EP1311469A1 - Verfahren zur herstellung von beta-ketoenolestern - Google Patents

Verfahren zur herstellung von beta-ketoenolestern

Info

Publication number
EP1311469A1
EP1311469A1 EP01967292A EP01967292A EP1311469A1 EP 1311469 A1 EP1311469 A1 EP 1311469A1 EP 01967292 A EP01967292 A EP 01967292A EP 01967292 A EP01967292 A EP 01967292A EP 1311469 A1 EP1311469 A1 EP 1311469A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
alkoxy
iii
haloalkyl
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01967292A
Other languages
English (en)
French (fr)
Inventor
Steffen Kudis
Ulf Misslitz
Ernst Baumann
Wolfgang Von Deyn
Klaus Langemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1311469A1 publication Critical patent/EP1311469A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D275/00Heterocyclic compounds containing 1,2-thiazole or hydrogenated 1,2-thiazole rings
    • C07D275/04Heterocyclic compounds containing 1,2-thiazole or hydrogenated 1,2-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D275/06Heterocyclic compounds containing 1,2-thiazole or hydrogenated 1,2-thiazole rings condensed with carbocyclic rings or ring systems with hetero atoms directly attached to the ring sulfur atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/54Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of compounds containing doubly bound oxygen atoms, e.g. esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/04Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member

Definitions

  • the present invention relates to a process for the preparation of ⁇ -ketoenol esters of the general formula Ia and Ib
  • R a , R b independently of one another are Ci-C ⁇ -alkyl or C 3 -C 8 -cycloalkyl, or
  • R a and R b together represent C 2 -C alkanediyl or C 5 -C 7 cycloalkanediyl, where the three aforementioned groups may be substituted or unsubstituted, and / or a fused 3, 4, 5 or 6 membered saturated carbocycle, a spiro-linked 3-, 4-, 5-, 6- or 7-membered saturated carbocycle, a spiro-linked 3-, 4-, 5-, 6- or 7-membered saturated heterocycle with 1 or 2 chalcogen atoms, selected from oxygen and sulfur, and / or may have a carbonyl or thiocarbonyl group;
  • Ar phenyl or pyridyl each of which may have 1, 2, 3 or 4 substituents, two substituents bonded to adjacent carbon atoms with these atoms also having a 5- or 6-membered saturated or unsaturated carbocycle or a 5- or 6-membered saturated or can form unsaturated heterocycle which has 1, 2 or 3 heteroatoms selected from 0, N and S and which in turn can be substituted or unsubstituted.
  • R a , R b and Ar have the meanings mentioned above.
  • Herbicidally active 2-aroyl-1,3-diketones are known, for example, from EP-A 90262, EP-A 135191, EP-A 162166, EP-A 186118, EP-A 186119, EP-A 283261, EP-A 319075, WO 90/05712, WO 94/04524, WO 94/08988, JP 3052862, JP 3120202, WO 96/04182, WO 97/09324, WO 99/03845 and Weed Science, 45, 1997, 601-609 and the literature cited therein - knows.
  • the 2-aroyl-1,3-diketones are generally prepared starting from an aromatic carboxylic acid of the formula Ar-COOH or its acid chloride Ar-CO-Cl, which is reacted with a 1,3-diketone of the formula III
  • R a -C (OH) CH-C (0) -R b (III ")
  • R a and R b have the meanings given above, in the presence of a dehydrating agent, for example an anhydride or a carbodiimide, is converted to ⁇ -ketoenol esters of the formula I defined above.
  • a dehydrating agent for example an anhydride or a carbodiimide
  • the ⁇ -ketoenol esters I are then rearranged with a base and preferably in the presence of a catalytically effective amount of a compound containing cyanide groups to give the herbicidally active 2-aroyl-1,3-diketones of the formula X defined above.
  • a catalytically effective amount of a compound containing cyanide groups to give the herbicidally active 2-aroyl-1,3-diketones of the formula X defined above.
  • an activated arylcarboxylic acid derivative for example carboxylic acid halide Ar-COL, in which L represents a halogen atom such as chlorine, can also be used to prepare ⁇ -ketoenol esters I.
  • the conversion of the acid halide with III to I preferably takes place in the presence of a base (cf.
  • the present invention is therefore based on the object of providing a more economical process for the preparation of ⁇ -ketoenol esters of the general formula I.
  • Ar has the meanings mentioned above and Hai represents a halogen atom which is selected from chlorine, bromine and iodine, with a 1,3-diketone of the general formula III or its tautomers III 'or III "in a carbon monoxide atmosphere in the presence a base and a catalyst which contains at least one transition metal from Group VIII of the Periodic Table leads in good yields to the ⁇ -ketoenol esters of the general formula I defined above.
  • the present invention relates to a process for the preparation of ⁇ -ketoenol esters of the general formula Ia or Ib defined at the outset, which is characterized in that an aryl halide of the general formula II defined above with a 1,3-diketone of the general formula III or its Tautomers III 'or III "in a carbon monoxide atmosphere in the presence of a base and a catalyst which contains at least one transition metal from group VIII of the periodic table.
  • the present invention also relates to a process in which an aryl halide of the formula II is first used with a 1,3-diketone of the general formula III or its tautomers III 'or III "in a carbon monoxide atmosphere in the presence of a base and a catalyst , which contains at least one transition metal from group VIII of the periodic table, to a ⁇ -ketoenol ester of the general formula Ia or defined at the outset Ib and this is then converted into 2-aroyl-substituted 1,3-diketones of the formula X or their tautomers Xa, Xb or Xc by treatment with a base and a catalytically active amount of at least one cyanide compound
  • halogenated substituents preferably carry one to five identical or different halogen atoms.
  • Halogen is fluorine, chlorine, bromine or iodine.
  • Ci-C 6 -alkylcarbonyl Ci-C ⁇ -alkoxycarbonyl
  • Ci-C 6 -alkyloxycarbonyl Ci-C 6 -alkylaminocarbonyl
  • Ci-C ⁇ -alkylcarbonylamino for: Ci-C 4 -alkyl, as mentioned above , and for example pentyl, 1-ethylbutyl, 2-methylbutyl, 3-methylbutyl, 2, 2-dimethylpropyl, 1-ethylpropyl, hexyl, 1, 1-dimethylpropyl, 1, 2-d
  • C 1 -C 4 alkoxy for example methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy or 1, 1-dimethylethoxy;
  • Ci-C -haloalkoxy ß a Ci-C 6 alkoxy group as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and / or iodine;
  • Ci-C ⁇ alkylcarbonyl and alkylcarbonyl of C ⁇ -C 6 alkylcarbonyl-C ⁇ -C 6 -alkyl, C 6 alkylcarbonyloxy,
  • Ci-Cg-alkylcarbonylamino an alkyl radical bonded via a carbonyl group, e.g. Methylcarbonyl, ethylcarbonyl, propylcarbonyl, 1-methylethylcarbonyl, butylcarbonyl, 1-ethylpropylcarbonyl, 2-methylpropylcarbonyl, 1, 1-dimethylethylcarbonyl;
  • Ci-C-alkoxycarbonyl e.g. Methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, 1-methylethoxycarbonyl, butoxycarbonyl, 1-methylpropoxycarbonyl, 2-methylpropoxycarbonyl or 1, 1-dimethylethoxycarbonyl;
  • - (-C 1 -C 4 -alkyl) carbonyloxy acetyloxy, ethyl carbonyloxy, propyl carbonyloxy, 1-methyl ethyl carbonyloxy, butyl carbonyloxy, 1-meth propyl carbonyloxy, 2-methyl propyl carbonyloxy or 1,1-dimethyl ethyl carbonyloxy;
  • Ci-C ⁇ -alkyl substituted by one to three OH groups, for example hydroxymeth 1, 1-hydroxyethyl, 2-hydroxyethyl, 1,2-bishydroxyethyl, 1-hydroxypropyl, 2-hydroxypro - pyl, 3-hydroxypropy1, 4-hydroxybutyl, 2,2-dimethyl-3-hydroxypropyl;
  • Ci-C ⁇ -alkoxy substituted by one to three OH groups, for example hydroxymethoxy, 1-hydroxyethoxy, 2-hydroxyethoxy, 1,2-bishydroxyethoxy, 1-hydroxypropoxy, 2-hydroxypropoxy, 3-hydroxypropoxy , 4-hydroxybutoxy, 2,2-dimethyl 1-3 hydroxypropoxy;
  • Phenyl-C 1 -C 6 -alkyl Ci-C ß- alkyl substituted by a phenyl radical, for example benzyl, 1-phenylethyl and 2-phenylethyl, where the phenyl radical can be partially or completely halogenated in the manner indicated or one to three of those for Phenyl may have substituents given above;
  • Heterocyclyl-Ci-Cg-alkyl accordingly represents a Ci-C ⁇ -alkyl substituted by a heterocyclyl radical
  • C 1 -C 6 -alkoxy-C 6 -C 6 -alkyl C 1 -C 6 -alkoxy, as mentioned above, substituted C 1 -C 6 -alkyl, for example methoxymethyl,
  • Ci-C ß alkoxy-Ci-Cg-alkoxy by C ö alkoxy as mentioned above, substituted Ci-C ⁇ -alkoxy, eg for
  • C 3 -C 6 alkenyl and the alkenyl parts of C 3 -C 6 alkenylcarbonyl, C 3 -Cg alkenyloxy, C 3 -C 6 alkenyloxycarbonyl, C 3 -C 6 alkenylaminocarbonyl, N— (C 3 -Cg —Alkenyl) —N— (C ⁇ -Cg-alkyl) aminocarbonyl, N— (C 3 —Cg-Alkenyl) —W— (C ⁇ — Cg-alkox) aminocarbonyl: eg prop-2-ene-1-y1, but— 1-ene-4-y1, 1-methyl-rop-2-ene-1-y1, 2-methyl-prop-2-ene-1, 1.2, butene-1-yl, 1-pentene-3 yl, l-penten-4-yl, 2-penten-4-y1, 1-methyl-but-2-en-l-y1, 2-methyl-but-2-en-l-yl
  • C 2 -C 6 alkenyl and the alkenyl parts of C 2 -C 6 alkenylcarbonyl, phenyl C 2 -Cg alkenylcarbonyl and heterocyclyl C 2 -C 6 alkenylcarbonyl: C 3 -Cg alkenyl as mentioned above as well as ethenyl;
  • C 2 -C 4 alkanediyl for R a and R b ethane-1,2-diyl, propane-1,2-diyl, propane-1,3-diyl, butane-1,2-diyl, butane-1, 3-diyl, butane-l, 4-diyl, especially propane-l, 3-diyl;
  • Ci-Cg-alkanediyl methanediyl, ethane-1, 1-diyl, ethane-l, 2-diyl, propane-1, 1-diyl, propane-l, 2-diyl, propane-l, 3-diyl, propane 2,2-diyl, butane-1, 1-diyl, but nl, 2-diyl, but nl, 3-diyl, butane-l, 4-diyl, 2-methyl-propane-l, 3-diyl, 2- Methy1-propane-1,2-diy1, 2-methyl-propane-1,1-diyl, 1-methyl-propane-1,2-diyl, 1-methyl-propane-2,2-diyl, 1-meth 1 -propan-l, 1-diyl, pentane-1, 1-diyl, pentane-1,2-diyl, pentane-l, 3-diyl
  • C 5 -C 7 cycloalkanediyl in the case of R a and R b a divalent cycloaliphatic radical having 5 to 7 ring carbon atoms, for example cyclopentane-1,2-diyl or -1,3-diyl, cyclohexane-1,2 -diyl, -1,3-diyl or -1,4-diyl, cycloheptane-1,2-diyl, -1,3-diyl or -1,4-diyl;
  • N-linked 5-membered rings such as:
  • N-linked 6-membered rings such as:
  • N-linked cyclic imides such as:
  • 6-membered heterocycle can form a bicyclic ring system
  • Residues can be partially or completely halogenated and / or can carry one to three substituents selected from C 1 -C 4 alkoxy or hydroxy.
  • transition metal catalysts whose active metal component comprises at least one platinum metal and in particular one transition metal selected from palladium, platinum, nickel, cobalt, ruthenium and rhodium.
  • active metal component comprises at least one platinum metal and in particular one transition metal selected from palladium, platinum, nickel, cobalt, ruthenium and rhodium.
  • catalysts which comprise palladium as metal of group VIII of the periodic table are particularly preferred.
  • the catalysts in particular those which contain platinum, nickel, cobalt, ruthenium and rhodium and in particular palladium as catalytically active metal, can be in the form of metals or in the form of customary salts, for example in the form of halogen compounds such as PdCl 2 , NiCl 2 , CoCl 2 , RhCl 3 -H 2 0, acetates such as Pd (OAc) 2 , Co (OAc) 2 , acetylacetonates or cyanides can be used in the known valence levels.
  • halogen compounds such as PdCl 2 , NiCl 2 , CoCl 2 , RhCl 3 -H 2
  • acetates such as Pd (OAc) 2 , Co (OAc) 2 , acetylacetonates or cyanides can be used in the known valence levels.
  • the catalytically active metals can be in the form of metal complexes, e.g. complexes mixed with tertiary phosphines, as metal alkylcarbonyls, which contain at least two different ligands, preferably at least one tertiary phosphine and at least one different ligand, e.g. CO, comprise, or transition metal salts complexed with tertiary phosphines can be used.
  • metal complexes e.g. complexes mixed with tertiary phosphines, as metal alkylcarbonyls, which contain at least two different ligands, preferably at least one tertiary phosphine and at least one different ligand, e.g. CO, comprise, or transition metal salts complexed with tertiary phosphines can be used.
  • the catalyst system comprises a tertiary phosphine in addition to the transition metal of group VIII of the periodic table, the tertiary phosphine being present separately or together with the transition metal Form of a transition metal complex can be added to the reaction mixture.
  • Suitable phosphine ligands can be represented, for example, by the following formulas:
  • A is a divalent organic radical, for example for C 1 -C 6 - preferably C 1 -C 4 -alkanediyl, in particular 1,2-ethylene or 1,3-propylene, for 1,2-cycloalkanediyl, for example 1,2-cyclohexanediyl, 1,2-cyclopentanediyl, for ferrocendiyl, a polycyclic aromatic radical such as 1,8-anthracenediyl or for a 2,2-biphenyl structure.
  • R x , RY, R X ', RY' independently of one another represent Ci-Cg-alkyl, C 5 -C 8 cycloalkyl such as cyclohexyl, aryl, especially phenyl or p-tolyl, -C-C 4 alkylaryl, for example Benzyl, phenethyl or aryloxy such as phenoxy.
  • R x , RY, R x ', RY' are preferably aryl.
  • Aryl is, for example, phenyl, naphthyl, anthryl, which are optionally substituted, and in particular unsubstituted or substituted phenyl such as tolyl.
  • Suitable residues are all inert C-organic residues such as Ci-Cg-alkyl residues, for example methyl, sulfone or carboxyl residues such as COOH, COOM (M is for example an alkali, alkaline earth metal or ammonium salt), or C-organic residues bound via oxygen such as C. ! -C 6 alkoxy radicals.
  • Examples of such complexes are P (C 6 H 5 ) 3 , P (C 6 H 4 CH 3 ) 3 , P (n-CH 9 ) 3 , P (cyclo-C 6 H u ) 3 , PCH 3 (C 6 H 5 ) 2 , 1,2-bis (diphenylphosphino) ethane, 1, 3-bis (diphenylphosphino) propane, 1, 8-bis (diphenylphosphino) anthracene and ⁇ , ⁇ '-bis (diphenylphosphino) ferrocene.
  • a particularly preferred tertiary phosphine is triarylphosphine and in particular triphenylphosphine, which can be substituted on the phenyl ring.
  • Examples of complex compounds preferred according to the invention are (PPh 3 ) 2 Ni (CO) 2 , Pt (CO) 2 (PPh 3 ) 2 , in particular Pd (CO) (PPh 3 ) 3 , (PPh 3 ) 2 Pd (OAc) 2 , (PPh 3 ) 2 PdCl 2 .
  • the phosphine complexes can be prepared in a manner known per se. For example, one starts from customary commercially available metal salts such as PdCl 2 or Pd (OCOCH 3 ) 2 and adds the phosphine, for example P (C 6 H 5 ) 3 , P (C 6 H 4 CH 3 ) 3 , P (n-CH 9 ) 3 , P (cyclo-CgHn) 3 , PCH 3 (C 6 H 5 ) 2 , 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,8-bis (diphenylphosphino) anthracene or ⁇ , ⁇ '-bis (diphenylphosphino) ferrocene, optionally in a solvent.
  • PdCl 2 or Pd (OCOCH 3 ) 2 adds the phosphine, for example P (C 6 H 5 ) 3 , P (C 6
  • the complexes will often also be generated in situ in the reaction mixture by adding at least one phosphine ligand and a precursor compound, that is to say a transition metal compound which contains the catalytically active metal, for example a metal salt or another complex of the metal, to the reaction mixture.
  • a precursor compound that is to say a transition metal compound which contains the catalytically active metal, for example a metal salt or another complex of the metal
  • the amount of phosphine, based on 1 mol of transition metal is at least 0.1 mol, preferably at least 0.5 mol and particularly preferably at least 1 mol.
  • the molar ratio of tertiary phosphine to transition metal does not exceed a value of 20, preferably 10 and in particular 5, not least in order to keep the entry of foreign substances into reaction components II and III as low as possible.
  • the catalysts can be used as such or on a support.
  • the type of carrier is of minor importance. Suitable carriers include inorganic oxides such as silicon dioxide, aluminum oxide, aluminosilicates, e.g. Zeolites, calcium carbonate, barium sulfate, also activated carbon, soot. Also suitable are organic polymers as carrier material, in particular those that can complex the transition metal, e.g. Polymers with tertiary amino groups, pyridine groups, imidazole groups or polymers with tertiary phosphine groups.
  • the amount of transition metal is not critical. Of course, for reasons of cost, you will rather get a small amount, e.g. from 0.1 to 20 mol%, in particular 0.5 to 10 mol%, based on the aryl halide II. Of course you can also use larger quantities, e.g. Use 50, 100 or 200 mol%, based on 1 mol aryl halide II.
  • inert bases which are able to bind the hydrogen halide released during the reaction, in particular hydrogen bromide, are suitable for the process according to the invention.
  • the amount of base is not critical, usually the base will be used in an amount of at least 1 mole per mole of aryl halide II, e.g. use in an amount of 1 to 10 mol, in particular 1 to 5 mol.
  • the base can also be used as a solvent or diluent for the reactants. If the base is simultaneously used as a solvent, the amount is generally such that the reactants are dissolved, unnecessarily high excesses being avoided for reasons of practicality in order to save costs, to be able to use small reaction vessels and to ensure maximum contact for the reactants.
  • Inert solvents include, for example, aromatic hydrocarbons such as toluene, xylenes, cumene, aliphatic hydrocarbons such as hexane, pentane or cyclohexane, halogenated aliphatic hydrocarbons such as di-, tri and tetrachloromethane, 1,2-dichloroethane and 1,1-dichloroethane, ethers such as methyl tert.
  • aromatic hydrocarbons such as toluene, xylenes, cumene
  • aliphatic hydrocarbons such as hexane, pentane or cyclohexane
  • halogenated aliphatic hydrocarbons such as di-, tri and tetrachloromethane, 1,2-dichloroethane and 1,1-dichloroethane
  • ethers such as methyl tert.
  • butyl ether tetrahydrofuran, dioxane, dimethoxyethane, substituted amides such as dimethylformamide or N-methylpyrrolidone, per-substituted ureas such as tetra-C 1 -C 8 -alkylureas or nitriles such as benzonitrile or acetonitrile and mixtures of the aforementioned solvents.
  • Preferred solvents are aromatic hydrocarbons or solvent mixtures with a high proportion of aromatic hydrocarbons.
  • lithium salts such as lithium halides, e.g. Lithium chloride, also basic lithium salts such as lithium carbonate, lithium acetate or lithium hydroxide.
  • 0.1 to 10 mol, in particular 0.2 to 5 mol and particularly preferably 0.5 to 2 mol, of lithium ions are generally used per mol of aryl halide.
  • aryl halide II and the compounds III or III 'or III are generally used in an approximately stoichiometric amount, with an excess of one component of up to 50 mol%, based on the amount available in the deficit. lying component usually has no disadvantages.
  • Diketone III or its tautomers III 'or III are preferably used in an approximately equi-olar amount or in excess.
  • the carbon monoxide pressure is adjusted so that there is always an excess of carbon monoxide, based on the aryl halide.
  • the carbon monoxide partial pressure at room temperature is preferably 1 to 250 bar, in particular 5 to 150 bar CO.
  • the process according to the invention is generally carried out continuously or batchwise at temperatures from room temperature to 300 ° C., preferably at 50 to 250 ° C., in particular at 100 to 200 ° C.
  • carbon monoxide is expediently pressed continuously onto the reaction mixture in order to maintain a constant pressure.
  • the method according to the invention can be applied to a large number of different substrate compounds II and III.
  • Preference for shark in formula II means bromine or iodine and in particular bromine.
  • Aryl halides II include, for example, those compounds which are represented by the general formula Ha
  • shark is chlorine, bromine or iodine, preferably bromine or iodine, and in particular bromine, shark is preferably adjacent to the radical R la , and
  • R la and R 4a independently of one another for hydrogen
  • Halogen especially fluorine or chlorine, cyano, Ci-Cg-alkyl, Ci-Cg-haloalkyl, Ci-C ⁇ - alkoxy, Ci-Cg-haloalkoxy, Ci-Cg-alkylthio, C ⁇ -Cg-haloalkylthio, hydroxy-Ci C ⁇ -alkyl, C ⁇ -C 6 alkylsulfonyl, Ci-Cg-haloalkylsulfonyl, C ⁇ -Cg-Alko- xy-Ci-Cg-alkyl, C-Cg-alkylthio-C-Cg-alkyl, C ⁇ -C 6 -halogenal- kylthio-Ci-Cg-alkyl, C ⁇ -Cg-alkylsulfonyl-C ⁇ -C 6 -alkyl, C ⁇ -C 6 -haloalkylsulfonyl-Ci-Cg-alkyl, C ⁇ -
  • Sulfur atoms in the heterocycle can also be present as sulfoxide or sulfone,
  • Nitrogen atoms and carbon atoms in the heterocycle have a hydrogen atom or a substituent which is selected from halogen, nitro, cyano, hydroxy, amino,
  • Carbon ring members can also be present as a carbonyl function, thiocarbonyl function, oxime or oxime ether function; or
  • R la and R 2a or R 3a and R 4a form an annellated 5- or 6-membered, saturated or unsaturated heterocycle which can have 1, 2 or 3 heteroatoms selected from N, S and 0, the ring atoms of the Heterocycle may be substituted in the manner described above;
  • R la , R 2a , R 3a and R 4a independently of one another have the meanings given for R la , or R 2a represents hydrogen or 5-, 6- or 7-membered heterocyclyl which has 1, 2 or 3 heteroatoms selected from N, S and 0, where the ring atoms of the heterocycle can be substituted in the manner described above; and
  • R la , R 3a and R 4a independently of one another have the meanings given above for R la .
  • fused 5- or 6-membered heterocycles are pyrrole, 2,3-dihydropyrrole, 2,5-dihydropyrrole, pyrazole, 2,3-dihydropyrazole, imidazole, 2,3-dihydroimidazole, triazole, furan, 2 , 3- and 2,5-dihydrofuran, oxazole, 2, 3-dihydrooxazole, isoxazole, 2,3-dihydroisoxazole, thiophene, 2,3- and 2,5-dihydrothiophene, thiazole, 2, 3-dihydrothiazole, isothiazole , 2,3-dihydroisothiazole, pyridine, 1,2-, 2,3- and 3, 4-dihydropyrimidine and tetrahydropyridine.
  • Fused carbocycles are, for example, cyclopentene, cyclopentadiene, cyclohexene, cycl
  • R la and R 2a or R 3a and R 4a together with the benzene ring to which they are attached form an indole, isoindole, benzofuran, isobenzofuran, benzo [a] thiophene, benzo [b ] -thiophene, benzimidazole, benzoxazole, benzthiazole, benzisothiazole, benztriazole, quinoline, isoquinoline, quinoxaline, chroman, thiochroman, chromium, thiochrome, indane, indene or naphthalene ring , or a derivative thereof partially hydrogenated on the fused ring.
  • heterocyclic structures can also be partially hydrogenated and the N and / or C ring atoms substituted in the manner described above.
  • Carbon ring members can also be present as carbonyl function, thiocarbonyl function, oxime or oximeter function as in chroman-4-one, thiochroman-4-one, benzoisothiazolone, and ring sulfur atoms as sulfoxide or sulfone, as in benzothiophene-S-oxide , Benzothiophene
  • aryl halides of the general formula IIb are used:
  • Hal is the meanings and R lb aforementioned previously have the meanings specified above for R 4a R a and R 4b, preferably Hai R lb is adjacent, R lb is preferably halogen, in particular fluorine or chlorine, C ⁇ -C 4 alkyl , C ⁇ -C 4 haloalkyl, CC 4 -alkoxy and CC is 4 -haloalkoxy, R 4b is preferably water serstoff, fluorine, chlorine, methyl or methoxy,
  • R5b fo r is hydrogen, C-Cg-alkyl, C ⁇ -C 6 haloalkyl, C ⁇ -Cg alkyl carbonyl, C ⁇ -C 6 -alkoxy-C ⁇ -C 6 alkyl, C 2 -CG-alkenyl, C 2 - C 6 -alkynyl, C ⁇ -Cg-hydroxyalkoxy, C ⁇ -Cg-alkoxy-C ⁇ -Cg-alkoxy, C 3 -C 8 -cycloalkyl, phenyl, phenyl-C ⁇ -C 6 -alkyl, where phenyl in the latter two groups have one, two or three substituents selected from halogen, nitro, cyano, hydroxy, C ⁇ -C 4 alkyl, C ⁇ -C 4 haloalkyl, C ⁇ -C alkoxy and C ⁇ -C 4 haloalkoxy, can wear, and in particular C ⁇ -C 4 alkyl, phenyl or phenyl-
  • n 0, 1 or 2
  • X means oxygen or sulfur, in particular oxygen.
  • Hai has the meanings mentioned above and preferably R lc is adjacent, R lc has the meanings mentioned for R la , and preferably halogen, in particular fluorine or chlorine, C ⁇ -C 4 alkyl, in particular methyl, C ⁇ -C 4 haloalkyl, C ⁇ -C 4 alkoxy and C ⁇ -C 4 haloalkoxy,
  • R 3c for halogen, C ⁇ -C 6 alkyl, Ci-Cg-haloalkyl, C -Cg-alkylthio, C ⁇ -Cg-alkylsulfinyl, C ⁇ -C 6 -alkylsulfonyl, C ⁇ -Cg-alkoxy or
  • C ⁇ -Cg-haloalkoxy and in particular C ⁇ -Cg-alkylsulfonyl and especially chlorine, fluorine, methyl, methoxy or methylsulfonyl means,
  • R 6c represents hydrogen or optionally substituted C ⁇ -C-alkyl.
  • Substituted C ⁇ -C 4 alkyl here is preferably haloalkyl as defined above, for example fluoromethyl, chloromethyl, difluoromethyl, chlorodifluoromethyl, trifluoromethyl, or C ⁇ -C 4 -alkoxy-C ⁇ -C 4 -alkyl as defined above, for example methoxymethyl.
  • Hai as defined above and preferably having R ld adjacent R ld as defined for R la has, and preferably halogen, in particular fluorine or chlorine, C ⁇ -C alkyl 4 -Al-, especially methyl, C ⁇ -C -haloalkyl , C ⁇ -C-alkoxy and C ⁇ -C 4 -haloalkoxy,
  • R3d represents halogen, Ci-Cg-alkyl, C -Cg-haloalkyl, CC 6 -alkylthio, C ⁇ -C 6 -alkylsulfinyl, C ⁇ -Cg-alkylsulfonyl, C ⁇ -Cg-alkoxy or C ⁇ -Cg-haloalkoxy, and in particular C ⁇ -C 6 -Alkylsulfonyl and especially chlorine, fluorine, methyl, methoxy or methylsulfonyl means.
  • an unsubstituted halobenzene such as bromobenzene or a halopyridine such as 2-, 3- or 4-bromopyridine can also be used as compound II in the process according to the invention.
  • Cyclic or bicyclic 1,3-diketones which obey the general formulas lilac or IIIb are preferably used in the process according to the invention as 1,3-diketones of the general formula III (or as tautomer III 'or III "):
  • R 1 , R 5 independently of one another are hydrogen, C ⁇ -C 4 -alkyl, in particular methyl, or C ⁇ -C 4 -alkoxycarbonyl;
  • R 2 , R 4 , R 6 independently of one another are hydrogen, CC 4 -alkyl, in particular methyl, C ⁇ -C 4 -alkoxy such as methoxy or C ⁇ -C-alkylthio such as methylthio;
  • R 3 is hydrogen, halogen, hydroxy, C ⁇ -Cg-alkyl, C ⁇ -Cg-haloalkyl, di- (C ⁇ -Cg-alkoxy) methyl,
  • R 5 and R 6 together form a C ⁇ -Cs alkanediyl chain which have a ⁇ bond and / or can carry one, two or three radicals from the following group: halogen,
  • R 2 and R 6 together form a C ⁇ -C 4 alkanediyl chain which have a ⁇ bond and / or can carry two or three radicals from the following group: halogen, cyano, C ⁇ -C 4 alkyl, C ⁇ -C- Haloalkyl or CC 4 alkoxycarbonyl, and which is preferably unsubstituted; or
  • R 3 and R 4 together with the carbon to which they are attached form a carbonyl or thiocarbonyl group.
  • Examples of preferred cyclic diketones of the formula purple or IIIb are the cyclohexane-1,3-diones of the formulas III-1 to 111-12:
  • the inventive reaction of aryl halide II with 1,3-diketone III can be worked up in a manner known per se.
  • the reaction mixture can be evaporated to dryness, preferably under reduced pressure.
  • the residue is then generally recrystallized from a suitable solvent and / or purified by chromatography, the solvent used for the recrystallization, the stationary phase used in the chromatography and the mobile phase (eluent), of course, being based on the type of starting compounds and by the person skilled in the art can be easily determined by routine experimentation.
  • silica gel or aluminum oxide will be suitable as the stationary phase.
  • eluents are aliphatic and cycloaliphatic hydrocarbons such as n-hexane or cyclohexane or their mixtures with polar solvents such as ethers or esters, for example acetic acid. acid ethyl ester, into consideration.
  • polar solvents such as ethers or esters, for example acetic acid. acid ethyl ester, into consideration.
  • the reaction mixture can also be worked up in an aqueous extractive manner in order to remove salts, for example the acid addition salts of hydrogen halide resulting from the reaction with the base or catalysts used.
  • the process according to the invention provides the ⁇ -ketoenol esters of the general formula I in good yields. Its great advantage can be seen in the fact that instead of the partially Ar-carboxylic acids Ar-COOH, which are difficult to prepare, and the more accessible aryl halides of the formula II can be used.
  • the ⁇ -ketoenol esters of the general formula I obtained by the process according to the invention are, as a rule, in a further reaction into the 2-aroyl-substituted 1,3-diketones of the formula X by treating I with a base and one catalytically rearranged active amount of at least one cyanide compound.
  • the ⁇ -ketoenol esters I can be used as isolated pure substance, as an isolated crude product of the above-described reaction or in the reaction mixture of the above reaction without prior isolation.
  • reaction mixture obtained by the process according to the invention can be mixed with a base and a catalytically active amount of at least one cyanide compound immediately after removal of the carbon monoxide, and the rearrangement of I into compound X can thus be initiated.
  • the rearrangement of the ⁇ -ketoenol esters I to the compounds of the formula X is generally carried out at from 20 to 100 ° C. in a solvent and in the presence of a base and, if appropriate, using a cyano compound as a catalyst.
  • solvent e.g. Acetonitrile, methylene chloride, 1,2-dichloroethane, dioxane, ethyl acetate, toluene or mixtures thereof can be used.
  • Preferred solvents are acetonitrile and dioxane and mixtures thereof.
  • Suitable bases are the above-mentioned tertiary amines such as triethylamine and pyridine, alkaline earth metal or alkali metal carbonates, such as sodium carbonate or potassium carbonate, which are preferably used in an equimolar amount or up to a fourfold excess, based on the ⁇ -ketoenol ester of the formula I.
  • Triethylamine or alkali carbonate are preferably used, preferably in a double equimolar ratio with respect to the ester.
  • Suitable cyano compounds are inorganic cyanides, such as sodium cyanide or potassium cyanide, and organic cyano compounds which can release cyanide ions, for example cyanohydrins of aliphatic ketones such as acetone cyanohydrin or trialkylsilyl cyanides such as trimethylsilyl cyanide. They are preferably used in an amount of 1 to 50 mol percent, in particular 5 to 25 mol%, based on the ⁇ -ketoenol ester I. Acetone cyanohydrin or trimethylsilyl cyanide are preferably used, for example in an amount of 5 to 25, preferably about 10 to 20, mol percent, based on the ⁇ -ketoenol ester I.
  • the rearrangement reaction mixture is, for example, diluted mineral acid, e.g. 5% hydrochloric acid or sulfuric acid, acidified, with an organic solvent, e.g. Extracted methylene chloride or ethyl acetate.
  • the organic extract can be used to remove contaminants with a base such as 5-10% alkali carbonate solution, e.g. Sodium carbonate or potassium carbonate solution can be extracted.
  • the aqueous phase is acidified and the precipitate formed is suction filtered and / or extracted with methylene chloride or ethyl acetate, dried and concentrated. If necessary, the residue is recrystallized and / or further purified by chromatography in the manner described above.
  • the residue was chromatographed on silica gel using a cyclohexane-ethyl acetate gradient (100/0 to 60/40 v / v).
  • the residue was taken up in ethyl acetate, 3 times with 5% by weight aqueous sodium carbonate, 2 times with 10% by weight hydrochloric acid and 2 times with
  • the respective ß-ketoenol ester of 2,4-dimethyl-saccharin-5-carboxylic acid was obtained as a viscous oil or as a white solid.
  • reaction mixture was washed 3 times with 5% by weight aqueous sodium carbonate, with 10% by weight hydrochloric acid and with water.
  • the organic phase was dried over sodium sulfate and left to dry in vacuo. geengt. 10.4 g of 5- [(bicyclo [3.2.1] -3-oxoocten-l-yl) oxycarbonyl] -2,4-dimethylsaccharin were obtained as a viscous oil.
  • Hex stands for one of the cyclohexenone radicals hex-1 to hex-5 defined below

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von beta -Ketoenolestern der allgemeinen Formel (Ia) oder (Ib), worin Ar, R<a> und R<b> die in Anspruch 1 angegebenen Bedeutungen aufweisen, das dadurch gekennzeichnet ist, dass man ein Arylhalogenid der allgemeinen Formel (II) Ar-Hal mit einem 1,3-Diketon der allgemeinen Formel (III) oder seinen Tautomeren in einer Kohlenmonoxid-Atmosphäre in Gegenwart einer Base und eines Katalysators, der wenigstens ein Übergangsmetall der Gruppe VIII des Periodensystems enthält, umsetzt.

Description

Verfahren zur Herstellung von ß-Ketoenolestern
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von ß-Ketoenolestern der allgemeinen Formel Ia und Ib
worin
Ra, Rb unabhängig voneinander für Ci-Cβ-Alkyl oder C3-C8-Cycloalkyl stehen, oder
Ra und Rb zusammen für C2-C-Alkandiyl oder C5-C7-Cycloalkandiyl stehen, wobei die drei vorgenannten Gruppen substituiert oder unsubstituiert sein können, und/oder einen anellierten 3-, 4-, 5- oder 6-gliedrigen gesättigten Carbocyclus, einen spiro-verküpften 3-, 4-, 5-, 6- oder 7-gliedrigen gesättigten Carbocyclus, einen spiro-verküpften 3-, 4-, 5-, 6- oder 7-gliedrigen gesättigten Heterocyclus mit 1 oder 2 Chalkoge- natomen, ausgewählt unter Sauerstoff und Schwefel, und/oder eine Carbonyl- oder Thiocarbonylgruppe aufweisen können;
Ar Phenyl oder Pyridyl, die jeweils 1, 2, 3 oder 4 Substituenten aufweisen können, wobei zwei an benachbarte Kohlenstoffatome gebundene Substituenten mit diesen Atomen auch einen einen 5- oder 6-gliedrigen gesättigten oder ungesättigten Carbocyclus oder einen 5- oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus bilden können, der 1, 2 oder 3 Heteroatome, ausgewählt unter 0, N und S aufweist und der seinerseits substituiert oder unsubstituiert sein kann.
ß-Ketoenolester von aromatischen Carbonsäuren, die der oben definierten allgemeinen Formel Ia und Ib gehorchen, sind interessante Vorstufen zur Herstellung von herbizid wirksamen 2-Aroyl-l,3-di- ketonen der allgemeinen Formel X:
in der Ra, Rb und Ar die zuvor genannten Bedeutungen haben.
Herbizid wirksame 2-Aroyl-l,3-diketone sind beispielsweise aus EP-A 90262, EP-A 135191, EP-A 162166, EP-A 186118, EP-A 186119, EP-A 283261, EP-A 319075, WO 90/05712, WO 94/04524, WO 94/08988, JP 3052862, JP 3120202, WO 96/04182, WO 97/09324, WO 99/03845 und Weed Science, 45, 1997, 601-609 und darin zitierte Literatur be- kannt.
Die Herstellung der 2-Aroyl-l,3-diketone erfolgt in der Regel ausgehend von einer aromatischen Carbonsäure der Formel Ar-COOH oder ihrem Säurechlorid Ar-CO-Cl, die mit einem 1,3-Diketon der Formel III
Ra-C(0)-CH2-C(0)-Rb (HI)
oder seinen Tautomeren III' bzw. III"
Ra-C(0)-CH=C(OH)-R (III');
Ra-C(OH)=CH-C(0)-Rb (III")
worin Ra und Rb die zuvor genannten Bedeutungen haben, in Gegenwart eines wasserentziehenden Mittels, z.B. eines Anhydrids oder eines Carbodiimids , zu ß-Ketoenolestern der oben definierten Formel I umgesetzt wird.
Die ß-Ketoenolester I werden anschliessend mit einer Base und vorzugsweise in Gegenwart einer katalytisch wirksamen Menge einer Cyanidgruppen-enthaltenden Verbindung zu den herbizid wirksamen 2-Aroyl-l,3-diketonen der oben definierten Formel X umgelagert. Auch kann man anstelle der Carbonsäure Ar-COOH ein aktiviertes Arylcarbonsäurederivat, z.B. Carbonsäurehalogenid Ar-COL, worin L ein Halogenatom wie Chlor bedeutet, zur Herstellung von ß-Ketoenolestern I einsetzen. Die Umsetzung des Säurehalogenids mit III zu I erfolgt vorzugsweise in Gegenwart einer Base (vgl. den oben genannten Stand der Technik insbesondere EP 283261 und WO 96/05182 sowie die darin genannte Literatur) . Dieses Verfahren hat den Nachteil, dass die aromatischen Carbonsäuren Ar-COOH aufwendig hergestellt werden müssen, beispielsweise aus den besser zugänglichen Arylhalogeniden, z.B. durch sukzessive Überführung in eine metallorganische Verbindung und anschliessende Umsetzung mit C02, oder durch Seitenkettenoxidation von Methyl-substuierten Aromaten.
Die Herstellung der Carbonsäuren Ar-COOH ist insbesondere bei Aromaten mit anellierten Heterocyclen nicht unproblematisch. Auch die anschliessende Umsetzung der Arylcarbonsäuren Ar-COOH bzw. ihrer aktivierten Derivate Ar-COL zu den ß-Ketoenolestern I lässt sich nicht immer mit zufriedenstellenden Ausbeuten realisieren.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein wirtschaftlicheres Verfahren zur Herstellung von ß-Ketoenolestern der allgemeinen Formel I bereitzustellen.
Es wurde überraschenderweise gefunden, dass die Umsetzung von Arylhalogeniden der allgemeinen Formel II
Ar-Hal (II)
worin Ar die zuvor genannten Bedeutungen hat und Hai für ein Halogenatom steht, das ausgewählt ist unter Chlor, Brom und Iod, mit einem 1,3-Diketon der allgemeinen Formel III oder seinen Tautomeren III' oder III" in einer Kohlenmonoxid-Atmosphäre in Gegenwart einer Base und eines Katalysators, der wenigstens ein Übergangsmetall der Gruppe VIII des Periodensystems enthält, in guten Ausbeuten zu den ß-Ketoenolestern der oben definierten all- gemeinen Formel I führt.
Demnach betrifft die vorliegende Erfindung ein Verfahren zur Herstellung von ß-Ketoenolestern der eingangs definierten allgemeinen Formel Ia oder Ib, das dadurch gekennzeichnet ist, dass man ein Arylhalogenid der oben definierten allgemeinen Formel II mit einem 1,3-Diketon der allgemeinen Formel III oder seinen Tautomeren III' oder III" in einer Kohlenmonoxid-Atmosphäre in Gegenwart einer Base und eines Katalysators, der wenigstens ein Übergangsmetall der Gruppe VIII des Periodensystems enthält, umsetzt.
Die vorliegende Erfindung betrifft ausserdem ein Verfahren, bei dem man zunächst ein Arylhalogenid der Formel II mit einem 1,3-Diketon der allgemeinen Formel III oder seinen Tautomeren III' oder III" in einer Kohlenmonoxid-Atmosphäre in Gegenwart ei- ner Base und eines Katalysators, der wenigstens ein Übergangsmetall der Gruppe VIII des Periodensystems enthält, zu einem ß-Ketoenolestern der eingangs definierten allgemeinen Formel Ia oder Ib umsetzt und diesen dann durch Behandlung mit einer Base und einer katalytisch aktiven Menge wenigstens einer Cyanid-Verbin- dung in 2-Aroyl-substituierte 1,3-Diketone der Formel X oder ihre Tautomere Xa, Xb oder Xc
(Xa) (Xb) (XC) umlagert.
Die für die Substituenten Ra, Rb und Ar oder im folgenden als Reste an Phenyl— und Heterocyclyl—Resten genannten organischen Molekülteile stellen Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenwasserstoffketten, also alle Alkyl—, Halogenalkyl—, Alkoxy—, Halogenalkoxy—, Alkylthio—, Halogenalkylthio—, Alkyls lfinyl—, Alkylsulfonyl—, N-Alkylamino-, N,N-Dialkylamino-, Alkylcarbonyl—, Alkoxycarbonyl—, Alkylcarbonyloxy—, Alkylaminocarbonyl—, Dialkylaminocarbonyl—, Alkoxyalkyl—, Alkoxyiminoalkyl-, Phenylalkyl, Heterocyclylalkyl, Alkenylcarbo- nyl—, Alkenyloxycarbonyl—, Alkenyl—, Alkinyl—, Halogenalkenyl—, Halogenalkinyl—, Alkenyloxy-, Alkinyloxy, Alkandiyl-, Alkendiyl-, Alkadiendiyl- oder Alkindiyl—eile können geradkettig oder verzweigt sein. Die Angabe Cn-Cm steht dabei für die Anzahl mögli- eher Kohlenstoffatome . Sofern nicht anders angegeben, tragen halogenierte Substituenten vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder Iod.
Ferner bedeuten beispielsweise:
Ci— C — Alkyl sowie die Alkylteile von (Di) -Cι— C4— Alkylamino, C1-C4- Alkoxy, C1-C4— Alk lthio , Cι-C -Alkylsulfinyl, Cι-C4— Alkylsulfonyl , C1-C — Alkylcarbonyl, Ci— C4— Alkoxycarbonyl, Ci— C4— Älkyloxycarbonyl , C1—C4— Alkylaminocarbonyl, Ci— C4— Alkyl- carbonylamino, für: z .B . Methyl, Ethyl, Propyl, 1— Methyl- ethyl, Butyl, 1—Methylpropy1, 2—Methylpropyl oder 1, 1—Dimethylethyl;
— Ci—C6—Alkyl, sowie die Alkylteile von (Di)-Cι—C6—Alkylamino, Cι-C6—Alkoxy, Cι-C6-Alkylthio, Cι-C6-Alkylsulfinyl, Cι-C6—Al- kylsulfonyl, Ci—C6—Alkylcarbonyl, Ci—Cε—Alkoxycarbonyl, Ci—C6—Alkyloxycarbonyl, Ci—C6—Alkylaminocarbonyl, Ci—Cβ—Alkyl- carbonylamino, für: Ci—C4—Alkyl, wie voranstehend genannt, sowie z.B. Pentyl, 1— ethylbutyl, 2—Methylbutyl, 3—Methylbutyl, 2 , 2—Dimethylpropyl, 1—Ethylpropyl, Hexyl, 1, 1—Dimethylpropyl, 1, 2—Dimethylpropyl, 1—Methylpenty1, 2—Methylpentyl, 3-Methylpentyl, 4-Methylpenty1, 1 , 1-Dimethylbutyl, 1, 2-Dimethylbutyl, 1, 3-Dimethylbutyl, 2 , 2—Dimethylbutyl, 2 , 3—Dimethylbutyl, 3 , 3—Dimethylbut 1, 1—Ethylbutyl, 2—Ethylbutyl, 1,1, 2—Trimethylpropyl, 1—Ethyl—1—methylpropyl oder 1—Ethyl—3—methylpropyl;
— Ci—C4—Halogenalkyl sowie die Halogenalkylteile von (Di) ~Cχ—C4—Halogenalkylamino, Ci—C4—Halogenalkoxy, Ci—C4—Halogenalkylthio, Ci—C—Halogenalkylsulfinyl,
Ci—C4—Halogenalkylsulfonyl, Cι-C—Halogenalkylcarbonyl, Ci—C4—Halogenalkoxycarbonyl, Ci—C4—Halogenalkyloxycarbonyl, Ci—C4—Halogenalkylaminocarbonyl, Ci—C4—Halogenalkylcarbonyla- mino: einen Ci—C4—Alkylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2 , 2-difluorethyl, 2 , 2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3, 3, 3-Trifluorpropyl, 3,3,3-Trichlorpropy1, 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, 1- (Fluormethyl)-2-fluorethyl, 1- (Chlormethyl) -2-chlorethyl, 1- (Brommethyl) -2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl oder Nonafluorbutyl;
— Cι—C6—Halogenalkyl, sowie die Halogenalkylteile von (Di)-Cι—C6—Halogenalkylamino, Cι—C6—Halogenalkoxy, Ci—Cß—Halogenalkylthio, Ci—Cß—Halogenalkylsulfinyl, Ci—Cß—Halogenalkylsulfonyl, CI—CÖ—Halogenalkylcarbonyl, Ci— Cβ—Halogenalkoxycar- bonyl, Ci—C6—Halogenalkyloxycarbonyl, Ci-Cβ—Halogenalkylaminocarbonyl, Cι—C6—Halogenalkylcarbon lamino: Ci—C4—Halogenalkyl, wie voranstehend genannt, sowie z.B. 5—Fluorpentyl, 5—Chlorpentyl, 5—Brompentyl, 5—Iodpentyl, Undecafluorpentyl, 6—Fluorhexyl, 6—Chlorhexyl, 6—Bromhexyl, 6—Iodhexyl oder Dodecafluorhexyl;
— Ci—C4—Alkoxy: z.B. Methoxy, Ethoxy, Propoxy, 1—Me hylethoxy, Butoxy, 1—Methylpropoxy, 2—Methylpropoxy oder 1 , 1—Dimethylethoxy;
— Ci—C6—Alkoxy: Cι—C4—Alkoxy, wie voranstehend genannt, sowie z.B. Pentoxy, 1—Methylbutoxy, 2—Methylbutoxy, 3—Methylbutoxy,
1, 1—Dimethylpropox , 1, 2—Dimethylpropox ,
2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy, 1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1, 1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dirnethylbutoxy, 2, 2-Dimethylbutoxy, 2, 3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1, 1,2-Trimethylpropoxy, 1,2, 2-Trimethylpropoxy, 1-Ethyl-l-methylpropoxy oder 1-Eth 1—2-meth lpropoxy;
— Ci—Cß—Halogenalkoxy: einen Ci—C6—Alkoxyrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist;
— Ci—CÖ—Alkylcarbonyl, sowie die Alkylcarbonylreste von Cι-C6-Alkylcarbonyl-Cι-C6-alkyl, Cι-C6-Alkylcarbonyloxy,
Ci-Cg-Alkylcarbonylamino: einen über eine Carbonylgruppe gebundenen Alkylrest z.B. Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1—Methylethylcarbonyl, Butylcarbonyl, 1— ethylpropylcarbonyl, 2—Methylpropylcarbonyl, 1, 1—Dimethyl- ethylcarbonyl;
— Ci—C—Alkoxycarbonyl: z.B. Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, 1—Methylethoxycarbonyl, Butoxycarbonyl, 1—Methylpropoxycarbonyl, 2—Methylpropoxycarbonyl oder 1, 1—Dimethylethoxycarbonyl;
— Cι-C6-Alkoxycarbonyl: Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, 1—Methylethoxycarbonyl, Butoxycarbonyl,
1—Methylpropoxycarbonyl, 2—Meth lpropoxycarbonyl oder 1, 1—Di- methylethoxycarbonyl, Pentoxycarbonyl,
1-Methylbutoxycarbonyl, 2-Methylbutoxycarbonyl,
3-Methylbutoxycarbonyl, 2,2-Dimethylpropoxycarbonyl,
1-Ethylpropoxycarbony1, Hexoxycarbony1,
1 , 1-Dimethylpropoxycarbonyl, 1, 2-Dimethylpropoxycarbonyl, 1-Methylpentoxycarbony1, 2-Methylpentoxycarbonyl,
3-Methylpentoxycarbonyl, 4-Methylpentoxycarbony1,
1, 1-Dimeth lbutoxycarbony1, 1, 2-Dimethylbutoxycarbonyl, 1,3-Dimethylbutoxycarbonyl, 2 ,2-Dimethylbutoxycarbonyl, 2 , 3-Dimethylbutoxycarbonyl, 3 , 3-Dimethylbutoxycarbonyl, 1-Ethylbutoxycarbonyl, 2-Ethylbutoxycarbonyl, 1,1, 2-Trimethylpropoxycarbonyl, 1> 2, 2-Trimethylpropoxycarbonyl,
1-Ethyl-l-methyl-propoxycarbonyl oder l-Ethyl-2-methyl-propoxycarbonyl;
— (Cι—C4—Alkyl)carbonyloxy: Acetyloxy, Eth lcarbonyloxy, Propylcarbonyloxy, 1—Methylethylcarbonyloxy, Butylcarbonyloxy, 1—Meth lpropylcarbonyloxy, 2—Methylpropylcarbonyloxy oder 1,1—Dimethylethylcarbonyloxy;
Cι-C6-Hydroxyalkyl: durch ein bis drei OH-Gruppen substituier- tes Ci-Cβ-Alkyl, z.B Hydroxymeth 1, 1-Hydroxyethyl, 2-Hydro- xyethyl, 1,2-Bishydroxyethyl, 1-Hydroxypropyl, 2-Hydroxypro- pyl, 3-Hydroxypropy1, 4-Hydroxybutyl, 2,2-Dimethyl-3-hydroxy- propyl;
- Cχ-C6-Hydroxyalkoxy: durch ein bis drei OH-Gruppen substituiertes Ci-Cβ-Alkoxy, z.B Hydroxymethoxy, 1-Hydroxyethoxy, 2-Hydroxyethoxy, 1,2-Bishydroxyethoxy, 1-Hydroxypropoxy, 2-Hydroxypropoxy, 3-Hydroxypropoxy, 4-Hydroxybutoxy, 2,2-Di- methy1-3-hydroxypropoxy;
Phenyl-Cι-C6-alkyl: durch einen Phenylrest substituiertes Ci-Cß-Alkyl, z.B. Benzyl, 1-Phenylethyl und 2-Phenylethyl, wobei der Phenylrest in der angegebenen Weise teilweise oder vollständig halogeniert sein kann oder einen bis drei der für Phenyl oben angegebenen Substituenten aufweisen kann;
Heterocyclyl-Ci-Cg-alkyl steht dementsprechend für ein durch einen Heterocyclylrest substituiertes Ci-Cβ-Alkyl;
Cι-C6-Alkoxy-Cι-C6-alkyl: durch Cι-C6-Alkoxy, wie vorstehend genannt, substituiertes Cι-C6-Alkyl, also z.B. Methoxymethyl,
Ethoxymethyl, Propoxymeth 1, ( 1-Methylethoxy)methy1,
Butoxymethy1, ( l-Methylpropoxy)methyl,
(2-Methylpropoxy)-methy1, ( 1, 1-DimethylethoxyJmethyl,
2-(Methoxy)ethyl, 2-(Ethoxy)ethyl, 2-(Propoxy)ethyl, 2-(l-Methylethoxy)ethyl, 2-(Butoxy)ethyl,
2-( 1-Methylpropoxy)ethyl, 2-(2-Methylpropoxy)ethyl,
2-(l, 1-Dimethylethoxy)ethyl, 2-(Methoxy)-propyl,
2-(Ethoxy)propyl, 2-(Propoxy)propyl,
2- ( 1-Methylethoxy)—propy1, 2- (Butoxy) rop 1, 2- ( 1-Methylpropoxy)propy1, 2-(2-Methylpropoxy)propy1,
2-(l, 1-Dimethylethoxy) rop 1, 3-(Methoxy)propyl,
3- (Ethoxy)—propy1, 3- (Propoxy) ropy1, 3- 1-Meth lethoxy)propy1, 3- (Butoxy)prop 1, 3- 1-Meth lpropoxy)propy1, 3- (2-Methylpropoxy)propy1, 3- 1, l-Dimethylethoxy)propyl, 2-(Methoxy)butyl, 2- Ethoxy)butyl, 2-(Prop—oxy)butyl, 2- (1-Meth lethoxy)butyl, 2- Butoxy)buty1, 2- ( 1-Methylpropoxy)buty1, 2- 2-Methylpropox )buty1, 2- ( 1, 1-Dimethylethoxy)buty1, 3- Methox )but 1, 3-(Ethoxy)butyl, 3-(Propoxy)butyl, 3- 1-Meth lethoxy)buty1, 3- (Butox )—buty1, 3- 1-Methylpropox )buty1, 3-( 2-Meth lpropoxy)buty1, 3- 1, l-Dimethylethoxy)butyl, 4- (Methox )butyl, 4- Ethoxy)—butyl, 4-(Propoxy)butyl, 4-(l-Methylethoxy)butyl, 4- Butoxy)—butyl, 4- ( 1-Methylpropoxy)butyl, 4- 2-Methylpropoxy)butyl oder 4-(l, 1-Dimethylethoxy)butyl;
- Di-(Cι-C6-alkoxy)methyl: durch zwei Ci-Cß-Alkoxy-Gruppen substituiertes Methyl;
Di-(Cι-C6-alkylthio)methyl: durch zwei Cι-C6-Alkylthio-Gruppen substituiertes Methyl;
(Ci-Cβ-Alkoxy) (Cι-C6-alkylthio)methyl: durch eine Ci-Cg-Alko- xy-Gruppe und eine Ci-Cß-Alkylthio-Gruppen substituiertes Methyl;
- Cι-C6-(Halogen)alkylsulfonyl-C1-C6-alkyl, Ci-Cg- (Halogen)al- kylthio-Cι-C6-alkyl, Ci-Cö-Alkyla ino-Ci-Ce-alkyl, Di-Cι-C6-Al- kylamino-Ci-Ce-alkyl: Durch Cι-C6- (Halogen) alkylsulfonyl,
Cι-C6-(Halogen)alkylthio, Ci-Cg-Alkylamino bzw. Di-Ci-Cß-Alky- lamino substituiertes Ci-Cδ-Alkyl;
Ci-Cß-Alkoxy-Ci-Cg-alkoxy: durch Ci-Cö-Alkoxy, wie vorstehend genannt, substituiertes Ci-Cβ-Alkoxy, also z.B. für
Methoxymethoxy, Ethoxymethoxy, Propoxymethoxy,
( 1—Methylethoxy)methoxy, Butoxymethoxy, ( 1—Methylpropoxy)methoxy, (2—Meth lpropoxy)methoxy,
(1, 1—Dimethylethoxy)methoxy, 2- (Methoxy)ethoxy,
2- (Ethoxy)ethoxy, 2-(Propoxy) ethox ,
2- ( 1-Methylethoxy)ethoxy, 2- (Butoxy)ethoxy,
2- ( 1-Meth lpropoxy)ethoxy, 2- (2-Methylpropox )ethoxy, 2- ( 1, 1-Dimethylethoxy)ethoxy, 2-(Methoxy)propoxy,
2- (Ethoxy)propoxy, 2-( ropoxy) ropoxy,
2- ( 1-Methylethox )propoxy, 2- (Butoxy)—propoxy,
2- ( 1-Methylpropoxy) ropox , 2-(2-Methylpropoxy)propoxy,
2- (1,1-Dirnethylethoxy) ropoxy, 3- ( ethoxy)—ropoxy, 3- (Ethoxy)propoxy, 3- (Propoxy)propoxy,
3- ( 1-Methylethoxy)propoxy, 3-(Butoxy)propoxy,
3- ( 1-Methylpropoxy)— ropoxy, 3- (2-Methylpropoxy)propoxy, 3- 1, 1-Dimethylethoxy)propoxy, 2- (Methoxy)butoxy, 2- Ethoxy)butoxy, 2- (Propoxy)butoxy, 2- 1-Meth lethox )butoxy, 2- (Butox )—butox , 2- 1-Meth lpropoxy)butoxy, 2- ( 2-Methylpropox )butox , 2- 1, 1-Dimethylethoxy)butoxy, 3- (Methoxy)butoxy, 3- Ethoxy)—butoxy, 3- (Propoxy)butox , 3- 1-Methylethoxy)butoxy, 3-(Butoxy)butoxy, 3- 1-Methylpropoxy)butoxy, 3-(2-Methylpropox )butoxy, 3- 1, 1-Dimeth lethoxy)butoxy, 4- (Methoxy)—butoxy, 4- Ethoxy)butoxy, 4- (Propoxy)butox , 4- 1-Methylethoxy)butoxy, 4-(Butoxy)butoxy, 4- 1-Me hylpropoxy)butox , 4- ( 2-Methylpropoxy)butoxy oder 4- 1, 1-Dimethylethoxy)butoxy;
Cι-C6-Alkylcarbonyl-Cι-C6-alkyl: Durch eine
Ci-Cg-Alkylcarbonylgruppe substituiertes Ci-Cg-Alkyl, worin beide der Cχ-Cg-Alkylgruppen ein oder mehrere Substituenten, ausgewählt unter Cι-C-Alkoxy und/oder Hydroxy aufweisen können: z.B. Acetylmethyl (=2-Oxopropyl) , 2-(Acetyl)ethyl (=3-0xo-n-butyl) , 3-0xo-n-pentyl, 1, l-Dimethyl-2-oxopropyl, 3-Hydroxy-2-oxopropyl oder 3-Hydroxy-2-oxobutyl;
C3—C6—Alkenyl, sowie die Alkenylteile von C3—C6—Alkenylcarbonyl, C3-Cg-Alkenyloxy, C3—C6—Alkenyloxycarbonyl, C3—C6—Alkenylaminocarbonyl, N—(C3—Cg—Alkenyl)—N—(Cι—Cg-alkyl)aminocarbonyl, N—(C3—Cg—Alkenyl)—W—(Cι—Cg—alkox )aminocarbonyl: z.B. Prop—2—en—1—y1, But—1-en—4—y1, 1-Methy1—rop—2—en—1—y1, 2—Methyl—prop—2—en—1— l, 2—Buten—1—yl, 1—Penten—3—yl, l-Penten-4-yl, 2-Penten-4-y1, 1-Methyl-but-2-en-l-y1, 2-Methyl-but-2-en-l-yl, 3-Methyl-but-2-en-l-yl, 1-Methy1-but—3-en-l-yl, 2-Methyl-but-3-en-l-yl, 3— ethyl—but—3—en—1—yl, 1 , 1—Dimethy1—prop-2—en—1—yl, 1 , 2—Dimethy1—prop—2—en—1—yl, 1—Ethy1—prop-2—en—1—yl, Hex—3—en—1—y1, Hex—4—en—1—yl, Hex—5—en—1—y1,
1—Methy1—pent—3—en—1—yl, 2—Methy1—pent—3—en—1—yl, 3—Methy1—pent—3—en—1—y1, 4—Methyl—pent—3—en—1—yl, 1—Methy1—pent—4—en—l—yl, 2—Methyl—pent—4—en—1—yl, 3— ethyl—pent—4—en—1— l, 4—Methy1—pent—4—en—l—yl, 1 , 1—Dimethy1—but—2—en—l—yl, 1 , 1—Dimethy1—but—3—en—l—yl, 1 , 2—Dimethy1—but—2—en—1— l, 1 , 2—Dimethy1—but—3—en—1—yl, 1 , 3—Dimethy1—but—2—en—1— l, 1, 3—Dimethy1—ut—3—en—1—yl, 2 , 2—Dimethy1—but—3—en—1—yl, 2 , 3—Dimethy1-but—2—en—1—yl, 2 , 3—Dimethy1—but—3—en—1—yl, 3 , 3—Dimethy1—but—2—en—1—yl, l-Ethyl-but-2-en-l-yl, 1-Ethyl-but-3-en-l-y1, 2-Ethyl-but-2-en-l-y1, 2-Ethyl-but-3-en-l-y1, 1,1, 2— rimethy1—prop—2-en—1—yl, 1—Ethyl—1— ethy1— rop—2—en—l—yl oder 1—Ethyl— 2—methy1-rop—2—en—l—yl;
C2—C6—Alkenyl, sowie die Alkenylteile von C2—C6—Alkenylcarbonyl, Phenyl—C2-Cg—alkenylcarbonyl und Heterocyclyl—C2-C6—alkenylcarbonyl: C3—Cg—Alkenyl, wie voranstehend genannt, sowie Ethenyl;
— C3—C6—Alkinyl, sowie die Alkinylteile von C3—C6—Alkinylcarbony1, C3-C6-Alkinyloxy, C3-C6—Alkinyloxy- carbonyl, C3—Cg—Alkinylaminocarbonyl, N—(C3—Cg—Alkinyl)—N—(Ci—Cg—alkyl)—aminocarbonyl, N—(C3—Cg—Alkinyl)—N—(Ci—Cg—alkoxy) aminocarbonyl : z.B. Propargyl, But—1—in—3—y1, But—1—in—4—yl, But—2—in—1—yl, Pent—1—in—3—yl, Pent—1—in—4—y1, Pent—1—in—5—yl, Pent—2-in-l-yl, Pent-2-in-4-y1, Pent-2-in-5-yl, 3-Methyl-but-l-in-3-yl, 3-Methy1-but—l-in-4-yl, Hex—1—in—3—yl, Hex—1—in—4— l, Hex—1—in—5—y1, Hex—1—in—6—y1, Hex—2—in—1—yl, Hex—2—in—4— l, Hex—2—in—5—y1, Hex—2—in—6—yl, Hex—3—in—1— l, Hex—3—in—2— l, 3—Methy1—pent—1—in—3—yl, 3—Methy1— ent—1—in—4—yl, 3—Methyl—pent—1—in—5—yl, 4—Methy1—pent—2—in—4—yl oder 4—Methyl—pent—2—in—5—yl;
— C2—Cg—Alkinyl, sowie die Alkinylteile von C2—Cg—Alkinylcarbonyl: C3—Cg—Alkinyl, wie voranstehend genannt, sowie Ethinyl;
C2-C4-Alkandiyl bei Ra und Rb: Ethan-l,2-diyl, Propan-l,2-diyl, Propan-l,3-diyl, Butan-l,2-diyl, Butan-l,3-diyl, Butan-l,4-diyl, insbesondere Propan-l,3-diyl;
Ci-Cg-Alkandiyl: Methandiyl, Ethan-1, 1-diyl, Ethan-l,2-diyl, Propan-1, 1-diyl, Propan-l,2-diyl, Propan-l,3-diyl, Propan-2,2-diyl, Butan-1, 1-diyl, But n-l,2-diyl, But n-l,3-diyl, Butan-l,4-diyl, 2-Methyl-propan-l,3-diyl, 2-Methy1-propan-1 , 2-diy1, 2-Methy1-propan-1, 1-diyl, 1-Methyl-propan-l, 2-diyl, l-Methyl-propan-2, 2-diyl, 1-Meth 1-propan-l, 1-diyl, Pentan-1, 1-diyl, Pentan-1,2-diyl, Pentan-l,3-diyl, Pentan-1,5-diyl, Pentan-2,3-diyl, Pentan-2, 2-diyl, 1-Methyl-butan-l, 1-diyl,
1-Meth 1-butan-1 , 2-diyl, 1-Methy1-butan-1, 3-diyl, 1-Methy1-butan-1,4-diyl, 2-Methyl-butan-l , 1-diyl, 2-Meth l-butan-l, 2-diyl, 2-Meth 1-butan-1, 3-diyl, 2-Methy1-butan-1, 4-diyl, 2 , 2-Dimethy1-propan-1, 1-diyl, 2, 2-Dimethy1-propan-1,3-diyl, 1, l-Dimethyl-propan-l,3-diyl, 1, 1-Dimethyl-propan-l,2-diyl, 2, 3-Dimethy1-propan-1,3-diyl, 2 , 3-Dimethy1-propan-1 , 2-diyl, 1 , 3-Dimethy1-propan-l,3-diyl, Hexan-1, 1-diyl, Hexan-1, 2-diyl, Hexan-1,3-diyl, Hexan-1, 4-diyl, Hexan-1,5-diyl, Hexan-1,6-diyl, Hexan-2,5-diyl, 2-Methyl-pentan-l, 1-diyl, 1-Methy1-pentan-1 ,2-di l, 1-Methy1-pentan-1, 3-diyl, 1-Methyl-pentan-l, 4-diyl, 1-Methy1-pentan-1,5-diyl, 2-Methy1-pentan-1, 1-diyl, 2-Methy1-pentan-1, 2-diyl, 2-Methyl-pentan-l, 3-diyl, 2-Methyl-pentan-l, 4-diyl, 2-Methy1-pentan-1, 5-diyl, 3-Methy1-pentan-1, 1-diyl, 3-Methyl-pentan-1,2-diyl, 3-Methyl-pentan-1, 3-diyl, 3-Methy1-pentan-l, 4-diyl, 3-Methy1-pentan-1,5-diyl,
1, 1-Dimethyl-butan-1,2-diyl, 1, 1-Dimethyl-butan-l, 3-diyl, 1, 1-Dimethyl-butan-l, 4-diyl, 1, 2-Dimethy1-butan-1, 1-diyl, 1, 2-Dimethyl-butan-l,2-diyl, 1,2-Dimethy1-butan-l,3-diyl, 1, 2-Dimethyl-butan-1, 4-diyl, 1, 3-Dimethy1-butan-1 , 1-diyl, 1, 3-Dimethy1-butan-1, 2-diyl, 1,3-Dimethyl-butan-l, 3-diyl, 1 , 3-Dimethy1-butan-l, 4-diyl, 1-Ethyl-butan-l , 1-diyl, 1-Ethy1-butan-1,2-diyl, 1-Ethy1-butan-1 , 3-diyl, 1-Ethyl-butan-l,4-diyl, 2-Ethyl-butan-l, 1-diyl, 2-Ethy1-butan-1, 2-diyl, 2-Ethy1-butan-1, 3-diyl, 2-Ethy1-butan-l, 4-diyl, 2-Ethyl-butan-2, 3-diyl,
2 , 2-Dimethy1-butan-1 , 1-diyl, 2 ,2-Dimethy1-butan-l, 3-diyl, 2 , 2-Dimethy1-butan—1 , 4-diyl, 1-Isopropyl-propan-l, 1-diyl, 1-Isopropyl-propan-l,2-diyl, 1-lsopropyl-propan-l,3-diyl, 2-lsopropyl-propan-l, 1-diyl, 2-Isopropyl-propan-l, 2-diyl, 2-Isopropyl-propan-l , 3-diyl, 1 , 2 ,3-Trimethy1-propan-l , 1-diyl, 1,2,3-Trimethy1-propan-1 , 2-diyl oder 1,2, 3-Trimethyl-propan-l, 3-diyl;
— c3—C8-Cycloalkyl, sowie die Cycloalkylteile von C3-C8-Cycloal- koxy, C3-C8-Cycloalkylamino und C3-C8-Cycloalkylcarbonyl: z.B.
Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohep- tyl, Cyclooctyl, Norbornyl, [2.2.2]- oder [3.2.l]-Bicyclooc- tyl;
- C5-C7-Cycloalkandiyl bei Ra und Rb: ein zweiwertiger cycloali- phatischer Rest mit 5 bis 7 Ringkohlenstoffatomen, z.B. Cy- clopentan-1, 2-diyl oder -1,3-diyl, Cyclohexan-1, 2-diyl, -1,3-diyl oder -1,4-diyl, Cycloheptan-1,2-diyl, -1,3-diyl oder -1,4-diyl;
— 5- bis 7- gliedriges Heterocyclyl, sowie Heterocyclylteile und anellierte 5- oder 6-gliedrige Heterocyclen an Phenyl oder Pyridyl: ein gesättigter, partiell gesättigter oder ungesättigter 5—, 6— oder 7- gliedriger, heterocyclischer Ring, der ein, zwei, drei oder vier gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff, enthält, und der im Falle der anel- lierten Heterocyclen wenigstens eine C=C-Doppelbindung aufweist, also z.B.
C-gebundene 5—gliedrige Ringe wie:
Tetrahydrofuran—2—yl, Tetrahydro uran—3—y1, Tetrahydrothien—2— l, Tetrahydrothien—3— l, Tetrahydropyrrol—2— l, Tetrahydropyrrol—3—yl, 2 , 3—Dihydrofuran—2—yl, 2 , 3—Dihydrofuran—3—yl, 2 , 5—Dihydrofuran—2—yl, 2 , 5—Dihydrofuran—3—yl, 4, 5—Dihydrofuran—2—yl, 4, 5—Dihydrofuran—3—yl, 2 , 3—Dihydrothien—2—yl, 2 , 3—Dihydrothien—3—yl, 2 , 5—Dihydrothien—2— l, 2 , 5—Dihydrothien—3—yl, 4, 5—Dihydrothien—2—yl, 4 , 5—Dihydrothien—3—yl, 2 , 3-Dihydro-lH-pyrrol-2-yl, 2 , 3-Dihydro-lH-pyrrol-3-yl, 2 , 5—Dihydro—1H—pyrrol—2—yl, 2 , 5—Dihydro—1H—pyrrol—3— l, 4 , 5—Dihydro—1H—pyrrol—2—yl, 4 , 5—Dihydro—1H—pyrrol—3—yl, 3, 4-Dihydro-2H-pyrrol-2-yl, 3, 4-Dihydro-2H-pyrrol-3-yl, 3 , 4-Dihydro-5H-pyrrol-2-yl, 3 , 4-Dihydro-5H-pyrrol-3-yl, 2—Furyl, 3—Furyl, 2—Thienyl, 3—Thienyl, Pyrrol—2—yl,
Pyrrol—3—yl, Tetrahydropyrazol—3—yl, Tetrahydropyrazol—4—yl, Tetrahydroisoxazol—3—yl, Tetrahydroisoxazol—4—yl, Tetrahydroisoxazol—5—y1, 1 , 2-Oxathiolan—3—yl, 1, 2—Oxathiolan—4—yl, 1 , 2—Oxathiolan—5—yl, Tetrahydroisothiazol—3—yl, Tetrahydro-isothiazol—4—yl, Tetrahydroisothiazol—5—yl, 1, 2—Dithiolan—3— l, 1, 2—Dithiolan—4— l, Tetrahydroimidazol—2— l, Tetrahydroimidazol—4— 1, Tetrahydrooxazol—2—yl, Tetrahydrooxazol—4—yl, Tetrahydrooxazol—5—yl, Tetrahydrothiazol—2— l, Tetrahydrothiazol—4— l, Tetrahydrothiazol—5—yl, 1 , 3—Dioxolan—2—yl,
1,3—Dioxolan—4—yl, 1,3—Oxathiolan—2—yl, 1, 3—Oxathiolan—4—yl, 1,3—Oxathiolan—5—yl, 1,3—Dithiolan—2— l, 1,3—Dithiolan—4—yl, 4 , 5—Dihydro—1H—pyrazol—3—yl, 4 , 5—Dihydro—1H—pyrazol—4—yl, 4 , 5—Dihydro—1H—pyrazol—5—yl, 2 , 5—Dihydro—1H—pyrazol—3—yl, 2, 5—Dihydro—1H—pyrazol—4—yl, 2 , 5—Dihydro—1H—pyrazol—5—yl, 4 , 5—Dihydroisoxazol—3—yl, 4 ,5—Dihydroisoxazol—4— l, 4, 5—Dihydroisoxazol—5—yl, 2, 5—Dihydroisoxazol—3—yl, 2 , 5—Dihydroisoxazol—4—yl, 2 , 5—Dihydroisoxazol—5—yl, 2,3—Dihydroisoxazol—3—yl, 2,3—Dihydroisoxazol—4—yl,
2 , 3—Dihydroisoxazol—5—yl, 4 , 5—Dihydroisothiazol—3—yl, 4 , 5—Dihydroisothiazol—4—yl, 4 , 5—Dihydroisothiazol—5— l, 2, 5—Dihydroisothiazol—3—yl, 2, 5—Dihydroisothiazol—4—yl, 2 , 5—Dihydroisothiazol—5—yl, 2 , 3—Dihydroisothiazol—3—yl, 2 , 3—Dihydroisothiazol—4—yl, 2 , 3—Dihydroisothiazol—5—yl, Δ3-l, 2-Dithiol-3-yl, Δ3-l , 2-Dithiol-4-yl, Δ3-l, 2-Dithiol-5-yl, 4, 5-Dihydro-lH-imidazol-2-yl, 4 , 5—Dihydro—IH—imidazol—4— l, 4 , 5—Dihydro—IH—imidazol—5—yl, 2 , 5—Dihydro—IH—imidazol—2— l, 2 , 5—Dihydro—IH—imidazol—4— l, 2 , 5—Dihydro—IH—imidazol—5— l, 2 , 3—Dihydro—IH—imidazol—2— l, 2, 3—Dihydro—IH—imidazol—4—yl, 4 , 5—Dihydrooxazol—2—yl, 4 , 5—Dihydrooxazol—4— l, 4 , 5—Dihydrooxazol—5— l, 2 , 5—Dihydrooxazol—2—yl, 2 , 5—Dihydrooxazol—4—yl, 2 , 5—Dihydrooxazol—5— l, 2, 3—Dihydrooxazol—2—yl, 2 , 3—Dihydrooxazol—4—yl, 2 , 3—Dihydrooxazol—5— l, 4, 5—Dihydrothiazol—2—yl, 4 , 5—Dihydrothiazol—4—yl, 4,5—Dihydrothiazol—5— l, 2 , 5—Dihydrothiazol—2—yl, 2 , 5—Dihydrothiazol—4—yl, 2 , 5—Dihydrothiazol—5—yl, 2,3—Dihydrothiazol—2— l, 2 ,3—Dihydrothiazol—4—yl, 2 , 3—Dihydrothiazol—5—yl, 1, 3—Dioxol—2—yl, 1,3—Dioxol—4—yl, l,3-Dithiol-2-yl, l,3-Dithiol-4-yl, 1, 3-Oxathiol-2-yl, 1,3—Oxathiol—4—yl, 1,3-Oxathiol—5—yl, Pyrazol—3—yl,
Pyrazol—4—yl, Isoxazol—3—yl, Isoxazol—4—yl, Isoxazol—5—yl, Isothiazol—3—yl, Isothiazol—4—yl, Isothiazol—5—yl, Imidazol—2— l, Imidazol—4—yl, Oxazol—2—yl, Oxazol—4—yl, Oxazol—5—yl, Thiazol—2—yl, Thiazol—4—yl, Thiazol—5—yl, 1,2,3—Δ2-Oxadiazolin—4-yl, 1, 2 ,3-Δ2-Oxadiazolin—5-yl, 1,2, 4-Δ4-Oxadiazolin-3-yl, 1,2, 4-Δ4-Oxadiazolin-5-yl, 1,2, 4—Δ2-Oxadiazolin—3— l, 1,2, 4—Δ2-Oxadiazolin—5—yl, 1,2, 4—Δ3-Oxadiazolin—3-yl, 1,2, 4-Δ3-Oxadiazolin—5-yl, 1,3, 4—Δ2-Oxadiazolin—2— l, 1,3, 4—Δ2—Oxadiazolin—5—yl, 1,3,4—Δ3—Oxadiazolin—2—yl, 1, 3 , 4-0xadiazolin—2—yl,
1,2, 4-Δ-Thiadiazolin-3-y1, 1,2, 4-Δ4-Thiadiazolin-5-yl, 1,2, 4—Δ3—Thiadiazolin—3—yl, 1,2, 4—Δ3—Thiadiazolin—5—yl, 1,2, 4—Δ2—Thiadiazolin—3—yl, 1,2, 4-Δ2—Thiadiazolin—5—yl, 1,3, 4—Δ2— hiadiazolin—2—y1, 1,3, 4—Δ2—Thiadiazolin—5—yl, 1,3,4-Δ3—Thiadiazolin-2—yl, 1,3,4-Thiadiazolin—2—yl, 1,3, 2—Dioxathiolan—4—yl, 1,2, 3—Δ2—riazolin—4—yl, 1,2, 3—Δ2—Triazolin—5—yl, 1,2, 4—Δ2—Triazolin—3—yl, 1,2, 4-Δ2-Triazolin-5-yl, 1,2, 4-Δ3-Triazolin-3-yl, 1,2, 4—Δ3—Triazolin—5— l, 1,2, 4-Δ1-Triazolin-2—yl, l,2,4-Triazolin-3-yl, 3H-l,2,4-Dithiazol-5-yl,
2H-1 , 3 , 4— Dithiazol-5-yl , 2H-1 , 3 , 4-Oxathiazol-5— yl , 1 , 2 , 3-Oxadiazol-4-y 1 , 1 , 2 , 3-Oxadiazol-5-yl , 1 , 2 , 4— Oxadiazol— 3— yl , 1 , 2 , 4— Oxadiazol— 5— yl , 1 , 3 , 4-Oxadiazol— 2-yl , 1, 2 , 3-Thiadiazol-4-yl , 1 , 2 , 3— Thiadiazol— 5— yl , 1 , 2 , 4— Thiadiazol— 3— yl,
1 , 2 , 4-Thiadiazol-5-y 1 , 1 , 3 , 4-Thiadiazol-2-yl , 1 , 2 , 3— Triazol— 4— yl, 1 , 2 , 4— Triazol— 3— y 1 , Tetrazol— 5— yl ;
C-gebundene 6—gliedrige Ringe wie:
Tetrahydropyran— 2—yl, Tetrahydropyran—3— l, Tetrahydropyran—4—yl, Piperidin—2—yl, Piperidin—3—yl, Piperidin—4—yl, Tetrahydrothiopyran—2—yl, Tetrahydrothiopyran—3— l, Tetrahydrothiopyran—4—yl, 2H-3 , 4-Dihydropyran-6— l, 2H-3 , 4-Dihydropyran-5-yl, 2H—3 , 4—Dihydropyran—— l, 2H—3 , 4-Dihydropyran—3—yl, 2H-3 , 4-Dihydropyran-2-yl, 2H-3 , 4-Dihydropyran-6-yl,
2H—3 , 4—Dihydrothiopyran—5—yl, 2H—3 , 4—Dihydrothiopyran—4—yl, 2H—3 ,4—Dihydropyran—3—yl, 2H—3,4—Dihydropyran—2—yl, 1,2,3, 4—Tetrahydropyridin-6-yl, 1,2,3, 4—Tetrahydropyridin—5— l, 1,2,3, 4—Tetrahydropyridin—4—yl, 1,2,3, 4—Tetrahydropyridin—3—yl,
1,2,3, 4—Tetrahydropyridin—2—y1, 2H—5, 6—Dihydropyran—2—yl, 2H—5 , 6—Dihydropyran—3—yl, 2H—5, 6—Dihydropyran—4—yl, 2H—5, 6—Dihydropyran—5—yl, 2H—5, 6—Dihydropyran—6—yl, 2H—5 , 6—Dihydrothiopyran—2—yl, 2H—5 , 6—Dihydrot iopyran—3—yl, 2H—5 , 6—Dihydrothiopyran—4—yl, 2H—5 , 6—Dihydrothiopyran—5—yl, 2H—5 , 6—Dihydrothiopyran—6—yl, 1,2,5, 6—Tetrahydropyridin—2—yl, 1,2,5, 6—etrahydropyridin—3—yl, 1,2,5, 6—Tetrahydropyridin—4—yl, 1,2,5, 6—Tetrahydropyridin—5—yl, 1,2,5, 6—Tetrahydropyridin—6—yl, 2,3,4, 5—Tetrahydropyridin—2— l, 2,3,4, 5—Tetrahydropyridin—3—yl, 2,3,4, 5—etrahydropyridin—4—yl, 2,3,4, 5—Tetrahydropyridin—5—yl,
2,3,4, 5—Tetrahydropyridin—6—yl, 4H—Pyran—2—yl, 4H—Pyran—3—yl,
4H—yran—4— l, 4H—Thiopyran—2— l, 4H—Thiopyran—3—yl,
4H—Thiopyran—4-yl, 1, 4-Dihydropyridin—2-yl,
1, 4—Dihydropyridin—3—yl, 1, 4—Dihydropyridin—4—yl, 2H-Pyran-2-yl, 2H-Pyran-3-yl, 2H-Pyran-4-yl, 2H—Pyran-5-yl, 2H—Pyran—6—yl, 2H—Thiopyran—2—yl, 2H—Thiopyran—3—yl, 2H—Thiopyran—4—yl, 2H—Thiopyran—5— l, 2H—Thiopyran—6—yl, 1 , 2—Dihydropyridin—2—yl, 1 , 2—Dihydropyridin—3—yl, 1, 2-Dihydropyridin-4—yl, 1, 2-Dihydropyridin-5—yl, 1 , 2—Dihydropyridin—6—yl, 3 , 4—Dihydropyridin—2—yl, 3, 4—Dihydropyridin—3— l, 3, 4—Dihydropyridin—4—yl, 3 , 4—Dihydropyridin—5—yl, 3 , 4—Dihydropyridin—6—yl, 2 , 5—Dihydropyridin—2—yl, 2 , 5—Dihydropyridin—3—yl, 2 , 5—Dihydropyridin—4—yl, 2 , 5—Dihydropyridin—5—yl, 2 , 5—Dihydropyridin—6—yl, 2 , 3—Dihydropyridin—2—yl, 2 , 3—Dihydropyridin—3—yl, 2 , 3—Dihydropyridin—4—yl, 2 , 3—Dihydropyridin—5—yl, 2 , 3—Dihydropyridin—6—yl, Pyridin—2—y1, Pyridin—3— l, Pyridin—4— l, 1 , 3—Dioxan—2—yl, 1, 3—Dioxan—4—yl, 1 , 3—Dioxan—5—yl, 1, 4—Dioxan—2—yl,
1 , 3-Dithian-2-y1, 1, 3-Dithian-4-yl, 1, 3—Dithian—5—yl, 1, 4—Dithian—2—yl, 1, 3—Oxathian—2—yl, 1, 3—Oxathian—4—y1, 1, 3—Oxathian—5— l, 1 , 3—Oxathian—6— l, 1,4-Oxathian-2-yl, 1,4-Oxathian-3-yl, 1, 2-Dithian-3-yl, 1 , 2-Dithian-4-yl, Hexahydropyrimidin—2—yl, Hexahydropyrimidin—4—yl, Hexahydropyrimidin—5— l, Hexahydropyrazin—2— l, Hexahydropyridazin—3—yl, Hexahydropyridazin—4—yl, Tetrahydro—1,3—oxazin—2—yl, Tetrahydro—1, 3—oxazin—4—yl, Tetrahydro—1, 3—oxazin—5—yl, Tetrahydro—1 , 3—oxazin—6—yl, Tetrahydro—1, 3—thiazin—2—yl, Tetrahydro—1 , 3—thiazin—4—yl, Tetrahydro—1, 3—thiazin—5—yl, Tetrahydro—1, 3—thiazin—6—yl, Tetrahydro—1 , 4—thiazin—2— l, Tetrahydro—1, 4—thiazin—3—yl, Tetrahydro—1,4—oxazin—2—yl, Tetrahydro—1, 4—oxazin—3—yl, Tetrahydro—1,2—oxazin—3—yl, Tetrahydro—1, 2—oxazin—4—yl, Tetrahydro—1, 2—oxazin—5—yl, Tetrahydro—1, 2—oxazin—6—yl, 2H—5 , 6—Dihydro—1 , 2—oxazin—3—yl,
2H-5 6—Dihydro—1 2—oxazin—4—yl, 2H-5 6—Dihydro—1 2—oxazin—5—yl, 2H-5 6—Dihydro—1 2—oxazin—6—yl, 2H-5 6—Dihydro—1 2—thiazin—3— l, 2H-5 6—Dihydro—1 2—thiazin—4—yl, 2H-5 6—Dihydro—1 2—thiazin—5—yl, 2H-5 6—Dihydro—1 2—thiazin—6—yl, 4H-5 6—Dihydro—1 2—oxazin—3—yl, 4H-5 6—Dihydro—1 2—oxazin—4—l, 4H-5 6—Dihydro—1 2—oxazin—5—yl, 4H-5 6—Dihydro—1 2—oxazin—6—yl, 4H-5 6—Dihydro—1 2—thiazin—3—yl, 4H-5 6—Dihydro—1 2—thiazin—4—yl, 4H-5 6—Dihydro—1 2—thiazin—5—yl, 4H-5 6—Dihydro—1 2—thiazin—6—yl, 2H-3 6—Dihydro—1 2—oxazin—3—yl, 2H-3 6—Dihydro—1 2—oxazin—4—yl, 2H-3 6—Dihydro—1 2—oxazin—5—yl, 2H-3 6—Dihydro—1 2—oxazin—6—yl, 2H-3 6—Dihydro—1 2—thiazin—3—yl, 2H-3 6—Dihydro—1 2—thiazin—4— l, 2H-3 6—Dihydro—1 2—thiazin—5— l, 2H-3 6—Dihydro—1 2—thiazin—6—yl, 2H-3 4—Dihydro—1 2—oxazin—3—yl, 2H-3 4—Dihydro—1 2—oxazin—4—yl, 2H-3 4—Dihydro—1 2—oxazin—5—yl, 2H-3 4—Dihydro—1 2—oxazin—6—yl, 2H-3 4—Dihydro—1 2—thiazin—3—yl, 2H-3 4—Dihydro—1 2—thiazin—4—yl, 2H-3 4—Dihydro—1 2—thiazin—5—yl, 2H-3 4—Dihydro-1 2—thiazin—6—yl, 2,3,4, 5—Tetrahydropyridazin—3—yl, 2,3,4, 5—Tetrahydropyridazin—4—yl, 2,3,4, 5—Tetrahydropyridazin—5—yl, 2,3,4, 5—etrahydropyridazin—6—yl, 3,4,5, 6—etrahydropyridazin—3—yl, 3,4,5, 6—Tetrahydropyridazin—4—yl, 1,2,5, 6—Tetrahydropyridazin—3—yl, 1,2,5, 6—Tetrahydropyridazin—4—yl, 1,2,5, 6—Tetrahydropyridazin—5—yl, 1,2,5, 6—Tetrahydropyridazin—6—yl, 1,2,3, 6—Tetrahydropyridazin—3—yl, 1,2,3, 6—Tetrahydropyridazin—4—yl, 4H—5 , 6—Dihydro—1, 3—oxazin—2—yl, 4H—5, 6—Dihydro—1 , 3—oxazin—4—yl, 4H—5 , 6—Dihydro—1 , 3—oxazin—5—yl, 4H—5, 6—Dihydro—1, 3—oxazin—6—yl", 4H-5 , 6-Dihydro-l , 3-thiazin-2-yl, 4H-5 , 6-Dihydro-l , 3-thiazin-4-yl, H—5, 6—Dihydro—1 , 3—thiazin—5— l, 4H-5, 6-Dihydro-l, 3-thiazin-6-yl, 3,4, 5—6—Tetrahydropyrimidin—2—yl, 3,4,5, 6—Tetrahydropyrimidin—4—yl, 3,4,5, 6—Tetrahydropyrimidin—5—yl, 3,4,5, 6—Tetrahydropyrimidin—6—yl, 1,2,3, 4—Tetrahydropyrazin—2—yl, 1,2,3, 4—Tetrahydropyrazin—5—yl, 1,2,3, 4—Tetrahydropyrimidin—2—yl, 1,2,3, 4—Tetrahydropyrimidin—4—yl, 1,2,3, 4—Tetrahydropyrimidin—5—yl, 1,2,3, 4—Tetrahydropyrimidin—6—yl,
2 , 3—Dihydro—1, 4—thiazin—2—yl, 2 , 3—Dihydro—1, 4—thiazin—3—yl, 2, 3—Dihydro—1, 4—thiazin—5—yl, 2 ,3—Dihydro—1, 4—thiazin—6— l, 2H-1 , 2-Oxazin-3-yl, 2H-1, 2-Oxazin-4-yl,
2H-1 2-Oxazin-5—yl, 2H—1, 2-Oxazin-6— l, 2H-1 2-Thiazin-3-yl, 2H-l,2-Thiazin-4-yl, 2H-1 2—Thiazin—5—yl, 2H—1, 2—Thiazin—6— l, 4H-1 2—Oxazin—3—yl, 4H—1,2-Oxazin—4—yl, 4H-1 2—Oxazin—5—yl, 4H—1,2—Oxazin—6—yl, 4H-1 2-Thiazin-3-yl, 4H-1, 2-Thiazin-4-yl, 4H-1 2-Thiazin-5-yl, 4H-1, 2-Thiazin-6-yl, 6H-1 2-Oxazin-3-yl, 6H-l,2-Oxazin-4—yl, 6H-1 2-Oxazin—5—y1, 6H—1, 2-Oxazin-6—y1, 6H-1 2-Thiazin-3-yl, 6H-1, 2-Thiazin-4-yl, 6H-1 2-Thiazin-5-yl, 6H-1,,2-Thiazin-6-yl, 2H-1 3-Oxazin-2-yl, 2H-l,3-Oxazin-4-yl, 2H-1 3-Oxazin-5-yl, 2H-l,3-Oxazin-6—yl, 2H-1 3—Thiazin-2-yl, 2H-1, 3-Thiazin-4-yl, 2H-1, 3-Thiazin-5-yl, 2H-1, 3-Thiazin-6-yl,
4H—1 , 3-Oxazin-2-yl, 4H-1,3-Oxazin-4—yl,
4H-1 , 3-Oxazin-5-yl, 4H-1, 3-Oxazin-6-yl,
4H-1 , 3-Thiazin-2-yl, 4H-1, 3-Thiazin-4-yl, 4H-l,3-Thiazin-5-yl, 4H-l,3-Thiazin-6-yl,
6H-1, 3-Oxazin-2-yl, 6H-1, 3-Oxazin-4-yl,
6H—1, 3-Oxazin-5-yl, 6H-1 , 3-Oxazin-6—yl,
6H—1 , 3-Thiazin-2-yl, 6H-1, 3-Thiazin-4-yl,
6H-1, 3-Thiazin-5-yl, 6H-1,3-Thiazin-6-yl, 2H-l,4-Oxazin-2-yl, 2H-l,4-Oxazin-3-yl,
2H—1 , 4-Oxazin-5-yl, 2H—1, 4-Oxazin-6—yl,
2H—1, 4-Thiazin-2-yl, 2H-1, 4-Thiazin-3-yl,
2H-1 , 4-Thiazin-5-yl, 2H-1 , 4-Thiazin-6-yl,
4H-1 , 4-Oxazin-2-yl, 4H-1 , 4-Oxazin-3-yl, 4H-l,4-Thiazin-2-yl, 4H-l,4-Thiazin-3-yl,
1 , 4—Dihydropyridazin—3—yl, 1, 4—Dihydropyridazin—4—yl,
1, 4—Dihydropyridazin—5—yl, 1, 4—Dihydropyridazin—6—yl,
1 , 4—Dihydropyrazin—2—y1, 1, 2—Dihydropyrazin—2—yl,
1, 2—Dihydropyrazin—3— l, 1, 2—Dihydropyrazin—5—yl, 1,2—Dihydropyrazin—6—yl, 1, 4—Dihydropyrimidin—2— l,
1, 4—Dihydropyrimidin—4—yl, 1, 4—Dihydropyrimidin—5—yl,
1, 4—Dihydropyrimidin—6—yl, 3, 4—Dihydropyrimidin—2—yl,
3, 4—Dihydropyrimidin—4—yl, 3, 4—Dihydropyrimidin—5—yl,
3 , 4—Dihydropyrimidin—6— l, Pyridazin—3— l, Pyridazin—4—yl, Pyrimidin—2—yl, Pyrimidin—4—yl, Pyrimidin—5—yl, Pyrazin—2—yl,
1,3,5—Triazin—2—yl, 1,2,4—Triazin—3—yl, 1,2,4—Triazin—5—yl,
1,2,4— riazin—6—yl oder 1,2,4,5—Tetra-zin—3—yl;
N-gebundene 5-gliedrige Ringe wie:
Tetrahydropyrrol—1—yl, 2 , 3—Dihydro—IH—pyrrol—1—yl, 2 , 5—Dihydro—IH—pyrrol—1— l, Pyrrol—1—yl, Tetrahydropyrazol—1—yl, Tetrahydroisoxazol—2—yl, Tetrahydroisothiazol—2—yl, Tetrahydroimidazol—1—yl, Tetrahydrooxazol—3—yl, Tetrahydrothiazol—3—yl,
4 , 5—Dihydro—IH—pyrazol—1—yl, 2 , 5—Dihydro—IH—pyrazol—1—yl, 2 , 3—Dihydro—IH—pyrazol—1—yl, 2 , 5—Dihydroisoxazol—2—yl, 2, 3—Dihydroisoxazol—2—yl, 2 , 5—Dihydroisothiazol—2—yl, 2 , 3—Dihydroisoxazol—2—yl, 4 , 5—Dihydro—IH—imidazol—1—yl, 2 , 5—Dihydro—IH—imidazol—1—yl, 2 , 3—Dihydro—IH—imidazol—1—yl, 2 , 3—Dihydrooxazol—3—yl, 2 , 3—Dihydrothiazol—3—yl, Pyrazol—1—yl, Imidazol-1-yl, 1,2,4—Δ4-Oxadiazolin-2—yl, 1,2, 4-Δ2-Oxadiazolin—4-yl, 1,2, 4-Δ3-Oxadiazolin-2-yl, 1,3, 4—Δ2-Oxadiazolin—4—yl, 1,2, 4—Δ5—Thiadiazolin-2—yl, l,2,4-Δ3-Thiadiazolin-2-yl, 1,2,4-Δ2—Thiadiazolin-4-yl, 1,3, 4-Δ-Thiadiazolin-4-y1, 1,2, 3-Δ2-Triazolin-l-yl, 1,2, 4-Δ2-Triazolin-l-yl, 1,2, 4-Δ2-Triazolin-4-yl, 1,2, 4-Δ3-Triazolin-1-yl, 1,2, 4-Δ1-Triazolin-4-yl, 1,2,3-Triazol-l-yl, 1,2,4-Triazol-l-yl, Tetrazol-1—yl;
N—gebundene 6—gliedrige Ringe wie:
Piperidin—1—yl, 1,2,3, 4—Tetrahydropyridin—1—yl,
1,2,5, 6—Tetrahydropyridin—1—yl, 1, 4—Dihydropyridin—1— l,
1 , 2—Dihydropyridin—1—yl, Hexahydropyrimidin—1—yl,
Hexahydropyrazin—1—yl, Hexahydropyridazin—1— l, Tetrahydro—1 , 3—oxazin—3—yl, Tetrahydro—1 , 3—thiazin—3— l,
Tetrahydro—1 , 4—thiazin—4—yl, Tetrahydro—1 , 4—oxazin—4— l
(Morpholinyl) , Tetrahydro—1, 2—oxazin—2— l,
2H—5, 6—Dihydro—1, 2—oxazin—2—yl,
2H—5 , 6-Dihydro-l, 2-thiazin-2-yl, 2H—3 , 6-Dihydro-l, 2-oxazin-2-yl,
2H—3 , 6-Dihydro-l, 2-thiazin-2-yl,
2H—3 , 4-Dihydro-l , 2-thiazin-2-yl,
2,3,4, 5—Tetrahydropyridazin—2—yl,
1,2,5, 6—Tetrahydropyridazin—1—yl, 1,2,5, 6—Tetrahydropyridazin—2—yl,
1,2,3, 6—Tetrahydropyridazin—1— l,
3,4,5, 6—etrahydropyrimidin—3—yl,
1,2,3, 4—Tetrahydropyrazin—1—yl,
1,2,3, 4—Tetrahydropyrimidin—1—yl, 1,2,3, 4—Tetrahydropyrimidin—3—yl,
2 , 3—Dihydro—1 , 4—thiazin—4— l, 2H—1, 2-Oxazin—2—yl,
2H-l,2-Thiazin-2-yl, 4H-l,4-Oxazin-4-yl, 4H-l,4-Thiazin-4-yl,
1 , 4—Dihydropyridazin—1—yl, 1, 4—Dihydropyrazin—1—yl,
1 , 2—Dihydropyrazin—1—yl, 1 , 4—Dihydropyrimidin—1—yl oder 3 , 4—Dihydropyrimidin—3—yl;
sowie N-gebundene cyclische Imide wie:
Phthalsäureimid, Tetrahydrophthalsäureimid, Succinimid, Maleinimid, Glutarimid, 5-0xo-triazolin-l-yl, 5-Oxo-l , 3 , 4-oxadiazolin-4-yl oder 2 , 4-Dioxo- ( IH, 3H) -pyrimidin-3-yl;
wobei Heterocyclyl mit einem ankondensierten Phenylring oder mit einem C3-Cg-Carbocyclus oder einem weiteren 5- bis
6-gliedrigen Heterocyclus ein bicyclisches Ringsystem ausbilden kann,
wobei gegebenfalls ein Ring-Kohlenstoffatom in Heterocyclyl als Carbonyl oder Thiocarbonyl-Gruppe vorliegen kann, wobei gegebenenfalls der Schwefel der genannten Heterocyclen zu S=0 oder S(=0)2 oxidiert sein kann.
Alle Phenylringe bzw. Heterocyclylreste sowie alle Phenylko ponenten in Phenoxy, Phenylalkyl, Phenylamino, Phenyl- carbonyl, Phenyloxycarbonyl, Phenylaminocarbonyl und N—Alkyl—N—phenylaminocarbonyl, sowie Heterocyclylkomponenten in Heterocyclyloxy, Heterocyclylalkyl, Heterocyclylcarbonyl, Hetero- cyclyloxycarbonyl, Heterocyclylcarbonyloxy, sind, soweit nicht anders angegeben, vorzugsweise unsubstituiert oder sind partiell oder vollständig halogeniert und/oder tragen einen, zwei oder drei Substituenten, ausgewählt unter Nitro, Cyano, Hydroxy, Cι-C-Alkyl, C!-C4-Halogenalkyl, Ci-C4-Alkoxy, Cι-C4-Halogenalkoxy, Ci-Cg-Alkylamino, Di-Ci-Cg-alkylamino, C3-C6-Cycloalkylamino, wobei die Alkyl- und Cycloalkylgruppen der drei letztgenannten Reste teilweise oder vollständig halogeniert sein können und/oder ein bis drei Substituenten, ausgewählt unter Cι-C4-Alkoxy oder Hydroxy tragen können.
Für die Umsetzung der Arylhalogenide II mit den Verbindungen III bzw. III' oder III" werden solche Übergangsmetallkatalysatoren bevorzugt, deren aktive Metallkomponente wenigstens ein Platinmetall und insbesondere ein Übergangsmetall ausgewählt unter Palladium, Platin, Nickel, Cobalt, Ruthenium und Rhodium umfasst. Be- sonders bevorzugt sind solche Katalysatoren, die Palladium als Metall der Gruppe VIII des Periodensystems umfassen.
Die Katalysatoren, insbesondere solche, die Platin, Nickel, Cobalt, Ruthenium und Rhodium und insbesondere Palladium als kata- lytisch aktives Metall enthalten, können als Metalle oder in Form üblicher Salze, z.B. in Form von Halogenverbindungen wie PdCl2, NiCl2, CoCl2, RhCl3-H20, Acetaten wie Pd(OAc)2, Co(OAc)2, Acetyla- cetonaten oder Cyaniden in den bekannten Wertigkeitsstufen eingesetzt werden.
Ausserdem können die katalytisch aktiven Metalle in Form von Metallkomplexen, z.B. mit tertiären Phosphinen, als Metallalkylcar- bonyle, gemischte Komplexe, die wenigstens zwei verschiedene Liganden, vorzugsweise wenigstens ein tertiäres Phosphin und wenig- stens einen davon verschiedenen Liganden, z.B. CO, umfassen, oder mit tertiären Phosphinen komplexierte Übergangsmetallsalze eingesetzt werden.
Für das erfindungsgemässe Verfahren hat es sich bewährt, wenn das Katalysatorsystem neben dem Übergangsmetall der Gruppe VIII des Periodensystems ein tertiäres Phosphin umfasst, wobei das Tertiäre Phosphin separat oder zusammen mit dem Übergangsmetall in Form eines Übergangsmetallkomplexes zur Reaktionsmischung gegeben werden kann.
Geeignete Phosphinliganden lassen sie sich beispielsweise durch folgende Formeln wiedergeben:
^•Rx Rx \ ^Rx' p — RY oder , P —A— P
^R* RY ^RY' worin A für einen zweiwertigen organischen Rest, z.B. für Cι-C6- vorzugsweise Cι-C4-Alkandiyl, insbesondere 1,2-Ethylen oder 1,3-Propylen, für 1,2-Cycloalkandiyl, z.B. 1,2-Cyclohexandiyl, 1,2-Cyclopentandiyl, für Ferrocendiyl, einen polycyclischen aromatischen Rest wie 1, 8-Anthracen-diyl oder für eine 2,2-Biphenyl- Struktur steht.
Die Reste Rx, RY, RX', RY' stehen unabhängig voneinander für Ci-Cg-Alkyl, C5-C8-Cycloalkyl wie Cyclohexyl, Aryl, insbesondere Phenyl oder p-Tolyl, Cι-C4-Alkylaryl, z.B. Benzyl, Phenethyl oder Aryloxy wie Phenoxy. Bevorzugt stehen Rx, RY, Rx' , RY' für Aryl. Aryl ist z.B. Phenyl, Naphthyl, Anthryl, die gegebenenfalls substituiert sind, und insbesondere unsubstituiertes oder substituiertes Phenyl wie Tolyl. Hinsichtlich der Substituenten an Aryl hat man in erster Linie auf deren Inertheit gegenüber angewende- teten Reaktionsbedingungen zu achten. Geeignete Reste sind alle inerten C-organischen Reste wie Ci-Cg-Alkylreste, z.B. Methyl, Sulfon- oder Carboxylreste wie COOH, COOM (M ist z.B. ein Alkali-, Erdalkalimetall oder Ammoniumsalz), oder über Sauerstoff gebundene C-organische Reste wie C!-C6-Alkoxyreste .
Beispiele für derartige Komplexe sind P(C6H5)3, P(C6H4CH3)3, P(n-CH9)3, P(cyclo-C6Hu)3, PCH3(C6H5)2, 1,2-Bis(diphenylphos- phino)ethan, 1, 3-Bis (diphenylphosphino)propan, 1, 8-Bis (dipheny1- phosphino)anthracen und α,α'-Bis(diphenylphosphino)ferrocen. Be- sonders bevorzugtes tertiäres Phosphin ist Triarylphosphin und insbesondere Triphenylphosphin, das am Phenylring substituiert sein kann.
Beispiele für erfindungsgemäss bevorzugte Komplexverbindungen sind (PPh3)2Ni(CO)2, Pt(CO)2(PPh3)2 , insbesondere Pd(CO) (PPh3)3, (PPh3)2Pd(OAc)2, (PPh3)2PdCl2.
Die Herstellung der Phosphinkomplexe kann in an sich bekannter Weise erfolgen. Beispielsweise geht man von üblichen kommerziell erwerblichen Metallsalzen wie PdCl2 oder Pd(OCOCH3)2 aus und fügt das Phosphin z.B. P(C6H5)3, P(C6H4CH3)3, P(n-CH9)3, P(cyclo- CgHn)3, PCH3(C6H5)2, 1,2-Bis (diphenylphosphino)ethan, 1, 3-Bis (diphenylphosphino)propan, 1, 8-Bis (diphenylphosphino)an- thracen oder α,α'-Bis (diphenylphosphino)ferrocen, gegebenenfalls in einem Lösungsmittel hinzu. Häufig wird man die Komplexe auch in-situ im Reaktionsansatz generieren, indem man wenigstens einen Phosphinliganden und eine Precursorverbindung, also einer Übergangsmetallverbindung, die das katalytisch aktive Metall enthält, z.B. ein Metallsalz oder ein anderer Komplex des Metalls, zum Reaktionsansatz gibt.
Sofern im erfindungsgemässen Verfahren ein Phosphin als Ligand eingesetzt wird, beträgt die Menge an Phosphin, bezogen auf 1 Mol Übergangsmetall, wenigstens 0,1 Mol, vorzugsweise wenigstens 0,5 Mol und besonders bevorzugt wenigstens 1 Mol. In der Regel wird das molare Verhältnis von tertiärem Phosphin zu Übergangsmetall einen Wert von 20, vorzugsweise 10 und insbesondere 5 nicht überschreiten, nicht zuletzt um den Eintrag von Fremdsubstanzen in die Reaktionskomponenten II und III möglichst gering zu halten.
Die Katalysatoren können als solche oder auf einem Träger einge- setzt werden. Die Art des Trägers ist von untergeordneter Bedeutung. Geeignete Träger umfassen anorganische Oxide wie Silicium- dioxid, Aluminiumoxid, Alumosilikate, z.B. Zeolithe, Calciumcar- bonat, Bariumsulfat, weiterhin Aktivkohle, Ruß. Ebenfalls geige- net sind organische Polymere als Trägermaterial, insbesondere solche, die das Übergangsmetall komplexieren können, z.B. Polymere mit tertiären Aminogruppen, Pyridin-Gruppen, Imidazol-Grup- pen oder Polymere mit tertiären Phosphin-Gruppen.
Die Menge an Übergangsmetall ist nicht kritisch. Natürlich wird man aus Kostengründen eher eine geringe Menge, z.B. von 0,1 bis 20 Mol-%, insbesondere 0,5 bis 10 Mol-%, bezogen auf das Arylhalogenid II einsetzen. Selbstverständlich kann man auch grössere Mengen, z.B. 50, 100 oder 200 Mol-%, bezogen auf 1 Mol Arylhalogenid II einsetzen.
Für das erfindungsgemässe Verfahren sind alle inerten Basen geeignet, die den bei der Umsetzung freiwerdenden Halogenwasserstoff insbesondere Bromwasserstoff zu binden vermögen. Beispiele für geeignete Basen sind Amine, vorzugsweise tertiäre Amine, insbe- sondere Trialkylamine wie Triethylamin, Triethanolamin, cyclische Amine wie N-Methylpiperidin, Triethylendiamin (= 1,4-Diazabi- cyclo[2.2.2]octan) , l,5-Diazabicyclo[4.3.0]non-5-en, 1,8-Diazabi- cyclo[5.4.0]undec-7-en oder N,N'-Dimethylpiperazin, heteroaromatische Amine wie Pyridin und substituierte Pyridine, weiterhin Alkalicarbonate oder -hydrogencarbonate, oder tetraalkyl- substituierte Harnstoffderivate wie Tetra-Cι-C4-alkylharnstoff, z.B. Tetramethylharnstoff.
Die Menge an Base ist nicht kritisch, üblicherweise wird man die Base in einer Menge von wenigstens 1 Mol pro Mol Arylhalogenid II, z.B. in einer Menge von 1 bis 10 Mol, insbesondere 1 bis 5 Mol verwenden. Selbstverständlich kann man die Base auch als Lö- sungs oder Verdünnungsmittel für die Reaktanden verwenden. Bei gleichzeitiger Verwendung der Base als Lösungsmittel, wird die Menge in der Regel so bemessen, daß die Reaktionspartner gelöst sind, wobei man aus Praktikabilitätsgründen unnötig hohe Überschüsse vermeidet, um Kosten zu sparen, kleine Reaktionsgefäße einsetzen zu können und den Reaktionspartnern maximalen Kontakt zu gewährleisten.
Es kann aber auch je nach Art der Ausgangsstoffe und der verwendeten Katalysatoren von Vorteil sein, anstelle des Reaktionspartners oder der Base ein anderes inertes Lösungsmittel zu verwenden.
Als inerte Lösungsmittel kommen beispielsweise aromatische Kohlenwasserstoffe, wie Toluol, Xylole, Cumol, aliphatische Kohlenwasserstoffe wie Hexan, Pentan oder Cyclohexan, halogenierte aliphatische Kohlenwasserstoffe wie Di-, Tri und Tetrachlormethan, 1,2-Dichlorethan und 1, 1-Dichlorethan, Ether wie Methyl-tert .bu- tylether, Tetrahydrofuran, Dioxan, Dimethoxyethan, substituierte Amide wie Dimethylformamid oder N-Methylpyrrolidon, persubstituierte Harnstoffe wie Tetra-Cι-C-alkylharnstoffe oder Nitrile wie Benzonitril oder Acetonitril sowie Mischungen der vorgenann- ten Lösungsmittel in Betracht. Bevorzugte Lösungsmittel sind aromatische Kohlenwasserstoffe oder Lösungsmittelmischungen mit einem hohen Anteil an aromatischen Kohlenwasserstoffen.
Weiterhin hat es sich bewährt, wenn man das erfindungsgemässe Verfahren in Gegenwart von Lithiumionen durchführt. Als Lithiumquellen kommen insbesondere Lithiumsalze wie Lithiumhalogenide, z.B. Lithiumchlorid, weiterhin basische Lithiumsalze wie Lithium- carbonat, Lithiumacetat oder Lithiumhydroxid in Betracht. In diesen bevorzugten Ausführungsformen des erfindungsgemässen Verfah- rens verwendetet man in der Regel 0,1 bis 10 Mol, insbesondere 0,2 bis 5 Mol und besonders bevorzugt 0,5 bis 2 Mol Lithiumionen pro Mol Arylhalogenid.
Im erfindungsgemässen Verfahren werden Arylhalogenid II und die Verbindungen III bzw. III' oder III" in der Regel in etwa stö- chiometrischer Menge eingesetzt, wobei ein Überschuss einer Komponente von bis zu 50 Mol-%, bezogen auf die im Unterschuss vor- liegende Komponente in der Regel keine Nachteile mit sich bringt. Vorzugsweise setzt man das Diketon III bzw. seine Tautomeren III' oder III" in etwa equi olarer Menge oder im Überschuss ein.
Während der Umsetzung wird der Kohlenmonoxiddruck so eingestellt, daß immer ein Überschuß an Kohlenmonoxid, bezogen auf das Arylhalogenid vorliegt. Vorzugsweise liegt der Kohlenmonoxidpartial- druck bei Raumtemperatur bei 1 bis 250 bar, insbesondere 5 bis 150 bar CO.
Das erfindungsgemässe Verfahren wird in der Regel bei Temperaturen von Raumtemperatur bis 300°C, vorzugsweise bei 50 bis 250°C insbesondere bei 100 bis 200°C kontinuierlich oder diskontinuierlich durchgeführt. Bei diskontinuierlichem Betrieb wird zweckmä- ßigerweise zur Aufrechterhaltung eines konstanten Druckes kontinuierlich Kohlenmonoxid auf das Umsetzungsgemisch aufgepreßt.
Das erfindungsgemässe Verfahren lässt sich auf eine Vielzahl unterschiedlicher Substratverbindungen II und III anwenden. Bevor- zugt bedeutet Hai in Formel II Brom oder Iod und insbesondere Brom.
Als Arylhalogenide II sind beispielsweise solche Verbindungen zu nennen, die durch die allgemeine Formel Ha
repräsentiert wird, worin Hai für Chlor, Brom oder Iod, vorzugsweise Brom oder Iod, und insbesondere Brom steht, Hai vorzugs- weise dem Rest Rla benachbart ist, und
Rla und R4a unabhängig voneinander für Wasserstoff,
Halogen, insbesondere Fluor oder Chlor, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cδ-Alkoxy, Ci-Cg-Halogenalkoxy, Ci-Cg-Alkylthio, Cχ-Cg-Halogenalkylthio, Hydroxy-Ci-Cβ-alkyl, Cι-C6-Alkylsulfonyl, Ci-Cg-Halogenalkylsulfonyl, Cχ-Cg-Alko- xy-Ci-Cg-alkyl, C-Cg-Alkylthio-C-Cg-alkyl, Cχ-C6-Halogenal- kylthio-Ci-Cg-alkyl, Cχ-Cg-Alkylsulfonyl-Cχ-C6-alkyl, Cι-C6-Halogenalkylsulfonyl-Ci-Cg-alkyl, Cχ-Cg-Alkylamino- Cι-C6-alkyl, oder Di-(Cχ-C6-alkyl)amino-Cι-C6-alkyl stehen und R2a und R3 einen anellierten 5- oder 6-gliedrigen, gesättigten oder ungesättigten Heterocyclus bilden, der 1, 2 oder 3 Hete- roatome, ausgewählt unter N, S und 0 aufweisen kann, wobei
Schwefelatome im Heterocyclus auch als Sulfoxid oder Sulfon vorliegen können,
Stickstoffatome und Kohlenstoffatome im Heterocyclus ein Wasserstoffatom oder einen Substituenten aufweisen, der ausge- wählt ist unter Halogen, Nitro, Cyano, Hydroxy, Amino,
Cχ-Cg-Alkyl, Ci-Cg-Halogenalkyl, Cχ-Cg-Aminoalkyl, Hydro- xy-Cχ-C6-alkyl, Cχ-C6-Alkylcarbonyl, Cχ-Cg-Alkylcarbonyloxy, Cχ-Cg-Alkyloxycarbonyl, Cχ-Cg-Alkoxy-Cχ-C6-alkyl, Cι-C6-Alkyl- carbonyl-Cχ-C6-alkyl, Cχ-C6-Alkoxy, Cχ-C6-Halogenalkoxy, C2-Cg-Alkenyl, C2-Cg-Alkinyl, Cχ-C6-Hydroxyalkoxy, Cχ-C6-Al- koxy-Cχ-Cg-alkoxy, C3-Cg-Cycloalkyl, C3-C8-Cycloalkoxy, Cχ-Cg-Alkylthio, Cχ-C6-Halogenalkylthio, Cχ-Cg-Hydroxyalkylt- hio, Cχ-C6-Alkoxy-Cχ-Cg-alkylthio,
Phenyl, Phenyl-Cχ-Cg-alkyl, Phenylcarbonyl, Phenylcarbonyloxy, Phenoxycarbonyl, 5-, 6- oder 7-gliedriges Heterocyclyl, Phe- noxy, Phenylamino, Diphenylamino, Heterocyclyl-Ci-Cg-alkyl, Heterocycl loxy, Heterocyclylcarbonyl, Heterocyclyloxycarbonyl, Heterocyclylcarbonyloxy, wobei die Phenyl- und Heterocy- clylgruppen der 14 letztgenannten Reste ihrerseits partiell oder vollständig halogeniert und/oder einen, zwei oder drei Substituenten, ausgewählt unter Nitro, Cyano, Hydroxy, Cχ-C4-Alkyl, Cχ-C-Halogenalkyl, Cχ-C4-Alkoxy und Cχ-C4-Haloge- nalkoxy, tragen können, Cχ-Cg-Alkylamino, Di-Ci-Cg-alkylamino, C3-Cg-Cycloalkylamino, wobei die Alkyl- und Cycloalkylgruppen der drei letztgenannten Reste teilweise oder vollständig halogeniert und/oder ein bis drei Substituenten, ausgewählt unter Cχ-C4-Alkoxy oder Hydroxy tragen können,
Kohlenstoffringlieder auch als Carbonylfunktion, Thiocarbo- nylfunktion, Oxim- oder Oximetherfunktion vorliegen können; oder
Rla und R2a oder R3a und R4a einen anellierten 5- oder 6-gliedri- gen, gesättigten oder ungesättigten Heterocyclus bilden, der 1, 2 oder 3 Heteroatome, ausgewählt unter N, S und 0 aufweisen kann, wobei die Ringatome des Heterocyclus in der oben beschriebenen Weise substituiert sein können; und
die verbleibenden Reste Rla, R2a, R3a und R4a unabhängig voneinander die für Rla genannten Bedeutungen aufweisen, oder R2a für Wasserstoff oder 5-, 6- oder 7-gliedriges Heterocyclyl steht, das 1, 2 oder 3 Heteroatome, ausgewählt unter N, S und 0 aufweist, wobei die Ringatome des Heterocyclus in der oben beschriebenen Weise substituiert sein können; und
Rla, R3a und R4a unabhängig voneinander die zuvor für Rla genannten Bedeutungen aufweisen.
Als anellierte 5- oder 6-gliedrige Heterocyclen sind beispiels- weise Pyrrol, 2,3-Dihydropyrrol, 2,5-Dihydropyrrol, Pyrazol, 2, 3-Dihydropyrazol, Imidazol, 2, 3-Dihydroimidazol, Triazol, Fu- ran, 2,3- und 2,5-Dihydrofuran, Oxazol, 2, 3-Dihydrooxazol, Isoxazol, 2,3-Dihydroisoxazol, Thiophen, 2,3- und 2,5-Dihydrothio- phen, Thiazol, 2, 3-Dihydrothiazol, Isothiazol, 2,3-Dihydroiso- thiazol, Pyridin, 1,2-, 2,3- und 3, 4-Dihydropyrimidin sowie Tetrahydropyridin zu nennen. Anellierte Carbocyclen sind beispielsweise Cyclopenten, Cyclopentadien, Cyclohexen, Cyclohexadien, Benzol, Cyclohepten.
Somit bilden beispielsweise Rla und R2a oder R3a und R4a mit dem Benzolring, an den sie gebunden sind, einen Indol-, Isoindol-, Benzofuran-, Isobenzofuran-, Benzo-[a]-thiophen-, Benzo-[b] -thiophen-, Benzimidazol-, Benzoxazol-, Benzthiazol-, Benzisothiazol-, Benztriazol-, Chinolin-, Isochinolin-, Chinoxalin-, Chroman-, Thiochroman-, Chromen-, Thiochromen-, Indan-, Inden- oder Naphthalin-Ring, oder ein partiell am anellierten Ring hydriertes Derivat davon.
Selbstverständlich können die heterocyclischen Strukturen auch teilweise hydriert, die N- und/oder C-Ringatome in der oben beschriebenen Weise substituiert sein. Kohlenstoffringlieder können auch als Carbonylfunktion, Thiocarbonylfunktion, Oxim- oder Oxi- metherfunktion vorliegen wie in Chroman-4-on, Thiochroman-4-on, Benzoisothiazolon, und Ring-Schwefelatome als Sulfoxid oder Sul- fon vorliegen, wie in Benzothiophen-S-oxid, Benzothiophen-
S,S-dioxid, Benzothiazol-S-oxid, Benzothiazol-S,S-dioxid, Thioch- roman-S-oxid und Thiochroman-S,S-dioxid.
In einer bevorzugten Ausführungsform des erfindungsgemässen Ver- fahrens werden Arylhalogenide der allgemeinen Formel Ilb eingesetzt:
worin Hai die zuvor genannten Bedeutungen und Rlb die zuvor für Rla und R4b die zuvor für R4a genannten Bedeutungen aufweisen, Hai vorzugsweise Rlb benachbart ist, Rlb vorzugsweise für Halogen, insbesondere Fluor oder Chlor, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, C-C4-Alkoxy und C-C4-Halogenalkoxy steht, R4b vorzugsweise Was- serstoff, Fluor, Chlor, Methyl oder Methoxy bedeutet,
R5b für Wasserstoff, C-Cg-Alkyl, Cχ-C6-Halogenalkyl, Cχ-Cg-Alkyl- carbonyl, Cι-C6-Alkoxy-Cχ-C6-alkyl, C2-Cg-Alkenyl, C2-C6-Alki- nyl, Cχ-Cg-Hydroxyalkoxy, Cχ-Cg-Alkoxy-Cχ-Cg-alkoxy, C3-C8-Cy- cloalkyl, Phenyl, Phenyl-Cχ-C6-alkyl steht, wobei Phenyl in den zwei letztgenannten Gruppen einen, zwei oder drei Substituenten, ausgewählt unter Halogen, Nitro, Cyano, Hydroxy, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, Cχ-C -Alkoxy und Cχ-C4-Haloge- nalkoxy, tragen kann, und insbesondere Cχ-C4-Alkyl, Phenyl oder Phenyl-Cχ-C4-alkyl bedeutet, wobei Phenyl unsubstituiert oder in der zuvor beschriebenen Weise substituiert sein kann;
n für 0, 1 oder 2 steht und
X Sauerstoff oder Schwefel, insbesondere Sauerstoff bedeutet.
In einer weiteren bevorzugten Ausführungsform des erfindungsge- mässen Verfahrens werden Arylhalogenide der allgemeinen Formel IIc eingesetzt, worin
Hai die zuvor genannten Bedeutungen aufweist und vorzugsweise Rlc benachbart ist, Rlc die für Rla genannten Bedeutungen hat, und vorzugsweise für Halogen, insbesondere Fluor oder Chlor, Cχ-C4-Alkyl, insbesondere Methyl, Cχ-C4-Halogenalkyl, Cχ-C4-Alkoxy und Cχ-C4-Halogenalkoxy steht,
R3c für Halogen, Cχ-C6-Alkyl, Ci-Cg-Halogenalkyl, C -Cg-Alkylthio, Cχ-Cg-Alkylsulfinyl, Cχ-C6-Alkylsulfonyl, Cχ-Cg-Alkoxy oder
Cχ-Cg-Halogenalkoxy steht, und insbesodere Cχ-Cg-Alkylsulfonyl und speziell Chlor, Fluor, Methyl, Methoxy oder Methylsulfo- nyl bedeutet,
eine Doppelbindung oder vorzugsweise eine Einfachbindung bedeutet und
R6c für Wasserstoff oder gegebenenfalls substituiertes Cχ-C-Alkyl steht. Substituiertes Cχ-C4-Alkyl heisst hier vorzugsweise Ha- logenalkyl wie vorstehend definiert, z.B. Fluormethyl, Chlormethyl, Difluormethyl, Chlordifluormethyl, Trifluormethyl, oder Cχ-C4-Alkoxy-Cχ-C4-alkyl wie vorstehehend definiert, z.B. Methoxymethyl.
In einer weiteren bevorzugten Ausfuhrungsform des erfindungsge- mässen Verfahrens werden Arylhalogenide der allgemeinen Formel Ild eingesetzt,
worin
Hai die zuvor genannten Bedeutungen aufweist und vorzugsweise Rld benachbart ist, Rld die für Rla genannten Bedeutungen hat, und vorzugsweise für Halogen, insbesondere Fluor oder Chlor, Cχ-C4-Al- kyl, insbesondere Methyl, Cχ-C-Halogenalkyl, Cχ-C-Alkoxy und Cχ-C4-Halogenalkoxy steht,
R3d für Halogen, Ci-Cg-Alkyl, C -Cg-Halogenalkyl, C-C6-Alkylthio, Cχ-C6-Alkylsulfinyl, Cχ-Cg-Alkylsulfonyl, Cχ-Cg-Alkoxy oder Cχ-Cg-Halogenalkoxy steht, und insbesodere Cχ-C6-Alkylsulfonyl und speziell Chlor, Fluor, Methyl, Methoxy oder Methylsulfo- nyl bedeutet. Selbstverständlich kann man im erfindungsgemässen Verfahren auch ein unsubstituiertes Halogenbenzol wie Brombenzol oder ein Halo- genpyridin wie 2-, 3- oder 4-Brompyridin als Verbindung II einsetzen.
Vorzugsweise werden im erfindungsgemässen Verfahren als 1,3-Dike- ton der allgemeinen Formel III (bzw. als Tautomer III' oder III") cyclische oder bicyclische 1,3-Diketone eingesetzt, die den allgemeinen Formeln lila oder Illb gehorchen:
worin k für 0, 1 oder 2 steht und vorzugsweise 1 bedeutet, und die Variablen R1 bis R6 folgende Bedeutung haben:
R1, R5 unabhängig voneinander Wasserstoff, Cχ-C4-Alkyl, insbesondere Methyl, oder Cχ-C4-Alkoxycarbonyl;
R2, R4, R6 unabhängig voneinander Wasserstoff, C-C4-Alkyl, insbesondere Methyl, Cχ-C4-Alkoxy wie Methoxy oder Cχ-C-Alkylthio wie Methylthio;
R3 Wasserstoff, Halogen, Hydroxy, Cχ-Cg-Alkyl, Cχ-Cg-Halogenalkyl, Di-(Cχ-Cg-alkoxy)-methyl,
(Cχ-Cg-Alkoxy) -(Cχ-C6-alkylthio)-methyl, Di- (Ci-Cg-alkylthioJmethyl, Cχ-Cg-Alkoxy, Cχ-Cg-Halogenalkoxy, Cχ-C6-Alkylthio, Cχ-Cg-Halogenalkylthio, Cχ-Cg-Alkylsulfinyl, Cχ-C6-Halogenalkylsulfinyl, Cχ-C6-Alkylsulfonyl,
Cχ-C6-Halogenalkylsulfonyl, Cχ-Cg-Alkoxycarbonyl, Cχ-Cg-Halogenalkoxycarbonyl; insbesondere Wasserstoff oder Methyl,
l,3-Dioxolan-2-yl, l,3-Dioxan-2-yl,
1 , 3-Oxathiolan-2-y1, 1,3-Oxathian-2-y1, l,3-Dithiolan-2-yl oder l,3-Dithian-2-yl, wobei die sechs letztgenannten Reste durch einen bis drei Cχ-C4-Alkylreste substituiert sein können; oder R2 und R4 oder R4 und R6 bilden gemeinsam eine π-Bindung oder eine Cχ-Cs-Alkandiylkette, die eine π-Bindung aufweisen und/oder einen, zwei oder drei Reste aus folgender Gruppe tragen kann: Halogen, Cyano, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl oder Cχ-C4-Alkoxy- carbonyl; oder
R5 und R6 bilden gemeinsam eine Cχ-Cs-Alkandiylkette, die eine π-Bindung aufweisen und/oder einen, zwei oder drei Reste aus folgender Gruppe tragen kann: Halogen,
Cyano, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl oder Cχ-C4-Alkoxycarbonyl; oder
R2 und R6 bilden gemeinsam eine Cχ-C4-Alkandiylkette, die eine π-Bindung aufweisen und/oder einen zwei oder drei Reste aus folgender Gruppe tragen kann: Halogen, Cyano, Cχ-C4-Alkyl, Cχ-C-Halogenalkyl oder C-C4-Alkoxy- carbonyl, und die vorzugsweise unsubstituiert ist; oder
R3 und R4 bilden gemeinsam eine Kette der Formel
-0-(CH2)p-0-, -0-(CH2)p-S-, -S-(CH2)p-S-, -0-(CH2)q- oder -S-(CH2)g-, worin p für 2, 3, 4 oder 5, vorzugsweise 2 oder 3, und q für 2, 3, 4, 5 oder 6 stehen, und die durch einen, zwei oder drei Reste aus folgender Gruppe substituiert sein kann: Halogen, Cyano, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl oder Cχ-C4-Alkoxy- carbonyl und vorzugsweise unsubstituiert ist; oder
R3 und R4 bilden gemeinsam mit dem Kohlenstoff, an dem sie gebunden sind, eine Carbonyl- oder Thiocarbonylgruppe.
Beispiele für bevorzugte cyclische Diketone der Formel lila bzw. Illb sind die Cyclohexan-l,3-dione der Formeln III-l bis 111-12:
(III-4) (III-5) (III-6)
(111-10) (III-ll) (111-12)
Y = X = O oder S n = 1, 2, 3 oder 4 m = 2, 3 oder 4
Die Aufarbeitung der erfindungsgemässen Umsetzung von Arylhalogenid II mit dem 1,3-Diketon III kann in an sich bekannter Weise erfolgen. Beispielsweise kann die Reaktionsmischung, vorzugsweise bei vermindertem Druck, zur Trockne eingeengt werden. Der Rückstand wird dann in der Regel aus einem geeigneten Lösungsmittel umkristallisiert und/oder chromatographisch gereinigt, wobei das zur Umkristallisation verwendete Lösungsmittel sowie die bei der Chromatographie eingesetzte stationäre Phase und die mobile Phase (Eluent) sich selbstverständlich nach Art der Ausgangsverbindungen richtet und vom Fachmann in einfacher Weise durch Routineversuche ermittelt werden können. Als stationäre Phase wird in vielen Fällen Kieselgel oder Aluminiumoxid geeignet sein. Als Eluent kommen beispielsweise aliphatische und cycloaliphatische Kohlenwasserstoffe wie n-Hexan oder Cyclohexan oder deren Mischungen mit polaren Lösungsmitteln wie Ethern, oder Estern, z.B. Essig- säureethylester, in Betracht. Selbstverständlich kann die Reaktionsmischung auch wässrig extraktiv aufgearbeitet werden um Salze, z.B. die bei der Umsetzung anfallenden Säureadditionssalze von Halogenwasserstoff mit der eingesetzten Base oder Katalysatoren, zu entfernen.
Das erfindungsgemässe Verfahren liefert die ß-Ketoenolester der allgemeinen Formel I in guten Ausbeuten. Sein grosser Vorteil ist insbesondere darin zu sehen, dass anstelle der z.T. aufwendig herzustellenden Arylcarbonsauren Ar-COOH die besser zugänglichen Arylhalogenide der Formel II eingesetzt werden können.
Die nach dem erfindungsgemässen Verfahren erhaltenen ß-Ketoenolester der allgemeinen Formel I werden in der Regel in einer wei- teren Reaktion in die 2-Aroyl-substituierten 1,3-Diketone der Formel X durch Behandlung von I mit einer Base und einer kataly- tisch aktiven Menge wenigstens einer Cyanid-Verbindung umgelagert. Hierzu können die ß-Ketoenolester I als isolierte Reinsubstanz, als isoliertes Rohprodukt der vorstehend beschrieben Um- Setzung oder in der Reaktionsmischung der vorstehenden Umsetzung ohne vorherige Isolierung eingesetzt werden. Beispielsweise kann man die nach dem erfindungsgemässen Verfahren erhaltene Reaktionsmischung direkt nach Entfernen des Kohlenmonoxids mit einer Base und einer katalytisch aktiven Menge wenigstens einer Cyanid- Verbindung versetzen und so die Umlagerung von I in die Verbindung X einleiten.
Die Umlagerung der ß-Ketoenolester I zu den Verbindungen der Formel X erfolgt in der Regel bei Temperaturen von 20 bis 100°C in einem Lösungsmittel und in Gegenwart einer Base sowie gegebenenfalls mit Hilfe einer Cyanoverbindung als Katalysator.
Als Lösungsmittel können z.B. Acetonitril, Methylenchlorid, 1,2—Dichlorethan, Dioxan, Essigsäureethylester, Toluol oder Ge- mische hiervon verwendet werden. Bevorzugte Lösungsmittel sind Acetonitril und Dioxan und deren Mischungen.
Geeignete Basen sind die vorstehend genannten tertiären Amine wie Triethylamin und Pyridin, Erdalkali- oder Alkalicarbonate, wie Natriumcarbonat oder Kaliumcarbonat, die vorzugsweise in äquimolarer Menge oder bis zu einem vierfachen Überschuß, bezogen auf den ß-Ketoenolester der Formel I, eingesetzt werden. Bevorzugt werden Triethylamin oder Alkalicarbonat verwendet, vorzugsweise in doppelt äquimolaren Verhältnis in Bezug auf den Ester. Als Cyanoverbindungen sind beispielsweise anorganische Cyanide, wie Natriumcyanid oder Kaliumcyanid und organische Cyanoverbindungen, die Cyanidionen freisetzen können, z.B. Cyanhydrine aliphatischer Ketone wie Acetoncyanhydrin oder Trialkylsilylcya- nide wie Trimethylsilylcyanid geeignet. Sie werden vorzugsweise in einer Menge von 1 bis 50 Molprozent, insbesondere 5 bis 25 Mol-%, bezogen auf den ß-Ketoenolester I, eingesetzt. Vorzugsweise werden Acetoncyanhydrin oder Trimethylsilylcyanid, z.B. in einer Menge von 5 bis 25, vorzugsweise etwa 10 bis 20 Molprozent, bezogen auf den ß-Ketoenolester I, eingesetzt.
Die Aufarbeitung kann in an sich bekannter Weise erfolgen. Das Reaktionsgemisch der Umlagerung wird beispielsweise mit verdünnter Mineralsäure, z.B. 5 %ige Salzsäure oder Schwefelsäure, ange- säuert, mit einem organischen Lösungsmittel, z.B. Methylenchlorid oder Essigsäureethylester extrahiert. Der organische Extrakt kann zur Entfernung von Verunreinigungen mit einer Base wie 5—10%iger Alkalicarbonatlösung, z.B. Natriumcarbonat— oder Kaliumcarbonat- lösung extrahiert werden. Die wäßrige Phase wird angesäuert und der sich bildende Niederschlag abgesaugt und/oder mit Methylenchlorid oder Essigsäureethylester extrahiert, getrocknet und eingeengt. Gegebenenfalls wird der Rückstand umkristallisiert und/ oder chromatographisch in der oben beschriebenen Weise weiter gereinigt.
Die im folgenden angegebenen Beispiele dienen der weiteren Erläuterung der Erfindung.
I . ß-Ketonenolester
Allgemeine Vorschrift für die Umsetzung von 5-Brom-2,4-dime- thylsaccharin ( 5-Brom-2 , 4-dimethyl-l, 2-benzoisothia- zol-3-(2H)-on-l,l-dioxid = Verbindung der Formel Ilb mit Rlb = R5b = Methyl, Rb = Wasserstoff, X = 0, n = 2 und Hai = Brom) mit Cyclohexan-l,3-dionen der Formel lila im Laborautoklaven (Beispiele 1 bis 3)
1 g (3,6 mmol) 5-Brom-2,4-dimethylsaccharin, 4,3 mol (1,2 eq.) 1,3-Diketon, 0,1 g Bis(triphenylphosphin)palladiumdich- lorid, 0,15 g (3,6 mmol) Lithiumchlorid, 0,73 g (7,2 mmol) Triethylamin wurden in einem Laborautoklaven in 100 ml Lösungsmittel vorgelegt. Anschliessend spülte man den Gasraum des Autoklaven 1 bis 6 mal mit Kohlenmonoxid, erwärmte auf 140°C und stellte dann einen Kohlenmonoxid-Druck von 20 bar ein. Man behielt die Temperatur und Druck 12 h bis 24 h bei, kühlte ab, entspannte auf Normaldruck und engte die Reaktionsmischung zur Trockne ein.
Zur Aufarbeitung nach Methode A wurde der Rückstand an Kie- selgel mit einem Cyclohexan-Ethylacetat-Gradienten (100/0 bis 60/40 v/v) chromatographiert.
Zur Aufarbeitung nach Methode B wurde der Rückstand in Ethy- lacetat aufgenommen, 3 mal mit 5 gew.-%igem wässrigen Natri- umcarbonat, 2 mal mit 10 gew.-%iger Salzsäure und 2 mal mit
Wasser gewaschen. Die organische Phase wurde über Natriumcar- bonat getrocknet und zur Trockne im Vakuum eingeengt.
Man erhielt den jeweiligen ß-Ketoenolester der 2,4-Dimethyl- saccharin-5-carbonsäure als zähes Öl oder als weissen Feststoff.
Die Authentizität der erhaltenen Verbindungen wurde mittels ^•H-NMR-Spektrum überprüft. Die Einsatzmaterialien und Ergebnisse der Umsetzung sind in Tabelle 1 angegeben:
Tabelle 1 :
1) bezogen auf 5-Brom-2,4-dimethylsaccharin
Beispiel 4 :
10 g (36 mmol) 5-Brom-2,4-dimethylsaccharin, 5 g (36 mmol) Bicyclo[3.2.1]-l,3-dioxooctan (Diketon III-4), 1 g Bis(tri- phenylphosphin)palladiumdichlorid, 1,5 g (3,6 mmol) Lithiumchlorid und 7,3 g (72 mmol) Triethylamin wurden in einem 1-L Autoklaven in 700 ml Toluol vorgelegt und inertisiert. Anschliessend spülte man den Gasraum des Autoklaven mit Kohlenmonoxid, erwärmte auf 140°C und stellte dann einen Kohlen- monoxid-Druck von 20 bar ein. Man behielt die Temperatur und Druck 24 h bei, kühlte ab und entspannte auf Normaldruck.
Zur Aufarbeitung wurde die Reaktionsmischung je 3 mal mit 5 gew.-%igem wässrigen Natriumcarbonat, mit 10 gew.-%iger Salzsäure und mit Wasser gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet und zur Trockne im Vakuum ein- geengt. Man erhielt 10,4 g 5-[ (Bicyclo[3.2. l]-3-oxooc- ten-l-yl)oxycarbonyl]-2,4-dimethylsaccharin als zähes Öl.
Beispiel 5 :
l-Brom-2,4-dichlorbenzol und 4, 4, 6, 6-Tetramethyl-1,3,5-trio- xocyclohexan (Diketon III-2) wurden in Gegenwart von Bis(tri- phenylphosphin)palladiumdichlorid, Lithiumchlorid und Triethylamin auf die für Beispiel 4 beschriebene Weise in den dort angegebenen Mengenverhältnissen umgesetzt. Man erhielt nach Aufarbeitung (4,4,6, 6-Tetramethyl-3, 5-dioxo-cyclohe- xen-l-yl)-2,4-dichlorbenzoat in einer Ausbeute von 30 %.
Beispiel 6:
l-Brom-2,4-dichlorbenzol und 4,6-Dimethyl-l,3-dioxocyclohexan (Diketon III-3) wurden in Gegenwart von Bis(triphenylphosp- hin)palladiumdichlorid, Lithiumchlorid und Triethylamin auf die für Beispiel 4 beschriebene Weise in den dort angegebenen Mengenverhältnissen umgesetzt. Man erhielt nach Aufarbeitung (4, 6-Dimethyl-3-dioxocyclohex-l-en-l-yl)-2 , 4-dichlorbenzoat in einer Ausbeute von 27 %.
Beispiel 8:
l-Brom-2-methyl-4-methylsulfonyl-3- ( 4 ' ,5 '-dihydrooxa- zol-3-yl)benzol wurde mit (36 mmol) 5,5-Dimethyl-l,3-dioxocy- clohexan (Diketon III-9) in Gegenwart von Bis(triphenylphosp- hin)palladiumdichlorid, Lithiumchlorid und Triethylamin auf die für Beispiel 4 beschriebene Weise in den dort angegebenen Mengenverhältnissen umgesetzt. Man erhielt nach Aufarbeitung 1- (5 , 5-Dimethy1-3-oxocyclohex-1-en-l-yl)oxycarbon l-2-me- thyl-4-methylsulfonyl-3-(4 ' ,5 '-dihydrooxazol-3-yl)benzol in einer Ausbeute von 35 %.
Beispiel 9 :
l-Brom-2-methyl-4-methylsulfonyl-3- ( 4 ' , 5 ' -dihydrooxa- zol-3-yl)benzol wurde mit Cyclohexan-l,3-dion (Diketon III-l) in Gegenwart von Bis(triphenylphosphin)palladiumdichlorid, Lithiumchlorid und Triethylamin auf die für Beispiel 4 beschriebene Weise in den dort angegebenen Mengenverhältnissen umgesetzt. Man erhielt nach Aufarbeitung l-(3-0xocyclo- hex-l-en-l-yl)oxycarbonyl-2-methyl-4-methylsulfo- nyl-3- (4 ' ,5 '-dihydrooxazol-3-yl)benzol. Auf die in Beispiel 8 und 9 beschriebene Weise lassen sich ausserdem die ß-Ketoenolester der nachstehenden Formel
herstellen, worin Hex, Rlc und R3c jeweils die in Tabelle 2 angegebene Bedeutung haben. Hex steht dabei für einen der nachfolgend definierten Cyclohexenon-Reste Hex-1 bis Hex-5
Tabelle 2:
I. 2-Aroyl-1,3-diketone
Die Umlagerung der nach den unter I hergestellten Verbindungen kann beispielsweise nach Beispiel C) 17, S. 19 der WO 96/05182 erfolgen, auf das hiermit Bezug genommen wird.

Claims

Patentansprüche
1. Verfahren zur Herstellung von ß—Ketoenolestern der allgemeinen Formel Ia oder Ib
worin
Ra, Rb unabhängig voneinander für Cχ-C6-Alkyl oder C3-C8-Cy- cloalkyl stehen, oder
Ra und Rb zusammen für C-C4-Alkandiyl oder Cs-C7-Cycloalkan- diyl stehen, wobei die drei vorgenannten Gruppen substituiert oder unsubstituiert sein können, und/oder einen anellierten 3-, 4-, 5- oder 6-gliedrigen gesättigten Carbocyclus, einen spiro-verküpften 3-, 4-, 5-, 6- oder 7-gliedrigen gesättigten Carbocyclus, einen spiro-verküpften 3-, 4-, 5-, 6- oder 7-gliedrigen gesättigten Heterocyclus mit 1 oder 2 Chalkogenato en, ausgewählt unter Sauerstoff und Schwefel, und/oder eine Carbonyl- oder Thiocarbonylgruppe aufweisen können;
Ar Phenyl oder Pyridyl, die jeweils 1, 2, 3 oder 4 Substituenten aufweisen können, wobei zwei an benachbarte Koh- lenstoffatome gebundene Substituenten mit diesen Atomen auch einen einen 5- oder 6-gliedrigen gesättigten oder ungesättigten Carbocyclus oder einen 5- oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus bilden können, der 1, 2 oder 3 Heteroatome, ausgewählt unter O, N und S aufweist und der seinerseits substituiert oder unsubstituiert sein kann;
dadurch gekennzeichnet, dass man ein Arylhalogenid der allgemeinen Formel II
Ar-Hal (II) worin Hai für ein Halogenatom, ausgewählt unter Chlor, Brom oder Iod, steht,
mit einem 1,3-Diketon der allgemeinen Formel III oder seinen Tautomeren III' oder III"
0 0
X 1 (III)
in einer Kohlenmonoxid-Atmosphäre in Gegenwart einer Base und eines Katalysators, der wenigstens ein Übergangsmetall der Gruppe VIII des Periodensystems enthält, umsetzt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Katalysator als Übergangsmetall Palladium umfasst.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Katalysator zusätzlich ein tertiäres Phosphin um- fasst.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das tertiäre Phosphin ein Triarylphosphin ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Base ausgewählt ist unter sekundären und tertiären Aminen.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die Umsetzung bei einer Temperatur im Bereich von 50 bis 250°C durchführt.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das 1,3-Diketon der allgemeinen Formel III bzw. seine Tautomer III' und III" den allgemeinen Formeln lila oder Illb gehorchen:
worin k für 0, 1 oder 2 steht, die Variablen R1 bis R6 fol- gende Bedeutung haben:
R1, R5 unabhängig voneinander Wasserstoff, Cχ-C4-Alkyl oder Cχ-C4-Alkoxycarbonyl;
R2, R4, R6 unabhängig voneinander Wasserstoff, Cχ-C4-Alkyl, Cχ-C4-Alkylthio oder Cχ-C4-Alkoxy;
R3 Wasserstoff, Halogen, Hydroxy, Cχ-Cg-Alkyl, Cχ-Cg-Halogenalkyl, Di-(Cχ-Cg-alkoxy)-methyl, (Cχ-Cg-Alkoxy)-(Cχ-Cg-alkylthio) -methyl,
Di- (Cχ-Cg-alkylthio)methyl, Cχ-Cg-Alkoxy, Cχ-Cg-Halogenalkoxy, Cχ-Cg-Alkylthio, Cχ-Cg-Halogenalkylthio, Cχ-C6-Alkylsulfinyl, Cχ-Cg-Halogenalkylsulfinyl, Cχ-Cg-Alkylsulfonyl, Cχ-Cg-Halogenalkylsulfonyl, Cχ-Cg-Alkoxycarbonyl,
Cχ-Cg-Halogenalkoxycarbonyl;
1 , 3-Dioxolan-2-yl, 1 , 3-Dioxan-2-yl, 1 , 3-Oxathiolan-2-yl, 1, 3-Oxathian-2-yl, l,3-Dithiolan-2-yl oder l,3-Dithian-2-yl, wobei die sechs letztgenannten Reste durch einen bis drei Cχ-C4-Alkylreste substituiert sein können; oder
R2 und R4 oder R4 und R6 bilden gemeinsam eine π-Bindung oder eine Cχ-C5-Alkandiylkette, die eine π-Bindung aufweisen und /oder einen, zwei oder drei Reste aus folgender Gruppe tragen kann: Halogen, Cyano, Cχ-C-Alkyl, Cχ-C4-Halogenalkyl oder Cχ-C4-Alkoxy- carbony1; oder
R5 und R6 bilden gemeinsam eine Cχ-Cs-Alkandiylkette, die eine π-Bindung aufweisen und /oder einen, zwei oder drei Reste aus folgender Gruppe tragen kann: Halogen, Cyano, Cχ-C4-Alkyl, Cχ-C-Halogenalkyl oder Cχ-C4-Alkoxycarbonyl; oder R2 und R6 bilden gemeinsam eine Cχ-C4-Alkandiylkette, die eine π-Bindung aufweisen und /oder einen, zwei oder drei Reste aus folgender Gruppe tragen kann: Halogen, Cyano, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl oder Cχ-C4-Alkoxycarbonyl; oder
R3 und R4 bilden gemeinsam eine Kette der Formel
-0-(CH2)p-0-, -0-(CH2)p-S-, _S-(CH2)p-S-, -0-(CH2)g- oder -S-(CH2)q-, worin p für 2, 3, 4 oder 5 und q für 2, 3, 4, 5 oder 6 stehen, und die durch einen, zwei oder drei Reste aus folgender Gruppe substituiert sein kann: Halogen, Cyano, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl oder Cχ-C4-Alkoxycarbonyl; oder
R3 und R4 bilden gemeinsam mit dem Kohlenstoff, an dem sie gebunden sind, eine Carbonyl- oder Thiocarbonylgruppe .
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, das das Arylhalogenid der allgemeinen Formel II durch die allgemeine Formel Ha repräsentiert wird:
worin
Rla und R4a unabhängig voneinander für Wasserstoff, Halogen, insbesondere Fluor oder Chlor, Cyano, Cχ-C6-Alkyl, C -C6-Halogenalkyl, Cχ-C6-Alkoxy, Cχ-Cg-Halogenalkoxy, Cχ-Cg-Alkylthio, Cχ-C6-Halogenalkylthio, Hydroxy-Cχ-C6-alkyl,
Cχ-Cg-Alkylsulfonyl, Cχ-Cg-Halogenalkylsulfonyl, Cχ-Cg-Alkoxy-Cχ-Cg-alkyl, Cχ-C6-Alkylthio-Cι-Cg-alkyl, Cχ-Cg-Halogenalkylthio-Cχ-Cg-alkyl, Cχ-Cg-Alkylsulfonyl-Cχ-Cg-alkyl, Cχ-Cg-Halogenalkylsulfonyl-Cχ-C6-alkyl, Cχ-Cg-Alkylamino-Cχ-Cg-alkyl, oder Di-(Cχ-Cg-alkyl)amino-Cχ-Cg-alkyl stehen und
R2a und R3a einen 5- oder 6-gliedrigen, gesättigten oder unge- sättigten Heterocyclus bilden, der 1, 2 oder 3 Heteroa- tome, ausgewählt unter N, S und O aufweisen kann, wobei Schwefelatome im Heterocyclus auch als Sulfoxid oder Sul- fon vorliegen können,
Stickstoffatome und Kohlenstoffatome im Heterocyclus ein Wasserstoff tom oder einen Substituenten aufweisen, der ausgewählt ist unter Halogen, Nitro, Cyano, Hydroxy, Amino, Cχ-Cg-Alkyl, Cχ-Cg-Halogenalkyl, Cχ-Cg-Aminoalkyl, Cχ-Cg-Alkylcarbonyl, Cχ-C6-Alkylcarbonyloxy, Cx-Cg-Alkylo- xycarbonyl, Cχ-C6-Alkoxy-Cχ-C6-alkyl, Cχ-C6-Alkylcarbo- nyl-Cχ-Cg-alkyl, Cχ-C6-Alkoxy, Cχ-C6-Halogenalkoxy, C2-C6-Alkenyl, C2-C6-Alkinyl, Cχ-Cg-Hydroxyalkoxy, Cχ-Cg-Alkoxy-Cχ-Cg-alkoxy, C3-C6-Cycloalkyl, C3-C8-Cyclo- alkoxy, Cχ-Cg-Alkylthio, Cχ-Cg-Halogenalkylthio, Cχ-Cg-Hydroxyalkylthio, Cχ-C6-Alkoxy-Cχ-Cg-alkylthio,
Phenyl, Phenyl-Cχ-Cg-alkyl, Phenylcarbonyl, Phenylcarbo- nyloxy, Phenoxycarbonyl, 5-, 6- oder 7-gliedriges Heterocyclyl, Phenoxy, Phenylamino, Diphenylamino, Heterocy- clyl-Cχ-Cg-alkyl, Heterocyclyloxy, Heterocyclylcarbonyl, Heterocyclyloxycarbonyl, Heterocyclylcarbon loxy, wobei die Phenyl- und Heterocyclylgruppen der 14 letztgenannten Reste ihrerseits partiell oder vollständig halogeniert und/oder einen, zwei oder drei Substituenten, ausgewählt unter Nitro, Cyano, Hydroxy, Cχ-C4-Alkyl, Cχ-C-Halogenal- kyl, C-C4-Alkoxy und Cχ-C4-Halogenalkoxy, tragen können, Cχ-Cg-Alkylamino, Di-Cχ-C6-alkylamino, C3-C6-Cycloalkylamino, wobei die Alkyl- und Cycloalkylgruppen der drei letztgenannten Reste teilweise oder vollständig halogeniert und/oder ein bis drei Substituenten, ausgewählt un- ter Cχ-C -Alkoxy oder Hydroxy tragen können,
Kohlenstoffringlieder auch als Carbonylfunktion, Thiocar- bonylfunktion, Oxim- oder Oximetherfunktion vorliegen können; oder
Rla und R2a oder R3a und R4a einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten Heterocyclus bilden, der 1, 2 oder 3 Heteroatome, ausgewählt unter N, S und 0 aufweisen kann, wobei die Ringatome des Heterocyclus in der oben beschriebenen Weise substituiert sein können; und
die verbleibenden Reste Rla, R2a, R3a und R4a unabhängig voneinander die für Rla genannten Bedeutungen aufweisen, oder R2a für Wasserstoff oder 5-, 6- oder 7-gliedriges Heterocyclyl steht, das 1, 2 oder 3 Heteroatome, ausgewählt unter N, S und O aufweist, wobei die Ringatome des Heterocyclus in der oben beschriebenen Weise substituiert sein können; 5 und
Rla, R3a und R4a unabhängig voneinander die zuvor für Rla genannten Bedeutungen aufweisen.
10 9. Verfahren nach Anpsruch 8, dadurch gekennzeichnet, dass das Arylhalogenid II durch die allgemeine Formel Ilb repräsentiert wird:
20
worin Hai die zuvor genannten Bedeutungen und Rlb die zuvor für Rla und R4b die zuvor für R4a genannten Bedeutungen aufweisen,
25
R5b fü Wasserstoff, Cχ-C6-Alkyl, C-C6-Halogenalkyl, Cχ-Cg-Alkylcarbonyl, Cχ-C6-Alkoxy-Cχ-Cg-alkyl, C2-Cg-Alkenyl, C2-Cg-Alkinyl, Cχ-C6-Hydroxyalkoxy, Cχ-Cg-Alkoxy-Cχ-Cg-alkoxy, C3-C8-Cycloalkyl, Phenyl,
30 Pheny1-Cχ-Cg-alkyl steht, wobei Phenyl in den zwei letztgenannten Gruppen einen, zwei oder drei Substituenten, ausgewählt unter Halogen, Nitro, Cyano, Hydroxy, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, Cχ-C4-Alkoxy und Cχ-C4-Halogenalkoxy, tragen kann,
35 n für 0, 1 oder 2 steht und
X Sauerstoff oder Schwefel bedeutet.
40 10. Verfahren nach Anpsruch 8, dadurch gekennzeichnet, dass das Arylhalogenid II durch die allgemeine Formel IIc repräsentiert wird:
45
worin Hai die zuvor genannten Bedeutungen aufweist und Rlc die 10 für Rla genannten Bedeutungen hat,
R3c für Halogen, Cχ-C6-Alkyl, C-C6-Halogenalkyl,
Cχ-C6-Alk lthio, Cχ-C6-Alkylsulfinyl, C-C6-Alkylsulfonyl, Cχ-Cg-Alkoxy oder Cχ-C6-Halogenalkoxy steht,
15 eine Doppelbindung oder eine Einfachbindung bedeutet und
R6C für Wasserstoff oder Cχ-C4-Alkyl steht.
20 11. Verfahren nach Anpsruch 8, dadurch gekennzeichnet, dass das Arylhalogenid II durch die allgemeine Formel Ild repräsentiert wird:
30 worin Hai die zuvor genannten Bedeutungen und Rld die für Rla genannten Bedeutungen hat und
R3d für Halogen, Cχ-C6-Alkyl, Cχ-C6-Halogenalkyl, C-C6-Al- 35' kylthio, Cχ-C6-Alkylsulfinyl, Cχ-C6-Alkylsulfonyl, cι_Cg-Alkoxy oder Cχ-Cg-Halogenalkoxy steht.
12. Verfahren zur Herstellung von 2-Aroyl-substituierten 1,3-Di- ketonen der Formel X oder ihren Tautomeren Xa, Xb oder Xc 40
45
worin Ra, Rb, und Ar die in Anspruch 1 angegebene Bedeutung haben, umfassend die folgendenden Reaktionsschritte:
1. Umsetzung eines 1,3-Diketons der in Anspruch 1 definier- ten allgemeinen Formel III oder seiner Tautomere III' oder III" mit einem Arylhalogenid Ar-Hal, worin Hai für Chlor, Brom oder Iod steht, in einer Kohlenmonoxid-Atmosphäre in Gegenwart einer Base und eines Übergangsmetallkatalysators, der wenigstens ein Übergangsmetall der Gruppe VIII des Periodensystems enthält, zu einem ß-Ketoenolester der in Anspruch 1 definierten allgemeinen Formel Ia oder Ib, und
2. Umlagerung der Verbindung Ia oder Ib zu einer Verbindung X oder Xa, Xb und/oder Xc, durch Behandlung von Ia und/ oder Ib mit einer Base und einer katalytisch aktiven Menge wenigstens einer Cyanid-Verbindung.
EP01967292A 2000-08-22 2001-08-21 Verfahren zur herstellung von beta-ketoenolestern Withdrawn EP1311469A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10041044 2000-08-22
DE10041044 2000-08-22
PCT/EP2001/009672 WO2002016305A1 (de) 2000-08-22 2001-08-21 VERFAHREN ZUR HERSTELLUNG VON βKETOENOLESTERN

Publications (1)

Publication Number Publication Date
EP1311469A1 true EP1311469A1 (de) 2003-05-21

Family

ID=7653292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01967292A Withdrawn EP1311469A1 (de) 2000-08-22 2001-08-21 Verfahren zur herstellung von beta-ketoenolestern

Country Status (11)

Country Link
US (1) US6903221B2 (de)
EP (1) EP1311469A1 (de)
JP (1) JP2004506709A (de)
KR (1) KR100766637B1 (de)
CN (1) CN1261404C (de)
AR (1) AR030574A1 (de)
AU (1) AU2001287700A1 (de)
BR (1) BR0113359A (de)
HU (1) HUP0300820A3 (de)
IL (2) IL154332A0 (de)
WO (1) WO2002016305A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1802353A (zh) 2002-12-30 2006-07-12 细胞基因公司 氟烷氧基取代的1,3-二氢-异吲哚化合物及其药物用途
CN111763181A (zh) * 2019-04-02 2020-10-13 重庆大学 一种制备含共轭二烯酮片段的苯并磺内酰胺类季碳氨基酸衍生物的合成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4427995A1 (de) * 1994-08-08 1996-02-15 Basf Ag Saccharinderivate
CN1227244C (zh) * 1995-02-24 2005-11-16 巴斯福股份公司 苯甲酰基衍生物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0216305A1 *

Also Published As

Publication number Publication date
HUP0300820A3 (en) 2009-01-28
IL154332A0 (en) 2003-09-17
KR100766637B1 (ko) 2007-10-15
WO2002016305A1 (de) 2002-02-28
KR20030043936A (ko) 2003-06-02
CN1261404C (zh) 2006-06-28
US20030191318A1 (en) 2003-10-09
CN1461294A (zh) 2003-12-10
AR030574A1 (es) 2003-08-27
AU2001287700A1 (en) 2002-03-04
JP2004506709A (ja) 2004-03-04
HUP0300820A2 (hu) 2003-09-29
BR0113359A (pt) 2003-07-15
US6903221B2 (en) 2005-06-07
IL154332A (en) 2008-11-26

Similar Documents

Publication Publication Date Title
EP1697309B1 (de) Benzoylsubstituierte phenylalanin-amide
KR20070058619A (ko) 벤조일-치환된 세린 아미드
KR20070058618A (ko) 제초제로서 사용되는 헤테로아로일-치환된 세린 아미드
AU2007204015A1 (en) Piperazine compounds with a herbicidal action
AU2004303491A1 (en) Herbicidal heteroaroyl-substituted phenylalanine amides
EP2061770A1 (de) Piperazinverbindungen mit herbizider wirkung
EP1177194B1 (de) 4-(3&#39;,4&#39;-heterocyclylbenzoyl)pyrazole als herbizide
EP1311469A1 (de) Verfahren zur herstellung von beta-ketoenolestern
WO2000055158A1 (de) Tricyclische benzoylpyrazol-derivate als herbizide
EP1181264A1 (de) Verfahren zur herstellung von 2,2,4,4-tetrasubstituierten 1,3,5-cyclohexantrionen
EP0929548B1 (de) Substituierte carbamoyltriazole und ihre verwendung als herbizide
WO2000073311A2 (de) Tricyclische benzoylcyclohexandion-derivate
EP1135385A1 (de) Thiochromanoylpyrazolon-derivate
EP1144401A2 (de) Thiochromanoylcyclohexenon-derivate
WO2001000584A2 (de) Pyrazolylderivate bicyclischer benzoesäuren als herbizide
WO2001000607A1 (de) Cyclohexenonderivate von bicyclischen benzoesäuren als herbizide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030221

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20081001

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110301