EP1314217A1 - Hochtemperaturbrennstoffzelle - Google Patents

Hochtemperaturbrennstoffzelle

Info

Publication number
EP1314217A1
EP1314217A1 EP01953843A EP01953843A EP1314217A1 EP 1314217 A1 EP1314217 A1 EP 1314217A1 EP 01953843 A EP01953843 A EP 01953843A EP 01953843 A EP01953843 A EP 01953843A EP 1314217 A1 EP1314217 A1 EP 1314217A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
anode
temperature fuel
cell according
interconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01953843A
Other languages
English (en)
French (fr)
Other versions
EP1314217B1 (de
Inventor
Martin Bram
Hans Peter Buchkremer
Detlev STÖVER
Helmut Ringel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1314217A1 publication Critical patent/EP1314217A1/de
Application granted granted Critical
Publication of EP1314217B1 publication Critical patent/EP1314217B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a high temperature fuel cell.
  • a fuel cell has a cathode, an electrolyte and an anode.
  • the cathode becomes an oxidizing agent, e.g. B. air and the anode becomes a fuel, e.g. B. supplied hydrogen.
  • the SOFC fuel cell is also called a high-temperature fuel cell because its operating temperature can be up to 1000 ° C.
  • Oxygen ions form on the cathode of a high-temperature fuel cell in the presence of the oxidizing agent. The oxygen ions diffuse through the electrolyte and recombine on the anode side with the hydrogen from the fuel to form water. The recombination releases electrons and thus generates electrical energy.
  • the bipolar plate is an example of a connecting element. Bipolar plates are used to produce stacked fuel cells that are electrically connected in series. This arrangement is called a fuel cell stack.
  • the fuel cell stacks consist of the interconnectors and the electrode-electrolyte units.
  • interconnectors also regularly have gas distribution structures.
  • this is achieved by means of webs with electrode contact which separate the gas channels for supplying the electrodes (DE 44 10 711 Cl).
  • Gas distribution structures ensure that the equipment is distributed evenly in the electrode rooms (rooms in which the electrodes are located).
  • glass solders with low elasticity are used to seal individual components of a fuel cell. This creates the risk of cracking and loss of liability due to thermal stresses.
  • the prior art does not yet have sufficient compatibility between the comparatively high expansion coefficients, e.g. the metallic bipolar plates and the currently known electrode materials, whose expansion coefficients are comparatively low.
  • Thermal voltages can occur on the one hand between electrodes and interconnectors. This can result in destruction within the fuel cell.
  • this also applies to the glass solders frequently used in fuel cells, which are intended to ensure the tightness of the fuel cells.
  • the object of the invention is therefore to provide a fuel cell in which long-term stable mechanical-electrical contacting of the cathode or the anode is ensured by the interconnectors. Problems based on thermal stresses, such as insufficient tightness, should be excluded.
  • This object is achieved by a high-temperature fuel cell according to claim 1. It comprises an anode, an electrolyte, a cathode and a cathode interconnector and an anode interconnector, wherein at least one elastic means for absorbing relative movements is arranged between the anode and the anode interconnector. In this way, thermal stresses on the anode side, which are based on the different expansion behavior of the individual components, are equalized.
  • the cathode interconnector advantageously has a projecting surface which contacts the cathode (claim 2).
  • the protruding surface has the effect that the cathode interconnector has an edge all around, the height of which in the cross section is smaller than at the cathode contact surface.
  • the electrodes also have a certain freedom of movement on the cathode side. The expansion behavior of the materials and in particular thermal stresses can then be better compensated for on the anode and cathode side.
  • a further elastic means in particular a corrugated perforated plate, is particularly advantageously arranged between the cathode interconnector and the electrolyte (claim 3).
  • the electrodes and the electrolyte are freely suspended and a particularly high freedom of movement of the electrodes is achieved.
  • a deflection of the individual com- prevents components.
  • the perforated plate does not have to be embossed in a wave-like manner, but can have a flat edge so that it can be better stabilized by other components of the fuel cell.
  • the cathode can have a smaller footprint than the anode (claim 4).
  • the perforated plate can contact the electrolyte in a gas-tight manner on the surface not covered by the cathode via its troughs
  • the perforated plate can be made of a high temperature alloy, in particular an iron-chromium-aluminum alloy, for example Aluchrom ® YHf (Material no. 1.4767) or a nickel-based alloy, e.g. Nicrofer ® 6025 HT (material no .: 2.4633). It is essential that the material has high creep resistance and sufficient elasticity at high temperatures.
  • a high temperature alloy in particular an iron-chromium-aluminum alloy, for example Aluchrom ® YHf (Material no. 1.4767) or a nickel-based alloy, e.g. Nicrofer ® 6025 HT (material no .: 2.4633). It is essential that the material has high creep resistance and sufficient elasticity at high temperatures.
  • the cathode interconnector can be connected in an electrically insulating manner to the anode interconnector via a frame (claim 6).
  • the frame has the function of an insulating connecting element and a spacer for the two interconnectors. When the high-temperature fuel cell is pressed together, the frame limits the maximum force that can act on the perforated plate on the cathode side and the further elastic means on the anode side.
  • the frame can be connected to the perforated plate (claim 7).
  • the perforated plate should have a flat edge.
  • the connection can be made using a soldering or welding process. Because the amount of
  • the cross-section of the cathode interconnector is smaller at its edge than at the cathode contact surface, the cathode interconnector can make continuous contact with the corrugated perforated plate on its flat edge at said edge. This leads to the mechanical stabilization of the perforated plate.
  • a glass ceramic layer can be arranged between the wave troughs of the perforated plate and the electrolyte. Proverbs 8). This layer serves to increase the tightness between the wave troughs and the electrolyte and to create sealed, gas-tight electrode spaces.
  • the frame advantageously consists of an iron base alloy containing aluminum (claim 9). Such a frame can be annealed with air supply above 1000 ° C. After this process, the surface of the frame has an electrically insulating aluminum oxide layer (claim 10). The frame surface can thus be easily electrically insulated. Means for electrical insulation of the frame can also be arranged between the frame and the anode interconnector (claim 11).
  • a glass ceramic layer can be arranged as a means (claim 12).
  • a mica layer is arranged as a means for electrically insulating the frame (claim 13). This can be applied using a suitable paste technique. Such a mica layer has sufficient elasticity due to the layered structure, which avoids cracking and loss of adhesion during operation. If such additional means are used, the choice of frame material is not limited to iron-based alloys containing aluminum. Means for electrical insulation can be arranged between the frame and the anode. The electrically insulating means is arranged so that it ensures electrical insulation between the frame and the anode and prevents a short circuit.
  • the anode can have a glass ceramic layer as a means for electrical insulation (claim 15). This can be applied to the sides facing the frame. Glass ceramics can be applied easily.
  • the insulation between anode and frame can also be ensured by the electrolyte.
  • the anode must be coated with the electrolyte up to the side opposite the cathode (claim 16). Due to the material of the electrolyte, which consists for example of yttrium-stabilized Zr0 2 , the electrical insulation is ensured.
  • At least one elastic means for absorbing relative movements is arranged between the anode interconnector and the anode.
  • This can be an apertured, corrugated, elastic film (claim 17).
  • the material may be made of a high temperature alloy, in particular an iron-chromium-aluminum alloy, for example Aluchrom YHf ®, or a nickel-based alloy, for example Nicrofer® ® 6025 HT, exist. It is essential that the material has high creep resistance and sufficient elasticity at high temperatures.
  • the film also has openings. The openings may have been punched out of the film in a simple manner before embossing. The openings serve to supply the anode with fuel. If the anode interconnector is designed, for example, as a bipolar plate, the fuel flows from gas channels through the openings in the film to the anode.
  • the foil has at least partially nickel-aluminum alloys on both sides (claim 18).
  • the elastic film is connected to films containing 99% nickel on both sides by alloying. Due to the high temperature resistance of the nickel, the nickel-aluminum alloys ensure good and long-term stable electrical conductivity of the foil on its surface.
  • the anode interconnector advantageously contains aluminum (claim 19). Then there are additional possibilities to ensure the electrical conductivity between the anode interconnector and the elastic means or the anode.
  • the anode interconnector can also have at least partially nickel-aluminum alloys (claim 20).
  • at least one foil containing nickel with the contact surfaces Chen the anode interconnector for the anode by alloy formation (claim 21). This can either be the embossed foil having nickel-aluminum alloys, the troughs of which are connected to the anode interconnector by alloy formation (claim 22).
  • other nickel foils can also be connected to the anode interconnector by alloy formation.
  • the anode interconnector thus at least partially contains nickel-aluminum alloys on the contact surfaces with the corrugated foil.
  • the nickel-aluminum alloys can be, for example, nickel aluminides (for example NiAl, NiAl, Ni 3 Al). Such nickel-aluminum alloys generally offer the following advantages as a contact layer in high-temperature fuel cells:
  • Nickel-aluminum alloys act as a diffusion barrier for alloy components in the steels used for interconnectors and other components of the fuel cell and thus prevent the formation of poorly conductive corrosion products (e.g. aluminum oxide) at interfaces, for example between the anode interconnector and the nickel coating of the foil.
  • poorly conductive corrosion products e.g. aluminum oxide
  • Nickel-aluminum alloys are resistant to high temperatures (e.g. melting point of NiAl: 1638 ° C).
  • Nickel-aluminum alloys have sufficient electrical conductivity.
  • the properties of the nickel-aluminum alloys prevent the formation of insulating aluminum oxide layers. From this it follows that the nickel-aluminum alloys achieve a reduction in the contact resistance or a high conductivity on the anode side, which leads to long-term stable contacting, especially in the fuel cell stack.
  • nickel-aluminum alloys Another possibility for producing nickel-aluminum alloys is to use galvanic nickel plating.
  • the nickel-plated surfaces are then annealed in vacuo to form nickel-aluminum alloys, preferably at 1150 ° C.
  • An elastic nickel mesh can be arranged between the anode and the anode interconnector (claim 23).
  • the nickel mesh not only compensates for the relative movements between the anode and the anode interconnector, but also offers the advantage that it ensures uniform electrical contact with the anode via the grid points of the mesh and thus compensates for the above-mentioned disadvantageous manufacturing tolerances. It is it is conceivable that both elastic means, that is to say nickel mesh and corrugated foil, are arranged on the anode side.
  • a cathode contact layer can be arranged between the cathode interconnector and the cathode. This can lie flush on the cathode. In the joining process, this layer can serve on the one hand as tolerance compensation and on the other hand as a diffusion barrier for evaporating chromium from the cathode interconnector.
  • a fuel cell stack comprises at least two such high-temperature fuel cells (claim 25). As a result, higher performances are achieved.
  • Fig. 1 Cross section through a high-temperature fuel cell with a wave-shaped embossed film to absorb relative movements.
  • Fig. 2 Cross section through a high-temperature fuel cell with a nickel net to collect
  • the anode 1 consists of NiO and 8YSZ-stabilized Zr0 2 .
  • the thickness is 1500 ⁇ m, which means that the anode is designed as an anode substrate and has a supporting function.
  • the andode functional layer la has a thickness of 5 ⁇ m and consists of the same material as the anode 1. However, the anode functional layer la has a lower porosity than the anode 1 in order to ensure a uniform coating with an electrolyte 2 made of 8 YSZ.
  • the anode 1 is completely coated with the electrolyte 2 except for the lower base area. Its layer thickness is at least 5 ⁇ m.
  • the electrolyte 2 has a sufficiently low electrical conductivity to isolate the anode 1 except for the anode interconnector 8 to its neighboring components of the fuel cell.
  • the cathode 3 has a smaller footprint than the anode 1 and is arranged on the electrolyte 2. It consists of La 0 , 65 Sro, 3 Mn0 3 as standard and has a layer thickness of 40 ⁇ m.
  • a cathode contact layer 4 is arranged on the cathode 3; it consists, for example, of LaCo0 3 , has a layer thickness of 75 ⁇ m, and is only shown in the enlarged section.
  • cathode contact layer 4 manufacturing tolerances in the manufacture of bipolar plates or electrode-electrolyte units can be compensated for by the cathode contact layer 4, so that poorly conductive Contact points between cathode 3 and cathode interconnector 5 can be avoided.
  • the cathode contact layer 4 is contacted via a projecting surface 5a of the cathode interconnector 5. Due to the protruding surface 5a, the cathode interconnector 5 has one all around
  • the cathode interconnector 5 is designed as a bipolar plate.
  • the gas channels are indicated by a dot-dash line 6.
  • the gas flow runs in the horizontal plane, for example from left to right.
  • the cathode interconnector 5 is connected at the said edge in an electrically insulating manner to an anode interconnector 8 via a frame 7.
  • the frame 7 can consist of an iron-based alloy. It is connected to the anode interconnector 8 via an electrically insulating layer 9.
  • the frame 7 is connected on the cathode side to a perforated plate 10, which is planar at the edges and has elastic properties, which is otherwise corrugated, and makes gas-tight contact with the electrolyte 2 all around on the surface not covered by the cathode 3.
  • the wave crests of the perforated plate 10 contact the cathode interconnector 5 at its edge, which, as mentioned, in
  • the perforated plate 10 consists of Nicrofer ® 6025 HT, and has a thickness of 100 ⁇ m. All- However, the thickness can vary between 50 and 300 ⁇ m. Overall, the perforated plate 10 has four wave troughs for gas-tight contacting, but more or fewer waves are also conceivable. This creates gas-tight electrode spaces.
  • the frame 7 has an electrically insulating means 9, for example made of glass ceramic or mica, on the contact surface with the anode interconnector 8.
  • the anode interconnector 8 is also designed as a bipolar plate and contains gas channels 13 which are separated from one another by webs 14.
  • the equipment is thus introduced for the cathode and anode in a cross-flow design.
  • a parallel gas flow co-current or counter-current design
  • the webs 14 have anode contact.
  • an elastic means 11 is arranged in the form of an apertured, wave-shaped, elastic foil. This absorbs the relative movements between the anode and the anode interconnector and ensures compensation for the expansion of the individual components caused by thermal stresses.
  • Foil 11 can consist of Aluchrom ® YHf or Nicrofer ® 6025HT.
  • the thickness of the film is, for example, 100 ⁇ m, but can vary between 50 and 300 ⁇ m.
  • the openings serve to supply the anode 1 with fuel.
  • the fuel flows from the gas channels 13 of the anode interconnector 8 through the openings in the film 11 to the anode 1.
  • the foil contains nickel-aluminum alloys 12 on both sides to reduce the contact resistance.
  • Anode-side film 11, cathode-side perforated plate 10 and protruding contact surface 5a of cathode inter-connector 5 thus largely compensate for the thermal stresses which occur especially during cycling.
  • FIG. 2 differs from FIG. 1 in the electrical insulation of frame 17, the material of the frame itself and the elastic means 21 arranged between anode interconnector 8 and anode 1 for absorbing relative movements.
  • the frame 17 consists in Fig. 2 from a aluminiumhal- term iron-base alloy, for example Aluchrom ® YHf. It is connected to the anode interconnector 8 and has an electrically insulating layer 19 made of aluminum oxide on its surface. A proportion of 5% aluminum in the frame is sufficient to form this electrically insulating cover layer 19 from aluminum oxide by annealing at 1000 ° C. with air supply. The insulating cover layer 19 completely covers the surface of the frame 17 and is therefore shown all around. Also in FIG. 2, the height of the frame 17 is so great that a further elastic means for absorbing relative movements can be arranged between the anode interconnector 8 and the anode 1. In Fig. 2, this is an elastic nickel mesh 21.
  • the fuel flows then from the gas channels 13 of the anode interconnector 8 through the meshes of the nickel mesh 21 to the anode 1.
  • FIGS. 1 and 2 can be combined with one another without impairment.
  • An aluminum-containing frame 17, as described in FIG. 2 can also be present in FIG. 1.
  • a frame 7, as described in FIG. 1, can be used in FIG. 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hybrid Cells (AREA)

Description

B e s c h r e i b u n g
Hochtemperaturbrennstoffzelle
Die Erfindung bezieht sich auf eine Hochtemperaturbrennstoffzelle .
Eine Brennstoffzelle weist eine Kathode, einen Elektrolyten sowie eine Anode auf. Der Kathode wird ein Oxida- tionsmittel, z. B. Luft und der Anode wird ein Brennstoff, z. B. Wasserstoff zugeführt.
Verschiedene Brennstoffzellentypen sind bekannt, beispielsweise die SOFC-Brennstoffzelle aus der Druckschrift DE 44 30 958 Cl sowie die PEM-Brennstoffzelle aus der Druckschrift DE 195 31 852 Cl .
Die SOFC-Brennstoffzelle wird auch Hochtemperaturbrennstoffzelle genannt, da ihre Betriebstemperatur bis zu 1000 °C betragen kann. An der Kathode einer Hochtemperaturbrennstoffzelle bilden sich in Anwesenheit des Oxidationsmittels Sauerstoffionen. Die Sauerstoffionen diffundieren durch den Elektrolyten und rekombinieren auf der Anodenseite mit dem vom Brennstoff stammenden Wasserstoff zu Wasser. Mit der Rekombination werden Elektronen freigesetzt und so elektrische Energie er- zeugt .
Mehrere Brennstoffzellen werden in der Regel zur Erzielung großer elektrischer Leistungen durch verbindende Elemente, auch Interkonnektoren genannt, elektrisch und mechanisch miteinander verbunden. Ein Beispiel für ein verbindendes Element stellt die bipolare Platte dar. Mittels bipolarer Platten entstehen übereinander gesta- pelte, elektrisch in Serie geschaltete Brennstoffzellen. Diese Anordnung wird Brennstoffzellenstapel genannt. Die Brennstoffzellenstapel bestehen aus den Interkonnektoren und den Elektroden-Elektrolyt-Einheiten.
Interkonnektoren besitzen neben den elektrischen und mechanischen Eigenschaften regelmäßig auch Gasverteilerstrukturen. Bei der bipolaren Platte wird dies durch Stege mit Elektrodenkontakt realisiert, die die Gaskanäle zur Versorgung der Elektroden voneinander trennen (DE 44 10 711 Cl) . Gasverteilerstrukturen bewirken, daß die Betriebsmittel gleichmäßig in den Elektrodenräumen (Räume in denen sich die Elektroden befinden) verteilt werden.
Nachteilig können bei Brennstoffzellen und Brennstoffzellenstapeln folgende Probleme auftreten: - Metallische bipolare Platten mit hohem Aluminiumgehalt bilden Al203-Deckschichten aus, die nachteilig wie ein elektrischer Isolator wirken.
Bei zyklischer Temperaturbelastung treten allgemein
WärmeSpannungen, verbunden mit Relativbewegungen der Einzelkomponenten zueinander, auf; diese resultieren aus dem unterschiedlichen Ausdehnungverhalten, bzw. den unterschiedlichen Ausdehnungskoeffizienten der verwendeten Materialien im Betrieb.
Zur Abdichtung einzelner Komponenten einer Brennstoffzelle werden im Stand der Technik Glaslote mit geringer Elastizität eingesetzt. Dadurch besteht durch WärmeSpannungen die Gefahr der Rißbildung und des Haftungsverlusts .
Diesbezüglich besteht im Stand der Technik noch keine ausreichende Kompatibilität zwischen den vergleichswei- se hohen Ausdehnungskoeffizienten z.B. der metallischen bipolaren Platten und den derzeit bekannten Elektrodenmaterialien, deren Ausdehnungskoeffizienten vergleichsweise gering sind. WärmeSpannungen können einerseits zwischen Elektroden und Interkonnektoren auftreten. Diese können Zerstörungen innerhalb der Brennstoffzelle zur Folge haben. Dies betrifft andererseits aber auch die in Brennstoffzellen häufig eingesetzten Glaslote, die die Dichtigkeit der Brennstoffzellen gewährleisten sollen.
Aufgabe der Erfindung ist es daher, eine Brennstoffzelle bereit zu stellen, in der eine langzeitstabile mechanisch-elektrische Kontaktierung der Kathode bzw. der Anode durch die Interkonnektoren gewährleistet ist . Probleme, die auf WärmeSpannungen beruhen, z.B. man- gelnde Dichtigkeit, sollen ausgeschlossen werden. Diese Aufgabe wird durch eine Hochtemperaturbrennstoffzelle nach Anspruch 1 gelöst. Sie umfaßt eine Anode, einen Elektrolyten, eine Kathode sowie einen Kathodeninterkonnektor und einen Anodeninterkonnektor, wobei zwischen Anode und Anodeninterkonnektor mindestens ein elastisches Mittel zum Auffangen von Relativbewegungen angeordnet ist. Hierdurch werden WärmeSpannungen auf der Anodenseite, die auf dem unterschiedlichen Ausdehnungsverhalten der Einzelkomponenten beruhen, ausgegli- chen.
Vorteilhaft weist der Kathodeninterkonnektor eine vorstehende Fläche auf, welche die Kathode kontaktiert (Anspruch 2) . Die vorstehende Fläche bewirkt, daß der Kathodeninterkonnektor umlaufend einen Rand aufweist, dessen Höhe im Querschitt kleiner ist als an der Katho- denkontaktflache . Dies hat zur Folge, daß auch katho- denseitig eine gewisse Bewegungsfreiheit der Elektroden vorliegt. Das Ausdehnungsverhalten der Materialien und insbesondere Wärmespannungen kann dann anöden- und ka- thodenseitig besser ausgeglichen werden.
Besonders vorteilhaft ist zwischen Kathodeninterkonnektor und Elektrolyt ein weiteres elastisches Mittel, insbesondere ein wellenförmig geprägtes Lochblech angeordnet (Anspruch 3) . Hierdurch werden die Elektroden und der Elektrolyt frei aufgehängt und eine besonders hohe Bewegungsfreiheit der Elektroden erzielt . Eine im Betrieb häufig auftretende Durchbiegung der Einzelkom- ponenten wird dadurch verhindert. Das Lochblech muß nicht durchgängig wellenförmig geprägt sein, sondern kann einen planen Rand aufweisen, um es durch andere Komponenten der Brennstoffzelle besser stabilisieren zu können.
Die Kathode kann eine kleinere Grundfläche als die Anode aufweisen (Anspruch 4) . Das Lochblech kann dadurch über seine Wellentäler den Elektrolyt an der von der Kathode nicht bedeckten Fläche gasdicht kontaktieren
(Anspruch 5) . Die Kathode wird so vor Druck und Zerstörungen bewahrt . Durch den gasdichten Kontakt kann darauf verzichtet werden, die im Stand der Technik verwendeten Glaskeramiken zum Abdichten der Fugen zwischen Brennstoffzelle und Interkonnektoren zu verwenden, die den Kathoden- vom Anodenraum trennen. Diese Fugen sind auf Grund des unterschiedlichen Ausdehnungsverhaltens besonders kritisch und weisen die oben genannten Nachteile bezüglich der Rißbildung auf. Die Elastizität des Lochblechs kann über dessen Stärke, den Flankenwinkel der Wellenberge und die Anzahl der Wellen variiert werden. Das Wellenprofil ist nach dem Zusammenfügen der Hochtemperaturbrennstoffzelle zwischen Kathodeninterkonnektor und Elektrolyt gestaucht, wodurch letztlich Druck auf die Anode ausgeübt wird. Dadurch entsteht die erwünschte Dichtwirkung zwischen Kathoden- und Anodenraum. Das Lochblech kann aus einer Hochtemperaturlegierung, insbesondere einer Eisen-Chrom-Aluminium- Legierung, z.B. Aluchrom® YHf (Werkstoffnr. : 1.4767), oder einer Nickelbasis-Legierung, z.B. Nicrofer® 6025 HT (Werkstoffnr. : 2.4633), bestehen. Wesentlich ist, daß das Material hohe Kriechbeständigkeit aufweist und eine bei hohen Temperaturen ausreichende Elastizität besitzt.
Der Kathodeninterkonnektor kann über einen Rahmen elektrisch isolierend mit dem Anodeninterkonnektor verbunden sein (Anspruch 6) . Der Rahmen besitzt die Funk- tion eines isolierenden Verbindungselements und eines Abstandhalters für die beiden Interkonnektoren. Beim Zusammenpressen der Hochtemperaturbrennstoffzelle wird durch den Rahmen die maximale Kraft begrenzt, die auf das Lochblech auf der Kathodenseite und das weitere elastische Mittel an der Anodenseite einwirken kann.
Der Rahmen kann mit dem Lochblech verbunden sein (Anspruch 7) . Hierzu sollte das Lochblech einen planen Rand aufweisen. Die Verbindung kann über ein Löt- oder Schweißverfahren hergestellt werden. Da die Höhe des
Kathodeninterkonnektors durch die vorstehende Fläche im Querschnitt an seinem Rand kleiner ist als an der Kathodenkontaktfläche, kann an besagtem Rand der Kathodeninterkonnektor umlaufend das gewellte Lochblech an wiederum dessen planen Rand kontaktieren. Dies führt zur mechanischen Stabilisierung des Lochblechs.
Zwischen den Wellentälern des Lochblechs und dem Elektrolyt kann eine Glaskeramikschicht angeordnet sein (An- spruch 8) . Diese Schicht dient dazu, die Dichtigkeit zwischen den Wellentälern und dem Elektrolyt zu erhöhen und abgeschlossene, gasdichte Elektrodenräume zu schaffen. Vorteilhaft besteht der Rahmen aus einer aluminiumhal- tigen Eisen-Basis-Legierung (Anspruch 9) . Ein solcher Rahmen kann unter Luftzufuhr oberhalb 1000 °C geglüht werden. Die Oberfläche des Rahmens weist nach diesem Vorgang eine elektrisch isolierende Aluminiumoxid- Schicht auf (Anspruch 10) . Die Rahmenoberfläche kann somit auf leichte Weise elektrisch isolierend angefertigt werden. Zwischen Rahmen und Anodeninterkonnektor können aber auch Mittel zur elektrischen Isolierung des Rahmens angeordnet sein (Anspruch 11) . Als Mittel kann eine Glaskeramikschicht angeordnet sein (Anspruch 12) . Da Rahmen und Interkonnektor bei hohen Temperaturen ein sehr ähnliches Ausdehnungsverhalten besitzen, ist diese Stelle für eine Dichtung mit einer Glaskeramik weniger kritisch. Es ist aber auch möglich, daß eine Glimmer- schicht als Mittel zur elektrischen Isolierung des Rahmens angeordnet ist (Anspruch 13) . Diese kann über eine geeignete Pastentechnik aufgetragen werden. Eine solche Glimmerschicht weist durch den schichtartigen Aufbau eine ausreichende Elastizität auf, welche im Betrieb Rißbildungen und Haftungsverlust vermeidet. Wird auf solche zusätzlichen Mittel zurückgegriffen, ist man bei der Wahl des Rahmenmaterials nicht auf aluminiumhaltige Eisen-Basis-Legierungen beschränkt . Zwischen Rahmen und Anode können Mittel zur elektrischen Isolierung angeordnet sein (Anspruch 14) . Das elektrisch isolierende Mittel ist so angeordnet, daß es eine elektrische Isolierung zwischen Rahmen und Anode gewährleistet und einen Kurzschluß verhindert . Nach dem Zusammenbau der Hochtemperaturbrennstoffzelle wird der Abstand zwischen Rahmen und Anode in der Regel gering sein; es können daher diese isolierenden Mittel erforderlich werden. Die Anode kann eine Glaskeramikschicht als Mittel zur elektrischen Isolierung aufweisen (Anspruch 15) . Diese kann auf die dem Rahmen zugewandten Seiten aufgetragen werden. Glaskeramiken können auf einfache Weise aufgetragen werden. Die Isolierung zwischen Anode und Rahmen kann aber auch durch den Elek- trolyt gewährleistet werden. Hierzu muß die Anode bis auf die der Kathode gegenüberliegenden Seite mit dem Elektrolyt beschichtet sein (Anspruch 16) . Auf Grund des Materials des Elektrolyten, das beispielsweise aus Yttrium-stabilisiertem Zr02 besteht, ist die elektri- sehe Isolierung gewährleistet.
Zwischen Anodeninterkonnektor und Anode ist gemäß Anspruch 1 mindestens ein elastisches Mittel zum Auffangen von Relativbewegungen angeordnet. Dies kann eine mit Öffnungen versehene, wellenförmig geprägte, elastische Folie sein (Anspruch 17) . Das Material kann aus einer Hochtemperaturlegierung, insbesondere einer Eisen-Chrom-Aluminium-Legierung, z.B. Aluchrom® YHf, oder einer Nickelbasis-Legierung, z.B. Nicrofer® 6025 HT, bestehen. Wesentlich ist, daß das Material hohe Kriechbeständigkeit aufweist und eine bei hohen Temperaturen ausreichende Elastizität aufweist. Außerdem weist die Folie Öffnungen auf. Die Öffnungen können auf einfache Weise vor der Prägung aus der Folie herausgestanzt worden sein. Die Öffnungen dienen der Versorgung der Anode mit Brennstoff. Ist der Anodeninterkonnektor beispielsweise als bipolare Platte ausgebildet, so strömt der Brennstoff aus Gaskanälen durch die Öffnun- gen der Folie an die Anode.
In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, daß die Folie auf beiden Seiten zumindest teilweise Nickel-Aluminium-Legierungen aufweist (Anspruch 18) . Hierzu ist die elastische Folie mit Folien, die 99 % Nickel enthalten, beidseitig durch Legierungsbildung verbunden. Die Nickel-Aluminium-Legierungen sorgen auf Grund der Hochtemperaturbeständigkeit des Nickels für eine gute und langzeitstabile elektrische Leitfähigkeit der Folie an deren Oberfläche.
Vorteilhaft enthält der Anodeninterkonnektor Aluminium (Anspruch 19) . Dann ergeben sich zusätzliche Möglichkeiten, die elektrische Leitfähigkeit zwischen dem Anodeninterkonnektor und dem elastischen Mittel bzw. der Anode zu gewährleisten. So kann auch der Anodeninterkonnektor zumindest teilweise Nickel-Aluminium- Legierungen aufweisen (Anspruch 20) . Hierzu muß mindestens eine Nickel enthaltende Folie mit den Kontaktflä- chen des Anodeninterkonnektors für die Anode durch Legierungsbildung verbunden sein (Anspruch 21) . Dies kann entweder die Nickel-Aluminium-Legierungen aufweisende geprägte Folie sein, deren Wellentäler mit dem Anode- ninterkonnektor durch Legierungsbildung verbunden sind (Anspruch 22) . Es können aber auch weitere Nickelfolien mit dem Anodeninterkonnektor durch Legierungsbildung verbunden sein. Der Anodeninterkonnektor enthält somit auf den Kontaktflächen zur gewellten Folie zumindest teilweise Nickel-Aluminium-Legierungen.
Bei den Nickel-Aluminium-Legierungen kann es sich z.B. um Nickelaluminide (z.B. NiAl , NiAl , Ni3Al) handeln. Solche Nickel-Aluminium-Legierungen bieten generell als Kontaktschicht in Hochtemperaturbrennstoffzellen fol- gende Vorteile:
• Nickel-Aluminium-Legierungen wirken als Diffusionsbarriere für Legierungsbestandteile der verwendeten Stähle von Interkonnektoren und anderen Komponenten der Brennstoffzelle und vermeiden so die Bildung schlecht leitender Korrosionsprodukte (z.B. Aluminiumoxid) an Grenzflächen, beispielsweise zwischen Anodeninterkonnektor und Nickelbeschichtung der Folie .
• Nickel-Aluminium-Legierungen sind hochtemperaturbe- ständig (z.B. Schmelzpunkt von NiAl: 1638 °C) .
• Nickel-Aluminium-Legierungen besitzen eine ausreichende elektrische Leitfähigkeit.
• Geringe Material- und Verarbeitungskosten. Durch die Eigenschaften der Nickel-Aluminium- Legierungen wird die Bildung isolierender Aluminiumoxidschichten vermieden. Daraus folgert, daß durch die Nickel-Aluminium-Legierungen eine Verringerung des Kontaktwiderstandes, bzw. eine hohe Leitfähigkeit an der Anodenseite erzielt wird, die zu einer langzeitsta- bilen Kontaktierung, besonders auch im Brennstoffzellenstapel, führt.
Es hat sich gezeigt, daß Heißpreßverfahren bis 1150 °C besonders gut geeignet sind, langzeitstabile Nickel- Aluminium-Legierungen zu erzeugen. Allerdings kommen auch Schweißverfahren unter einer Schutzgasatmosphäre sowie bedingt auch Plasmaspritzverfahren in Betracht.
Eine weitere Möglichkeit zur Erzeugung von Nickel- Aluminium-Legierungen besteht in der Verwendung einer galvanischen Vernickelung. Anschließend erfolgt dann eine Glühung der vernickelten Oberflächen im Vakuum unter Bildung von Nickel-Aluminium-Legierungen, vorzugsweise bei 1150 °C.
Zwischen Anode und Anodeninterkonnektor kann ein elastisches Nickelnetz angeordnet sein (Anspruch 23) . Das Nickelnetz gleicht nicht nur die Relativbewegungen zwischen Anode und Anodeninterkonnektor aus, sondern bie- tet zusätzlich den Vorteil, daß es den elektrischen Kontakt zur Anode über die Gitterpunkte des Netzes gleichmäßig gewährleistet und somit die oben genannten nachteiligen Fertigungstoleranzen ausgleicht. Es ist denkbar, daß anodenseitig beide elastischen Mittel, also Nickelnetz und wellenförmig geprägte Folie, angeordnet werden.
Schließlich kann zwischen dem Kathodeninterkonnektor und der Kathode eine Kathodenkontaktschicht angeordnet sein (Anspruch 24) . Diese kann bündig auf der Kathode liegen. Beim Fügeprozeß kann diese Schicht einerseits als Toleranzausgleich und andererseits als Diffusions- barriere für abdampfendes Chrom aus dem Kathodeninterkonnektor dienen.
Ein Brennstoffzellenstapel umfaßt mindestens zwei solcher Hochtemperaturbrennstoffzellen (Anspruch 25) . Hierdurch werden höhere Leistungen erzielt.
Im folgenden wird die Erfindung unter anderem auch anhand der Beschreibung zweier Ausführungsbeispiele und unter Bezugnahme auf die beigefügten Figuren erläutert . Es zeigen:
Fig. 1: Querschnitt durch eine Hochtemperaturbrennstoffzelle mit wellenförmig geprägter Folie zum Auffangen von Relativbewegungen. Fig. 2: Querschnitt durch eine Hochtemperaturbrenn- Stoffzelle mit Nickelnetz zum Auffangen von
Relativbewegungen. In beiden Figuren ist am rechten Bildrand jeweils eine kreisförmige Ausschnittsvergrößerung zur deutlicheren Darstellung eng aneinander liegender Komponenten eingezeichnet .
In Figur 1 besteht die Anode 1 aus NiO und 8YSZ- stabilisiertem Zr02. Die Stärke beträgt 1500 μm, wodurch die Anode als Anodensubstrat ausgebildet ist und tragende Funktion aufweist. Die AndodenfunktionsSchicht la weist eine Stärke von 5 μm auf und besteht aus dem gleichen Material wie die Anode 1. Allerdings weist die AnodenfunktionsSchicht la eine niedrigere Porosität als die Anode 1 auf, um eine gleichmäßige Beschichtung mit einem Elektrolyten 2 aus 8 YSZ zu gewährleisten. Die Anode 1 ist bis auf die untere Grundfläche vollständig mit dem Elektrolyt 2 beschichtet. Dessen Schichtstärke beträgt mindestens 5 μm. Der Elektrolyt 2 besitzt eine ausreichend niedrige elektrische Leitfähigkeit um die Anode 1 bis auf den Anodeninterkonnektor 8 zu seinen benachbarten Komponenten der Brennstoffzelle zu isolieren. Die Kathode 3 besitzt eine kleinere Grundfläche als die Anode 1 und ist auf dem Elektrolyt 2 angeordnet. Sie besteht standardmäßig aus La0,65Sro,3Mn03 und besitzt eine Schichtdicke von 40 μm. Auf der Kathode 3 ist eine Kathodenkontaktschicht 4 angeordnet; sie besteht z.B. aus LaCo03, besitzt eine Schichtstärke von 75 μm, und ist nur in der Ausschnittsvergrößerung eingezeichnet. Unter anderem können Fertigungstoleranzen bei der Herstellung von bipolaren Platten bzw. Elektroden-Elektrolyt-Einheiten durch die Kathodenkontaktschicht 4 ausgeglichen werden, so daß schlecht leitende Kontaktpunkte zwischen Kathode 3 und Kathodeninterkonnektor 5 vermieden werden. Die Kathodenkontaktschicht 4 wird über eine vorstehende Fläche 5a des Kathodeninterkonnektors 5 kontaktiert . Durch die vorstehende Fläche 5a weist der Kathodeninterkonnektor 5 umlaufend einen
Rand auf, dessen Höhe im Querschnitt kleiner ist als an besagter vorstehender Fläche 5a. Als Werkstoff kommt ein Stahl mit der Werkstoffnummer 1.4742 zum Einsatz. Der Kathodeninterkonnektor 5 ist als bipolare Platte ausgeführt. Die Gaskanäle sind durch eine Punkt-Strich- Linie 6 angedeutet. Der Gasfluß verläuft in der horizontalen Ebene, beispielsweise von links nach rechts. Der Kathodeninterkonnektor 5 ist an besagtem Rand über einen Rahmen 7 elektrisch isolierend mit einem Anode- ninterkonnektor 8 verbunden. Der Rahmen 7 kann aus einer Eisen-Basis-Legierung bestehen. Er ist über eine elektrisch isolierende Schicht 9 mit dem Anodeninterkonnektor 8 verbunden. Der Rahmen 7 ist an der Kathodenseite mit einem an den Rändern planen Lochblech 10 mit elastischen Eigenschaften verbunden, das ansonsten wellenförmig geprägt ist, und über seine Wellentäler den Elektrolyt 2 umlaufend an der von der Kathode 3 nicht bedeckten Fläche gasdicht kontaktiert. Die Wellenberge des Lochblechs 10 kontaktieren den Kathodenin- terkonnektor 5 an dessen Rand, der, wie erwähnt, im
Querschnitt eine geringere Höhe aufweist als die vorstehende Fläche 5a, die die Kathodenkontaktschicht 4 kontaktiert. Das Lochblech 10 besteht aus Nicrofer® 6025 HT, und weist eine Stärke von 100 μm auf. Aller- dings kann die Stärke zwischen 50 und 300 μm variieren. Insgesamt weist das Lochblech 10 vier Wellentäler zur gasdichten Kontaktierung auf, es sind aber auch mehr oder weniger Wellen vorstellbar. Dadurch werden gas- dichte Elektrodenräume gebildet. Der Rahmen 7 weist an der Kontaktfläche zum Anodeninterkonnektor 8 ein elektrisch isolierendes Mittel 9, z.B. aus Glaskeramik oder Glimmer auf. Auch der Anodeninterkonnektor 8 ist als bipolare Platte ausgeführt und enthält Gaskanäle 13, die durch Stege 14 voneinander getrennt sind. Die Betriebsmittel werden also für Kathode und Anode im Kreuzstromdesign herangeführt. Allerdings kann auch eine parallele Gasführung (Gleich- oder Gegenstromde- sign) vorgesehen sein. Bei paralleler Gasführung ist eine homogenere Temperaturverteilung über die Brennstoffzelle zu erwarten. Die Stege 14 besitzen Anodenkontakt. Zwischen Anodeninterkonnektor 8 und Anode 1 ist ein elastisches Mittel 11 in Form einer mit Öffnungen versehenen, wellenförmig geprägten, elastischen Fo- lie angeordnet. Dieses fängt die Relativbewegungen zwischen Anode und Anodeninterkonnektor auf und sorgt für einen Ausgleich der durch WärmeSpannungen verursachten Ausdehnungen der Einzelkomponenten. Folie 11 kann aus Aluchrom® YHf oder Nicrofer® 6025HT bestehen. Die Stär- ke der Folie beträgt beispielsweise 100 μm, kann aber zwischen 50 und 300 μm variieren. Die Öffnungen dienen der Versorgung der Anode 1 mit Brennstoff . Der Brennstoff strömt aus den Gaskanälen 13 des Anodeninterkon- nektors 8 durch die Öffnungen der Folie 11 an die Anode 1. Die Folie enthält beidseitig Nickel-Aluminium- Legierungen 12 zur Reduktion des Kontaktwiderstandes . Anodenseitige Folie 11, kathodenseitiges Lochblech 10 und vorstehende Kontaktfläche 5a des Kathodeninterkon- nektors 5 sorgen somit für einen weitgehenden Ausgleich der v.a. bei Zyklierung auftretenden WärmeSpannungen.
Figur 2 unterscheidet sich von Fig. 1 durch die elektrische Isolierung von Rahmen 17, dem Material des Rah- mens selbst sowie dem zwischen Anodeninterkonnektor 8 und Anode 1 angeordneten elastischen Mittel 21 zum Auffangen von Relativbewegungen.
Der Rahmen 17 besteht in Fig. 2 aus einer aluminiumhal- tigen Eisen-Basis-Legierung, z.B. Aluchrom® YHf. Er ist mit dem Anodeninterkonnektor 8 verbunden und weist an seiner Oberfläche eine elektrisch isolierende Schicht 19 aus Aluminiumoxid auf. Ein Anteil von 5 % Aluminium im Rahmen ist ausreichend, um durch Glühen bei 1000 °C unter Luftzufuhr diese elektrisch isolierende Deck- Schicht 19 aus Aluminiumoxid auszubilden. Die isolierende Deckschicht 19 bedeckt die Oberfläche des Rahmens 17 vollständig und ist daher umlaufend dargestellt. Auch in Fig.2 ist die Höhe des Rahmens 17 so groß, daß zwischen Anodeninterkonnektor 8 und Anode 1 ein weite- res elastisches Mittel zum Auffangen von Relativbewegungen angeordnet werden kann. In Fig. 2 ist dies ein elastisches Nickelnetz 21. Es weist eine Stärke von 250 μm und eine Maschenweite von 200 μm auf. Der Durchmesser der Drähte beträgt 125 μm. Der Brennstoff strömt dann aus den Gaskanälen 13 des Anodeninterkonnektors 8 durch die Maschen des Nickelnetzes 21 an die Anode 1.
Die in Fig. 1 und Fig. 2 gezeigten Ausführungsformen können ohne Beeinträchtigung miteinander kombiniert werden. So kann in Fig. 1 auch ein aluminiumhaltiger Rahmen 17, wie in Fig. 2 beschrieben, vorliegen. Andererseits kann in Fig. 2 ein Rahmen 7, wie in Fig. 1 beschrieben, eingesetzt werden.

Claims

P a t e n t a n s p r ü c h e
1. Hochtemperaturbrennstoffzelle, umfassend eine Anode
(1) , einen Elektrolyten (2) , eine Kathode (3) sowie einen Kathodeninterkonnektor (5) und einen Anodeninterkonnektor (8) , dadurch gekennzeichnet, daß zwischen Anode (1) und Anodeninterkonnektor (8) mindestens ein elastisches Mittel (11, 21) zum Auffangen von Relativbewegungen angeordnet ist .
2. Hochtemperaturbrennstoffzelle nach Anspruch 1, dadurch gekennzeichnet, daß der Kathodeninterkonnektor (5) eine vorstehende Fläche (5a) aufweist, welche die Kathode (3) kontaktiert .
3. Hochtemperaturbrennstoffzelle nach einem der vor- hergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen Kathodeninterkonnektor (5) und Elektrolyt (2) ein weiteres elastisches Mittel (10) , insbesondere ein wellenförmig geprägtes Lochblech, angeordnet ist.
4. Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kathode (3) eine kleinere Grundfläche als die Anode (1) aufweist.
5. Hochtemperaturbrennstoffzelle nach Anspruch 4, dadurch gekennzeichnet, daß das Lochblech (10) über seine Wellentäler den Elektrolyt (2) an der von der Kathode (3) nicht be- deckten Fläche gasdicht kontaktiert.
6. Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Kathodeninterkonnektor (5) über einen Rah- men (7, 17) elektrisch isolierend mit dem Anodeninterkonnektor (8) verbunden ist.
7. Hochtemperaturbrennstoffzelle nach Anspruch 6, dadurch gekennzeichnet, daß der Rahmen (7, 17) mit dem Lochblech (10) ver- bunden ist.
8. Hochtemperaturbrennstoffzelle nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß zwischen den Wellentälern des Lochblechs (10) und dem Elektrolyt (2) eine Glaskeramikschicht angeordnet ist.
9. Hochtemperaturbrennstoffzelle nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß der Rahmen (7, 17) aus einer aluminiumhaltigen Eisen-Basis-Legierung besteht.
10. Hochtemperaturbrennstoffzelle nach Anspruch 9, dadurch gekennzeichnet, daß die Oberfläche des Rahmens (7, 17) eine elektrisch isolierende Aluminiumoxidschicht (19) ent- hält.
11. Hochtemperaturbrennstoffzelle nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß zwischen Rahmen (7, 17) und Anodeninterkonnek- tor (8) Mittel (9) zur elektrischen Isolierung des
Rahmens (7, 17) angeordnet sind.
12. Hochtemperaturbrennstoffzelle nach Anspruch 11, dadurch gekennzeichnet, daß als Mittel (9) eine Glaskeramikschicht angeord- net ist.
13. Hochtemperaturbrennstoffzelle nach Anspruch 11, dadurch gekennzeichnet, daß als Mittel (9) eine Glimmerschicht angeordnet ist .
14. Hochtemperaturbrennstoffzelle nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, daß zwischen Rahmen (7, 17) und Anode (1) Mittel zur elektrischen Isolierung angeordnet sind.
15. Hochtemperaturbrennstoffzelle nach Anspruch 14, dadurch gekennzeichnet, daß die Anode (1) eine Glaskeramikschicht als Mittel zur elektrischen Isolierung aufweist.
16. Hochtemperaturbrennstoffzelle nach Anspruch 14, dadurch gekennzeichnet, daß die Anode (1) bis auf die der Kathode (3) gege- nüberliegende Seite mit dem Elektrolyt (2) beschichtet ist.
17. Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen Anode (1) und Anodeninterkonnektor (8) eine mit Öffnungen versehene, wellenförmig geprägte, elastische Folie (11) angeordnet ist.
18. Hochtemperaturbrennstoffzelle nach Anspruch 17, dadurch gekennzeichnet, daß die Folie (11) auf beiden Seiten zumindest teilweise Nickel-Aluminium-Legierungen (12) aufweist .
19. Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Anodeninterkonnektor (8) Aluminium enthält.
20. Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Anodeninterkonnektor (8) zumindest teilwei- se Nickel-Aluminium-Legierungen aufweist.
21. Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens eine Nickel enthaltende Folie mit Kontaktflächen des Anodeninterkonnektors (8) für die Anode (1) durch Legierungsbildung verbunden ist .
22. Hochtemperaturbrennstoffzelle nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, daß die Wellentäler der geprägten Folie (11) mit dem Anodeninterkonnektor (8) durch Legierungsbildung verbunden sind.
23. Hochtemperaturbrennstoffzelle nach einem der vor- hergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen Anode (1) und Anodeninterkonnektor (8) ein elastisches Nickelnetz (21) angeordnet ist.
24. Hochtemperaturbrennstoffzelle nach einem der vor- hergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen dem Kathodeninterkonnektor (5) und der Kathode (3) eine Kathodenkontaktschicht (4) angeordnet ist.
25. Brennstoffzellenstapel, umfassend mindestens zwei Hochtemperaturbrennstoffzellen nach einem der vor- hergehenden Ansprüche .
EP01953843A 2000-07-12 2001-06-29 Hochtemperaturbrennstoffzelle Expired - Lifetime EP1314217B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10033898 2000-07-12
DE10033898A DE10033898B4 (de) 2000-07-12 2000-07-12 Hochtemperaturbrennstoffzelle und Brennstoffzellenstapel
PCT/DE2001/002459 WO2002005368A1 (de) 2000-07-12 2001-06-29 Hochtemperaturbrennstoffzelle

Publications (2)

Publication Number Publication Date
EP1314217A1 true EP1314217A1 (de) 2003-05-28
EP1314217B1 EP1314217B1 (de) 2010-05-12

Family

ID=7648695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01953843A Expired - Lifetime EP1314217B1 (de) 2000-07-12 2001-06-29 Hochtemperaturbrennstoffzelle

Country Status (7)

Country Link
EP (1) EP1314217B1 (de)
AT (1) ATE467917T1 (de)
AU (2) AU2001276298B2 (de)
CA (1) CA2415388C (de)
DE (2) DE10033898B4 (de)
DK (1) DK1314217T3 (de)
WO (1) WO2002005368A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122266B2 (en) 2001-09-13 2006-10-17 Ngk Insulators, Ltd. Holding member for holding an electrochemical cell, a holding substrate for the same, an electrochemical system and a connecting member for electrochemical cells
DE10342691A1 (de) 2003-09-08 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stapelbare Hochtemperaturbrennstoffzelle
JP4682511B2 (ja) 2003-12-02 2011-05-11 日産自動車株式会社 固体酸化物型燃料電池
DE102005014077B4 (de) * 2005-03-23 2012-05-24 Forschungszentrum Jülich GmbH Interkonnektor für Hochtemperaturbrennstoffzellen und Verfahren zu dessen Herstellung und Verfahren zum Betreiben einer Brennstoffzelle
DE102005023048B4 (de) 2005-05-13 2011-06-22 Forschungszentrum Jülich GmbH, 52428 Verfahren zur Herstellung eines Kathoden-Elektrolyt-Verbundes und eine Hochtemperatur-Brennstoffzelle
DE102005022894A1 (de) * 2005-05-18 2006-11-23 Staxera Gmbh SOFC-Stapel
DE102008006039B4 (de) * 2008-01-25 2018-04-26 Elringklinger Ag Verfahren zum Verbinden von metallischen Bauteilen eines Brennstoffzellenstacks und Baugruppe für einen Brennstoffzellenstack
DE102008006038B4 (de) * 2008-01-25 2013-02-21 Elringklinger Ag Verfahren zur Herstellung einer Bipolarplatte für eine Brennstoffzelleneinheit und Bipolarplatte
US8293426B2 (en) * 2008-09-30 2012-10-23 Battelle Memorial Institute Cassettes for solid-oxide fuel cell stacks and methods of making the same
KR102076865B1 (ko) * 2012-06-08 2020-02-13 주식회사 미코 연료 전지용 스택 구조물 및 그의 구성
KR102055951B1 (ko) * 2012-12-28 2020-01-23 주식회사 미코 연료 전지용 스택 구조물
KR102145304B1 (ko) * 2013-06-27 2020-08-18 주식회사 미코 고체산화물 연료전지 스택
JP6317222B2 (ja) * 2014-09-22 2018-04-25 日本特殊陶業株式会社 固体酸化物形燃料電池スタック
JP6543340B2 (ja) 2014-10-07 2019-07-10 プロトネクス テクノロジー コーポレイション Sofc−伝導
CN109845009B (zh) * 2016-08-11 2022-10-25 新兴电力公司 平面固体氧化物燃料单体电池和电池堆
EP3790093A4 (de) * 2018-03-30 2022-04-06 Osaka Gas Co., Ltd. Elektrochemisches modul, verfahren zur montage eines elektrochemischen moduls, elektrochemische vorrichtung und energiesystem
WO2024132965A1 (en) * 2022-12-20 2024-06-27 Topsoe A/S Soc stack comprising combined flow distributor and contact enabler

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313855A (ja) * 1988-06-14 1989-12-19 Nkk Corp 固体電解質型燃料電池の電極部材、その製造方法および固体電解質型燃料電池
DE4016157A1 (de) * 1989-06-08 1990-12-13 Asea Brown Boveri Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen
EP0410159A1 (de) * 1989-07-24 1991-01-30 Asea Brown Boveri Ag Stromkollektor für Hochtemperatur-Brennstoffzelle
EP0418528A1 (de) * 1989-09-11 1991-03-27 Asea Brown Boveri Ag Stromkollektor für keramische Brennstoffzellen
EP0440968A1 (de) * 1990-02-08 1991-08-14 Asea Brown Boveri Ag Vorrichtung zur Erzielung einer möglichst gleichmässigen Temperaturverteilung auf der Oberfläche einer plattenförmigen keramischen Hochtemperatur-Brennstoffzelle
EP0609697A1 (de) * 1993-02-01 1994-08-10 Osaka Gas Co., Ltd. Brennstoffzellenzusammenbau und Verfahren zu ihrer Herstellung
DE4410711C1 (de) * 1994-03-28 1995-09-07 Forschungszentrum Juelich Gmbh Metallische bipolare Platte für HT-Brennstoffzellen und Verfahren zur Herstellung desselben
DE4430958C1 (de) * 1994-08-31 1995-10-19 Forschungszentrum Juelich Gmbh Feststoffelektrolyt-Hochtemperatur-Brennstoffzelle und Brennstoffzellen-Anordnung
DE19517451A1 (de) * 1995-05-12 1996-05-23 Mtu Friedrichshafen Gmbh Brennstoffzellenanordnung mit Stromkollektor aus Drahtgewebematerial
DE19531852C1 (de) * 1995-08-30 1996-12-19 Forschungszentrum Juelich Gmbh Brennstoffzelle mit Entwässerungssystem
WO2001004981A1 (de) * 1999-07-09 2001-01-18 Siemens Aktiengesellschaft Oxidationsgeschützte elektrische kontaktierung auf der brenngasseite der hochtemperatur-brennstoffzelle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0205368A1 *

Also Published As

Publication number Publication date
EP1314217B1 (de) 2010-05-12
DK1314217T3 (da) 2010-08-23
DE10033898A1 (de) 2002-01-31
CA2415388C (en) 2010-09-14
WO2002005368A1 (de) 2002-01-17
AU2001276298B2 (en) 2006-06-08
DE50115483D1 (de) 2010-06-24
ATE467917T1 (de) 2010-05-15
DE10033898B4 (de) 2009-06-18
CA2415388A1 (en) 2002-01-17
AU7629801A (en) 2002-01-21

Similar Documents

Publication Publication Date Title
DE10044703B4 (de) Brennstoffzelleneinheit, Brennstoffzellenblockverbund und Verfahren zum Herstellen eines Brennstoffzellenblockverbunds
EP1314217B1 (de) Hochtemperaturbrennstoffzelle
DE69837848T2 (de) Eine brennstofzellenanordnung
EP1662596B1 (de) Dichtungsanordnung für einen Hochtemperatur Brennstoffzellenstapel und Verfahren zum Herstellen dieses Brennstoffzellenstapels
WO1994011913A1 (de) Hochtemperatur-brennstoffzellen-stapel und verfahren zu seiner herstellung
EP1844513B1 (de) Interkonnektor für hochtemperaturbrennstoffzellen
WO2007036361A1 (de) Dichtungsanordnung mit metallischem lot für eine hochtemperaturbrennstoffzelle und verfahren zum herstellen eines brennstoffzellenstapels
DE19841919C2 (de) Verfahren zur Herstellung eines Brennstoffzellenmoduls
EP1287572B1 (de) Vorrichtung zur elektrischen kontaktierung von elektroden in hochtemperaturbrennstoffzellen
DE102005014077B4 (de) Interkonnektor für Hochtemperaturbrennstoffzellen und Verfahren zu dessen Herstellung und Verfahren zum Betreiben einer Brennstoffzelle
EP2054964B1 (de) Wiederholeinheit für einen stapel elektrochemischer zellen, sowie stapelanordnung
EP1665431B1 (de) Interkonnektor für hochtemperatur-brennstoffzelleneinheit
DE102021109158A1 (de) Elektrochemischer Reaktionszellenstapel
EP1261052B1 (de) Dichtung
DE10350478B4 (de) Brennstoffzelleneinheit
WO2002014011A1 (de) Verfahren zur herstellung einer elektrisch leitenden kontaktschicht auf einem metallischen substrat für eine brennstoffzelle
EP1301957B1 (de) Aluminiumhaltiger interkonnektor für brennstoffzellen
DE9304984U1 (de) Hochtemperatur-Brennstoffzellen-Stapel
DE102009008989B4 (de) Verfahren zum elektrisch leitfähigen Verbinden eines Kontaktfeldes eines Interkonnektors mit einer elektrochemischen Zelle und Baugruppe mit einem Interkonnektor und einer elektrochemischen Zelle einer Brennstoffzelleneinheit
DE102021112993A1 (de) Elektrochemischer Reaktionszellenstapel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030129

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20060112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50115483

Country of ref document: DE

Date of ref document: 20100624

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM JULICH G.M.B.H.

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100913

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

26N No opposition filed

Effective date: 20110215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50115483

Country of ref document: DE

Effective date: 20110214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180430

Year of fee payment: 18

Ref country code: NL

Payment date: 20180625

Year of fee payment: 18

Ref country code: CH

Payment date: 20180626

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180620

Year of fee payment: 18

Ref country code: FR

Payment date: 20180625

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180626

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20180626

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115483

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20190630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 467917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190629

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190629

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630