EP1318524B1 - Système optique à rayons X et méthode pour former un image d'une source - Google Patents
Système optique à rayons X et méthode pour former un image d'une source Download PDFInfo
- Publication number
- EP1318524B1 EP1318524B1 EP02026625A EP02026625A EP1318524B1 EP 1318524 B1 EP1318524 B1 EP 1318524B1 EP 02026625 A EP02026625 A EP 02026625A EP 02026625 A EP02026625 A EP 02026625A EP 1318524 B1 EP1318524 B1 EP 1318524B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ray
- mirrors
- mirror
- source
- tilt angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 title claims description 11
- 238000000034 method Methods 0.000 title claims description 6
- 238000003384 imaging method Methods 0.000 title claims description 5
- 230000005855 radiation Effects 0.000 claims description 16
- 238000011161 development Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
Definitions
- the invention relates to an X-ray optical system with two X-ray mirrors for imaging an X-ray source on a target area, wherein the X-ray mirror for focusing X-rays are arranged in two different coordinate directions with a Verkippungsachse perpendicular to the two different coordinate directions.
- the two concave X-ray mirrors can have cylindrical, elliptical or parabolic curvature surfaces.
- parabolic mirrors When parabolic mirrors are used, parallelling of the incident X-radiation is also possible in particular.
- a disadvantage of this well-known Kirkpatrick-Baez arrangement is the considerably limited acceptance range of the two mirrors. Due to the need to satisfy the Bragg condition for both mirrors, only a much smaller area (about 1/100) is mapped relative to the visible, radiating total area of the x-ray source.
- US 6,282,259 B1 describes an X-ray mirror system with a monolithic mirror element, which has two mutually orthogonal mirror surfaces, the monolithic mirror element can be bent by the action of force such that a variable adjustment of the focal length is made possible.
- US 5,615,245 A also discloses a monolithic mirror element with two mirror surfaces.
- WO 95/31815 A and US 6,049,588 A Describe on the one hand one-dimensional arrangements, that is, arrangements in which different mirrors effect focusing in a single coordinate direction, and on the other hand in each case a two-dimensional array of mirrors, which are tilted by 90 ° from each other.
- the acceptance angle of typical multilayer mirrors in the range of 1 mrad and the usual focal length in the range of a few centimeters.
- the electron focus of the X-ray source varies in a linear range of 10 ⁇ m to several millimeters.
- the acceptance range of a mirror has a smallest linear dimension in the range of a few 10 ⁇ m and is typically strip-shaped.
- the usual X-ray samples on the other hand have linear dimensions in the range of 100 microns to several millimeters, typically several tenths of a millimeter.
- a major problem with the generic X-ray optical systems is therefore the relatively low intensity of the focused X-radiation reflected by the mirror arrangement due to the Bragg conditions in relation to the theoretically possible yield due to the size of the radiating surface of the X-ray source and on the other hand, the "need" of X-radiation due to the size of the sample to be examined.
- the object of the invention is in contrast to present an X-ray optical system with the features mentioned above, which allows with the lowest possible and simple technical modifications easily increase the intensity of the focused X-ray radiation on the sample at constant emission power of the X-ray source.
- this object is achieved in a surprisingly simple and effective manner in that the X-ray mirror deviating from 90 ° with a deviation of the tilt angle of 90 ° amount by at least 20 ° and at most 85 °, preferably between 30 ° and 85 °
- the combined acceptance range of the two mirrors can be adapted to the geometric shape of the electron focus and / or the sample, so that the yield of usable X-ray radiation on the sample is significantly increased becomes. This is particularly advantageous when the two areas are of the same order of magnitude.
- the tilting of the X-ray mirrors according to the invention results in a considerable increase in intensity, because the combined acceptance range compared to that known from the prior art Significantly enlarge the case of the 90 ° arrangement (as is clear from the drawing below). It must, however, be noted that the acceptance range does not migrate out of the electron focus of the source or the target focus of the sample.
- the invention not only has its advantages in the field of X-ray optics, but is also applicable in the field of neutron optics and with synchrotron radiation as a source.
- the mirrors used may be flat, cylindrical, spherical shell-shaped, elliptical, parabolic or hyperbolic.
- Graded mirrors may be used in which the slice spacing varies laterally and / or in depth.
- single crystals or other X-ray or neutron optical elements can also be used as mirrors.
- X-ray optical system in which at least one X-ray mirror has a multilayer structure. This makes it possible to achieve a particularly high intensity of the reflected radiation.
- the tilt angle of the two x-ray mirrors is fixed. This allows you to "freeze” a pre-set optical adjustment to a specific geometry.
- the tilt angle can also be variable. This allows you to set several different geometries of the overall arrangement.
- the X-ray mirror when tilted against each other in different positions can be latched. On In this way, a selection of fixed problem adjustments can be made in advance, whereby no great adjustment effort has to be made in the individual setting due to the screening.
- the x-ray mirrors can also be designed to be continuously tiltable relative to one another. This allows a completely free on-line optimization tailored to the specific needs of very different investigation arrangements realize.
- the deviation of the tilt angle of 90 ° in terms of magnitude is particularly preferably between 30 ° and 85 °.
- the X-ray mirrors form a tilted Kirkpatrick-Baez arrangement, as it has been uncontended for many decades.
- the X-ray mirrors can form a side-by-side arrangement tilted against one another, as they are not tilted in the above-cited US-A 6,041,099 is described.
- the x-ray mirrors may form a mutually tilted multiple-corner arrangement.
- An untilted multiple-corner arrangement is for example from the US-A 6,014,423 known in itself.
- the condition for the deviation of the tilt angle of 90 ° according to the further aspect of the invention discussed above then applies in each case to pairs of adjacent X-ray mirrors.
- the scope of the present invention also includes an X-ray spectrometer or an X-ray diffractometer or an X-ray microscope, each with an X-ray optical system of the type according to the invention described above.
- a method for imaging a radiation source for X-ray or neutron radiation on a target area wherein the radiation emitted by the source is reflected at a first X-ray or neutron mirror and then at a second mirror , which is characterized in that the angle between the plane of the first reflection and the plane of the second reflection is set differently tilted by 90 ° such that the combined acceptance range of the first and second reflections to the shape of the radiation source and / or Target range is adjusted, wherein the tilting axis of the two mirrors perpendicular to the two different coordinate directions.
- Fig. 1 schematically shows a cross section through an X-ray mirror A, the radiation from an acceptance range .DELTA.x in the focus of the mirror A meets, which originates from a Röngten source, which is usually also arranged in this focus.
- Fig. 2a is very schematically illustrated an embodiment of an arrangement according to the invention, in which two x-ray mirrors A, B are tilted by an angle deviating from 90 ° to each other.
- the two illustrated X-ray mirrors A, B should each have a parabolic or elliptical surface whose radius of curvature follows the long or short dashed line a (for mirror A) and b (for mirror B), respectively.
- the focus of the first X-ray mirror A is x
- the focus of the second X-ray mirror B is y.
- Fig. 2b shows an enlarged section Fig. 2a , where .DELTA.x the acceptance range of the x-ray source of the x-ray mirror A seen from and .DELTA.y denote the acceptance range of the x-ray source of the x-ray mirror B from.
- the area F is the intersection of both acceptance ranges ⁇ x and ⁇ y.
- the dashed, white ellipse S should represent a commonly occurring form of an X-ray source in the example shown.
- Fig. 3 shows schematically the division of the effective area F as an intersection of the two acceptance ranges .DELTA.x and .DELTA.y of the two X-ray mirrors A, B at the location of the X-ray source.
- the resulting Parallelogram has a side length b, a long diagonal d 1 and a short diagonal d 2 .
- the deviation angle ⁇ relative to a tilting of the two X-ray mirrors A, B can be seen by 90 °.
- Fig. 4 finally, the in Fig. 3 shown surface area F as a function of the increasing angular deviation ⁇ from the angle 90 °. It is assumed that the two acceptance ranges .DELTA.x and .DELTA.y are normalized to one another and normalized to 1.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Lenses (AREA)
Claims (10)
- Système optique à rayons X avec deux miroirs à rayons X (A, B) pour reproduire une source de rayons X (S) sur une région cible, dans lequel les miroirs à rayons X (A, B) pour focaliser des rayons X sont disposés dans deux directions de coordonnées (x, y) différentes avec un axe d'inclinaison perpendiculaire aux deux directions de coordonnées (x, y) différentes,
caractérisé en ce
que les miroirs à rayons X (A, B), à la différence de 90°, sont inclinés l'un par rapport à l'autre avec une divergence β de l'angle d'inclinaison par rapport à 90° d'au moins 20° et d'au plus 85° en valeur absolue, et
que l'angle d'inclinaison est variable. - Dispositif selon la revendication 1, caractérisé en ce que la divergence β de l'angle d'inclinaison par rapport à 90° est supérieure à 30° en valeur absolue.
- Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'au moins un miroir à rayons X (A, B) présente une structure multicouche.
- Dispositif selon l'une des revendications précédentes, caractérisé en ce que la divergence β de l'angle d'inclinaison par rapport à 90° est de manière particulièrement préférée comprise entre 30° et 85° en valeur absolue.
- Dispositif selon l'une des revendications précédentes, caractérisé en ce que les miroirs à rayons X (A, B) forment une configuration Kirkpatrick-Baez avec inclinaison mutuelle.
- Dispositif selon la revendication 5, caractérisé en ce que les miroirs à rayons X (A, B) forment une configuration « side-by-side » avec inclinaison mutuelle.
- Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que les miroirs à rayons X (A, B) forment une configuration « multiple corner » avec inclinaison mutuelle.
- Diffractomètre à rayons X avec un système optique à rayons X selon l'une des revendications précédentes.
- Procédé pour reproduire une source de rayonnement (S) de rayonnement X ou neutronique sur une région cible, dans lequel le rayonnement émis par la source (S) est réfléchi sur un premier miroir à rayons X ou à neutrons (A) et ensuite sur un deuxième miroir (B),
caractérisé en ce
que l'angle entre le plan de la première réflexion et le plan de la deuxième réflexion est réglé avec une inclinaison qui diverge de 90° de manière que le domaine d'acceptabilité combiné (F) de la première réflexion (Δx) et de la deuxième réflexion (Δy) soit adapté à la forme de la source de rayonnement (S) et/ou de la région cible, l'angle d'inclinaison des deux miroirs (A, B) s'étendant perpendiculairement aux deux directions de coordonnées (x, y) différentes. - Procédé selon la revendication 9, caractérisé en ce que l'angle d'inclinaison entre le plan de la première réflexion et le plan de la deuxième réflexion est adapté de nouveau au moins une fois de plus pendant une suite d'acquisitions de données (= scan).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10160472 | 2001-12-08 | ||
DE10160472A DE10160472B4 (de) | 2001-12-08 | 2001-12-08 | Röntgen-optisches System und Verfahren zur Abbildung einer Strahlungsquelle |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1318524A2 EP1318524A2 (fr) | 2003-06-11 |
EP1318524A3 EP1318524A3 (fr) | 2007-07-04 |
EP1318524B1 true EP1318524B1 (fr) | 2009-03-18 |
Family
ID=7708587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02026625A Expired - Lifetime EP1318524B1 (fr) | 2001-12-08 | 2002-11-29 | Système optique à rayons X et méthode pour former un image d'une source |
Country Status (3)
Country | Link |
---|---|
US (1) | US6925147B2 (fr) |
EP (1) | EP1318524B1 (fr) |
DE (1) | DE10160472B4 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7280634B2 (en) * | 2003-06-13 | 2007-10-09 | Osmic, Inc. | Beam conditioning system with sequential optic |
DE102005057700A1 (de) | 2005-11-25 | 2007-06-06 | Axo Dresden Gmbh | Röntgen-Optisches-Element |
US7920676B2 (en) * | 2007-05-04 | 2011-04-05 | Xradia, Inc. | CD-GISAXS system and method |
DE102010062472A1 (de) | 2010-12-06 | 2012-06-06 | Bruker Axs Gmbh | Punkt-Strich-Konverter |
US10153062B2 (en) * | 2015-06-30 | 2018-12-11 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Illumination and imaging device for high-resolution X-ray microscopy with high photon energy |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5259013A (en) * | 1991-12-17 | 1993-11-02 | The United States Of America As Represented By The Secretary Of Commerce | Hard x-ray magnification apparatus and method with submicrometer spatial resolution of images in more than one dimension |
JPH06294899A (ja) * | 1993-04-09 | 1994-10-21 | Mc Sci:Kk | 湾曲全反射ミラーカメラ |
EP0708970B1 (fr) | 1994-05-11 | 1998-08-12 | University of Colorado | Systeme optique de miroirs spheriques pour rayons x rasants |
JPH08233997A (ja) | 1995-02-27 | 1996-09-13 | Japan Atom Energy Res Inst | 放射x線用モノクロメータ |
US6167111A (en) * | 1997-07-02 | 2000-12-26 | Canon Kabushiki Kaisha | Exposure apparatus for synchrotron radiation lithography |
US6049588A (en) | 1997-07-10 | 2000-04-11 | Focused X-Rays | X-ray collimator for lithography |
US6041099A (en) * | 1998-02-19 | 2000-03-21 | Osmic, Inc. | Single corner kirkpatrick-baez beam conditioning optic assembly |
US6014423A (en) * | 1998-02-19 | 2000-01-11 | Osmic, Inc. | Multiple corner Kirkpatrick-Baez beam conditioning optic assembly |
JP3734366B2 (ja) * | 1998-03-20 | 2006-01-11 | 株式会社リガク | X線分析装置 |
DE19833524B4 (de) * | 1998-07-25 | 2004-09-23 | Bruker Axs Gmbh | Röntgen-Analysegerät mit Gradienten-Vielfachschicht-Spiegel |
AU3474200A (en) * | 1999-01-26 | 2000-08-07 | Focused X-Rays Llc | X-ray interferometer |
US6327335B1 (en) * | 1999-04-13 | 2001-12-04 | Vanderbilt University | Apparatus and method for three-dimensional imaging using a stationary monochromatic x-ray beam |
US6282259B1 (en) | 1999-09-10 | 2001-08-28 | Rigaku/Msc, Inc. | X-ray mirror system providing enhanced signal concentration |
US6625250B2 (en) * | 1999-12-20 | 2003-09-23 | Agere Systems Inc. | Optical structures and methods for x-ray applications |
-
2001
- 2001-12-08 DE DE10160472A patent/DE10160472B4/de not_active Expired - Fee Related
-
2002
- 2002-11-25 US US10/302,918 patent/US6925147B2/en not_active Expired - Lifetime
- 2002-11-29 EP EP02026625A patent/EP1318524B1/fr not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US20030108153A1 (en) | 2003-06-12 |
DE10160472B4 (de) | 2004-06-03 |
EP1318524A3 (fr) | 2007-07-04 |
US6925147B2 (en) | 2005-08-02 |
DE10160472A1 (de) | 2003-06-26 |
EP1318524A2 (fr) | 2003-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69909599T2 (de) | Einzelecke kirkpatrick-baez optische strahlbehandlungsanordnung | |
DE69938469T2 (de) | Röntgenstrahlenanalysevorrichtung | |
DE3785763T2 (de) | Instrumente zur konditionierung von röntgen- oder neutronenstrahlen. | |
DE69908311T2 (de) | Mehrfachecke kirkpatrick-baez optische strahlbehandlungsanordnung | |
DE69923182T2 (de) | Röntgendiffraktometer mit einstellbarem bildabstand | |
DE69604699T2 (de) | Röntgenstrahl-abtaster | |
EP1324351B1 (fr) | Sytème optique à rayons X avec ouverture dans le focus d'un mirroir à rayons X | |
DE102006017705B4 (de) | Spektralanalytische Einheit mit einem Beugungsgitter und Laserscanning-Mikroskop | |
EP3860798B1 (fr) | Système d'usinage au laser | |
DE10245676A1 (de) | Phasenkontrast-Röntgengerät zur Erstellung eines Phasenkontrast-Bildes eines Objekts und Verfahren zum Erstellen des Phasenkontrast-Bildes | |
EP1516221B1 (fr) | Dispositif et procede pour devier des faisceaux laser, destines a des systemes optiques de mesure | |
WO1997025722A2 (fr) | Systeme de condensateur-monochromateur pour rayonnement x | |
DE69405153T2 (de) | Mikrokanalplatten | |
DE19752416A1 (de) | Verfahren und Vorrichtung zum Kombinieren der Strahlungsleistung einer linearen Anordnung von Strahlenquellen | |
EP1318524B1 (fr) | Système optique à rayons X et méthode pour former un image d'une source | |
DE602004003347T2 (de) | Optische röntgenstrahlungsvorrichtung mit verstellbarer konvergenz | |
EP1617257A1 (fr) | Dispositif d'éclairage pour un microscope à balayage avec dispositif pour transformer la distribution d'intensité | |
EP1617272A1 (fr) | Dispositif d'éclairage pour un microscope à balayage avec dispositif pour transformer la distribution d'intensité | |
DE2631831A1 (de) | Abtasteinrichtung fuer strahlung | |
DE3022365A1 (de) | Optische abtastvorrichtung | |
DE102004034966A1 (de) | Beleuchtungsvorrichtung für ein Lichtrastermikroskop mit linienförmiger Abtastung und Verwendung | |
EP3605026A1 (fr) | Dispositif optique de mesure de position | |
DE29924579U1 (de) | Röntgenstrahl-Ausrichtungssystem | |
DE19722561C2 (de) | Optische Anordnung zur Abbildung von Objekten oder Strahlquellen und Verwendungen einer solchen optischen Anordnung | |
DE102017115805B4 (de) | Vorrichtung zur Strahlformung von Laserstrahlung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20071219 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 20080305 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): FR GB NL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): FR GB NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20091221 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20181122 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20181219 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20191201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191129 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20211119 Year of fee payment: 20 |