JP2004507053A - 燃料電池のアノード液体中の燃料濃度の調節方法および付属装置 - Google Patents

燃料電池のアノード液体中の燃料濃度の調節方法および付属装置 Download PDF

Info

Publication number
JP2004507053A
JP2004507053A JP2002520342A JP2002520342A JP2004507053A JP 2004507053 A JP2004507053 A JP 2004507053A JP 2002520342 A JP2002520342 A JP 2002520342A JP 2002520342 A JP2002520342 A JP 2002520342A JP 2004507053 A JP2004507053 A JP 2004507053A
Authority
JP
Japan
Prior art keywords
methanol
fuel cell
fuel
carbon dioxide
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002520342A
Other languages
English (en)
Inventor
プライデル、ヴァルター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2004507053A publication Critical patent/JP2004507053A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本発明によれば、アノードとカソードとにそれぞれ排気ガスが発生する燃料電池において、カソード排気ガス中の二酸化炭素濃度が測定され、それによって燃料電池の膜を通じて生じる燃料損失が検出される。このために、付属装置にはガス流中に二酸化炭素センサ(16)が配置されている。

Description

【0001】
本発明は、アノード、膜およびカソードを備え、アノードとカソードとにそれぞれ排気ガスが発生する燃料電池のアノード液体中の燃料濃度の調節方法に関する。また、本発明は本方法を実施するための装置にも関する。本発明では燃料は特にメタノールであるが、必ずしもそれに限定されない。
【0002】
燃料電池は液体状もしくはガス状の燃料により作動される。燃料電池が水素により動作する場合は、液体燃料からガス状水素を発生させるための水素インフラもしくは改質器が必要である。液体燃料は例えばガソリン、もしくはエタノールやメタノールなどのアルコールである。いわゆるDMFC(“Direct Methanol Fuel Cell”=直接メタノール型燃料電池)は燃料としての液体メタノールにより直接動作する。DMFCの機能および状態は“VIK報告”、214号、1999年11月発行、p55〜62に詳細に記載されている。
【0003】
燃料電池装置は専門分野では燃料電池スタックもしくは略して“スタック”とも呼ばれている燃料電池積層体を共に形成する多数の個別の燃料電池ユニットから成る。燃料としてのメタノールにより作動される直接メタノール型燃料電池の場合、燃料電池内にアノードとカソードとに排気ガスが発生する。
【0004】
直接メタノール型燃料電池(DMFC)においてはアノード側で燃料であるメタノールと水が混合され、配量ポンプによりスタックを通じてポンプ送出される。この場合、メタノールは一部がアノード反応によって消費され、二酸化炭素が発生する。メタノールの残りの部分は浸透および電気浸透により膜を通じてカソードへ搬送され、カソードの触媒体において直接二酸化炭素に酸化される。
【0005】
ガス‐蒸気混合物を含むアノード液体はアノードから出た後にガスと液体とに分離される。できるだけ多くの二酸化炭素が液体から除去され、次に液体がポンプにより再びアノードへ供給される。この液体のメタノール濃度が低下しすぎないようにするために、メタノールを十分な量で供給し続ける必要がある。電流量に相当するメタノール量は電流の流れから算出可能であるが、電気浸透および浸透を通じた損失を補充する追加量は定性的には検出不可能であるので、アノード液体は低すぎる濃度を有することになる。
【0006】
後者の問題は一定の過剰増倍率を用いて解決される。しかし、損失は詳細にはメタノールを供給される燃料電池の作動方法に関係し、電気浸透および浸透がセル内の電流密度に応じて様々に重なり合うので、かなり長時間にわたりメタノールが増加するか、あるいはごくわずかな過剰の場合はメタノール濃度が十分とならない。このような場合には燃料電池スタックの供給不十分なセルの極性転換の危険がきわめて高い。セルの極性転換によってセルの修復不可能な損傷が生じることもある。
【0007】
従来の技術では直接メタノール型燃料電池におけるメタノール量は電流の流れによって算出され、一定の倍率、例えば1.5〜2.0倍だけ高くなっている。それによってメタノール損失が補償されるが、メタノール濃度はそのつどの電流密度に必ずしも最適でないことが甘受される。メタノールは供給不足およびその結果としての極性転換の危険を回避するためにむしろ過剰に供給されねばならないので、メタノール損失は必要とされるよりも多くなる。
【0008】
上記の作動コンセプトを有する上述の燃料電池システムの効率が最適でなく、改善が必要であることは一般に認められている。
【0009】
従って、本発明の課題は、直接メタノール型燃料電池のアノード液体における燃料濃度の調節が改善される方法を提案し、付属装置を提供することにある。
【0010】
本発明によれば、この課題は請求項1の特徴事項により解決される。付属装置は請求項6に記載されている。本発明による方法ないし本発明による装置の実施態様はそれぞれの従属請求項に記載されている。
【0011】
本発明においては、カソード排気ガス中の二酸化炭素を測定することにより、膜を通じる燃料損失が検出されると有利である。濃度を測定するには市販のセンサが使用され、これは例えば冷却器および与圧調整器の後のガス流中に配置されている。
【0012】
本発明の別の利点および詳細について、請求項と関連させた図面に基づく記述により説明する。唯一の図は特にこの燃料電池の作動に必要な付設のシステム構成要素を備えたDMFC燃料電池の1つのユニットを概略的に示している。
【0013】
図1には後続の配量ポンプ2および加熱器3を備えたメタノールタンクが示されており、これらの配量ポンプ2および加熱器3を通じて作動燃料としての液体メタノールが燃料電池ユニット10に到達する。燃料電池ユニット10は変形されて直接メタノール型燃料電池(DMFC=Direct Methanol Fuel Cell)として実現されており、主としてアノード11、膜12およびカソード13により表されている。アノード部分には冷却器4、CO分離器5、精留ユニット6およびメタノールセンサ7が付設されている。別の配量ポンプ8は燃料回路へのメタノールの再供給に使用される。
【0014】
カソード側には空気圧縮器14、カソード液体用の冷却器ないしは水分離器15およびCOセンサ16が存在している。さらに、装置の作動のために燃料電池ユニット10の制御および調節ユニット25ならびに場合によってはインバータ26も存在する。
【0015】
このDMFCでは1次および2次の液体回路が存在している。1次液体回路においては燃料電池10のアノード11にメタノール‐水混合物が、カソード13に空気が供給される。2次液体回路においては残留燃料からCOが分離され、この残留燃料は燃料電池回路に返送される。さらに、カソード排気ガスが排気ガス側の液体回路における冷却器ないしは水分離器15を通じて搬送される。この後、燃料電池の膜12を通じたメタノール損失に関する尺度である排気ガス中のCO濃度が測定される。測定信号は1次配量ポンプ2へ返送される。図1におけるCOセンサ16は市販のセンサであり、冷却器15および存在する与圧調整器の後のガス流中に取付けられている。従って、CO濃度はモルで測定される。
【0016】
この場合、1モルのメタノールは1モルの二酸化炭素に相当する。カソード側の空気量は、圧縮器出力により知られるかないしは空気流量を測定することにより測定できる。
【0017】
センサにより測定される二酸化炭素量には或る程度のシステム上の誤差が生じる。というのは、アノードにおいて電気化学的変換により発生するわずかな量の二酸化炭素が膜を通じてカソードへ拡散し、その結果利用された空気が少量のわずかな、場合によってはわずかに変動する二酸化炭素濃度を有するからである。しかし、補助的な電気浸透がメタノールの場合に有効ではないように二酸化炭素に対しても有効ではないので、この誤差は許容できる。
【0018】
メタノールの配量は流れた電流から算出され、そのほかにカソード側の二酸化炭素濃度からも算出できる。次に、確実な作動を行うには、膜‐電解質アノード(MEA)およびスタック特性に応じて、第1にファラデー電流と、第2に損失電流とから得られるこの基礎配量に追加的なメタノール流量を加算することができる。メタノールに関するλは必要に応じて1.05〜1.5まで増大される。
【0019】
図1に示されているシステムおよび図1に基づいて記述されている作動コンセプトでは、燃料電池システムを制御するために排気中のカソード側の二酸化炭素濃度を補助的に使用することが重要である。これにより、燃料電池回路におけるメタノール濃度を測定することはもはや必ずしも必要ではなくなる。
【0020】
実際にはDMFCには排気ガス中の二酸化炭素センサが配備される。検証のために特性曲線の測定が実施され、成果を収めている。
【0021】
以上、燃料としてのメタノールにより作動されるDMFCに基づいて記述された課題解決法は、その他の燃料により作動される燃料電池にも転用可能である。
【図面の簡単な説明】
【図1】システム構成要素を備えたDMFC燃料電池の概略図。
【符号の説明】
2  配量ポンプ
4  冷却器
7  メタノールセンサ
10 燃料電池ユニット
11 アノード
12 膜
13 カソード
14 圧縮器
15 冷却器ないしは水分離器
16 COセンサ

Claims (7)

  1. アノード、膜およびカソードを備え、アノードとカソードとにそれぞれ排気ガスが発生する燃料電池のアノード液体中の燃料濃度の調節方法において、カソード排気ガス中の二酸化炭素濃度が測定され、膜を通じて生じる燃料損失が検出されることを特徴とする燃料電池のアノード液体中の燃料濃度の調節方法。
  2. 燃料がメタノールであることを特徴とする請求項1記載の方法。
  3. 二酸化炭素濃度がガス流中に配置されているセンサにより測定されることを特徴とする請求項1又は2記載の方法。
  4. 液体回路中に存在する冷却および与圧調整ユニットの後のガス流中の二酸化炭素濃度が測定されることを特徴とする請求項3記載の方法。
  5. 測定の際に求められた二酸化炭素濃度がメタノールに換算され、その場合1モルの二酸化炭素が1モルのメタノールに相当することを特徴とする請求項2記載の方法。
  6. ガス流中に配置されている二酸化炭素センサ(16)を備えた請求項1乃至4の1つに記載の方法を実施するための装置。
  7. センサ(16)が場合によっては存在する与圧調整器の冷却器(15)の後のガス流中に取付けられていることを特徴とする請求項6記載の装置。
JP2002520342A 2000-08-16 2001-08-03 燃料電池のアノード液体中の燃料濃度の調節方法および付属装置 Withdrawn JP2004507053A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10039959A DE10039959A1 (de) 2000-08-16 2000-08-16 Verfahren zur Regelung der Brennstoffkonzentration in der Anodenflüssigkeit einer Brennstoffzelle und zugehörige Vorrichtung
PCT/DE2001/002976 WO2002015314A1 (de) 2000-08-16 2001-08-03 Verfahren zur regelung der brennstoffkonzentration in der anodenflüssigkeit einer brennstoffzelle und zugehörige vorrichtung

Publications (1)

Publication Number Publication Date
JP2004507053A true JP2004507053A (ja) 2004-03-04

Family

ID=7652573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002520342A Withdrawn JP2004507053A (ja) 2000-08-16 2001-08-03 燃料電池のアノード液体中の燃料濃度の調節方法および付属装置

Country Status (7)

Country Link
US (1) US20030146094A1 (ja)
EP (1) EP1310007A1 (ja)
JP (1) JP2004507053A (ja)
CN (1) CN1446385A (ja)
CA (1) CA2419452A1 (ja)
DE (1) DE10039959A1 (ja)
WO (1) WO2002015314A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317431A (ja) * 2004-04-30 2005-11-10 Seiko Instruments Inc 冷却システム、冷却方法および電子機器
JP2007027078A (ja) * 2005-06-13 2007-02-01 Nissan Motor Co Ltd 燃料電池システム
JP2010127926A (ja) * 2008-12-01 2010-06-10 Ind Technol Res Inst 燃料の濃度の計測装置および方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314605A1 (de) * 2002-07-26 2004-02-05 Daimlerchrysler Ag Anordnung und Verfahren zur optischen Messung von Wasser in einer Membran-Elektroden-Anordnung
US7655331B2 (en) 2003-12-01 2010-02-02 Societe Bic Fuel cell supply including information storage device and control system
DE102005010497B4 (de) * 2005-03-08 2014-05-28 Forschungszentrum Jülich GmbH Verfahren zum Betreiben eines Direkt-Methanol-Brennstoffzellenstapels
CN100434911C (zh) * 2005-06-02 2008-11-19 英属盖曼群岛商胜光科技股份有限公司 用于直接甲醇燃料电池的计算燃料浓度方法
CA2597119C (en) * 2005-06-13 2013-04-02 Nissan Motor Co., Ltd. Fuel cell start-up control system
DE102005031521A1 (de) 2005-06-29 2007-01-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Bestimmung des Brennstoffverbrauchs eines Brennstoffzellensystems, Verfahren zum Betrieb eines Brennstoffzellensystems und Brennstoffzellensystem
US20070099049A1 (en) * 2005-10-27 2007-05-03 Knight Steven R Subterranean fuel cell system
CN100434904C (zh) * 2005-12-14 2008-11-19 英属盖曼群岛商胜光科技股份有限公司 用于液态燃料电池的计算燃料浓度方法
WO2007131229A2 (en) * 2006-05-05 2007-11-15 Polyfuel, Inc. Gas phase fuel cells
DE102006048825B4 (de) * 2006-10-09 2017-02-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Direktoxidations-Brennstoffzellensystem und Verfahren zum Betrieb eines Direktoxidations-Brennstoffzellensystems
US8501491B2 (en) 2007-11-27 2013-08-06 Industrial Technology Research Institute Method of measuring concentration of fuel
US7972864B2 (en) * 2007-11-27 2011-07-05 Industrial Technology Research Institute Method of measuring concentration of fuel
DE102008005841A1 (de) * 2008-01-24 2009-07-30 Forschungszentrum Jülich GmbH Hochtemperatur-Polymerelektrolyt Brennstoffzellensystem (HT-PEFC) sowie ein Verfahren zum Betreiben desselben
CN109921069B (zh) * 2017-12-12 2021-03-30 中国科学院大连化学物理研究所 一种直接液体燃料电池阴极水含量的测定方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679298B2 (ja) * 1989-09-14 1997-11-19 富士電機株式会社 りん酸形燃料電池のりん酸残量監視装置
JP2735399B2 (ja) * 1991-04-17 1998-04-02 三菱電機株式会社 積層型燃料電池
US5235846A (en) * 1991-12-30 1993-08-17 International Fuel Cells Corporation Fuel cell leakage detection technique
JP3840677B2 (ja) * 1994-11-02 2006-11-01 トヨタ自動車株式会社 燃料電池発電装置
JP3453954B2 (ja) * 1994-11-02 2003-10-06 トヨタ自動車株式会社 一酸化炭素検出装置、有機化合物検出装置および低級アルコール検出装置
ES2144873T3 (es) * 1996-06-26 2000-06-16 Siemens Ag Celula de combustible directo de metanol (dmfc).
CA2315325A1 (en) * 1998-02-25 1999-09-02 Ballard Power Systems Inc. Direct dimethyl ether fuel cells
US6632553B2 (en) * 2001-03-27 2003-10-14 Mti Microfuel Cells, Inc. Methods and apparatuses for managing effluent products in a fuel cell system
US6566003B2 (en) * 2001-04-18 2003-05-20 Mti Microfuel Cells, Inc. Method and apparatus for CO2 - driven air management for a fuel cell system
US6770391B2 (en) * 2001-09-04 2004-08-03 General Motors Corporation Hydrogen sensor for fuel processors of a fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317431A (ja) * 2004-04-30 2005-11-10 Seiko Instruments Inc 冷却システム、冷却方法および電子機器
JP2007027078A (ja) * 2005-06-13 2007-02-01 Nissan Motor Co Ltd 燃料電池システム
JP2010127926A (ja) * 2008-12-01 2010-06-10 Ind Technol Res Inst 燃料の濃度の計測装置および方法
US8460936B2 (en) 2008-12-01 2013-06-11 Industrial Technology Research Institute Apparatus and method of measuring concentration of fuel

Also Published As

Publication number Publication date
EP1310007A1 (de) 2003-05-14
CN1446385A (zh) 2003-10-01
US20030146094A1 (en) 2003-08-07
WO2002015314A1 (de) 2002-02-21
DE10039959A1 (de) 2002-03-07
CA2419452A1 (en) 2003-02-14

Similar Documents

Publication Publication Date Title
JP2004507053A (ja) 燃料電池のアノード液体中の燃料濃度の調節方法および付属装置
Xie et al. Development of a 2 W direct methanol fuel cell power source
KR101053991B1 (ko) 연료전지시스템 및 전원제어방법
KR101154409B1 (ko) 차량용 연료 전지 장치 및 그 제어 방법
US20040247954A1 (en) Method for controlling the methanol concentration in direct methanol fuel cells
JP2002373694A (ja) 圧力及びガス組成の変化に関して補償する相対湿度センサ
US20230352709A1 (en) Method for operating a fuel cell system, and analysis unit for a fuel cell system
JP4680530B2 (ja) 燃料電池システム
US6587766B2 (en) Method for controlling the power of a fuel cell stack, method for controlling the power of a drive unit of an electric vehicle, and fuel cell device
US20090246570A1 (en) Method and apparatus for measuring crossover loss of fuel cell
US20050214601A1 (en) Direct methanol type fuel cell power generator and operating method thereof
CN102386426A (zh) Pem燃料电池中的膜渗透调整
JP4843223B2 (ja) 燃料電池の検査方法
KR100696686B1 (ko) 연료 전지 시스템용 연료 공급장치의 유량 보정방법
KR100906204B1 (ko) 농도 센서를 사용하지 않는 액체형 연료 전지의 연료 농도제어 방법 및 장치, 이를 이용한 액체형 연료 전지 장치
JP2005209584A (ja) 直接型メタノール燃料電池システム
CN116072936A (zh) 一种质子交换膜燃料电池电堆泄漏在线检测装置及方法
KR101105364B1 (ko) 연료 농도 센서 및 센싱 방법, 이를 이용한 연료전지의 연료 재순환 시스템 장치 및 방법, 이를 이용한 연료전지 이용 장치
JP2006310046A (ja) 燃料電池の水素循環量制御装置及び燃料電池の水素循環量制御方法
JP2009176483A (ja) 燃料電池システム
KR20080040464A (ko) 연료 잔여량을 산정하는 연료 전지 시스템
KR101002647B1 (ko) 연료 전지 시스템 및 연료 전지 시스템의 구동 방법
CA2644871C (en) Method of measuring concentration of fuel
US7972864B2 (en) Method of measuring concentration of fuel
CN100399616C (zh) 燃料电池的性能调节装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007