EP1315062B1 - Stromgeneratorschaltung für Hochspannungsanwendung - Google Patents

Stromgeneratorschaltung für Hochspannungsanwendung Download PDF

Info

Publication number
EP1315062B1
EP1315062B1 EP20010204556 EP01204556A EP1315062B1 EP 1315062 B1 EP1315062 B1 EP 1315062B1 EP 20010204556 EP20010204556 EP 20010204556 EP 01204556 A EP01204556 A EP 01204556A EP 1315062 B1 EP1315062 B1 EP 1315062B1
Authority
EP
European Patent Office
Prior art keywords
voltage
output
current
generator circuit
current generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010204556
Other languages
English (en)
French (fr)
Other versions
EP1315062A1 (de
Inventor
Arthur Descombes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EM Microelectronic Marin SA
Original Assignee
EM Microelectronic Marin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EM Microelectronic Marin SA filed Critical EM Microelectronic Marin SA
Priority to EP20010204556 priority Critical patent/EP1315062B1/de
Publication of EP1315062A1 publication Critical patent/EP1315062A1/de
Application granted granted Critical
Publication of EP1315062B1 publication Critical patent/EP1315062B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage

Definitions

  • the present invention generally relates to the field of current generating circuits. More particularly, the present invention relates to a current generator circuit powered by a high supply voltage (of the order of ten to a few tens of volts).
  • FIG. 1 shows an example of a typical current generating circuit generally identified by the reference numeral 10.
  • This current generator circuit 10 constitutes a voltage-controlled current generator circuit.
  • the current generator circuit 10 typically comprises an amplification means formed of an operational amplifier or differential amplifier 100, a transistor 102 and a resistive element 103.
  • the differential amplifier 100 comprises a positive input terminal (non-inverting input) 100a on which is applied an input voltage designated V IN , a negative input terminal (inverter input) 100b and an output 100c. It will be noted that the terminal 100a of the differential amplifier 100 forms an input or control terminal A of the current generating circuit.
  • This amplifying means 100 supplies a voltage at its output 100c in response to the difference between the voltages applied to its first and second input terminals 100a and 100b, respectively.
  • the transistor 102 is formed in this example of a field effect n-MOS transistor (n-MOSFET) whose gate 102c is connected to the output 100c of the differential amplifier 100.
  • the source 102a of the transistor 102 is connected to the negative input 100b of the differential amplifier 100 and a first terminal of the resistive element 103.
  • the other terminal of the resistive element 103 is connected to a supply potential V SS here forming ground.
  • the drain-source branch 102a-102b of the transistor 102 is crossed by a current designated I REF .
  • the differential amplifier 100 modifies the voltage at its output 100c so that the voltage present at its negative input 100b is substantially equal to the voltage present at its positive input 100a, that is to say substantially equal to the input voltage V IN .
  • the generated current I REF is thus proportional to the input voltage V IN applied to the positive input 100a of the differential amplifier.
  • the generator circuit of the figure 1 further comprises a current mirror, designated generally by the reference 110, comprising a reference branch connected to the source 102b of the transistor 102 and at least one output branch delivering an output current I OUT to the image of the current I REF crossing the reference branch.
  • the reference branch of the current mirror 110 typically comprises a first p-MOSFET transistor 111 whose source 111a is connected to a second supply potential, designated V DD , the gate 111c and the drain 111b of this transistor being all two connected to the drain terminal 102b of the transistor 102.
  • the output branch of the current mirror 110 comprises a second p-MOSFET transistor 112 whose source 112a is connected to the potential V DD , the gate 112c of this transistor 112 being connected to the gate 111c of the transistor 111 of the reference branch.
  • the drain terminal 112b of the transistor 112 forms the output terminal B of the current generator circuit 10.
  • the current I OUT delivered on this output B is the image of the current I REF in the reference branch of the current mirror in a report determined by the sizing of transistors 111 and 112.
  • An object of the present invention is therefore to propose a generator circuit of current that overcomes the disadvantages mentioned above.
  • Another object of the present invention is also to provide a solution that is simple and relatively inexpensive to manufacture.
  • the present invention thus relates to a current generating circuit whose characteristics are set forth in claim 1.
  • the reference current of the current generating circuit is thus advantageously generated by means of a specific high-voltage MOSFET transistor capable of seeing at its terminals a drain-source voltage of the order of a few tens of volts.
  • the high-voltage MOSFET transistor used is preferably and advantageously an n-channel (or p-channel) MOSFET transistor, comprising a gate oxide having a greater thickness on the drain side than on the source side and a buffer zone on the drain side consisting of a box of type n (or p).
  • the current generating circuit advantageously also comprises an additional circuit making it possible to limit the output potential level (with respect to a reference potential) to a maximum level, in order to avoid causing possible damage. circuits connected to this output, especially when no load is connected to it.
  • the figure 2 shows an embodiment of a current generating circuit according to the present invention, generally designated by the reference numeral 20.
  • the current generating circuit 20 comprises a differential amplifier 200, a transistor 202, a resistive element 203 and a current mirror 210 comprising first and second p-MOSFET transistors 211, 212 connected in the manner of the elements 100, 102, 103 , 111 and 112 of the figure 1 .
  • the transistor 202 is a specific high-voltage MOSFET transistor. This high-voltage MOSFET transistor 202, here of the n-channel type, is already known to those skilled in the art.
  • this high-voltage transistor 202 resides in particular in the specific structure of the gate oxide which has a greater thickness on the drain side than on the source side and in the presence of a buffer zone on the drain side consisting of an n-type well (or p for a high-voltage p-channel MOSFET).
  • the Figures 3a and 3b show respectively the diagrams of a high voltage n-channel MOSFET, or HVNMOS, and a high-voltage p-channel MOSFET, or HVPMOS.
  • HVNMOS transistors have the particular advantage of a high breakdown voltage typically greater than 30 volts.
  • Another advantage of this type of transistor lies in the fact that their manufacture is perfectly compatible with the standard CMOS technology.
  • the high-voltage MOSFET transistor 202 is thus connected by its drain terminal 202b to the drain terminal 211b of the p-MOS transistor 211 of the current mirror 210 and its source terminal 202 to the resistive element 203.
  • the power supply of the current generator circuit of the figure 2 is provided by a high-voltage supply V HV - V SS of the order of ten to a few tens of volts.
  • V HV - V SS of the order of ten to a few tens of volts.
  • This supply voltage can for example be delivered by means of a high-voltage regulator circuit.
  • Such a high-voltage regulator comprising an external regulating device is for example described in the European patent application No. 01202429.5 filed on 25 June 2001, also on behalf of this Depositor.
  • the use of the high-voltage MOSFET transistor 202 in the reference branch of the current mirror 210 makes it possible to prevent any breakdown of the components in this reference branch. Moreover, because of the high breakdown voltage of the transistor 202 (of the order of 30 volts), the circuit has great flexibility of use vis-à-vis the supply voltage V HV - V SS .
  • the current generating circuit 20 further comprises means, identified generally by the numerical reference 400, making it possible to limit the potential level of the output B of the circuit on which the output current I OUT is delivered to a determined extreme potential level, especially in the case where the output is not connected to any circuit (open circuit - load resistance R L infinite).
  • these means 400 are arranged to limit the potential level of the output B to a maximum value, designated V OUT, MAX , set as a purely illustrative example at 10 volts.
  • the means 400 thus comprise a voltage divider circuit formed in this example of a resistive divider comprising first and second resistive elements 411 and 412, of value R 1 and R 2 , connected between the output terminal B and a third potential of reference, chosen equal to the power supply potential V SS forming mass.
  • the connection node between the resistive elements 411 and 412 is connected to a positive input terminal (non-inverting terminal) 401a of a second differential amplifier 401, a reference voltage V REF being applied to the negative input terminal ( inverting terminal) 401b of this differential amplifier 401.
  • the reference voltage V REF (as well as the input voltage V IN of the current generating circuit) may for example be a stable voltage reference temperature type "Bandgap" well known to those skilled in the art (the so-called bandgap voltage is a voltage of the order of 1.2 volts).
  • the output terminal 401c of the differential amplifier 401 is connected to the gate 402c of a second high-voltage MOSFET transistor, also of the n-channel type, the drain of which is connected to the output B of the current generating circuit 20 and the source is connected to the supply potential V SS .
  • the values R 1 and R 2 of the resistive elements 411 and 412 are chosen so as to set the potential level of the output B to the extreme value (here maximum) V OUT, MAX designated above.
  • the values R 1 and R 2 of the resistive elements 411, 412 are furthermore chosen so as to limit the current flowing in this branch.
  • the dimensioning of the components of the current generating circuit can be chosen so that the output current I QUT delivered is of the order of 10 mA.
  • resistor values R1 and R2 respectively equal to 88 k ⁇ and 12 k ⁇ make it possible to set the level of maximum potential of the output B at 10 volts, while taking only a maximum current of the order of 0.1 mA in the branch of the resistive voltage divider circuit.
  • the means 400 thus ensures that the potential level of the output B of the current generator circuit does not exceed the value V OUT, MAX defined at 10 volts in this case. Indeed, as soon as the potential level of the output exceeds the set threshold, the output of the differential amplifier controls the activation of the high-voltage MOSFET transistor 402 to counterbalance this increase and maintain the output B at the maximum potential level. defined.
  • the current generating circuit 20 furthermore preferably comprises protection means 300 to prevent the breakdown, in particular of the transistor 212 of the output branch of the current mirror 210, for example in the event of a short circuit. circuit to the earth of the output B of the current generating circuit.
  • protection means 300 may for example comprise a cascode arrangement of one or more transistors connected in the output branch of the current mirror 210. In this example, for a supply voltage V HV - Vss of the order of 15 volts, two additional transistors 301 and 302 connected in series with the transistor 212 are sufficient.
  • a resistive divider circuit 311, 312, 313 makes it possible to set the gate potentials of the transistors 301 and 302 to appropriate levels, for example 10 and 5 volts respectively.
  • the means 400 prevent the potential of the output B from rising towards V HV (in the case of an infinite load resistor R L ), which would have the consequence, for example, that the gate voltage drain of transistor 302 may exceed a critical value.
  • the means 300 and 400 thus act in a complementary manner to ensure the integrity of components of the current generating circuit according to the present invention.
  • the protection means 300 could perfectly comprise a third high-voltage MOSFET transistor of the type of the transistors 202 and 402 connected in series by its drain and source terminals in the output branch of the current mirror 210.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Claims (7)

  1. Stromgeneratorschaltung (20), die Mittel (200, 202, 203) zum Erzeugen eines Referenzstroms (IREF) und einen Stromspiegel (210) umfasst, wobei der Stromspiegel (210) mit einem ersten Versorgungspotential (VHV) verbunden ist und einen Referenzzweig (211), in den der Referenzstrom (IREF) eingegeben wird, und einen Ausgangszweig (212), der an einen Ausgang (B) der Stromgeneratorschaltung einen Ausgangsstrom (IOUT) liefert, der ein Bild des Referenzstroms (IREF) ist und in einem bestimmten Verhältnis zu dem Referenzstrom (IREF) steht,
    wobei die Referenzstrom-Erzeugungsmittel umfassen:
    - einen MOSFET-Transistor (202), der einen Drain-Anschluss, einen Source-Anschluss und einen Gate-Anschluss enthält, wobei dieser MOSFET-Transistor (202) mit seinem Drain-Anschluss und seinem Source-Anschluss in dem Referenzzweig (211) in Reihe geschaltet ist,
    - ein resistives Element (203), das zwischen den Source-Anschluss des MOSFET-Transistors (202) und ein zweites Versorgungspotential (VSS) geschaltet ist und
    - einen Differenzverstärker (200), der einen ersten Eingang, der mit einer Referenzeingangsspannung (VIN) verbunden ist, einen zweiten Eingang, der mit dem Source-Anschluss des MOSFET-Transistors (202) verbunden ist, und einen Ausgang, der mit dem Gate-Anschluss des MOSFET-Transistors verbunden ist, enthält,
    dadurch gekennzeichnet, dass der MOSFET-Transistor (202) ein Hochspannungs-MOSFET-Transistor ist und dass die Stromgeneratorschaltung (20) außerdem Begrenzungsmittel (400) umfasst, die ermöglichen, einen Extremwert des Potentialpegels des Ausgangs (B) der Stromgeneratorschaltung zu begrenzen, wobei die Begrenzungsmittel eine Spannungsteilerschaltung (411, 412) aufweisen, die zwischen den Ausgang (B) der Stromgeneratorschaltung und das zweite Versorgungspotential (VSS) geschaltet ist und am Ausgang eine geteilte Spannung liefert, die zu dem Potentialpegel des Ausgangs (B) der Stromgeneratorschaltung in einem bestimmten Verhältnis proportional ist.
  2. Stromgeneratorschaltung nach Anspruch 1, dadurch gekennzeichnet, dass die Begrenzungsmittel (400) außerdem umfassen:
    - einen zweiten Hochspannungs-MOSFET-Transistor (402), der einen Drain-Anschluss, einen Source-Anschluss und einen Gate-Anschluss enthält, wobei dieser zweite Hochspannungs-MOSFET-Transistor mit seinem Drain-Anschluss und seinem Source-Anschluss zwischen den Ausgang (B) der Stromgeneratorschaltung und das dritte Versorgungspotential (VSS) geschaltet ist, und
    - einen zweiten Differenzverstärker (401), der einen ersten Eingang, der mit einer Referenzspannung (VREF) verbunden ist, einen zweiten Eingang, der mit dem Ausgang der Spannungsteilerschaltung (411, 412) verbunden ist, und einen Ausgang, der mit dem Gate-Anschluss des zweiten Hochspannungs-MOSFET-Transistors (402) verbunden ist, enthält.
  3. Stromgeneratorschaltung nach Anspruch 2, dadurch gekennzeichnet, dass die Spannungsteilerschaltung (411, 412) eine Widerstandsteilerschaltung ist.
  4. Stromgeneratorschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der oder die Hochspannungs-MOSFET-Transistoren n- oder p-Kanal-MOSFET-Transistoren sind, die ein Gateoxid enthalten, das auf Seiten des Drains eine größere Dicke als auf Seiten der Source besitzt und auf Seiten des Drains eine Pufferzone, die durch eine n- oder p-Wanne gebildet ist, aufweist.
  5. Stromgeneratorschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ausgangszweig (212) des Stromspiegels (210) außerdem eine Kaskodenschaltung aus einem oder mehreren Transistoren (301, 302) enthält.
  6. Stromgeneratorschaltung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die in den ersten Eingang des zweiten Differenzverstärkers (401) eingegebene Referenzspannung (VREF) von einer temperaturstabilen Spannungsreferenz des Bandlückentyps abgeleitet ist.
  7. Stromgeneratorschaltung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Referenzeingangsspannung (VIN), die in den ersten Eingang des ersten Differenzverstärkers (200) eingegeben wird, von einer temperaturstabilen Spannungsreferenz des Bandlückentyps abgeleitet ist.
EP20010204556 2001-11-26 2001-11-26 Stromgeneratorschaltung für Hochspannungsanwendung Expired - Lifetime EP1315062B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20010204556 EP1315062B1 (de) 2001-11-26 2001-11-26 Stromgeneratorschaltung für Hochspannungsanwendung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20010204556 EP1315062B1 (de) 2001-11-26 2001-11-26 Stromgeneratorschaltung für Hochspannungsanwendung

Publications (2)

Publication Number Publication Date
EP1315062A1 EP1315062A1 (de) 2003-05-28
EP1315062B1 true EP1315062B1 (de) 2011-05-18

Family

ID=8181307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010204556 Expired - Lifetime EP1315062B1 (de) 2001-11-26 2001-11-26 Stromgeneratorschaltung für Hochspannungsanwendung

Country Status (1)

Country Link
EP (1) EP1315062B1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147854A (ja) * 1987-12-04 1989-06-09 Nissan Motor Co Ltd 半導体装置
FR2770004B1 (fr) * 1997-10-20 2000-01-28 Sgs Thomson Microelectronics Generateur de courant constant precis
US6087820A (en) * 1999-03-09 2000-07-11 Siemens Aktiengesellschaft Current source

Also Published As

Publication number Publication date
EP1315062A1 (de) 2003-05-28

Similar Documents

Publication Publication Date Title
EP3176669B1 (de) Schaltkreis zur erzeugung einer referenzspannung
EP0733961B1 (de) Referenzstromgenerator in CMOS-Technologie
FR2890259A1 (fr) Circuit de generation d'un courant de reference et circuit de polarisation
FR2912013A1 (fr) Dispositif de generation de courant de polarisation ayant un coefficient de temperature ajustable.
EP0788047B1 (de) Vorrichtung zur Erzeugung von Referenzstrom in einer integrierten Schaltung
EP0583203B1 (de) Schaltung zum Ziehen des Eingangs einer integrierten Schaltung auf einen definierten Zustand
FR2887650A1 (fr) Circuit fournissant une tension de reference
EP0424264A1 (de) Stromquelle mit niedrigem Temperaturkoeffizient
EP0756223B1 (de) Spannungs- und/oder Stromreferenzgenerator in integriertem Schaltkreis
FR2678399A1 (fr) Miroir de courant fonctionnant sous faible tension.
FR2825806A1 (fr) Circuit de polarisation a point de fonctionnement stable en tension et en temperature
EP0687967B1 (de) Temperaturstabilisierte Stromquelle
EP2913849B1 (de) Elektronische Vorrichtung mit in Gegenrichtung vorgespanntem HEMT-Transistor
EP0571302B1 (de) Verstärker mit Ausgangsstrombegrenzung
EP1315062B1 (de) Stromgeneratorschaltung für Hochspannungsanwendung
EP1760565A1 (de) Stromspiegel
CH651160A5 (fr) Amplificateur differentiel a transistors bipolaires realises en technologie cmos.
FR2795557A1 (fr) Dispositif d'ajustement des circuits apres mise en boitier et procede de fabrication correspondant
EP1109088A1 (de) Spannungsregler mit Vorscholttransistor und Strombegrenzung
EP0738038A1 (de) Stromverstärker
EP0050583B1 (de) Wechselspannung/Gleichstrom-Konverter und Schwingkreis-Schaltung mit einem solchen Konverter
FR2872648A1 (fr) Amplificateur a transconductance rapide
EP1271440B1 (de) Hochspannungsregler mit externer Steuerung
FR2572234A1 (fr) Dispositif de decalage de potentiel pour des circuits integres au gaas
EP0923014B1 (de) Vorrichtung zur Erzeugung einer Referenzgleichspannung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031128

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20060707

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60144656

Country of ref document: DE

Effective date: 20110630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60144656

Country of ref document: DE

Effective date: 20120221

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191021

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191022

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191022

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60144656

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601