EP1318524B1 - Système optique à rayons X et méthode pour former un image d'une source - Google Patents

Système optique à rayons X et méthode pour former un image d'une source Download PDF

Info

Publication number
EP1318524B1
EP1318524B1 EP02026625A EP02026625A EP1318524B1 EP 1318524 B1 EP1318524 B1 EP 1318524B1 EP 02026625 A EP02026625 A EP 02026625A EP 02026625 A EP02026625 A EP 02026625A EP 1318524 B1 EP1318524 B1 EP 1318524B1
Authority
EP
European Patent Office
Prior art keywords
ray
mirrors
mirror
source
tilt angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02026625A
Other languages
German (de)
English (en)
Other versions
EP1318524A3 (fr
EP1318524A2 (fr
Inventor
Joachim Lange
Detlef Bahr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker AXS GmbH
Original Assignee
Bruker AXS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker AXS GmbH filed Critical Bruker AXS GmbH
Publication of EP1318524A2 publication Critical patent/EP1318524A2/fr
Publication of EP1318524A3 publication Critical patent/EP1318524A3/fr
Application granted granted Critical
Publication of EP1318524B1 publication Critical patent/EP1318524B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators

Definitions

  • the invention relates to an X-ray optical system with two X-ray mirrors for imaging an X-ray source on a target area, wherein the X-ray mirror for focusing X-rays are arranged in two different coordinate directions with a Verkippungsachse perpendicular to the two different coordinate directions.
  • the two concave X-ray mirrors can have cylindrical, elliptical or parabolic curvature surfaces.
  • parabolic mirrors When parabolic mirrors are used, parallelling of the incident X-radiation is also possible in particular.
  • a disadvantage of this well-known Kirkpatrick-Baez arrangement is the considerably limited acceptance range of the two mirrors. Due to the need to satisfy the Bragg condition for both mirrors, only a much smaller area (about 1/100) is mapped relative to the visible, radiating total area of the x-ray source.
  • US 6,282,259 B1 describes an X-ray mirror system with a monolithic mirror element, which has two mutually orthogonal mirror surfaces, the monolithic mirror element can be bent by the action of force such that a variable adjustment of the focal length is made possible.
  • US 5,615,245 A also discloses a monolithic mirror element with two mirror surfaces.
  • WO 95/31815 A and US 6,049,588 A Describe on the one hand one-dimensional arrangements, that is, arrangements in which different mirrors effect focusing in a single coordinate direction, and on the other hand in each case a two-dimensional array of mirrors, which are tilted by 90 ° from each other.
  • the acceptance angle of typical multilayer mirrors in the range of 1 mrad and the usual focal length in the range of a few centimeters.
  • the electron focus of the X-ray source varies in a linear range of 10 ⁇ m to several millimeters.
  • the acceptance range of a mirror has a smallest linear dimension in the range of a few 10 ⁇ m and is typically strip-shaped.
  • the usual X-ray samples on the other hand have linear dimensions in the range of 100 microns to several millimeters, typically several tenths of a millimeter.
  • a major problem with the generic X-ray optical systems is therefore the relatively low intensity of the focused X-radiation reflected by the mirror arrangement due to the Bragg conditions in relation to the theoretically possible yield due to the size of the radiating surface of the X-ray source and on the other hand, the "need" of X-radiation due to the size of the sample to be examined.
  • the object of the invention is in contrast to present an X-ray optical system with the features mentioned above, which allows with the lowest possible and simple technical modifications easily increase the intensity of the focused X-ray radiation on the sample at constant emission power of the X-ray source.
  • this object is achieved in a surprisingly simple and effective manner in that the X-ray mirror deviating from 90 ° with a deviation of the tilt angle of 90 ° amount by at least 20 ° and at most 85 °, preferably between 30 ° and 85 °
  • the combined acceptance range of the two mirrors can be adapted to the geometric shape of the electron focus and / or the sample, so that the yield of usable X-ray radiation on the sample is significantly increased becomes. This is particularly advantageous when the two areas are of the same order of magnitude.
  • the tilting of the X-ray mirrors according to the invention results in a considerable increase in intensity, because the combined acceptance range compared to that known from the prior art Significantly enlarge the case of the 90 ° arrangement (as is clear from the drawing below). It must, however, be noted that the acceptance range does not migrate out of the electron focus of the source or the target focus of the sample.
  • the invention not only has its advantages in the field of X-ray optics, but is also applicable in the field of neutron optics and with synchrotron radiation as a source.
  • the mirrors used may be flat, cylindrical, spherical shell-shaped, elliptical, parabolic or hyperbolic.
  • Graded mirrors may be used in which the slice spacing varies laterally and / or in depth.
  • single crystals or other X-ray or neutron optical elements can also be used as mirrors.
  • X-ray optical system in which at least one X-ray mirror has a multilayer structure. This makes it possible to achieve a particularly high intensity of the reflected radiation.
  • the tilt angle of the two x-ray mirrors is fixed. This allows you to "freeze” a pre-set optical adjustment to a specific geometry.
  • the tilt angle can also be variable. This allows you to set several different geometries of the overall arrangement.
  • the X-ray mirror when tilted against each other in different positions can be latched. On In this way, a selection of fixed problem adjustments can be made in advance, whereby no great adjustment effort has to be made in the individual setting due to the screening.
  • the x-ray mirrors can also be designed to be continuously tiltable relative to one another. This allows a completely free on-line optimization tailored to the specific needs of very different investigation arrangements realize.
  • the deviation of the tilt angle of 90 ° in terms of magnitude is particularly preferably between 30 ° and 85 °.
  • the X-ray mirrors form a tilted Kirkpatrick-Baez arrangement, as it has been uncontended for many decades.
  • the X-ray mirrors can form a side-by-side arrangement tilted against one another, as they are not tilted in the above-cited US-A 6,041,099 is described.
  • the x-ray mirrors may form a mutually tilted multiple-corner arrangement.
  • An untilted multiple-corner arrangement is for example from the US-A 6,014,423 known in itself.
  • the condition for the deviation of the tilt angle of 90 ° according to the further aspect of the invention discussed above then applies in each case to pairs of adjacent X-ray mirrors.
  • the scope of the present invention also includes an X-ray spectrometer or an X-ray diffractometer or an X-ray microscope, each with an X-ray optical system of the type according to the invention described above.
  • a method for imaging a radiation source for X-ray or neutron radiation on a target area wherein the radiation emitted by the source is reflected at a first X-ray or neutron mirror and then at a second mirror , which is characterized in that the angle between the plane of the first reflection and the plane of the second reflection is set differently tilted by 90 ° such that the combined acceptance range of the first and second reflections to the shape of the radiation source and / or Target range is adjusted, wherein the tilting axis of the two mirrors perpendicular to the two different coordinate directions.
  • Fig. 1 schematically shows a cross section through an X-ray mirror A, the radiation from an acceptance range .DELTA.x in the focus of the mirror A meets, which originates from a Röngten source, which is usually also arranged in this focus.
  • Fig. 2a is very schematically illustrated an embodiment of an arrangement according to the invention, in which two x-ray mirrors A, B are tilted by an angle deviating from 90 ° to each other.
  • the two illustrated X-ray mirrors A, B should each have a parabolic or elliptical surface whose radius of curvature follows the long or short dashed line a (for mirror A) and b (for mirror B), respectively.
  • the focus of the first X-ray mirror A is x
  • the focus of the second X-ray mirror B is y.
  • Fig. 2b shows an enlarged section Fig. 2a , where .DELTA.x the acceptance range of the x-ray source of the x-ray mirror A seen from and .DELTA.y denote the acceptance range of the x-ray source of the x-ray mirror B from.
  • the area F is the intersection of both acceptance ranges ⁇ x and ⁇ y.
  • the dashed, white ellipse S should represent a commonly occurring form of an X-ray source in the example shown.
  • Fig. 3 shows schematically the division of the effective area F as an intersection of the two acceptance ranges .DELTA.x and .DELTA.y of the two X-ray mirrors A, B at the location of the X-ray source.
  • the resulting Parallelogram has a side length b, a long diagonal d 1 and a short diagonal d 2 .
  • the deviation angle ⁇ relative to a tilting of the two X-ray mirrors A, B can be seen by 90 °.
  • Fig. 4 finally, the in Fig. 3 shown surface area F as a function of the increasing angular deviation ⁇ from the angle 90 °. It is assumed that the two acceptance ranges .DELTA.x and .DELTA.y are normalized to one another and normalized to 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Lenses (AREA)

Claims (10)

  1. Système optique à rayons X avec deux miroirs à rayons X (A, B) pour reproduire une source de rayons X (S) sur une région cible, dans lequel les miroirs à rayons X (A, B) pour focaliser des rayons X sont disposés dans deux directions de coordonnées (x, y) différentes avec un axe d'inclinaison perpendiculaire aux deux directions de coordonnées (x, y) différentes,
    caractérisé en ce
    que les miroirs à rayons X (A, B), à la différence de 90°, sont inclinés l'un par rapport à l'autre avec une divergence β de l'angle d'inclinaison par rapport à 90° d'au moins 20° et d'au plus 85° en valeur absolue, et
    que l'angle d'inclinaison est variable.
  2. Dispositif selon la revendication 1, caractérisé en ce que la divergence β de l'angle d'inclinaison par rapport à 90° est supérieure à 30° en valeur absolue.
  3. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'au moins un miroir à rayons X (A, B) présente une structure multicouche.
  4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la divergence β de l'angle d'inclinaison par rapport à 90° est de manière particulièrement préférée comprise entre 30° et 85° en valeur absolue.
  5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les miroirs à rayons X (A, B) forment une configuration Kirkpatrick-Baez avec inclinaison mutuelle.
  6. Dispositif selon la revendication 5, caractérisé en ce que les miroirs à rayons X (A, B) forment une configuration « side-by-side » avec inclinaison mutuelle.
  7. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que les miroirs à rayons X (A, B) forment une configuration « multiple corner » avec inclinaison mutuelle.
  8. Diffractomètre à rayons X avec un système optique à rayons X selon l'une des revendications précédentes.
  9. Procédé pour reproduire une source de rayonnement (S) de rayonnement X ou neutronique sur une région cible, dans lequel le rayonnement émis par la source (S) est réfléchi sur un premier miroir à rayons X ou à neutrons (A) et ensuite sur un deuxième miroir (B),
    caractérisé en ce
    que l'angle entre le plan de la première réflexion et le plan de la deuxième réflexion est réglé avec une inclinaison qui diverge de 90° de manière que le domaine d'acceptabilité combiné (F) de la première réflexion (Δx) et de la deuxième réflexion (Δy) soit adapté à la forme de la source de rayonnement (S) et/ou de la région cible, l'angle d'inclinaison des deux miroirs (A, B) s'étendant perpendiculairement aux deux directions de coordonnées (x, y) différentes.
  10. Procédé selon la revendication 9, caractérisé en ce que l'angle d'inclinaison entre le plan de la première réflexion et le plan de la deuxième réflexion est adapté de nouveau au moins une fois de plus pendant une suite d'acquisitions de données (= scan).
EP02026625A 2001-12-08 2002-11-29 Système optique à rayons X et méthode pour former un image d'une source Expired - Lifetime EP1318524B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10160472 2001-12-08
DE10160472A DE10160472B4 (de) 2001-12-08 2001-12-08 Röntgen-optisches System und Verfahren zur Abbildung einer Strahlungsquelle

Publications (3)

Publication Number Publication Date
EP1318524A2 EP1318524A2 (fr) 2003-06-11
EP1318524A3 EP1318524A3 (fr) 2007-07-04
EP1318524B1 true EP1318524B1 (fr) 2009-03-18

Family

ID=7708587

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02026625A Expired - Lifetime EP1318524B1 (fr) 2001-12-08 2002-11-29 Système optique à rayons X et méthode pour former un image d'une source

Country Status (3)

Country Link
US (1) US6925147B2 (fr)
EP (1) EP1318524B1 (fr)
DE (1) DE10160472B4 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280634B2 (en) * 2003-06-13 2007-10-09 Osmic, Inc. Beam conditioning system with sequential optic
DE102005057700A1 (de) 2005-11-25 2007-06-06 Axo Dresden Gmbh Röntgen-Optisches-Element
US7920676B2 (en) * 2007-05-04 2011-04-05 Xradia, Inc. CD-GISAXS system and method
DE102010062472A1 (de) 2010-12-06 2012-06-06 Bruker Axs Gmbh Punkt-Strich-Konverter
US10153062B2 (en) * 2015-06-30 2018-12-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Illumination and imaging device for high-resolution X-ray microscopy with high photon energy

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259013A (en) * 1991-12-17 1993-11-02 The United States Of America As Represented By The Secretary Of Commerce Hard x-ray magnification apparatus and method with submicrometer spatial resolution of images in more than one dimension
JPH06294899A (ja) * 1993-04-09 1994-10-21 Mc Sci:Kk 湾曲全反射ミラーカメラ
EP0708970B1 (fr) 1994-05-11 1998-08-12 University of Colorado Systeme optique de miroirs spheriques pour rayons x rasants
JPH08233997A (ja) 1995-02-27 1996-09-13 Japan Atom Energy Res Inst 放射x線用モノクロメータ
US6167111A (en) * 1997-07-02 2000-12-26 Canon Kabushiki Kaisha Exposure apparatus for synchrotron radiation lithography
US6049588A (en) 1997-07-10 2000-04-11 Focused X-Rays X-ray collimator for lithography
US6041099A (en) * 1998-02-19 2000-03-21 Osmic, Inc. Single corner kirkpatrick-baez beam conditioning optic assembly
US6014423A (en) * 1998-02-19 2000-01-11 Osmic, Inc. Multiple corner Kirkpatrick-Baez beam conditioning optic assembly
JP3734366B2 (ja) * 1998-03-20 2006-01-11 株式会社リガク X線分析装置
DE19833524B4 (de) * 1998-07-25 2004-09-23 Bruker Axs Gmbh Röntgen-Analysegerät mit Gradienten-Vielfachschicht-Spiegel
AU3474200A (en) * 1999-01-26 2000-08-07 Focused X-Rays Llc X-ray interferometer
US6327335B1 (en) * 1999-04-13 2001-12-04 Vanderbilt University Apparatus and method for three-dimensional imaging using a stationary monochromatic x-ray beam
US6282259B1 (en) 1999-09-10 2001-08-28 Rigaku/Msc, Inc. X-ray mirror system providing enhanced signal concentration
US6625250B2 (en) * 1999-12-20 2003-09-23 Agere Systems Inc. Optical structures and methods for x-ray applications

Also Published As

Publication number Publication date
US20030108153A1 (en) 2003-06-12
DE10160472B4 (de) 2004-06-03
EP1318524A3 (fr) 2007-07-04
US6925147B2 (en) 2005-08-02
DE10160472A1 (de) 2003-06-26
EP1318524A2 (fr) 2003-06-11

Similar Documents

Publication Publication Date Title
DE69909599T2 (de) Einzelecke kirkpatrick-baez optische strahlbehandlungsanordnung
DE69938469T2 (de) Röntgenstrahlenanalysevorrichtung
DE3785763T2 (de) Instrumente zur konditionierung von röntgen- oder neutronenstrahlen.
DE69908311T2 (de) Mehrfachecke kirkpatrick-baez optische strahlbehandlungsanordnung
DE69923182T2 (de) Röntgendiffraktometer mit einstellbarem bildabstand
DE69604699T2 (de) Röntgenstrahl-abtaster
EP1324351B1 (fr) Sytème optique à rayons X avec ouverture dans le focus d'un mirroir à rayons X
DE102006017705B4 (de) Spektralanalytische Einheit mit einem Beugungsgitter und Laserscanning-Mikroskop
EP3860798B1 (fr) Système d'usinage au laser
DE10245676A1 (de) Phasenkontrast-Röntgengerät zur Erstellung eines Phasenkontrast-Bildes eines Objekts und Verfahren zum Erstellen des Phasenkontrast-Bildes
EP1516221B1 (fr) Dispositif et procede pour devier des faisceaux laser, destines a des systemes optiques de mesure
WO1997025722A2 (fr) Systeme de condensateur-monochromateur pour rayonnement x
DE69405153T2 (de) Mikrokanalplatten
DE19752416A1 (de) Verfahren und Vorrichtung zum Kombinieren der Strahlungsleistung einer linearen Anordnung von Strahlenquellen
EP1318524B1 (fr) Système optique à rayons X et méthode pour former un image d'une source
DE602004003347T2 (de) Optische röntgenstrahlungsvorrichtung mit verstellbarer konvergenz
EP1617257A1 (fr) Dispositif d'éclairage pour un microscope à balayage avec dispositif pour transformer la distribution d'intensité
EP1617272A1 (fr) Dispositif d'éclairage pour un microscope à balayage avec dispositif pour transformer la distribution d'intensité
DE2631831A1 (de) Abtasteinrichtung fuer strahlung
DE3022365A1 (de) Optische abtastvorrichtung
DE102004034966A1 (de) Beleuchtungsvorrichtung für ein Lichtrastermikroskop mit linienförmiger Abtastung und Verwendung
EP3605026A1 (fr) Dispositif optique de mesure de position
DE29924579U1 (de) Röntgenstrahl-Ausrichtungssystem
DE19722561C2 (de) Optische Anordnung zur Abbildung von Objekten oder Strahlquellen und Verwendungen einer solchen optischen Anordnung
DE102017115805B4 (de) Vorrichtung zur Strahlformung von Laserstrahlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20071219

AKX Designation fees paid

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 20080305

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): FR GB NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181122

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181219

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20191201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211119

Year of fee payment: 20