverzinkt.

Claims (12)

  1. Verfahren zum Herstellen von Warmband mit einer mindestens 800 N/mm2 betragenden Zugfestigkeit, bei dem in einem kontinuierlichen Arbeitsablauf,
    ein Stahl, welcher (in Gew.-%)
    C: 0,03 - 0,10 %,
    Si: ≤ 0,8 %,
    Mn: 1,2 - 2,0 %,
    Al: 0,02 - 0,06 %,
    Cr: ≤ 0,5 %,
    Ti: ≤ 0,2 %,
    Nb: ≤ 0,08 %,
    Ca: < 0,005 %,
    Cu: < 0,05 %,
    Ni: < 0,05 %,
    P: < 0,02 %,
    S: < 0,005 %,
    N: < 0,01 %, und als Rest Eisen sowie unvermeidbare Verunreinigungen, enthält, zu einem Vormaterial, wie Dünnbrammen oder gegossenes Band, vergossen wird,
    das Vormaterial bei einer oberhalb der Ar3-Temperatur liegenden Endtemperatur zu einem Warmband warmgewalzt wird,
    das erhaltene Warmband in einem ersten Kühlabschnitt mit einer Abkühlgeschwindigkeit von mindestens 150 K/s auf eine 500 °C bis 700 °C betragende Zwischentemperatur abgekühlt wird, und
    das Warmband nach einer drei bis zehn Sekunden dauernden Kühlpause in einem zweiten Kühlabschnitt auf eine Haspeltemperatur gekühlt wird, die nach folgender Maßgabe bestimmt wird:
    a) für Warmbänder mit einer mehr als 690 MPa betragenden Streckgrenze und einer unter 900 MPa liegenden Zugfestigkeit:
    Haspeltemperatur > 580 °C
    b) für Warmbänder mit einer höchstens 690 MPa betragenden Streckgrenze und einer unter 900 MPa liegenden Zugfestigkeit:
    450 °C ≤ Haspeltemperatur ≤ 580 °C
    c) für Warmbänder mit einer mehr als 900 MPa betragenden Zugfestigkeit:
    Haspeltemperatur ≤ 250 °C.
  2. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, d a ß der Stahl 0,05 Gew.-% bis 0,07 Gew.-% Kohlenstoff enthält.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Stahl 0,3 Gew.-% bis 0,8 Gew.-% Silizium enthält.
  4. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, d a ß der Stahl mehr als 0,4 Gew.-%, insbesondere mindestens 0,5 Gew.-% Silizium enthält.
  5. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, d a ß das Vormaterial, bevor es warmgewalzt wird, einen Ausgleichsofen durchläuft, in dem es auf eine oberhalb von 1050 °C liegende Temperatur erwärmt wird.
  6. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, d a ß die Haspeltemperatur weniger als 100 °C beträgt.
  7. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, d a ß das Warmband einer Oberflächenveredelung, insbesondere einer elektrolytischen Verzinkung oder einer Feuerverzinkung unterzogen wird.
  8. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, d a ß das Warmband durch Rollprofilieren zu einem Bauelement kaltverformt wird.
  9. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß das Warmband zu Kaltband kaltgewalzt wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Kaltband einer Feuerverzinkung unterzogen wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Zugfestigkeit des verzinkten Kaltbands mindestens 850 MPa beträgt.
  12. Verwendung eines Warmbands, welches nach einem gemäß einem der Ansprüche 1 bis 8 ausgebildeten Verfahren hergestellt ist, zur Herstellung von Strukturelementen für Fahrzeugkarosserien.
EP02025150A 2001-12-13 2002-11-09 Verfahren zum Herstellen von Warmband Expired - Lifetime EP1319725B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10161465A DE10161465C1 (de) 2001-12-13 2001-12-13 Verfahren zum Herstellen von Warmband
DE10161465 2001-12-13

Publications (3)

Publication Number Publication Date
EP1319725A2 true EP1319725A2 (de) 2003-06-18
EP1319725A3 EP1319725A3 (de) 2003-12-10
EP1319725B1 EP1319725B1 (de) 2004-10-20

Family

ID=7709195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02025150A Expired - Lifetime EP1319725B1 (de) 2001-12-13 2002-11-09 Verfahren zum Herstellen von Warmband

Country Status (4)

Country Link
EP (1) EP1319725B1 (de)
AT (1) ATE280248T1 (de)
DE (2) DE10161465C1 (de)
ES (1) ES2231638T3 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577412A1 (de) 2002-12-24 2005-09-21 Nippon Steel Corporation Hochfestes stahlblech mit guter gratverarbeitbarkeit sowie hervorragender erweichungsfestigkeit in einer wärmeeinflusszone und herstellungsverfahren dafür
EP1918406A1 (de) * 2006-10-30 2008-05-07 ThyssenKrupp Steel AG Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Bor mikrolegierten Mehrphasenstahl
WO2010130871A1 (en) 2009-05-11 2010-11-18 Rautaruukki Oyj Method for manufacturing hot rolled steel strip product, and hot rolled steel strip product
WO2011048274A1 (en) * 2009-10-23 2011-04-28 Rautaruukki Oyj Method for producing high-strength steel product and steel product
WO2012127125A1 (fr) * 2011-03-24 2012-09-27 Arcelormittal Investigatión Y Desarrollo Sl Tôle d'acier laminée à chaud et procédé de fabrication associé
KR20150038499A (ko) * 2012-07-30 2015-04-08 타타 스틸 네덜란드 테크날러지 베.뷔. 탄소강의 강 스트립 제조 방법
CN113481436A (zh) * 2021-06-29 2021-10-08 鞍钢股份有限公司 一种800MPa级热轧复相钢及其生产方法
US11225697B2 (en) 2014-12-19 2022-01-18 Nucor Corporation Hot rolled light-gauge martensitic steel sheet and method for making the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012013113A1 (de) * 2012-06-22 2013-12-24 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa
CA2953741C (en) 2014-07-03 2021-08-10 Arcelormittal Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet
US11035020B2 (en) 2015-12-29 2021-06-15 Arcelormittal Galvannealed steel sheet
DE102017209982A1 (de) * 2017-06-13 2018-12-13 Thyssenkrupp Ag Hochfestes Stahlblech mit verbesserter Umformbarkeit
DE102020203564A1 (de) * 2020-03-19 2021-09-23 Sms Group Gmbh Verfahren zum Herstellen eines gewalzten Mehrphasenstahlbandes mit Sondereigenschaften

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394186A (en) * 1979-12-15 1983-07-19 Nippon Steel Corporation Method for producing a dual-phase steel sheet having excellent formability, high artificial-aging hardenability after forming, high strength, low yield ratio, and high ductility
DE19911287C1 (de) * 1999-03-13 2000-08-31 Thyssenkrupp Stahl Ag Verfahren zum Erzeugen eines Warmbandes
JP2001152254A (ja) * 1999-11-30 2001-06-05 Kawasaki Steel Corp 材質均一性に優れた高加工性熱延高張力鋼板の製造方法
EP1143022A1 (de) * 1999-09-16 2001-10-10 Nkk Corporation Dünne stahlplatte mit hoher festigkeit und verfahren zu deren herstellung
EP1149925A1 (de) * 1999-09-29 2001-10-31 Nkk Corporation Stahlblech und verfahren zu dessen herstellung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19719546C2 (de) * 1996-07-12 1998-12-03 Thyssen Stahl Ag Warmband aus Stahl und Verfahren zu seiner Herstellung
DE19710125A1 (de) * 1997-03-13 1998-09-17 Krupp Ag Hoesch Krupp Verfahren zur Herstellung eines Bandstahles mit hoher Festigkeit und guter Umformbarkeit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394186A (en) * 1979-12-15 1983-07-19 Nippon Steel Corporation Method for producing a dual-phase steel sheet having excellent formability, high artificial-aging hardenability after forming, high strength, low yield ratio, and high ductility
DE19911287C1 (de) * 1999-03-13 2000-08-31 Thyssenkrupp Stahl Ag Verfahren zum Erzeugen eines Warmbandes
EP1143022A1 (de) * 1999-09-16 2001-10-10 Nkk Corporation Dünne stahlplatte mit hoher festigkeit und verfahren zu deren herstellung
EP1149925A1 (de) * 1999-09-29 2001-10-31 Nkk Corporation Stahlblech und verfahren zu dessen herstellung
JP2001152254A (ja) * 1999-11-30 2001-06-05 Kawasaki Steel Corp 材質均一性に優れた高加工性熱延高張力鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 23, 10. Februar 2001 (2001-02-10) & JP 2001 152254 A (KAWASAKI STEEL CORP), 5. Juni 2001 (2001-06-05) *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577412A1 (de) 2002-12-24 2005-09-21 Nippon Steel Corporation Hochfestes stahlblech mit guter gratverarbeitbarkeit sowie hervorragender erweichungsfestigkeit in einer wärmeeinflusszone und herstellungsverfahren dafür
EP1577412B2 (de) 2002-12-24 2014-11-12 Nippon Steel & Sumitomo Metal Corporation Hochfestes stahlblech mit guter kragenziehbarkeit sowie hervorragender erweichungsfestigkeit in einer wärmeeinflusszone und herstellungsverfahren dafür
EP1918406A1 (de) * 2006-10-30 2008-05-07 ThyssenKrupp Steel AG Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Bor mikrolegierten Mehrphasenstahl
WO2008052919A1 (de) * 2006-10-30 2008-05-08 Thyssenkrupp Steel Ag Verfahren zum herstellen von stahl-flachprodukten aus einem mit bor mikrolegierten mehrphasenstahl
JP2010508435A (ja) * 2006-10-30 2010-03-18 ティッセンクルップ スチール アクチェンゲゼルシャフト ボロンミクロ合金化多相鋼からフラット鋼生成物を製造する方法
CN101528970B (zh) * 2006-10-30 2012-10-03 蒂森克虏伯钢铁股份公司 由硼微合金化多相钢制备扁钢产品的方法
WO2010130871A1 (en) 2009-05-11 2010-11-18 Rautaruukki Oyj Method for manufacturing hot rolled steel strip product, and hot rolled steel strip product
WO2011048274A1 (en) * 2009-10-23 2011-04-28 Rautaruukki Oyj Method for producing high-strength steel product and steel product
EP2491157A1 (de) * 2009-10-23 2012-08-29 Rautaruukki OYJ Verfahren zur herstellung eines hochfesten stahlprodukts und stahlprodukt
EP2491157A4 (de) * 2009-10-23 2014-08-20 Rautaruukki Oyj Verfahren zur herstellung eines hochfesten stahlprodukts und stahlprodukt
CN103534365A (zh) * 2011-03-24 2014-01-22 安赛乐米塔尔研究与发展有限责任公司 热轧钢板材及相关制造方法
JP2014514443A (ja) * 2011-03-24 2014-06-19 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ 熱間圧延鋼シートおよび関連製造方法
WO2012127136A3 (fr) * 2011-03-24 2012-11-15 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier laminée à chaud et procédé de fabrication associé
US20140230970A1 (en) * 2011-03-24 2014-08-21 Arcelormittal Investigacion Y Desarroll Sl Hot-rolled steel sheet and associated production method
WO2012127125A1 (fr) * 2011-03-24 2012-09-27 Arcelormittal Investigatión Y Desarrollo Sl Tôle d'acier laminée à chaud et procédé de fabrication associé
CN103534365B (zh) * 2011-03-24 2015-04-15 安赛乐米塔尔研究与发展有限责任公司 热轧钢板材及相关制造方法
RU2551727C2 (ru) * 2011-03-24 2015-05-27 Арселормитталь Инвестигасьон И Десарролло Сл Горячекатаный стальной лист и соответствующий способ изготовления
JP2016047963A (ja) * 2011-03-24 2016-04-07 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ 熱間圧延鋼シートおよび関連製造方法
US9540719B2 (en) 2011-03-24 2017-01-10 Arcelormittal Investigacion Y Desarrollo Sl Hot-rolled steel sheet and associated production method
KR20150038499A (ko) * 2012-07-30 2015-04-08 타타 스틸 네덜란드 테크날러지 베.뷔. 탄소강의 강 스트립 제조 방법
EP2880188B1 (de) 2012-07-30 2016-07-27 Tata Steel Nederland Technology B.V. Verfahren zur erzeugung von stahlstreifen aus kohlenstoffstahl
US11225697B2 (en) 2014-12-19 2022-01-18 Nucor Corporation Hot rolled light-gauge martensitic steel sheet and method for making the same
CN113481436A (zh) * 2021-06-29 2021-10-08 鞍钢股份有限公司 一种800MPa级热轧复相钢及其生产方法

Also Published As

Publication number Publication date
EP1319725B1 (de) 2004-10-20
ES2231638T3 (es) 2005-05-16
DE50201348D1 (de) 2004-11-25
ATE280248T1 (de) 2004-11-15
DE10161465C1 (de) 2003-02-13
EP1319725A3 (de) 2003-12-10

Similar Documents

Publication Publication Date Title
EP1573075B1 (de) Verfahren zum herstellen eines stahlprodukts
EP2690183B1 (de) Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
DE60116477T2 (de) Warm-, kaltgewalzte und schmelz-galvanisierte stahlplatte mit exzellentem reckalterungsverhalten
DE60125253T2 (de) Hochfestes warmgewalztes Stahlblech mit ausgezeichneten Reckalterungseigenschaften
EP0966547B1 (de) Verfahren zur herstellung eines bandstahles mit hoher festigkeit und guter umformbarkeit
EP2836614B1 (de) Hochfester mehrphasenstahl und verfahren zur herstellung eines bandes aus diesem stahl
EP2094876B1 (de) Verfahren zur herstellung eines stahlbandes aus einem höherfesten dualphasenstahl
EP2690184B1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP1918403B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein martensitisches Gefüge bildenden Stahl
EP3504349B1 (de) Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband
DE102005051052A1 (de) Verfahren zur Herstellung von Warmband mit Mehrphasengefüge
DE102006058917A1 (de) Hochfeste Stahlbleche mit einer hervorragenden Verformbarkeit und Verfahren zum Herstellen derselben
DE60300561T3 (de) Verfahren zur Herstellung eines warmgewalzten Stahlbandes
DE60205744T2 (de) Durch beanspruchungsarme bearbeitung und glühen von gewöhnlichem kohlenstoffarmem stahl hergestellte hochfeste und hochduktile stahlplatte mit hyperfeiner kristallkornstruktur und herstellungsverfahren dafür
EP1319725B1 (de) Verfahren zum Herstellen von Warmband
DE69130555T3 (de) Hochfestes Stahleinblech zur Umformung durch Pressen und Verfahren zur Herstellung dieser Bleche
EP3724359B1 (de) Hochfestes, warmgewalztes stahlflachprodukt mit hohem kantenrisswiderstand und gleichzeitig hohem bake-hardening potential und verfahren zur herstellung eines solchen stahlflachprodukts
DE2924167A1 (de) Verfahren zur herstellung von kaltgewalztem stahlblech mit doppelphasigem gefuege
EP3512968B1 (de) Verfahren zur herstellung eines stahlflachprodukts aus einem manganhaltigen stahl und ein derartiges stahlflachprodukt
EP1398390B1 (de) Ferritisch/martensitischer Stahl mit hoher Festigkeit und sehr feinem Gefüge
EP0301228A1 (de) Verfahren zur Herstellung von Warmband
DE10130774C1 (de) Verfahren zum Herstellen von hochfesten, aus einem Warmband kaltverformten Stahlprodukten mit guter Dehnbarkeit
EP1453984B1 (de) Verfahren zum herstellen von warmband oder -blech aus einem mikrolegierten stahl
EP3853385A1 (de) Verfahren zur herstellung ultrahochfester stahlbleche und stahlblech hierfür
DE102016115618A1 (de) Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041109

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041109

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201348

Country of ref document: DE

Date of ref document: 20041125

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041214

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050126

Year of fee payment: 3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2231638

Country of ref document: ES

Kind code of ref document: T3

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20041020

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: *THYSSENKRUPP STAHL A.G.

Effective date: 20051130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050320

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191121

Year of fee payment: 18

Ref country code: NL

Payment date: 20191119

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191119

Year of fee payment: 18

Ref country code: ES

Payment date: 20191219

Year of fee payment: 18

Ref country code: IT

Payment date: 20191122

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50201348

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110