EP1310007A1 - Verfahren zur regelung der brennstoffkonzentration in der anodenflüssigkeit einer brennstoffzelle und zugehörige vorrichtung - Google Patents

Verfahren zur regelung der brennstoffkonzentration in der anodenflüssigkeit einer brennstoffzelle und zugehörige vorrichtung

Info

Publication number
EP1310007A1
EP1310007A1 EP01962605A EP01962605A EP1310007A1 EP 1310007 A1 EP1310007 A1 EP 1310007A1 EP 01962605 A EP01962605 A EP 01962605A EP 01962605 A EP01962605 A EP 01962605A EP 1310007 A1 EP1310007 A1 EP 1310007A1
Authority
EP
European Patent Office
Prior art keywords
methanol
fuel
fuel cell
carbon dioxide
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01962605A
Other languages
German (de)
English (en)
French (fr)
Inventor
Walter Preidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1310007A1 publication Critical patent/EP1310007A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for regulating the fuel concentration in the anode liquid of a fuel cell with anode, membrane and cathode, in which an exhaust gas is produced on the anode on the one hand and on the cathode on the other hand.
  • the invention also relates to a device with the necessary means for carrying out the method.
  • the fuel is preferably, but not exclusively, methanol.
  • Fuel cells are operated with liquid or gaseous fuels. If the fuel cell works with hydrogen, a hydrogen infrastructure or a reformer is required to generate the gaseous hydrogen from the liquid fuel.
  • Liquid fuels are e.g. Gasoline or alcohol, such as ethanol or methanol.
  • a so-called DMFC Direct Methanol Fuel Cell * works directly with liquid methanol as a fuel. The function and status of the DMFC are described in detail in “VIK reports *, No. 214 (Nov. 1999), pages 55 to 62.
  • Fuel cell systems consist of a large number of individual fuel cell units, which together form a fuel cell stack, which in the technical field is also referred to as a fuel cell stack or simply as a “stack *”.
  • a fuel cell stack which in the technical field is also referred to as a fuel cell stack or simply as a “stack *”.
  • exhaust gases are produced in the fuel cell at the anode on the one hand and at the cathode on the other hand.
  • the fuel methanol is mixed with water on the anode side and pumped through the stack using a metering pump.
  • the metha- nol is partly consumed by the anode reaction and carbon dioxide is generated.
  • Another part of the methanol is transported through the membrane to the cathode by permeation and electro-osmosis and directly oxidized to carbon dioxide on the catalyst of the cathode.
  • the anode liquid with the gas / steam mixture is separated into gas and liquid after exiting the anode. As much more carbon dioxide as possible is removed from the liquid and then the liquid is returned to the anode by means of the pump. So that the methanol concentration of this liquid does not become too low, sufficient methanol must be added.
  • the amount of methanol corresponding to the electric current can be calculated from the current flow, but the additional amount, which replaces the loss via electroosmosis and permeation, cannot be determined qualitatively, so that the anode liquid would have a concentration that is too low.
  • the amount of methanol in the direct methanol fuel cell is calculated via the current flow and increased by a constant factor, for example 1.5 or 2.0. This compensates for the methanol losses, whereby it is accepted that the methanol concentration is not optimal for the current density. Since the methanol tends to doses must be metered in order to avoid undersupply and thus the risk of polarity reversal, the methanol loss is greater than necessary
  • the object of the invention is therefore to specify a method with which the regulation of the fuel concentration in the anode liquid of a direct methanol fuel cell is improved, and to create an associated device.
  • the fuel loss across the membrane is advantageously detected.
  • a commercially available sensor is used to measure the concentration. after cooler and pressure regulator is attached.
  • the single figure shows a schematic representation of a single unit, specifically a DMFC fuel cell, with the associated system components which are necessary for the operation of this fuel cell.
  • FIG. 1 shows a methanol tank 1 with a subsequent metering pump 2 and a heater 3, via which the liquid methanol as fuel reaches the fuel cell unit 10.
  • a cooler 4, a CO 2 separator 5, a unit 6 for rectification and a methanol sensor 7 are assigned to the anode part.
  • Another metering pump 8 is used to feed methanol back into the fuel circuit.
  • a compressor 14 for air On the cathode side there is a compressor 14 for air, a cooler or water separator 15 for the cathode liquid and a C0 2 sensor 16. Furthermore, a unit 25 for controlling the fuel cell unit 10 and optionally an electrical inverter 26 are provided for the operation of the system.
  • the DMFC shown has primary and secondary fluid circuits.
  • the methanol / water mixture is fed to the anode 11 and air to the cathode 13 of the fuel cell 10.
  • the C0 2 is separated from the residual fuel and this is returned to the fuel circuit.
  • the cathode exhaust gas is conducted via the cooler or water separator 15 in the exhaust gas-side fluid circuit.
  • the CO 2 content which is a measure of the methanol loss via the membrane 12 of the fuel cell, is then measured in the exhaust gas.
  • the measurement signal is fed back to the primary metering pump 2.
  • the C0 2 sensor 16 in the figure is a commercially available sensor, which is advantageously installed in the gas stream after the cooler 15 and the existing pressure regulator. The Co 2 concentration is thus measured in molar.
  • One mole of carbon dioxide also corresponds to one mole of methanol.
  • the amount of air on the cathode side is known from the compressor power or can be determined by measuring the air flow.
  • There is a certain systematic error in the amount of carbon dioxide determined with the sensor since a small proportion of the carbon dioxide that is generated at the anode by the electrochemical reaction can diffuse through the membrane to the cathode, so that the air used has a small and possibly also a little fluctuating carbon dioxide concentration. Since no additional electroosmosis is effective for the carbon dioxide, as is the case with methanol, this error can be tolerated.
  • the metering of the methanol results from the flow and is to be calculated additively from the carbon dioxide concentration on the cathode side.
  • MEA membrane-electrolyte-anode
  • stack properties can then this rule base of the ⁇ Faraday current one hand and the leakage current on the other hand, an additional flow of methanol are added.
  • the lambda for methanol is then increased to 1.05 to 1.5 as required.
  • the additive use of the carbon dioxide concentration on the cathode side in the exhaust air is essential for controlling the fuel cell system. It is no longer absolutely necessary to measure the methanol concentration in the fuel cycle.
  • the DMFC is equipped with a carbon dioxide sensor in the exhaust gas. Characteristic measurements were successfully carried out for verification.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
EP01962605A 2000-08-16 2001-08-03 Verfahren zur regelung der brennstoffkonzentration in der anodenflüssigkeit einer brennstoffzelle und zugehörige vorrichtung Withdrawn EP1310007A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10039959 2000-08-16
DE10039959A DE10039959A1 (de) 2000-08-16 2000-08-16 Verfahren zur Regelung der Brennstoffkonzentration in der Anodenflüssigkeit einer Brennstoffzelle und zugehörige Vorrichtung
PCT/DE2001/002976 WO2002015314A1 (de) 2000-08-16 2001-08-03 Verfahren zur regelung der brennstoffkonzentration in der anodenflüssigkeit einer brennstoffzelle und zugehörige vorrichtung

Publications (1)

Publication Number Publication Date
EP1310007A1 true EP1310007A1 (de) 2003-05-14

Family

ID=7652573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01962605A Withdrawn EP1310007A1 (de) 2000-08-16 2001-08-03 Verfahren zur regelung der brennstoffkonzentration in der anodenflüssigkeit einer brennstoffzelle und zugehörige vorrichtung

Country Status (7)

Country Link
US (1) US20030146094A1 (zh)
EP (1) EP1310007A1 (zh)
JP (1) JP2004507053A (zh)
CN (1) CN1446385A (zh)
CA (1) CA2419452A1 (zh)
DE (1) DE10039959A1 (zh)
WO (1) WO2002015314A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314605A1 (de) * 2002-07-26 2004-02-05 Daimlerchrysler Ag Anordnung und Verfahren zur optischen Messung von Wasser in einer Membran-Elektroden-Anordnung
US7655331B2 (en) * 2003-12-01 2010-02-02 Societe Bic Fuel cell supply including information storage device and control system
JP2005317431A (ja) * 2004-04-30 2005-11-10 Seiko Instruments Inc 冷却システム、冷却方法および電子機器
DE102005010497B4 (de) * 2005-03-08 2014-05-28 Forschungszentrum Jülich GmbH Verfahren zum Betreiben eines Direkt-Methanol-Brennstoffzellenstapels
CN100434911C (zh) * 2005-06-02 2008-11-19 英属盖曼群岛商胜光科技股份有限公司 用于直接甲醇燃料电池的计算燃料浓度方法
EP2453508A1 (en) * 2005-06-13 2012-05-16 Nissan Motor Co., Ltd. Fuel cell system and start-up method thereof
JP2007027078A (ja) * 2005-06-13 2007-02-01 Nissan Motor Co Ltd 燃料電池システム
DE102005031521A1 (de) 2005-06-29 2007-01-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Bestimmung des Brennstoffverbrauchs eines Brennstoffzellensystems, Verfahren zum Betrieb eines Brennstoffzellensystems und Brennstoffzellensystem
US20070099049A1 (en) * 2005-10-27 2007-05-03 Knight Steven R Subterranean fuel cell system
CN100434904C (zh) * 2005-12-14 2008-11-19 英属盖曼群岛商胜光科技股份有限公司 用于液态燃料电池的计算燃料浓度方法
WO2007131229A2 (en) * 2006-05-05 2007-11-15 Polyfuel, Inc. Gas phase fuel cells
DE102006048825B4 (de) * 2006-10-09 2017-02-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Direktoxidations-Brennstoffzellensystem und Verfahren zum Betrieb eines Direktoxidations-Brennstoffzellensystems
US8501491B2 (en) 2007-11-27 2013-08-06 Industrial Technology Research Institute Method of measuring concentration of fuel
US7972864B2 (en) * 2007-11-27 2011-07-05 Industrial Technology Research Institute Method of measuring concentration of fuel
DE102008005841A1 (de) * 2008-01-24 2009-07-30 Forschungszentrum Jülich GmbH Hochtemperatur-Polymerelektrolyt Brennstoffzellensystem (HT-PEFC) sowie ein Verfahren zum Betreiben desselben
TWI379454B (en) 2008-12-01 2012-12-11 Ind Tech Res Inst Apparatus and method of measuring concentration of fuel
CN109921069B (zh) * 2017-12-12 2021-03-30 中国科学院大连化学物理研究所 一种直接液体燃料电池阴极水含量的测定方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679298B2 (ja) * 1989-09-14 1997-11-19 富士電機株式会社 りん酸形燃料電池のりん酸残量監視装置
JP2735399B2 (ja) * 1991-04-17 1998-04-02 三菱電機株式会社 積層型燃料電池
US5235846A (en) * 1991-12-30 1993-08-17 International Fuel Cells Corporation Fuel cell leakage detection technique
JP3840677B2 (ja) * 1994-11-02 2006-11-01 トヨタ自動車株式会社 燃料電池発電装置
JP3453954B2 (ja) * 1994-11-02 2003-10-06 トヨタ自動車株式会社 一酸化炭素検出装置、有機化合物検出装置および低級アルコール検出装置
JP2000512797A (ja) * 1996-06-26 2000-09-26 シーメンス アクチエンゲゼルシヤフト 直接―メタノール―燃料電池(dmfc)
JP2002505511A (ja) * 1998-02-25 2002-02-19 バラード パワー システムズ インコーポレイティド 直接ジメチルエーテル燃料電池
US6632553B2 (en) * 2001-03-27 2003-10-14 Mti Microfuel Cells, Inc. Methods and apparatuses for managing effluent products in a fuel cell system
US6566003B2 (en) * 2001-04-18 2003-05-20 Mti Microfuel Cells, Inc. Method and apparatus for CO2 - driven air management for a fuel cell system
US6770391B2 (en) * 2001-09-04 2004-08-03 General Motors Corporation Hydrogen sensor for fuel processors of a fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0215314A1 *

Also Published As

Publication number Publication date
CA2419452A1 (en) 2003-02-14
US20030146094A1 (en) 2003-08-07
CN1446385A (zh) 2003-10-01
DE10039959A1 (de) 2002-03-07
JP2004507053A (ja) 2004-03-04
WO2002015314A1 (de) 2002-02-21

Similar Documents

Publication Publication Date Title
EP1310007A1 (de) Verfahren zur regelung der brennstoffkonzentration in der anodenflüssigkeit einer brennstoffzelle und zugehörige vorrichtung
DE10161234B4 (de) Verfahren zum Verbrennen der Effizienz eines Brennstoffzellensystems
DE102012218132A1 (de) Anodenspül- und Ablassventilstrategie für ein Brennstoffzellensystem
DE102017207157A1 (de) Überwachung der Intaktheit des Brennstoffzellenstapels mit Hilfe von Kraftstoffzellengruppen
DE112006002169T5 (de) Brennstoffzellensystem und Vorrichtung zum Steuern der Stromerzeugung
DE10239223A1 (de) Wasserstoffsensor für Brennstoffprozessoren einer Brennstoffzelle
DE102008038444A1 (de) Diagnose für Brennstoffzellenbefeuchter
DE112008000595T5 (de) Konzentrationsverteilungsbestimmungsvorrichtung für Verunreinigung auf Anodenseite und diese Vorrichtung verwendendes Brennstoffzellensystem
EP3340357A1 (de) Verfahren zu einer prüfung und/oder einer kalibration zumindest eines gaskon-zentrationssensors eines brennstoffzellensystems
DE102012105324A1 (de) Nutzung von HFR-basierendem Kathodeneinlass-RH-Modell im Vergleich zur Sensorrückkopplung zur Bestimmung einer angefallenen Wasserdampftransfereinheit und Nutzung für einen Diagnosecode und Botschaft
DE102007015736A1 (de) Adaptive Anodenstickstoffmanagementsteuerung
DE102019109571A1 (de) Brennstoffzellensystem und Verfahren zum Schätzen des Gehalts an Metallionen
DE102011009017A1 (de) Optimierte Kathodenfüllstrategie für Brennstoffzellen
DE102013112519B4 (de) Verfahren zur Diagnose von Brennstoffzellenbefeuchtungsproblemen
WO2000026978A2 (de) Verfahren zur regelung der brennstoffkonzentration in einem alkohol oder ether als brennstoff und wasser enthaltenden brennstoffgemisch einer brennstoffzelle und brennstoffzellensystem
WO2021083635A1 (de) Verfahren zum betreiben eines brennstoffzellensystems, brennstoffzellensystem
WO2009127188A1 (de) Oxidationsschutz für brennstoffzellenanoden
EP4229697A1 (de) Bestimmungsverfahren und brennstoffzellensystem zur schlechtgaserkennung
DE102017215501A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems sowie Brennstoffzellensystem
EP2062319A1 (de) Verfahren zur ermittlung eines zustands eines reformers in einem brennstoffzellensystem
DE102009026917A1 (de) Detektion einer Wasseransammlung auf Kathodenseite und Einleiten entsprechender Gegenmaßnahmen
WO2020239323A1 (de) Verfahren und system zur untersuchung einer brennstoffzelle mittels einer zyklovoltammetrischen messung
DE102004053237A1 (de) Steuergerät sowie Verfahren zum Betreiben eines Brennstoffzellensystems
DE102022103159A1 (de) Verfahren und Vorrichtung zur Ermittlung des Oxidationsmittel-Massenstroms in einen Energiewandler
WO2024089015A1 (de) Verfahren zum betreiben eines brennstoffzellensystems, steuergerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030120

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030818

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040302