EP1309827A1 - Tieftemperaturluftzerlegungsanlage - Google Patents

Tieftemperaturluftzerlegungsanlage

Info

Publication number
EP1309827A1
EP1309827A1 EP01974179A EP01974179A EP1309827A1 EP 1309827 A1 EP1309827 A1 EP 1309827A1 EP 01974179 A EP01974179 A EP 01974179A EP 01974179 A EP01974179 A EP 01974179A EP 1309827 A1 EP1309827 A1 EP 1309827A1
Authority
EP
European Patent Office
Prior art keywords
column
box
sub
air separation
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01974179A
Other languages
English (en)
French (fr)
Other versions
EP1309827B1 (de
Inventor
Stefan Möller
Wolfgang Bader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP01974179A priority Critical patent/EP1309827B1/de
Publication of EP1309827A1 publication Critical patent/EP1309827A1/de
Application granted granted Critical
Publication of EP1309827B1 publication Critical patent/EP1309827B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/905Column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/911Portable

Definitions

  • the invention relates to a low-temperature air separation plant with a plurality of modules which comprise at least one heat exchanger unit, a pressure column and a low-pressure column, and with the modules belonging to the respective modules
  • argon by low-temperature rectification a fraction essentially containing oxygen, nitrogen and argon is removed from the low-pressure column of a two-column apparatus and fed to a crude argon column.
  • the argon is then freed from oxygen in the crude argon column and removed as an oxygen-free product at the top of the crude argon column.
  • the crude argon column is usually arranged so that its bottom is approximately at the level of the argon tap of the low pressure column.
  • EP-A-0628 777 therefore proposes dividing the crude argon column into two sub-columns, the first sub-column extending from the height of the argon tap to the top of the low-pressure column and the size of the second sub-column being selected according to the process conditions.
  • EP-A-0 870-524 uses this procedure and proposes one
  • Low-temperature air separation plant in which the raw argon column is also divided and the columns are arranged so that the cold box surrounding the columns is filled as completely as possible.
  • the object of the present invention is to develop a low-temperature air separation plant which is as simple to manufacture as possible.
  • cryogenic air separation plant In the context of the present description, the components of the cryogenic air separation plant are conceptually divided into modules, accessories and the
  • the modules include all components that are one of those for the
  • the modules to be thermally insulated include machines such as
  • Expansion machines and cryogenic pumps heat exchange devices such as Main heat exchanger, main condenser, top condensers and
  • Accessories include instrumentation, fittings, measuring devices, e.g. for flow measurements and analytics, measuring lines as well as inspection facilities and similar constructive devices. Unless explicitly stated otherwise, the pipes are not included in the accessories in this description, but are considered separately.
  • Cold box is understood to mean a container, a casing or a casing which is suitable for holding one or more components, in particular modules, of a low-temperature air separation plant and for thermally isolating them from the environment.
  • the cold box is either thermally insulated itself or can be filled with suitable thermal insulation material.
  • the modules to be accommodated in cold boxes ie the modules to be thermally insulated, are divided into at least two cold boxes.
  • a separate cold box can be provided for each of the two sub-columns of a divided crude argon column.
  • the pressure column and low pressure column can be accommodated in a further cold box or can also be divided into two cold boxes. In this way, the cold box sizes can be reduced, which makes transportation easier.
  • the modules are divided into the cold boxes in such a way that at least one cold box is kept as simple as possible. This is in the sense of
  • a cold box is designed as a secondary box in which there are essentially only modules without their accessories.
  • the secondary box is assigned a main box, which contains the majority of the accessories of the modules arranged in the secondary box.
  • the secondary box can thus be carried out very easily and is easy and inexpensive to manufacture.
  • the main box is preferably designed such that it not only includes the accessories of the associated secondary box, but also contains one of the modules. Under certain circumstances, however, it is also advantageous to only accommodate the accessories of the modules of the secondary boxes in the main box.
  • the invention is particularly useful in a cryogenic air separation plant which has a crude argon rectification unit which has a first and a second sub-column, a crude argon line leading from the upper region of the first sub-column to the lower region of the second sub-column, means for recycling
  • the crude argon column is divided into two in such a system in order to reduce the overall height.
  • the two sub-columns are housed in different cold boxes.
  • the first sub-column itself has no top condenser, but is supplied with the necessary return liquid from the bottom of the second sub-column.
  • the first sub-column therefore essentially only has connections for supplying and discharging liquid and gas to the low-pressure column and to the second sub-column.
  • the accessories for the first sub-column such as, for example, inspection devices, measuring and analysis devices, are now preferably also not arranged in the cold box containing the first sub-column, but predominantly in the cold box for the second sub-column.
  • the cold box with the first sub-column can thus be carried out very simply and represents the secondary box in the sense of the present invention.
  • the second cold box contains as main box the second sub-column, the argon head capacitor and the accessories for both sub-columns.
  • the crude argon rectification unit can thus be divided into two modules, neither of which exceed the permissible transport dimensions, the first module being particularly easy to prefabricate.
  • a pure argon column with its accessories is also integrated in the main box with the second sub-column. It is particularly preferred that not only all accessories, but also the entire piping of the crude argon rectification unit are located in the main box.
  • Raw argon rectification unit in a main box with two associated sub-boxes has proven to be cheap.
  • the crude argon rectification unit is also divided into two sub-columns. Both sub-columns are preferably arranged in a secondary box.
  • a first sub-box comprises the first sub-column, a second sub-box the second sub-column with the argon head capacitor.
  • a main box is provided for the accessories of both sub-modules, which particularly preferably also includes the piping of the two sub-columns.
  • the argon rectification unit is equipped with a pure argon column, it is favorable to arrange the pure argon column with accessories in the main box.
  • the secondary box contains a maximum of 40% of the fittings, a maximum of 40% of the instrumentation, a maximum of 40% of the measuring lines and equipment and a maximum of 40% of the inspection facilities.
  • the proportion of said accessories located in the secondary box is preferably at most 30%, particularly preferably at most 20%.
  • the piping of the module housed in the secondary box is also very particularly preferably located in the assigned main box, with more than 60%, particularly advantageously more than 70% and very particularly more than 80% of the piping being assigned to the main box ,
  • the main box and the secondary box cuboid, i.e. with a right-angled floor plan, as this makes the connections to the boxes and the ducts through the walls of the boxes easier to make.
  • the shape of the main box and / or the secondary box is adapted to the shape of the modules and / or accessories to be accommodated in the box. It is therefore advantageous to surround a rectification column which is to be accommodated in a secondary box, for example the first partial column of a divided crude argon rectification unit, with a cylindrical box.
  • the concept according to the invention of dividing into a main box with an associated secondary box, which has proven itself in a divided crude argon column, can of course also be transferred to the nitrogen-oxygen rectification unit. It is also advantageous to arrange the pressure column and the low pressure column in a secondary box each and to provide a main box which essentially only contains the accessories of the pressure column and low pressure column. Furthermore, an embodiment in which the low-pressure column, possibly with countercooling countercurrent, and the pressure column, preferably with the main condenser, are located in the main box are favorable.
  • the variant in which the cold box of the pressure column is designed as the main box and that of the low pressure column as the secondary box also has advantages. In all of the variants mentioned, a large part of the piping is preferably arranged in the main box.
  • FIG. 1 shows the process diagram of an air separation plant according to the invention
  • FIGS. 2a and 2b air separation plants according to the invention, in which a divided crude argon column is accommodated in a main and a secondary box
  • FIGS. 3a and 3b show an alternative division of a divided crude argon column into main and secondary boxes and the
  • Figures 4 to 6 analog versions with a division of pressure and low pressure column on main and secondary boxes.
  • the air separation plant shown in FIG. 1 has a double column rectifier with main condenser 1, pressure column 2 and low pressure column 3 for the production of nitrogen at the top of the low pressure column 3 and oxygen from the bottom of the low pressure column 3.
  • the double column is together with the supercooling counterflow 4 and other cold components, not shown, such as e.g. cryogenic pumps, housed in several cold boxes, the arrangement of which is explained in more detail with reference to FIGS. 2 to 6.
  • the argon rectification unit consists of two sub-columns 6, 7, which form the crude argon column, a pure argon column 8 and the corresponding top condensers 9, 10.
  • the first sub-column 6 is usually through a line 17, via which a fraction containing oxygen and argon into the first sub-column 6 can be fed, connected to the low-pressure column 3.
  • the return line 18 serves to return residual liquid accumulating in the sump of the first sub-column 6 to the low-pressure column 3.
  • a pump 12 is provided in this return line 18 for conveying the residual liquid.
  • the first sub-column 6 does not have a top capacitor.
  • the return liquid for this column 6 is formed by the bottom liquid of the second partial column 7, which is pumped to the head of the partial column 6 by means of a pump 11.
  • return liquid for the second part 7 of the crude argon column is produced by condensation of the top fraction in indirect heat exchange against bottom liquid from the pressure column 2. which is supplied via line 19.
  • the resulting steam is returned via line 13 to the low pressure column 3.
  • Excess bottom liquid is fed from the top condenser 9 via line 14 into the low-pressure column 3.
  • the top condenser 10 of the pure argon column 8 is also supplied with sump liquid from the pressure column 2. Incident steam and excess liquid are also conducted into the low-pressure column 3 via the lines 15 and 16, which open into the lines 13 and 14.
  • the main heat exchanger 5, the pressure column 2, the low pressure column 3 and the two sub-columns 6, 7 for crude argon rectification are each housed in their own cold box 21, 22, 23, 24, 25.
  • the cold box 25 containing the second partial column 7 is designed as a main box, to which the cold box 24 containing the first partial column 6 is assigned as a secondary box.
  • the main box 25 includes, in addition to the sub-column 7, the argon head capacitor 9, the pure argon column 8 and its top capacitor 10. Furthermore, more than three-quarters of the accessories of the first sub-column 6, i.e. the measuring and operating devices, the fittings and the inspection devices, as well as more than three quarters of the piping of the first sub-column, are arranged in the main box 25.
  • FIG. 2 b shows an alternative embodiment in which a common cold box 26 is provided for the pressure column 2 and the low pressure column 3.
  • the cold boxes 24, 25 of the two sub-columns 6 and 7 also have the main box-sub-box ratio explained with reference to FIG. 2a.
  • the individual cold boxes are interconnected via junction boxes in which, for example, the connecting lines run. It is at In all the arrangements shown in the figures, it is also advantageous to place two or more cold boxes that have to be connected to one another directly next to one another, to connect them to one another and to remove the common wall of the cold boxes, so that a single cold box is created.
  • the two designs according to FIGS. 3a and 3b differ from those of FIGS. 2a and 2b in that the second sub-column 7 is also located in a secondary box 27.
  • the main box 28 comprises the predominant part of the accessories of the two sub-columns 6, 7, the pure argon column 8 as well as the capacitors 9, 10 and the pure argon column 8.
  • the pressure column 2 and the low pressure column 3 are each housed in their own cold box 22, 23.
  • Figure 3b corresponds essentially to Figure 3a, but the pressure column 2 and the low pressure column 3, analogous to the embodiment of Figure 2b, are in a common cold box 26.
  • the argon rectification unit with the two sub-columns 6, 7 is divided into two sub-boxes 24, 27 for the sub-columns 6, 7 and a main box 28, which contains the corresponding accessories and the piping.
  • FIGS. 4 to 6 show further embodiments of the concept according to the invention when dividing the cold boxes into main and secondary boxes.
  • FIG. 4a shows a low-temperature air separation plant in which the cold box for the double column consisting of pressure column 2 and low-pressure column 3 is divided according to the invention.
  • the low pressure column 3 is accommodated in a secondary box 35.
  • the pressure column 2 with the main condenser and the accessories of the low pressure column 3 is located in the main box 34.
  • the crude argon column is divided and, as already shown in FIG. 2, is also arranged in two cold boxes 24, 25 designed as main and secondary boxes. This version allows the individual modules to be transported with the associated cold boxes, even for large systems.
  • Figure 4b shows a modification of the arrangement of Figure 4a, in which the raw argon column is divided and housed in two cold boxes 31, 32, in which the Both cold boxes 31, 32 for the first and second sub-columns 6, 7 are designed in a conventional manner, ie in which all the accessories assigned to the respective sub-column 6, 7 are also in the corresponding cold box 31, 32.
  • a common cold box 33 is provided for the two sub-columns 6, 7 for the production of argon.
  • the two sub-columns 6, 7 are usually arranged side by side.
  • bottom liquid is pumped from the second sub-column 7 to the top of the first sub-column 6.
  • FIGS. 5a to 5c Different variants of this embodiment are shown in FIGS. 5a to 5c.
  • Figures 5a-5c correspond to the arrangements according to * Figures 4a to 4c, only the main box-auxiliary box-relationship is reversed between the Druckchulenbox and Niederbuchcicklalenbox.
  • the main condenser can either be arranged with the low-pressure column 3 and the accessories of the pressure column 2 and those of the low-pressure column 3 in the main box 30, or preferably placed on or above the pressure column 2 and installed in the secondary box 29.
  • FIGS. 6a to 6d Further advantageous variants are shown in FIGS. 6a to 6d.
  • a separate main box 36 is provided for the accessories of the pressure column 2 and the low pressure column 3.
  • the pressure column 2 and the low pressure column 3, on the other hand, are each housed in a secondary box 29, 35.
  • the main condenser is also in the secondary box 29 with the pressure column integrated.
  • the two sub-columns 6, 7 of the crude argon column are likewise connected to one another in two using the main box-secondary BPX principle according to the invention.
  • FIGS. 6b and 6c show slight modifications of the arrangement according to FIG. 6a, in which the two sub-columns 6, 7 are accommodated on the one hand in two conventional cold boxes 31, 32 (FIG. 6b) which are not connected to one another according to the invention, and on the other hand in a common cold box 33 can be found (Figure 6c).
  • Figure 6d an arrangement is shown in which both the pressure column 2 and the low pressure column 3 and the two sub-columns 6, 7 are accommodated in separate secondary boxes 29, 35, 24, 27 and two main boxes 36, 28 are provided which on the one hand the secondary boxes 29, 35, on the other hand the secondary boxes 24, 27 are assigned.
  • a single main box is connected to the four secondary boxes 29, 35, 24, 27.
  • the various figures are intended to indicate the type of cold boxes used for the various modules, i.e. clarify whether a main box, a secondary box or a conventional cold box is used. Their arrangement to one another is not necessarily correctly represented in the figures.
  • the cold boxes are preferably arranged such that the cold boxes, between which many
  • Pipe connections and other connecting lines run as close together as possible.
  • the cold boxes are connected to each other via insulated connection boxes or by joining the affected cold boxes together and removing the partition.

Description

Beschreibung
Tieftemperaturluftzerlegungsanlage
Die Erfindung betrifft eine Tieftemperaturluftzerlegungsanlage mit mehreren Modulen, die mindestens eine Wärmetauschereinheit, eine Drucksäule und eine Niederdrucksäule umfassen, sowie mit den den jeweiligen Modulen zugehörigen
Zubehörteilen und mit mindestens zwei Coldboxen, in denen die Module und / oder die Zubehörteile angeordnet sind.
Zur Gewinnung von Argon durch Tieftemperaturrektifikation wird der Niederdrucksäule eines Zweisäulenapparates an einer Zwischenstelle eine im wesentlichen Sauerstoff, Stickstoff und Argon enthaltende Fraktion entnommen und einer Rohargonsäule zugeführt. Das Argon wird anschließend in der Rohargonsäule vom Sauerstoff befreit und am Kopf der Rohargonsäule als sauerstofffreies Produkt entnommen. Die Rohargonsäule wird üblicherweise so angeordnet, dass sich deren Boden etwa auf Höhe des Argonabstichs der Niederdrucksäule befindet.
Unter Umständen weist die Rohargonsäule jedoch eine sehr große Bauhöhe auf, so dass die Aufstellung und Ausrichtung der Rohargonsäule und der die Säule umgebenden thermisch isolierenden Ummantelung, einer sogenannten Coldbox, sehr aufwändig wird. In der EP-A-0628 777 wird daher vorgeschlagen, die Rohargonsäule in zwei Teilsäulen aufzuteilen, wobei sich die erste Teilsäule von der Höhe des Argonabstichs bis maximal zum Kopf der Niederdrucksäule erstreckt und die Größe der zweiten Teilsäule entsprechend den Verfahrensbedingungen gewählt wird.
Die EP-A-0 870-524 nutzt diese Vorgehensweise und schlägt eine
Tieftemperaturluftzerlegungsanlage vor, bei der die Rohargonsäule ebenfalls geteilt ist und die Säulen so angeordnet werden, dass die die Säulen umgebende Coldbox möglichst vollständig ausgefüllt wird.
Größere Tieftemperaturluftzerlegungsanlagen diesen Typs sind jedoch nicht transportierbar und müssen daher am Einsatzort montiert werden. Auch bei einer Aufteilung der Anlage in ein Rektifikationsmodul, in dem im wesentlichen die Sauerstoff-Stickstoff-Trennung erfolgt, und in ein Argonmodul, welches die Rohargonsäule mit ihren Zubehörteilen umfasst, sind die beiden Coldboxen häufig so groß, dass diese nicht mehr transportfähig.sind. Eine Fertigung im Herstellerwerk ist damit nicht möglich.
Aufgabe vorliegender Erfindung ist es, eine Tieftemperaturluftzerlegungsanlage zu entwickeln, die möglichst einfach zu fertigen ist.
Diese Aufgabe wird erfindungsgemäß durch eine Anlage der eingangs genannten Art gelöst, bei der mindestens eine der Coldboxen als Hauptbox und mindestens eine der Coldboxen als Nebenbox ausgeführt ist, wobei die Nebenbox mindestens eines der Module beinhaltet und sich die Zubehörteile des in der Nebenbox angeordneten Moduls überwiegend in der Hauptbox befinden.
Im Rahmen der vorliegenden Beschreibung werden die Bestandteile der Tieftemperaturluftzerlegungsanlage begrifflich in Module, Zubehörteile und die
Verrohrung unterteilt. Die Module umfassen alle Bauteile, die eine der für die
Tieftemperaturluftzerlegung spezifischen Funktionen ermöglichen. Zu den thermisch zu isolierenden Modulen gehören insbesondere Maschinen wie z.B.
Expansionsmaschinen und kryogene Pumpen, Wärmeaustauschvorrichtungen, wie z.B. Hauptwärmetauscher, Hauptkondensator, Kopfkondensatoren und
Nebenkondensatoren, sowie Apparate zur Zerlegung der Luft, wie Gegenströmer und
Rektifiziersäulen.
Unter Zubehörteile fallen insbesondere die Instrumentierung, Armaturen, Messvorrichtungen, z.B. für Durchflussmessungen und Analytik, Messleitungen sowie Begehungseinrichtungen und ähnliche konstruktive Vorrichtungen. Die Rohrleitungen werden im Rahmen dieser Beschreibung, sofern nicht explizit anders angegeben, nicht zu den Zubehörteilen gezählt, sondern getrennt betrachtet.
Unter Coldbox wird ein Behälter, eine Ummantelung oder eine Umhüllung verstanden, die geeignet ist, ein oder mehrere Bauteile, insbesondere Module, einer Tieftemperaturluftzerlegungsanlage aufzunehmen und diese thermisch gegen die Umgebung zu isolieren. Die Coldbox ist entweder selbst thermisch isoliert oder kann mit geeignetem thermischen Isolationsmaterial gefüllt werden. Erfindungsgemäß werden die in Coldboxen unterzubringenden Module, d.h. die thermisch zu isolierenden Module, auf mindestens zwei Coldboxen aufgeteilt. Beispielsweise kann für die beiden Teilsäulen einer geteilten Rohargonsäule jeweils eine eigene Coldbox vorgesehen werden. Drucksäule und Niederdrucksäule können in einer weiteren Coldbox untergebracht sein oder ebenfalls auf zwei Coldboxen aufgeteilt sein. Auf diese Weise können die Coldboxgrößen reduziert werden, wodurch der Transport erleichtert wird.
Die Aufteilung der Module auf die Coldboxen erfolgt erfindungsgemäß so, dass mindestens eine Coldbox möglichst einfach gehalten wird. Dies wird im Sinne der
Erfindung dadurch erreicht, dass eine Coldbox als Nebenbox ausgeführt ist, in der sich im wesentlichen nur Module ohne ihre Zubehörteile befinden. Der Nebenbox ist eine Hauptbox zugeordnet, die den überwiegenden Teil der Zubehörteile der in der Nebenbox angeordneten Module beinhaltet. Die Nebenbox kann dadurch sehr einfach ausgeführt werden und ist leicht und kostengünstig zu fertigen.
Die Hauptbox ist vorzugsweise so ausgeführt, dass sie nicht nur die Zubehörteile der zugeordneten Nebenbox umfasst, sondern selbst eines der Module beinhaltet. Es ist unter Umständen aber auch günstig, in der Hauptbox lediglich die Zubehörteile der Module der Nebenboxen unterzubringen.
Die Erfindung bietet sich insbesondere bei einer Tieftemperaturluftzerlegungsanlage an, die eine Rohargonrektifikationseinheit aufweist, welche eine erste und eine zweite Teilsäule, eine Rohargonleitung, die vom oberen Bereich der ersten Teilsäule in den unteren Bereich der zweiten Teilsäule führt, Mittel zum Zurückführen von
Rücklaufflüssigkeit vom Sumpf der zweiten Teilsäule in den oberen Bereich der ersten Teilsäule sowie einen Argonkopfkondensator, dessen Kondensationsseite mit dem oberen Bereich der zweiten Teilsäule verbunden ist, umfasst.
Die Rohargonsäule ist bei einer derartigen Anlage zweigeteilt, um die Bauhöhe zu reduzieren. Die beiden Teilsäulen werden in verschiedenen Coldboxen untergebracht. Die erste Teilsäule besitzt selbst keinen Kopf kondensator, sondern wird aus dem Sumpf der zweiten Teilsäule mit der notwendigen Rücklaufflüssigkeit versorgt. Die erste Teilsäule weist daher im wesentlichen nur Anschlüsse zur Zu- und Ableitung von Flüssigkeit und Gas zur Niederdrucksäule und zur zweiten Teilsäule auf. Vorzugsweise werden nun auch die Zubehörteile zur ersten Teilsäule, wie z.B. Begehungsvorrichtungen, Mess- und Analyseeinrichtungen, nicht in der die erste Teilsäule beinhaltenden Coldbox, sondern überwiegend in der Coldbox für die zweite Teilsäule angeordnet. Die Coldbox mit der ersten Teilsäule kann somit sehr einfach ausgeführt werden und stellt im Sinne der vorliegenden Erfindung die Nebenbox dar. Die zweite Coldbox beinhaltet als Hauptbox die zweite Teilsäule, den Argonkopfkondensator und die Zubehörteile zu beiden Teilsäulen. Die Rohargonrektifikationseinheit kann somit in zwei Module unterteilt werden, die beide die zulässigen Transportabmessungen nicht überschreiten, wobei das erste Modul besonders einfach vorzufertigen ist.
In einer besonders bevorzugten Ausführung ist in die Hauptbox mit der zweiten Teilsäule auch eine Reinargonsäule mit ihren Zubehörteilen integriert. Besonders bevorzugt befinden sich nicht nur alle Zubehörteile, sondern auch die gesamte Verrohrung der Rohargonrektifikationseinheit in der Hauptbox.
Neben der beschriebenen Aufteilung der Rohargonrektifikationseinheit in eine Nebenbox mit der ersten Teilsäule und eine Hauptbox mit der zweiten Teilsäule hat sich, insbesondere bei sehr großen Luftzerlegungsanlagen, eine Aufteilung der
Rohargonrektifikationseinheit in eine Hauptbox mit zwei zugeordneten Nebenboxen als günstig erwiesen.
Bei dieser Variante ist die Rohargonrektifikationseinheit ebenfalls in zwei Teilsäulen unterteilt. Vorzugsweise sind beide Teilsäulen jeweils in einer Nebenbox angeordnet. Eine erste Nebenbox umfasst dabei die erste Teilsäule, eine zweite Nebenbox die zweite Teilsäule mit dem Argonkopfkondensator. Für die Zubehörteile beider Teilmodule ist eine Hauptbox vorgesehen, die besonders bevorzugt auch die Verrohrung der beiden Teilsäulen beinhaltet.
Sofern die Argonrektifikationseinheit mit einer Reinargonsäule versehen ist, ist es günstig die Reinargonsäule mit Zubehörteilen in der Hauptbox anzuordnen.
Vorzugsweise sind mehr als 60%, besonders bevorzugt mehr als 70% und ganz besonders bevorzugt mehr als 80% der Zubehörteile der Module der Nebenbox in der zugehörigen Hauptbox untergebracht. Anders ausgedrückt, in der Nebenbox befinden sich höchstens 40% der Armaturen, höchstens 40% der Instrumentierung, höchstens 40% der Messleitungen und -einrichtungen sowie höchstens 40% der Begehungseinrichtungen. Bevorzugt beträgt der in der Nebenbox befindliche Anteil der genannten Zubehörteile maximal 30%, besonders bevorzugt maximal 20%.
Ganz besonders bevorzugt befindet sich auch die Verrohrung des in der Nebenbox untergebrachten Moduls überwiegend in der zugeordneten Hauptbox, wobei von Vorteil mehr als 60%, von besonderem Vorteil mehr als 70% und von ganz besonderem Vorteil mehr als 80% der Verrohrung der Hauptbox zugeordnet sind.
Aus Fertigungsgründen ist es günstig, die Hauptbox und die Nebenbox quaderförmig, d.h. mit rechtwinkligem Grundriss, auszuführen, da dadurch die Anschlüsse an die Boxen und die Durchleitungen durch die Wände der Boxen leichter herzustellen sind. Es bringt aber auch Vorteile, wenn die Form der Hauptbox und / oder der Nebenbox an die Form der in der Box aufzunehmenden Module und / oder Zubehörteile angepasst ist. So ist es vorteilhaft, eine Rektifikationssäule, die in einer Nebenbox untergebracht werden soll, beispielsweise die erste Teilsäule einer geteilten Rohargonrektifikationseinheit, mit einer zylindrischen Box zu umgeben.
Das sich bei einer geteilten Rohargonsäule bewährte, erfindungsgemäße Konzept der Aufteilung in eine Hauptbox mit zugeordneter Nebenbox ist selbstverständlich auch auf die Stickstoff-Sauerstoff-Rektifikationseinheit übertragbar. Es ist ebenso vorteilhaft, die Drucksäule und die Niederdrucksäule in je einer Nebenbox anzuordnen und eine Hauptbox vorzusehen, die im wesentlichen nur die Zubehörteile von Drucksäule und Niederdrucksäule beinhaltet. Weiter ist eine Ausführung, bei der sich in der Hauptbox die Niederdrucksäule, gegebenenfalls mit Unterkühlungsgegenströmer, und in der Nebenbox die Drucksäule, vorzugsweise mit Hauptkondensator, befindet, günstig. Auch die Variante, bei der die Coldbox der Drucksäule als Hauptbox und die der Niederdrucksäule als Nebenbox ausgeführt sind, bringt Vorteile. Bei allen genannten Varianten wird bevorzugt auch ein Großteil der Verrohrung in der Hauptbox angeordnet. Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand von in den schematischen Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
Figur 1 das Verfahrensschema einer erfindungsgemäßen Luftzerlegungsanlage,
Figuren 2a und 2b erfindungsgemäße Luftzerlegungsanlagen, bei denen eine geteilte Rohargonsäule in einer Haupt- und einer Nebenbox untergebracht ist, Figuren 3a und 3b eine alternative Aufteilung einer geteilten Rohargonsäule auf Haupt- und Nebenboxen und die
Figuren 4 bis 6 analoge Ausführungen bei einer Aufteilung von Druck- und Niederdrucksäule auf Haupt- und Nebenboxen.
Die in Figur 1 gezeigte Luftzerlegungsanlage weist einen Doppelsäulenrektifikator mit Hauptkondensator 1, Drucksäule 2 und Niederdrucksäule 3 zur Gewinnung von Stickstoff am Kopf der Niederdrucksäule 3 und Sauerstoff aus dem Sumpf der Niederdrucksäule 3 auf. Die Doppelsäule ist gemeinsam mit dem Unterkühlungsgegenströmer 4 und weiteren nicht dargestellten kalten Bauteilen, wie z.B. kryogenen Pumpen, in mehreren Coldboxen untergebracht, deren Anordnung anhand der Figuren 2 bis 6 näher erläutert wird.
Die Argonrektifikationseinheit besteht aus zwei Teilsäulen 6, 7, die die Rohargonsäule bilden, einer Reinargonsäule 8 sowie den entsprechenden Kopfkondensatoren 9, 10. Die erste Teilsäule 6 ist in üblicherweise durch eine Leitung 17, über die eine im wesentlichen Sauerstoff und Argon enthaltende Fraktion in die erste Teilsäule 6 eingespeist werden kann, mit der Niederdrucksäule 3 verbunden. Die Rückleitung 18 dient zur Rückführung von sich im Sumpf der ersten Teilsäule 6 ansammelnder Restflüssigkeit zur Niederdrucksäule 3. In dieser Rückleitung 18 ist eine Pumpe 12 zur Förderung der Restflüssigkeit vorgesehen.
Die erste Teilsäule 6 besitzt keinen Kopfkondensator. Die Rücklaufflüssigkeit für diese Säule 6 wird durch die Sumpfflüssigkeit der zweiten Teilsäule 7 gebildet, welche mittels einer Pumpe 11 an den Kopf der Teilsäule 6 gepumpt wird. Im Kopfkondensator 9 wird Rücklaufflüssigkeit für den zweiten Teil 7 der Rohargonsäule durch Kondensation der Kopffraktion in indirektem Wärmetausch gegen Sumpfflüssigkeit aus der Drucksäule 2, welche über Leitung 19 zugeführt wird, erzeugt. Der dabei entstehende Dampf wird über Leitung 13 in die Niederdrucksäule 3 zurückgeleitet. Überschüssige Sumpfflüssigkeit wird aus dem Kopfkondensator 9 über Leitung 14 in die Niederdrucksäule 3 eingespeist. In analoger Weise wird auch der Kopfkondensator 10 der Reinargonsäule 8 mit Sumpfflüssigkeit aus der Drucksäule 2 versorgt. Anfallender Dampf und überschüssige Flüssigkeit werden über die Leitungen 15 und 16, die in die Leitungen 13 und 14 münden, ebenfalls in die Niederdrucksäule 3 geleitet.
Alle thermisch zu isolierenden Teile der Anlage sind in Coldboxen untergebracht, die mit Perlite gefüllt sind. Die Aufteilung der einzelnen Module und Zubehörteile wird im folgenden anhand der Figuren 2 bis 6 näher erläutert. In den Zeichnungen 2 bis 6 ist jeweils die Hauptbox fett umrandet, die Nebenbox gestrichelt gezeichnet und die Zuordnung von Haupt- und Nebenbox durch einen Doppelpfeil kenntlich gemacht. Das Rechteck symbolisiert jeweils die Coldbox 21 für den Hauptwärmetauscher 5. In einfacher Strichstärke gezeichnete Quadrate und Rechtecke kennzeichnen übliche Coldboxen ohne den erfindungsgemäßen Hauptbox- oder Nebenboxcharakter.
In der Anordnung gemäß Figur 2a sind der Hauptwärmetauscher 5, die Drucksäule 2, die Niederdrucksäule 3 und die beiden Teilsäulen 6, 7 zur Rohargonrektifikation jeweils in einer eigenen Coldbox 21, 22, 23, 24, 25 untergebracht. Die die zweite Teilsäule 7 beinhaltende Coldbox 25 ist als Hauptbox ausgeführt, der die die erste Teilsäule 6 beinhaltende Coldbox 24 als Nebenbox zugeordnet ist. Die Hauptbox 25 umfasst neben der Teilsäule 7 auch den Argonkopfkondensator 9, die Reinargonsäule 8 sowie deren Kopfkondensator 10. Ferner sind mehr als Dreiviertel der Zubehörteile der ersten Teilsäule 6, d.h. der Mess- und Bedieneinrichtungen, der Armaturen und der Begehungseinrichtungen, sowie mehr als Dreiviertel der Verrohrung der ersten Teilsäule in der Hauptbox 25 angeordnet.
Figur 2b zeigt eine alternative Ausführungsform, bei der eine gemeinsame Coldbox 26 für die Drucksäule 2 und die Niederdrucksäule 3 vorgesehen ist. Die Coldboxen 24, 25 der beiden Teilsäulen 6 und 7 besitzen ebenfalls das anhand von Figur 2a erläuterte Hauptbox-Nebenbox-Verhältnis.
Die einzelnen Coldboxen sind untereinander über Verbindungskästen, in denen beispielsweise die Verbindungsleitungen verlaufen, miteinander verbunden. Es ist bei allen in den Figuren dargestellten Anordnungen auch vorteilhaft, zwei oder mehr Coldboxen, die miteinander verbunden werden müssen, direkt nebeneinander zu stellen, miteinander zu verbinden und die gemeinsame Wand der Coldboxen zu entfernen, so dass eine einzige Coldbox entsteht.
Die beiden Ausführungen nach Figur 3a und Figur 3b unterscheiden sich von denen der Figuren 2a und 2b darin, dass sich die zweite Teilsäule 7 ebenfalls in einer Nebenbox 27 befindet. Die Hauptbox 28 umfasst den überwiegenden Teil der Zubehörteile der beiden Teilsäulen 6, 7, der Reinargonsäule 8 sowie der Kondensatoren 9, 10 und die Reinargonsäule 8. Femer ist die kalte, d.h. zu isolierende Verrohrung der beiden Rohargonteilmodule 6, 7 in der Hauptbox 28 enthalten. Die Drucksäule 2 und die Niederdrucksäule 3 werden jeweils in einer eigenen Coldbox 22, 23 untergebracht.
Figur 3b entspricht im wesentlichen Figur 3a, wobei sich jedoch die Drucksäule 2 und die Niederdrucksäule 3, analog zur Ausführung nach Figur 2b, in einer gemeinsamen Coldbox 26 befinden. Die Argonrektifikationseinheit mit den beiden Teilsäulen 6, 7 wird auf zwei Nebenboxen 24, 27 für die Teilsäulen 6, 7 und eine Hauptbox 28, die die entsprechenden Zubehörteile und die Verrohrung enthält, aufgeteilt.
Die Figuren 4 bis 6 zeigen weitere Ausführungsformen des erfindungsgemäßen Konzepts bei der Aufteilung der Coldboxen in Haupt- und Nebenboxen.
In Figur 4a ist eine Tieftemperaturluftzerlegungsanlage dargestellt, bei der die Coldbox für die aus Drucksäule 2 und Niederdrucksäule 3 bestehende Doppelsäule erfindungsgemäß aufgeteilt ist. In diesem Fall wird die Niederdrucksäule 3 in einer Nebenbox 35 untergebracht. Die Drucksäule 2 mit dem Hauptkondensator und den Zubehörteilen der Niederdrucksäule 3 befindet sich in der Hauptbox 34. Die Rohargonsäule ist geteilt und, wie bereits in Figur 2 gezeigt, ebenfalls in zwei als Haupt- und Nebenbox ausgeführten Coldboxen 24, 25 angeordnet. Diese Ausführung erlaubt selbst bei großen Anlagen den Transport der einzelnen Module mit den zugehörigen Coldboxen.
Figur 4b zeigt eine Abwandlung der Anordnung von Figur 4a, bei der die Rohargonsäule zwar geteilt und in zwei Coldboxen 31 , 32 untergebracht ist, bei der die beiden Coldboxen 31, 32 für die erste und die zweite Teilsäule 6, 7 in herkömmlicher Weise ausgeführt sind, d.h. bei der sich sämtliche der jeweiligen Teilsäule 6, 7 zugeordnete Zubehörteile auch in der entsprechenden Coldbox 31, 32 befinden.
In einer weiteren Variante 4c dieser Ausführung, die insbesondere bei einer Anlage mit einer kleineren Argonrektifikationseinheit bevorzugt ist, ist eine gemeinsame Coldbox 33 für die beiden Teilsäulen 6, 7 zur Argongewinnung vorgesehen. Die beiden Teilsäulen 6, 7 werden in der Regel nebeneinander angeordnet. Es hat sich jedoch auch als günstig erwiesen, die zweite Teilsäule 7 mit dem Kopfkondensator unter der ersten Teilsäule 6 vorzusehen. Da sich der Sumpf der ersten Teilsäule 6 auf Höhe des Argonabzugs aus der Niederdrucksäule 3 befindet, ist in der Coldbox 33 unterhalb der ersten Teilsäule 6 Platz, der vorzugsweise für die zweite Teilsäule 7 verwendet wird. Zur Versorgung der ersten Teilsäule 6 mit Rücklaufflüssigkeit wird Sumpfflüssigkeit aus der zweiten Teilsäule 7 zum Kopf der ersten Teilsäule 6 gepumpt.
Anstelle der Ausführung der Drucksäulenbox als Hauptbox und der Niederdrucksäulenbox als Nebenbox kann es auch günstig sein, umgekehrt die Drucksäulenbox 29 als Nebenbox und die Niederdrucksäulenbox 30 als Hauptbox auszuführen. Verschiedene Varianten dieser Ausführungsform sind in den Figuren 5a bis 5c gezeigt. Die Figuren 5a bis 5c entsprechen dabei den Anordnungen gemäß* den Figuren 4a bis 4c, wobei lediglich die Hauptbox-Nebenbox-Beziehung zwischen der Drucksäulenbox und der Niederdrucksäulenbox vertauscht ist. Der Hauptkondensator kann entweder mit der Niederdrucksäule 3 und den Zubehörteilen der Drucksäule 2 und denen der Niederdrucksäule 3 in der Hauptbox 30 angeordnet werden oder bevorzugt auf bzw. oberhalb der Drucksäule 2 platziert und in die Nebenbox 29 eingebaut werden.
In den Figuren 6a bis 6d sind weitere vorteilhafte Varianten dargestellt. Gemäß Figur 6a ist eine separate Hauptbox 36 für die Zubehörteile der Drucksäule 2 und der Niederdrucksäule 3 vorgesehen. Die Drucksäule 2 und die Niederdrucksäule 3 sind dagegen jeweils in einer Nebenbox 29, 35 untergebracht. Dies hat den Vorteil, dass die beiden Nebenboxen 29, 35 leichter zu fertigen sind, da sie im wesentlichen nur die jeweilige Rektifikationssäule 2, 3 beinhalten. In einer bevorzugten Ausführungsform ist dabei in die Nebenbox 29 mit der Drucksäule auch noch der Hauptkondensator integriert. Die beiden Teilsäulen 6, 7 der Rohargonsäule sind ebenfalls in zwei über das erfindungsgemäße Hauptbox-Nebenbpx-Prinzip miteinander verbunden.
Die Figuren 6b und 6c zeigen leichte Abwandlungen der Anordnung nach Figur 6a, bei denen die beiden Teilsäulen 6, 7 zum einen in zwei herkömmlichen, nicht erfindungsgemäß miteinander verbundenen Coldboxen 31, 32 (Figur 6b) untergebracht sind, zum anderen in einer gemeinsamen Coldbox 33 zu finden sind (Figur 6c). Schließlich ist in Figur 6d eine Anordnung dargestellt, bei der sowohl die Druck- 2 und die Niederdrucksäule 3 als auch die beiden Teilsäulen 6, 7 in separaten Nebenboxen 29, 35, 24, 27 untergebracht sind und zwei Hauptboxen 36, 28 vorgesehen sind, die einerseits den Nebenboxen 29, 35, andererseits den Nebenboxen 24, 27 zugeordnet sind. Nicht dargestellt, aber abhängig von der Anzahl und Größe der Zubehörteile auch vorteilhaft, ist eine Anordnung, bei der eine einzige Hauptbox mit den vier Nebenboxen 29, 35, 24, 27 verbunden ist.
Die verschiedenen Figuren sollen die Art der für die verschiedenen Module verwendeten Coldboxen, d.h. ob eine Hauptbox, eine Nebenbox oder eine herkömmliche Coldbox eingesetzt wird, verdeutlichen. Deren Anordnung zueinander wird in den Figuren nicht unbedingt richtig wiedergegeben. Vorzugsweise werden die Coldboxen so angeordnet, dass die Coldboxen, zwischen denen viele
Rohrverbindungen und andere Verbindungsleitungen verlaufen, möglichst nahe zusammen stehen. So ist es beispielsweise vorteilhaft, die Coldbox 21 mit dem Hauptwärmetauscher neben der Niederdrucksäulenbox anzuordnen und die Drucksäulenbox sowie die Rohargonsäulenbox(en) an die Niederdrucksäulenbox angrenzen zu lassen. Die Verbindung der Coldboxen untereinander erfolgt über isolierte Verbindungskästen oder durch Aneinanderfügen der betroffenen Coldboxen und Entfernen der Zwischenwand.

Claims

Patentansprüche
1. Tieftemperaturluftzerlegungsanlage mit mehreren Modulen, die mindestens eine Wärmetauschereinheit, eine Drucksäule und eine Niederdrucksäule umfassen, sowie mit den den jeweiligen Modulen zugehörigen Zubehörteilen und mit mindestens zwei Coldboxen, in denen die Module und / oder die Zubehörteile angeordnet sind, dadurch gekennzeichnet, dass mindestens eine der Coldboxen als Hauptbox (25, 28, 30, 34, 36) und mindestens eine der Coldboxen als Nebenbox (24, 27, 29, 35) ausgeführt ist, wobei die Nebenbox (24, 27, 29, 35) mindestens eines der Module (2, 3, 6, 7) beinhaltet und sich die Zubehörteile des in der Nebenbox (24, 27, 29, 35) angeordneten Moduls (2, 3, 6, 7) überwiegend in der Hauptbox (25, 28, 30, 34, 36) befinden.
2. Tieftemperaturluftzerlegungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass sich in der Hauptbox (25, 30, 34) mindestens ein Modul (2, 3, 7) befindet.
3. Tieftemperaturluftzerlegungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass sich in der Hauptbox (28, 36) kein Modul befindet.
4. Tieftemperaturluftzerlegungsanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Rohargonrektifikationseinheit vorgesehen ist, die eine erste und eine zweite Teilsäule (6, 7), eine Rohargonleitung, die vom oberen Bereich der ersten Teilsäule (6) in den unteren Bereich der zweiten Teilsäule (7) führt, Mittel (11) zum Zurückführen von Rücklaufflüssigkeit vom Sumpf der zweiten Teilsäule (7) in den oberen Bereich der ersten Teilsäule (6) sowie einen Argonkopfkondensator (9), dessen Kondensationsseite mit dem oberen Bereich der zweiten Teilsäule (7) verbunden ist, umfasst, wobei die Nebenbox (24) die erste Teilsäule (6) und die Hauptbox (25) die zweite Teilsäule (7) sowie den Argonkopf kondensator (9) und den überwiegenden Teil der Zubehörteile der ersten Teilsäule (6) beinhaltet.
5. Tieftemperaturluftzerlegungsanlage nach Anspruch 4, dadurch gekennzeichnet, dass die Hauptbox (25) eine Reinargonsäule (8) beinhaltet.
6. Tieftemperaturluftzerlegungsanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Rohargonrektifikationseinheit vorgesehen ist, die eine erste und eine zweite Teilsäule (6, 7), eine Rohargonleitung, die vom oberen Bereich der ersten Teilsäule (6) in den unteren Bereich der zweiten Teilsäule (7) führt, Mittel (11) zum Zurückführen von Rücklaufflüssigkeit vom Sumpf der zweiten
Teilsäule (7) in den oberen Bereich der ersten Teilsäule (6) sowie einen Argonkopfkondensator (9), dessen Kondensationsseite mit dem oberen Bereich der zweiten Teilsäule (7) verbunden ist, umfasst, wobei die Hauptbox (28) den überwiegenden Teil der Zubehörteile der Rohargonrektifikationseinheit beinhaltet und die erste Teilsäule (6) in einer ersten Nebenbox (24) und die zweite Teilsäule
(7) und der Argonkopfkondensator (9) in einer zweiten Nebenbox (27) untergebracht sind.
7. Tieftemperaturiuftzerlegungsanlage nach Anspruch 6, dadurch gekennzeichnet, dass die zweite Nebenbox (27) eine Reinargonsäule (8) beinhaltet.
8. Tieftemperaturluftzerlegungsanlage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sich mehr als 60%, bevorzugt mehr als 70%, besonders bevorzugt mehr als 80 % der Zubehörteile in der Hauptbox (25, 28, 30, 34, 36) befinden.
9. Tieftemperaturluftzerlegungsanlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sich die Drucksäule (2) und die Niederdrucksäule (3) in je einer Nebenbox (29, 35) befinden und die Hauptbox (36) im wesentlichen nur die Zubehörteile der Drucksäule (2) und der Niederdrucksäule (3) beinhaltet.
10. Tieftemperaturluftzerlegungsanlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sich in der Hauptbox (30) die Niederdrucksäule (3) und in der Nebenbox (29) die Drucksäule (2) befindet.
11. Tieftemperaturluftzerlegungsanlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sich in der Hauptbox (34) die Drucksäule (2) und in der Nebenbox (35) die Niederdrucksäule (3) befindet.
12. Tieftemperaturluftzerlegungsanlage nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass eine Nebenbox vorgesehen ist, die eine Rohargonrektifikationseinheit beinhaltet.
13. Tieftemperaturluftzerlegungsanlage nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass sich die dem in der Nebenbox (24, 29, 35) angeordneten Modul (2, 3, 6, 7) zugeordnete Verrohrung überwiegend in der Hauptbox (25, 28, 30, 34, 36) befindet.
EP01974179A 2000-08-18 2001-08-13 Tieftemperaturluftzerlegungsanlage Expired - Lifetime EP1309827B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01974179A EP1309827B1 (de) 2000-08-18 2001-08-13 Tieftemperaturluftzerlegungsanlage

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10040391A DE10040391A1 (de) 2000-08-18 2000-08-18 Tieftemperaturluftzerlegungsanlage
DE10040391 2000-08-18
EP00122779A EP1180655A1 (de) 2000-08-18 2000-10-19 Tieftemperaturluftzerlegungsanlage
EP00122779 2000-10-19
EP01974179A EP1309827B1 (de) 2000-08-18 2001-08-13 Tieftemperaturluftzerlegungsanlage
PCT/EP2001/009348 WO2002016847A1 (de) 2000-08-18 2001-08-13 Tieftemperaturluftzerlegungsanlage

Publications (2)

Publication Number Publication Date
EP1309827A1 true EP1309827A1 (de) 2003-05-14
EP1309827B1 EP1309827B1 (de) 2005-05-11

Family

ID=7652867

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00122779A Withdrawn EP1180655A1 (de) 2000-08-18 2000-10-19 Tieftemperaturluftzerlegungsanlage
EP01974179A Expired - Lifetime EP1309827B1 (de) 2000-08-18 2001-08-13 Tieftemperaturluftzerlegungsanlage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00122779A Withdrawn EP1180655A1 (de) 2000-08-18 2000-10-19 Tieftemperaturluftzerlegungsanlage

Country Status (10)

Country Link
US (1) US6948337B2 (de)
EP (2) EP1180655A1 (de)
JP (1) JP2004535543A (de)
KR (1) KR100752818B1 (de)
CN (1) CN1239874C (de)
AT (1) ATE295520T1 (de)
AU (1) AU2001293766A1 (de)
DE (2) DE10040391A1 (de)
TW (1) TW500908B (de)
WO (1) WO2002016847A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0307404D0 (en) * 2003-03-31 2003-05-07 Air Prod & Chem Apparatus for cryogenic air distillation
US7284395B2 (en) * 2004-09-02 2007-10-23 Praxair Technology, Inc. Cryogenic air separation plant with reduced liquid drain loss
US7621152B2 (en) * 2006-02-24 2009-11-24 Praxair Technology, Inc. Compact cryogenic plant
FR2946735B1 (fr) * 2009-06-12 2012-07-13 Air Liquide Appareil et procede de separation d'air par distillation cryogenique.
DE102010012920A1 (de) * 2010-03-26 2011-09-29 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102012008415A1 (de) * 2012-04-27 2013-10-31 Linde Aktiengesellschaft Transportables Paket mit einer Coldbox, Tieftemperatur-Luftzerlegungsanlage und Verfahren zum Herstellen einer Tieftemperatur-Luftzerlegungsanlage
EP2965029B1 (de) * 2013-03-06 2017-07-12 Linde Aktiengesellschaft Luftzerlegungsanlage, verfahren zur gewinnung eines argon enthaltenden produkts und verfahren zur erstellung einer luftzerlegungsanlage
CN104019631B (zh) * 2014-06-26 2016-03-16 莱芜钢铁集团有限公司 一种空气分离装置快速投氩方法
CN104501530B (zh) * 2014-12-25 2017-05-17 杭州杭氧股份有限公司 一种利用多套空分制取的粗氩提取高纯液氩的装置及方法
WO2019144380A1 (en) * 2018-01-26 2019-08-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Air separation unit by cryogenic distillation
EP3614083A1 (de) * 2018-08-22 2020-02-26 Linde Aktiengesellschaft Luftzerlegungsanlage, verfahren zur tieftemperaturzerlegung von luft mittels luftzerlegungsanlage und verfahren zur erstellung einer luftzerlegungsanlage
EP3614082A1 (de) 2018-08-22 2020-02-26 Linde Aktiengesellschaft Luftzerlegungsanlage, verfahren zur tieftemperaturzerlegung von luft und verfahren zur erstellung einer luftzerlegungsanlage
CN109676367A (zh) * 2018-12-28 2019-04-26 乔治洛德方法研究和开发液化空气有限公司 一种热交换器组件及装配所述热交换器组件的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2822774C2 (de) * 1978-05-24 1982-08-26 Linde Ag, 6200 Wiesbaden Verfahren und Anlagenteile zum Errichten einer Fabrikanlage
JPS6176296U (de) * 1984-10-24 1986-05-22
FR2649962B1 (fr) * 1989-06-06 1993-04-02 Christian Huon Unites usines modulaires containerisees pour la fabrication, la transformation et/ou l'elaboration de produits agro-alimentaires
JPH0338656A (ja) * 1989-07-05 1991-02-19 Ricoh Co Ltd 複写機の操作パネル制御装置
FR2692663B1 (fr) * 1992-06-17 1994-08-19 Air Liquide Procédé de construction d'une unité cryogénique de séparation de gaz, unité cryogénique, sous-ensemble et ensemble transportable pour la construction d'une telle unité.
FR2695714B1 (fr) * 1992-09-16 1994-10-28 Maurice Grenier Installation de traitement cryogénique, notamment de distillation d'air.
FR2706025B1 (fr) * 1993-06-03 1995-07-28 Air Liquide Installation de distillation d'air.
US5522224A (en) * 1994-08-15 1996-06-04 Praxair Technology, Inc. Model predictive control method for an air-separation system
JP3526648B2 (ja) * 1995-03-23 2004-05-17 エア・ウォーター株式会社 高純度窒素ガス製造装置
FR2752530B1 (fr) * 1996-08-21 1998-09-25 Air Liquide Installation de separation d'un melange gazeux
GB9623519D0 (en) * 1996-11-11 1997-01-08 Boc Group Plc Air separation
US6205815B1 (en) * 1997-04-11 2001-03-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Plant for separation of a gas mixture by distillation
JPH10325674A (ja) * 1997-05-28 1998-12-08 Nippon Air Rikiide Kk 空気液化分離装置
FR2769656B1 (fr) * 1997-10-14 1999-12-17 Air Liquide Procede de realisation d'un paquet par assemblage d'une structure interieure de confinement de fluide, d'une structure exterieure et d'equipements, et procede de construction sur site utilisant un tel paquet
FR2774752B1 (fr) * 1998-02-06 2000-06-16 Air Liquide Installation de distillation d'air et boite froide correspondante
FR2778234B1 (fr) * 1998-04-30 2000-06-02 Air Liquide Installation de distillation d'air et boite froide correspondante
FR2780147B1 (fr) * 1999-06-29 2001-01-05 Air Liquide Installation de distillation d'air et boite froide correspondante
US6212907B1 (en) * 2000-02-23 2001-04-10 Praxair Technology, Inc. Method for operating a cryogenic rectification column

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0216847A1 *

Also Published As

Publication number Publication date
WO2002016847A1 (de) 2002-02-28
JP2004535543A (ja) 2004-11-25
DE50106217D1 (de) 2005-06-16
KR20040002838A (ko) 2004-01-07
CN1239874C (zh) 2006-02-01
ATE295520T1 (de) 2005-05-15
AU2001293766A1 (en) 2002-03-04
EP1180655A1 (de) 2002-02-20
KR100752818B1 (ko) 2007-08-29
CN1447895A (zh) 2003-10-08
TW500908B (en) 2002-09-01
DE10040391A1 (de) 2002-02-28
EP1309827B1 (de) 2005-05-11
US20040000166A1 (en) 2004-01-01
US6948337B2 (en) 2005-09-27

Similar Documents

Publication Publication Date Title
DE19904527B4 (de) Luftdestillationsanlage mit mehreren kryogenen Destillationseinheiten des gleichen Typs
DE19904526B4 (de) Luftdestillationsanlage und zugehörige Kältebox
EP1309827B1 (de) Tieftemperaturluftzerlegungsanlage
EP0669509A1 (de) Verfahren und Vorrichtung zur Gewinnung von reinem Argon
DE10113791A1 (de) Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
EP1146301A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drückstickstoff durch Tieftemperaturzerlegung von Luft
EP2553369B1 (de) Vorrichtung zur tieftemperaturzerlegung von luft
WO2020038608A1 (de) Luftzerlegungsanlage, verfahren zur tieftemperaturzerlegung von luft und verfahren zur erstellung einer luftzerlegungsanlage
DE10161584A1 (de) Vorrichtung und Verfahren zur Erzeugung gasförmigen Sauerstoffs unter erhöhtem Druck
EP2986924B1 (de) Nachrüstbare vorrichtung zur tieftemperaturzerlegung von luft, nachrüstanlage und verfahren zum nachrüsten einer tieftemperatur-luftzerlegungsanlage
WO2011116981A2 (de) Vorrichtung zur tieftemperaturzerlegung von luft
WO2016146246A1 (de) Anlage zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
DE19957017A1 (de) Vorrichtung zur Gewinnung von Argon
DE102011015233A1 (de) Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102016002115A1 (de) Destillationssäulen-System und Verfahren zur Erzeugung von Sauerstoff durch Tieftemperaturzerlegung von Luft
EP2645032A1 (de) Transportables Paket mit einer Coldbox und Verfahren zum Herstellen einer Tieftemperatur-Luftzerlegungsanlage
EP3067648A1 (de) Destillationssäulen-system und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
DE10000017A1 (de) Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP2645033A1 (de) Transportables Paket mit einer Coldbox und Verfahren zum Herstellen einer Tieftemperatur-Luftzerlegungsanlage
WO2020038607A2 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
DE102019001960A1 (de) Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
EP3614083A1 (de) Luftzerlegungsanlage, verfahren zur tieftemperaturzerlegung von luft mittels luftzerlegungsanlage und verfahren zur erstellung einer luftzerlegungsanlage
DE202018004476U1 (de) Luftzerlegungsanlage und Luftzerlegungsanlagensystem
WO2023030683A1 (de) Anlage und verfahren zur tieftemperaturzerlegung von luft
EP3835688A1 (de) Kühleinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030110

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50106217

Country of ref document: DE

Date of ref document: 20050616

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050811

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050813

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050813

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20060214

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20050831

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090814

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090812

Year of fee payment: 9

Ref country code: DE

Payment date: 20090806

Year of fee payment: 9

Ref country code: FI

Payment date: 20090813

Year of fee payment: 9

Ref country code: GB

Payment date: 20090812

Year of fee payment: 9

Ref country code: NL

Payment date: 20090803

Year of fee payment: 9

Ref country code: SE

Payment date: 20090806

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090814

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110301

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100813

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100813

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100813

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50106217

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100814