EP3067648A1 - Destillationssäulen-system und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft - Google Patents

Destillationssäulen-system und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft Download PDF

Info

Publication number
EP3067648A1
EP3067648A1 EP15000744.1A EP15000744A EP3067648A1 EP 3067648 A1 EP3067648 A1 EP 3067648A1 EP 15000744 A EP15000744 A EP 15000744A EP 3067648 A1 EP3067648 A1 EP 3067648A1
Authority
EP
European Patent Office
Prior art keywords
column
pressure column
condenser
argon
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15000744.1A
Other languages
English (en)
French (fr)
Inventor
Anton Moll
Stefan Lochner
Ayhan Yayli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP15000744.1A priority Critical patent/EP3067648A1/de
Publication of EP3067648A1 publication Critical patent/EP3067648A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04933Partitioning walls or sheets
    • F25J3/04939Vertical, e.g. dividing wall columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/58One fluid being argon or crude argon

Definitions

  • the invention relates to a distillation column system for the production of oxygen by cryogenic separation of air according to the preamble of patent claim 1.
  • the distillation column system of the invention can basically be designed as a classic two-column system with high-pressure column and low-pressure column. In addition to the two separation columns for nitrogen-oxygen separation, it can have other devices for obtaining other air components, in particular noble gases, for example krypton-xenon recovery.
  • an "argon discharge column” here refers to a separation column for argon-oxygen separation, which is not used for obtaining a pure argon product but for discharging argon of the air to be separated into the high-pressure column and low-pressure column.
  • Their circuit differs only slightly from that of a conventional crude argon column, but it contains significantly less theoretical plates, namely less than 40, especially between 15 and 30.
  • the bottom region of an argon discharge column is connected to an intermediate point of the low pressure column and the argon discharge column is passed through cooled a top condenser, on the evaporation side relaxed bottom liquid from the high pressure column or another cooling liquid is introduced; an argon discharge column has no bottom evaporator.
  • the main condenser and the argon discharge head condenser are designed in the invention as a condenser-evaporator.
  • the term "condenser-evaporator” refers to a heat exchanger in which a first condensing fluid stream undergoes indirect heat exchange with a second evaporating fluid stream.
  • Each condenser-evaporator has a liquefaction space and an evaporation space, which consist of liquefaction passages or evaporation passages. In the liquefaction space, the condensation (liquefaction) of the first fluid flow is performed, in the evaporation space the evaporation of the second fluid flow. Evaporation and liquefaction space are formed by groups of passages that are in heat exchange relationship with each other.
  • the distillation column system of an air separation plant is arranged in one or more cold boxes.
  • a "cold box” is here understood to mean an insulating casing which comprises a heat-insulated interior completely with outer walls; in the interior are arranged to be isolated plant parts, for example, one or more separation columns and / or heat exchangers.
  • the insulating effect can be effected by appropriate design of the outer walls and / or by the filling of the gap between system parts and outer walls with an insulating material. In the latter variant, a powdery material such as perlite is preferably used.
  • Both the distillation column system for nitrogen-oxygen separation of a cryogenic air separation plant and the main heat exchanger and other cold plant parts must be enclosed by one or more cold boxes.
  • the outer dimensions of the coldbox usually determine the transport dimensions of prefabricated systems.
  • a "main heat exchanger” serves to cool feed air in indirect heat exchange with recycle streams from the distillation column system. It may be formed from a single or multiple parallel and / or serially connected heat exchanger sections, for example one or more plate heat exchanger blocks. Separate heat exchangers which specifically serve to vaporize or pseudo-evaporate a single liquid or supercritical fluid without heating and / or vaporization of another fluid, do not belong to the main heat exchanger.
  • top, “bottom”, “above”, “below”, “above”, “below”, “next to each other”, “vertically”, “horizontally” etc. refer here to the spatial orientation of the separation columns in normal operation.
  • An arrangement of two columns or parts of equipment “one above the other” is understood here that the upper end of the lower of the two parts of the apparatus is in working condition at lower or same geodetic height as the lower end of the upper of the two parts of the apparatus and the projections of the two parts of the apparatus overlap in a horizontal plane.
  • the two parts of the apparatus are arranged exactly one above the other, that is, the axes of the two columns extend on the same vertical line.
  • “Side by side” two apparatuses stand if their projections do not overlap in a horizontal plane; The two apparatuses are then regularly arranged at least partially at the same height.
  • a distillation column system of the type mentioned is out US 5235816 known. Such systems are prefabricated regularly as far as possible in the production, the prefabricated parts are transported to the site and finally connected there. Depending on the size of the system, for example, the entire double column can be transported with its coldbox. If the size of the system no longer allows this, the double column - possibly in two or more parts - is transported without a coldbox. An additional column such as the argon discharge column causes additional effort with its own cold box, which must be brought separately to the construction site regularly and mounted on an elaborate frame.
  • the invention has for its object to make a distillation column system of the type mentioned as compact as possible and to simplify its construction, especially for particularly large air separation plants for an air volume of more than 370,000 Nm 3 / h, preferably more than 1,000,000 Nm 3 / h.
  • An arrangement of two columns "next to each other" means that the two columns are positioned in the operational state of the plant so that the projections of their cross sections do not overlap on a horizontal plane. Frequently, the lower ends of the two columns are at about the same geodetic height plus / minus 5 m.
  • the transport length of the low-pressure column is also higher due to the incorporation of the argon discharge column according to the invention into a dividing-wall column section of the low-pressure column.
  • the main condenser is disposed between the high pressure column and the argon discharge column overhead condenser. This results in a total of a particularly compact arrangement.
  • main condenser and argon discharge column overhead condenser are arranged in a common first cold box.
  • no further capacitors or heat exchangers, such as subcooling countercurrents, are accommodated in the first coldbox.
  • the low-pressure column can be accommodated in a separate second coldbox. In many cases, however, it is better to arrange the low-pressure column also in the first cold box.
  • the cross-section of the two compartment forming the argon discharge column is 25 to 60%, preferably between 30% and 50%, of the total cross section of the middle section of the low pressure column.
  • the distillation column system further comprises an auxiliary column whose sump region is designed to introduce a portion of the gas from the vaporization space of the argon discharge head condenser, and also to provide a liquid nitrogen line for introducing liquid nitrogen to the overhead of the auxiliary column.
  • auxiliary column whose sump region is designed to introduce a portion of the gas from the vaporization space of the argon discharge head condenser, and also to provide a liquid nitrogen line for introducing liquid nitrogen to the overhead of the auxiliary column.
  • 20 to 100% of the gas generated in the evaporation space of the argon discharge head condenser is introduced into the auxiliary column.
  • the remainder if present, can be introduced into the low-pressure column.
  • One or more liquid lines for one or more liquids lead from one or more intermediate points or the bottom of the auxiliary column in the low-pressure column. This return liquid and / or bottom liquid of the auxiliary column is introduced as an additional intermediate return to the low pressure column.
  • an intermediate fraction of the high-pressure column can be introduced into the auxiliary column via an intermediate fraction line.
  • any fraction that would otherwise go into the low-pressure column, the separation in the auxiliary column are fed, for example, a turbine air flow.
  • the intermediate fraction can be formed for example by liquid air.
  • the distillation column system has means for collecting at least part of the liquid flowing down in the auxiliary column and means for introducing the collected liquid into the low-pressure column.
  • the effluent from the auxiliary column liquid is not mixed with the bottoms liquid and can be at least partially fed into the low-pressure column and that separated from the bottoms liquid from the evaporation space of the argon discharge head condenser.
  • the invention also relates to a method for the production of oxygen by cryogenic separation of air according to claim 10. This method can be supplemented analogously by further features of all dependent device claims.
  • the distillation column system of the embodiment of the FIG. 1 has a high pressure column 1, a low pressure column 2 and a main capacitor 3.
  • the main capacitor 3 is designed here as a multi-storey bath evaporator, more precisely as a cascade evaporator.
  • the high pressure column 1 and the low pressure column 2 are arranged side by side; in particular, their lower ends are at a similar geodesic level.
  • the low-pressure column 2 may be set up slightly higher than the high-pressure column 1.
  • the low-pressure column 2 has a lower portion A1, a middle portion A2 and an upper portion A3.
  • a first partial stream 4 of the feed air flows in gaseous form into the high-pressure column 1, specifically directly above the sump.
  • a second part 5 of the feed air is at least partially liquid and is fed to the high-pressure column 1 at an intermediate point. At least a portion of the liquid air is taken out again via line 6, cooled in a subcooling countercurrent 7 and fed via line 8 of the low pressure column 2 at a first intermediate point, which lies in an intermediate region of the upper section A3.
  • a part 10 of the gaseous top nitrogen 9 of the high-pressure column 1 is at least partially condensed.
  • the liquid nitrogen 11 obtained in the process is fed to a first part 12 as reflux to the top of the high-pressure column 1.
  • a second part 13 is supplied to an internal compression (not shown) and finally recovered as gaseous pressure nitrogen product.
  • Another part 14 of the gaseous head nitrogen 9 is warmed up in the main heat exchanger (not shown) and recovered directly as a gaseous pressure product.
  • Liquid raw oxygen 15 from the high-pressure column 1 is cooled in the subcooling countercurrent 7 and via the line 16 to a argon discharge column head capacitor 17 and further via the lines and 18/19 of the low pressure column. 2 fed at a second intermediate point, which is below the first intermediate point, at the lower edge of the upper portion A3.
  • Liquid impurity nitrogen 35 is withdrawn from an intermediate point of the high-pressure column 1, cooled in the subcooling countercurrent and fed via line 36 to the top of the low-pressure column 2. Part of this can be recovered via line 37 as a liquid nitrogen product (LIN). From the top of the low-pressure column 2 gaseous impurity nitrogen 38 is withdrawn and passed after heating in the subcooling countercurrent 7 via line 39 on to the main heat exchanger (not shown).
  • LIN liquid nitrogen product
  • Liquid oxygen 20 from the bottom of the low-pressure column 2 is conveyed to a first part 22 by means of a pump 21 into the evaporation space of the main condenser 3 and there at least partially evaporated. Resulting gas 23 is returned to the bottom of the low-pressure column 2, where it serves as an ascending gas.
  • a second portion 24 of the liquid oxygen 20 is cooled in the subcooling countercurrent 7 and withdrawn via line 25 as a liquid oxygen product (LOX).
  • a fourth portion 26 of the liquid oxygen 20 is fed to an internal compression (not shown) and finally recovered as a gaseous pressure oxygen product which is the major product of the distillation column system.
  • the middle section A2 of the low-pressure column 2 is formed as a partition wall section.
  • a vertical partition wall 27 separates a first subspace 28 and a second subspace 29 from each other.
  • the partition wall 27 is formed in the example by a flat sheet, which is welded on both sides with the column wall. Both subspaces contain mass transfer elements, for example ordered packing. The mass transfer layers in the subspaces may or may not be the same.
  • the two subspaces can be the same or different sizes.
  • the first subspace 28 forms the argon portion of the low pressure column 2. It communicates at the bottom with the lower portion A1 and at the top with the upper portion A3 in fluid communication. As a result, a first part of the gas can flow from the lower section A1 through the first subspace 28 to the upper section A3. Conversely, liquid flows from the upper section A3 through the first compartment 28 into the lower section A1.
  • the second subspace 29 forms an argon discharge column 31. It is also connected to the lower section A1 in fluid communication below, so that from there a second part of the gas rising from the first section A1 can flow. Above, however, it is gas-tightly sealed with a horizontal wall 30 opposite the upper section A3.
  • the horizontal wall is approximately semicircular and welded to the column wall and the partition wall 27. Neither gas can flow from the head of the argon discharge column 31 into the upper section A3, nor liquid from there can penetrate into the argon discharge column 31.
  • Argon-enriched gas 32 is withdrawn from the top of the argon discharge column 31 and partially liquefied in the liquefaction space of the argon discharge column top condenser 17.
  • the generated liquid 33 is returned as reflux into the Argonausschleusklale 31.
  • the gaseous remaining fraction is removed as argon-enriched "product" 34 in gaseous form from the argon discharge column top condenser 17 and passed as residual gas through a separate passage group of the main heat exchanger (not shown).
  • the argon discharge columns 31 By integrating the argon discharge columns 31 into the low-pressure column 2 and by arranging the argon discharge column overhead condenser above the high-pressure column 1, the argon discharge consumes no additional set-up area compared to the pure nitrogen-oxygen separation.
  • the column diameters are limited for transport height reasons.
  • the diameter of the low-pressure column 2 is below and above the partition wall section maximum in terms of this limitation. The increase in the oxygen yield and the efficiency of the separation can thus be achieved without significant increase in the plant.
  • a packing of higher density than in the first partial space 28 is used in the second partial space 29 (argon discharge column 31), for example 750 m 2 / m 3 parallel to 500 m 2 / m 3 or 500 m 2 / m 3 parallel to 350 m 2 / m 3 .
  • the entire rising from the section A1 gas can be passed through the first compartment 28, without flooding cause the low pressure column 2.
  • the packing in the first compartment 28 should therefore be less dense than that in the oxygen section A1.
  • FIG. 2 is different from the one of FIG. 1 by an auxiliary column 140 and by the introduction of turbine-relaxed air 141 in the low pressure column 2.
  • auxiliary column 140 and by the introduction of turbine-relaxed air 141 in the low pressure column 2.
  • the turbine-relaxed air 141 could alternatively be introduced into the auxiliary column 140 or distributed into the auxiliary column 140 and the low-pressure column 2.
  • the described features for dealing with turbine-relaxed air can also in the embodiment of the FIG. 1 be applied.
  • the auxiliary column 140 and the argon discharge column head condenser 17 are arranged in a common container in such a way that the argon discharge head condenser 17 acts as a sump heater of the auxiliary column 140.
  • the gas from the evaporation chamber of the argon discharge column head condenser 17 is not introduced into the low-pressure column (line 18 in FIG. 1 ), but introduced as ascending gas in the auxiliary column 140.
  • a portion 108b of the supercooled liquid air 108 may be supplied to the auxiliary column 140 at an intermediate location.
  • the rest of 108a goes as in FIG. 1
  • gaseous impure nitrogen 138b is withdrawn and mixed with the gaseous impure nitrogen 138a from the top of the low-pressure column 2.
  • the total flow 38 is passed after heating in the subcooling countercurrent 7 via line 39 on to the main heat exchanger (not shown).
  • the two nitrogen streams 138a, 138b may also be passed separately to and through the main heat exchanger; In this case, the two columns can be operated with different head pressure and thus energy can be saved if necessary.
  • auxiliary column 140 of the upper section A3 of the low-pressure column is relieved.
  • This can therefore be designed with a lower capacity.
  • a less dense packing can be used with constant column diameter and thus the height of the low-pressure column 2 can be reduced.
  • the embodiment of the FIG. 2 a cup 150 in the auxiliary column 140 and a conduit 151.
  • the liquid flowing down in the auxiliary column 140 is partially or completely collected in the cup 150 above the argon discharge column top condenser.
  • the collected liquid is partially or completely introduced via the line 151 in the low pressure column 2, preferably above the line 18. This is a mixture of this liquid with the raw liquid oxygen 16 from the high-pressure column 1 and the non-evaporated liquid from the evaporation space of the argon discharge head condenser 17 avoided.
  • an advantageous control of the argon discharge column head capacitor is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Destillationssäulen-System und das Verfahren dienen zur Erzeugung von Sauerstoff durch Tieftemperaturzerlegung von Luft. Das System enthält eine Hochdrucksäule (1) und eine Niederdrucksäule (2) und einen Hauptkondensator (3). Eine einer Argonausschleussäule (31) steht die in Strömungsverbindung mit einer Zwischenstelle (A1/A2) der Niederdrucksäule (2) und besitzt einen Argonausschleussäulen-Kopfkondensator (17). Die Hochdrucksäule (1) und die Niederdrucksäule (2) sind nebeneinander angeordnet. Der mittlere Abschnitt (A2) der Niederdrucksäule (2) ist mittels einer vertikalen Trennwand (27) als Trennwandabschnitt ausgebildet. Ein Teilraum (29) bildet Argonausschleussäule (31). Er ist oben mit einer oberen Wand (30) gegenüber dem oberen Abschnitt (A3) der Niederdrucksäule (2) gasdicht verschlossen. Das obere Ende dieses Teilraums (29) ist über eine Argongasleitung (32) und eine Argonflüssigkeitsleitung (33) mit dem Argonausschleussäulen-Kopfkondensator (17) verbunden. Der Argonausschleussäulen-Kopfkondensator (17) ist über der Hochdrucksäule (1) angeordnet.

Description

  • Die Erfindung betrifft ein Destillationssäulen-System zur Erzeugung von Sauerstoff durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs 1.
  • Die Grundlagen der Tieftemperaturzerlegung von Luft im Allgemeinen sowie der Aufbau von Zwei-Säulen-Anlagen im Speziellen sind in der Monografie "Tieftemperaturtechnik" von Hausen/Linde (2. Auflage, 1985) und in einem Aufsatz von Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, Seite 35) beschrieben. Die Wärmeaustauschbeziehung zwischen Hochdrucksäule und Niederdrucksäule einer Doppelsäule wird im Regelfall durch einen Hauptkondensator realisiert, in dem Kopfgas der Hochdrucksäule gegen verdampfende Sumpfflüssigkeit der Niederdrucksäule verflüssigt wird.
  • Das Destillationssäulen-System der Erfindung kann grundsätzlich als klassisches Zwei-Säulen-System mit Hochdrucksäule und Niederdrucksäule ausgebildet sein. Es kann zusätzlich zu den beiden Trennsäulen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Krypton-Xenon-Gewinnung.
  • Unter einer "Argonausschleussäule " wird hier eine Trennsäule zur Argon-Sauerstoff-Trennung bezeichnet, die nicht zur Gewinnung eines reinen Argonprodukts, sondern zur Ausschleusung von Argon der in Hochdrucksäule und Niederdrucksäule zu zerlegenden Luft dient. Ihre Schaltung unterscheidet sich nur wenig von der einer klassischen Rohargonsäule, allerdings enthält sie deutlich weniger theoretische Böden, nämlich weniger als 40, insbesondere zwischen 15 und 30. Wie eine Rohargonsäule ist der Sumpfbereich einer Argonausschleussäule mit einer Zwischenstelle der Niederdrucksäule verbunden und die Argonausschleussäule wird durch einen Kopfkondensator gekühlt, auf dessen Verdampfungsseite entspannte Sumpfflüssigkeit aus der Hochdrucksäule oder eine andere Kühlflüssigkeit eingeleitet wird; eine Argonausschleussäule weist keinen Sumpfverdampfer auf.
  • Der Hauptkondensator und der Argonausschleussäulen-Kopfkondensator sind bei der Erfindung als Kondensator-Verdampfer ausgebildet. Als "Kondensator-Verdampfer" wird ein Wärmetauscher bezeichnet, in dem ein erster, kondensierender Fluidstrom in indirekten Wärmeaustausch mit einem zweiten, verdampfenden Fluidstrom tritt. Jeder Kondensator-Verdampfer weist einen Verflüssigungsraum und einen Verdampfungsraum auf, die aus Verflüssigungspassagen beziehungsweise Verdampfungspassagen bestehen. In dem Verflüssigungsraum wird die Kondensation (Verflüssigung) des ersten Fluidstroms durchgeführt, in dem Verdampfungsraum die Verdampfung des zweiten Fluidstroms. Verdampfungs- und Verflüssigungsraum werden durch Gruppen von Passagen gebildet, die untereinander in Wärmeaustauschbeziehung stehen.
  • Dabei kann der Hauptkondensator als ein- oder mehrstöckiger Badverdampfer, insbesondere als Kaskadenverdampfer (beispielsweise wie in EP 1287302 B1 = US 6748763 B2 beschrieben), oder aber als Fallfilmverdampfer ausgebildet sein. Er kann durch einen einzigen Wärmetauscherblock gebildet werden oder auch durch mehrere Wärmetauscherblöcke, die in einem gemeinsamen Druckbehälter angeordnet sind.
  • Das Destillationssäulen-System einer Luftzerlegungsanlage ist in einer oder mehreren Coldboxen angeordnet. Unter einer "Coldbox" wird hier eine isolierende Umhüllung verstanden, die einen wärmeisolierten Innenraum vollständig mit Außenwänden umfasst; in dem Innenraum sind zu isolierenden Anlagenteile angeordnet, zum Beispiel ein oder mehrere Trennsäulen und/oder Wärmetauscher. Die isolierende Wirkung kann durch entsprechende Ausgestaltung der Außenwände und/oder durch die Füllung des Zwischenraums zwischen Anlagenteilen und Außenwänden mit einem Isoliermaterial bewirkt werden. Bei der letzteren Variante wird vorzugsweise ein pulverförmiges Material wie zum Beispiel Perlite verwendet. Sowohl das Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung einer Tieftemperatur-Luftzerlegungsanlage als auch der Hauptwärmetauscher und weitere kalte Anlagenteile müssen von einer oder mehreren Coldboxen umschlossen sein. Die Außenmaße der Coldbox bestimmen üblicherweise die Transportmaße bei vorgefertigten Anlagen.
  • Ein "Hauptwärmetauscher" dient zur Abkühlung von Einsatzluft in indirektem Wärmeaustausch mit Rückströmen aus dem Destillationssäulen-System. Er kann aus einem einzelnen oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, zum Beispiel aus einem oder mehreren Plattenwärmetauscher-Blöcken. Separate Wärmetauscher, die speziell der Verdampfung oder Pseudo-Verdampfung eines einzigen flüssigen oder überkritischen Fluids dienen, ohne Anwärmung und/oder Verdampfung eines weiteren Fluids, gehören nicht zum Hauptwärmetauscher.
  • Die relativen räumlichen Begriffe "oben", "unten", "über", "unter", "oberhalb", "unterhalb", "nebeneinander", "vertikal", "horizontal" etc. beziehen sich hier auf die räumliche Ausrichtung der Trennsäulen im Normalbetrieb. Unter einer Anordnung zweier Säulen oder Apparateteile "übereinander" wird hier verstanden, dass sich das obere Ende des unteren der beiden Apparateteile im betriebsfähigen Zustand auf niedrigerer oder gleicher geodätischer Höhe befindet wie das untere Ende des oberen der beiden Apparateteile und sich die Projektionen der beiden Apparateteile in eine horizontale Ebene überschneiden. Insbesondere sind die beiden Apparateteile genau übereinander angeordnet, das heißt die Achsen der beiden Säulen verlaufen auf derselben vertikalen Geraden. "Nebeneinander" stehen zwei Apparate dann, wenn sich ihre Projektionen in eine horizontale Ebene nicht überschneiden; die beiden Apparate sind dann regelmäßig mindestens teilweise auf gleicher Höhe angeordnet.
  • Ein Destillationssäulen-System der eingangs genannten Art ist aus US 5235816 bekannt. Solche Anlagen werden bei der Herstellung regelmäßig so weit wie möglich vorgefertigt, die vorgefertigten Teile werden auf die Baustelle transportiert und schließlich dort miteinander verbunden. Je nach Größe der Anlage kann zum Beispiel die gesamte Doppelsäule mit ihrer Coldbox transportiert werden. Wenn die Größe der Anlage das nicht mehr erlaubt, wird die Doppelsäule - gegebenenfalls in zwei oder mehr Teilen - ohne Coldbox transportiert. Eine zusätzliche Säule wie die Argonausschleussäule verursacht dabei zusätzlichen Aufwand mit einer eigenen Coldbox, die regelmäßig separat auf die Baustelle gebracht und auf einem aufwändigen Gestell montiert werden muss.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Destillationssäulen-System der eingangs genannten Art möglichst kompakt zu gestalten und seinen Aufbau zu vereinfachen, insbesondere bei besonders großen Luftzerlegungsanlagen für eine Luftmenge von mehr als 370.000 Nm3/h, vorzugsweise mehr als 1.000.000 Nm3/h.
  • Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.
  • Die Nebeneinander-Anordnung von Hochdrucksäule und Niederdrucksäule ist an sich bekannt, zum Beispiel aus DE 827364 oder US 2762208 . Hierdurch verringert sich die Höhe von Säulen und Coldbox. Die Montage der Coldbox wird einfacher, da die Box niedriger ist.
  • Eine Anordnung zweier Säulen "nebeneinander" bedeutet, dass die beiden Säulen im betriebsfertigen Zustand der Anlage so positioniert sind, dass die Projektionen ihrer Querschnitte auf eine horizontale Ebene sich nicht überschneiden. Häufig befinden sich dabei die unteren Enden der beiden Säulen etwa auf der gleichen geodätischen Höhe plus/minus 5 m.
  • Es erscheint zunächst widersinnig, bei einem solchen System die Säulenanordnung dann doch wieder höher zu machen, indem der Argonausschleussäulen-Kopfkondensator auf die Hochdrucksäule gestellt wird, zumal der Betrieb der Argonausschleussäule in engerem Zusammenhang mit der Niederdrucksäule steht als mit der Hochdrucksäule.
  • Auch die Transportlänge der Niederdrucksäule wird durch den erfindungsgemäßen Einbau der Argonausschleussäule in einen Trennwandkolonnenabschnitt der Niederdrucksäule eher höher.
  • Erst im Rahmen der Erfindung hat sich ergeben, dass die transport- und montagetechnischen Nachteile durch die Vorteile der erfindungsgemäßen Säulenanordnung erheblich überkompensiert werden. Der Wegfall separater Transportanforderungen für die Argonausschleussäule und den Argonausschleussäulen-Kopfkondensator macht die Anlage besonders kompakt, nicht nur beim Transport, sondern auch im aufgebauten Zustand. Eine Anlage mit dem erfindungsgemäßen Destillationssäulen-System belegt eine vergleichsweise kleine Grundfläche.
  • Auch verfahrenstechnisch ergeben sich Vorteile. Die häufig bei anderen Säulenanordnungen bestehenden Probleme, die Sumpfflüssigkeit der Hochdrucksäule zum Verdampfungsraum des Argonausschleussäulen-Kopfkondensators zu transportieren, treten bei der Erfindung nicht auf. Steht der Argonausschleussäulen-Kopfkondensator auf der Hochdrucksäule, reicht der Druckunterschied aus, den entsprechenden Höhenunterschied zu überwinden, selbst wenn zwischen Argonausschleussäulen-Kopfkondensator und Hochdrucksäule noch der Hauptkondensator sitzt. Eine Prozesspumpe wird hierfür nicht benötigt.
  • Vorzugsweise ist der Hauptkondensator zwischen Hochdrucksäule und Argonausschleussäulen-Kopfkondensator angeordnet. Damit ergibt sich insgesamt eine besonders kompakte Anordnung.
  • Es ist günstig, wenn Hochdrucksäule, Hauptkondensator und Argonausschleussäulen-Kopfkondensator in einer gemeinsamen ersten Coldbox angeordnet sind. Vorzugsweise sind keine weiteren Kondensatoren oder Wärmetauscher wie Unterkühlungs-Gegenströmer in der ersten Coldbox untergebracht.
  • Grundsätzlich kann die Niederdrucksäule in einer separaten zweiten Coldbox untergebracht sein. In vielen Fällen ist es jedoch günstiger, die Niederdrucksäule ebenfalls in der ersten Coldbox anzuordnen.
  • Der Querschnitt des zweien Teilraums, der die Argonausschleussäule bildet, beträgt 25 bis 60 %, vorzugsweise zwischen 30 % und 50 % des Gesamtquerschnitts des mittleren Abschnitts der Niederdrucksäule.
  • Zusätzlich kann es günstig sein, wenn das Destillationssäulen-System außerdem eine Hilfssäule aufweist, deren Sumpfbereich zum Einleiten eines Teils des Gases aus dem Verdampfungsraum des Argonausschleussäulen-Kopfkondensators auszugestaltet ist, und außerdem eine Flüssigstickstoffleitung zum Einleiten flüssigen Stickstoffs auf den Kopf der Hilfssäule vorzusehen. Dabei werden beispielsweise 20 bis 100 % des in dem Verdampfungsraum des Argonausschleussäulen-Kopfkondensators erzeugten Gases in die Hilfssäule eingeleitet. Der Rest kann, sofern vorhanden, in die Niederdrucksäule eingeleitet werden.
  • Eine oder mehrere Flüssigkeitsleitungen für eine oder mehrere Flüssigkeiten führen von einer oder mehreren Zwischenstellen oder dem Sumpf der Hilfssäule in die Niederdrucksäule. Damit wird Rücklaufflüssigkeit und/oder Sumpfflüssigkeit der Hilfssäule als zusätzlicher Zwischenrücklauf in die Niederdrucksäule eingeleitet.
  • Außerdem kann über eine Zwischenfraktionsleitung eine Zwischenfraktion der Hochdrucksäule in die Hilfssäule eingeleitet werden. Grundsätzlich kann jede Fraktion, die ansonsten in die Niederdrucksäule gehen würde, der Trennung in der Hilfssäule zugeleitet werden, zum Beispiel auch ein Turbinenluftstrom. Die Zwischenfraktion kann beispielsweise durch flüssige Luft gebildet werden.
  • Ferner ist es günstig, wenn das Destillationssäulen-System Mittel zum Auffangen mindestens eines Teils der in der Hilfssäule herabfließenden Flüssigkeit sowie Mittel zum Einleiten der aufgefangenen Flüssigkeit in die Niederdrucksäule aufweist. Dadurch wird die aus der Hilfssäule abfließende Flüssigkeit nicht mit der Sumpfflüssigkeit vermischt und kann mindestens teilweise in die Niederdrucksäule eingespeist werden und zwar getrennt von der Sumpfflüssigkeit aus dem Verdampfungsraum des Argonausschleussäulen-Kopfkondensators.
  • Die Erfindung betrifft außerdem ein Verfahren zur Erzeugung von Sauerstoff durch Tieftemperaturzerlegung von Luft gemäß dem Patentanspruch 10. Dieses Verfahren kann sinngemäß durch weitere Merkmale aller abhängigen Vorrichtungsansprüche ergänzt werden.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand zweier in der Zeichnung schematisch dargestellten Ausführungsbeispiele näher erläutert. In den Zeichnungen sind nur die wichtigsten Elemente dargestellt, insbesondere solche, mit denen sich das System der Erfindung von üblichen Luftzerlegungssystemen unterscheidet. Hierbei zeigen:
  • Figur 1
    ein erstes Ausführungsbeispiel für eine Anlage gemäß der Erfindung mit einem allein stehenden Argonausschleussäulen-Kopfkondensator und
    Figur 2
    ein zweites Ausführungsbeispiel der Erfindung, bei dem der Argonausschleussäulen-Kopfkondensator im Sumpf einer Hilfssäule angeordnet ist.
  • In den Zeichnungen sind Luftverdichtung, Luftreinigung und Hauptwärmetauscher nicht dargestellt. Auch sonst ist die Darstellung vereinfacht; manche Ströme sind nicht eingezeichnet, die für das Verständnis der Erfindung keine Rolle spielen.
  • Das Destillationssäulen-System des Ausführungsbeispiels der Figur 1 weist eine Hochdrucksäule 1, eine Niederdrucksäule 2 und einen Hauptkondensator 3 auf. Der Hauptkondensator 3 ist hier als mehrstöckiger Badverdampfer ausgebildet, genauer als Kaskadenverdampfer. Die Hochdrucksäule 1 und die Niederdrucksäule 2 sind nebeneinander angeordnet; insbesondere befinden sich ihre unteren Enden auf ähnlichem geodätischen Niveau. Zum Beispiel kann die Niederdrucksäule 2 etwas höher als die Hochdrucksäule 1 aufgestellt sein. Die Niederdrucksäule 2 weist einen unteren Abschnitt A1, einen mittleren Abschnitt A2 und einen oberen Abschnitt A3 auf.
  • Ein erster Teilstrom 4 der Einsatzluft strömt gasförmig in die Hochdrucksäule 1, und zwar unmittelbar oberhalb des Sumpfs. Ein zweiter Teil 5 der Einsatzluft ist mindestens zum Teil flüssig und wird der Hochdrucksäule 1 an einer Zwischenstelle zugeleitet. Mindestens ein Teil der Flüssigluft wird über Leitung 6 gleich wieder entnommen, in einem Unterkühlungs-Gegenströmer 7 abgekühlt und über Leitung 8 der Niederdrucksäule 2 an einer ersten Zwischenstelle zugeführt, die in einem Zwischenbereich des oberen Abschnitts A3 liegt.
  • Im Hauptkondensator 3 wird ein Teil 10 des gasförmigen Kopfstickstoffs 9 der Hochdrucksäule 1 mindestens teilweise kondensiert. Der dabei gewonnene Flüssigstickstoff 11 wird zu einem ersten Teil 12 als Rücklauf auf den Kopf der Hochdrucksäule 1 aufgegeben. Ein zweiter Teil 13 wird einer Innenverdichtung (nicht dargestellt) zugeführt und schließlich als gasförmiges Druckstickstoffprodukt gewonnen. Ein anderer Teil 14 des gasförmigen Kopfstickstoffs 9 wird im Hauptwärmetauscher (nicht dargestellt) angewärmt und direkt als gasförmiges Druckprodukt gewonnen.
  • Flüssiger Rohsauerstoff 15 aus der Hochdrucksäule 1 wird im Unterkühlungs-Gegenströmer 7 abgekühlt und über die Leitung 16 zu einem Argonausschleussäulen-Kopfkondensator 17 und weiter über die Leitungen und 18/19 der Niederdrucksäule 2 an einer zweiten Zwischenstelle zugeführt, die unterhalb der ersten Zwischenstelle liegt, und zwar am unteren Rand des oberen Abschnitts A3.
  • Von einer Zwischenstelle der Hochdrucksäule 1 wird flüssiger Unreinstickstoff 35 abgezogen, in dem Unterkühlungs-Gegenströmer abgekühlt und über Leitung 36 auf den Kopf der Niederdrucksäule 2 aufgegeben. Ein Teil davon kann über Leitung 37 als Flüssigstickstoff-Produkt (LIN) gewonnen werden. Vom Kopf der Niederdrucksäule 2 wird gasförmiger Unreinstickstoff 38 abgezogen und nach Anwärmung im Unterkühlungs-Gegenströmer 7 über Leitung 39 weiter zum Hauptwärmetauscher geführt (nicht dargestellt).
  • Flüssiger Sauerstoff 20 vom Sumpf der Niederdrucksäule 2 wird zu einem ersten Teil 22 mit Hilfe einer Pumpe 21 in den Verdampfungsraum des Hauptkondensators 3 befördert und dort mindestens zum Teil verdampft. Dabei entstehendes Gas 23 wird zum Sumpf der Niederdrucksäule 2 zurückgeleitet und dient dort als aufsteigendes Gas. Ein zweiter Teil 24 des Flüssigsauerstoffs 20 wird im Unterkühlungs-Gegenströmer 7 abgekühlt und über Leitung 25 als flüssiges Sauerstoffprodukt (LOX) abgezogen. Ein vierter Teil 26 des Flüssigsauerstoffs 20 wird einer Innenverdichtung (nicht dargestellt) zugeführt und schließlich als gasförmiges Drucksauerstoffprodukt gewonnen, welches das Hauptprodukt des Destillationssäulen-Systems darstellt.
  • Der mittlere Abschnitt A2 der Niederdrucksäule 2 ist als Trennwandabschnitt ausgebildet. Eine vertikale Trennwand 27 trennt einen ersten Teilraum 28 und einen zweiten Teilraum 29 voneinander ab. Die Trennwand 27 wird in dem Beispiel durch ein ebenes Blech gebildet, das auf beiden Seiten mit der Kolonnenwand verschweißt ist. Beide Teilräume enthalten Stoffaustauschelemente, beispielsweise geordnete Packung. Die Stoffaustauschschichten in den Teilräumen können, müssen aber nicht gleich hoch sein. Die beiden Teilräume können gleich oder unterschiedlich groß sein.
  • Der erste Teilraum 28 bildet den Argonabschnitt der Niederdrucksäule 2. Er steht unten mit dem unteren Abschnitt A1 und oben mit dem oberen Abschnitt A3 in Strömungsverbindung. Dadurch kann ein erster Teil des Gases aus dem unteren Abschnitt A1 durch den ersten Teilraum 28 zum oberen Abschnitt A3 strömen. Umgekehrt fließt Flüssigkeit aus dem oberen Abschnitt A3 durch den ersten Teilraum 28 in den unteren Abschnitt A1.
  • Der zweite Teilraum 29 bildet eine Argonausschleussäule 31. Er steht unten ebenfalls mit dem unteren Abschnitt A1 in Strömungsverbindung, sodass von dort ein zweiter Teil des aus dem ersten Abschnitt A1 aufsteigenden Gases einströmen kann. Oben ist er jedoch mit einer horizontalen Wand 30 gegenüber dem oberen Abschnitt A3 gasdicht verschlossen. Die horizontale Wand ist etwa halbkreisförmig ausgebildet und mit der Kolonnenwand und der Trennwand 27 verschweißt. Es kann weder Gas vom Kopf der Argonausschleussäule 31 in den oberen Abschnitt A3 fließen, noch Flüssigkeit von dort in die Argonausschleussäule 31 eindringen.
  • Am Kopf der Argonausschleussäule 31 wird argonangereichertes Gas 32 abgezogen und im Verflüssigungsraum des Argonausschleussäulen-Kopfkondensators 17 teilweise verflüssigt. Die dabei erzeugte Flüssigkeit 33 wird als Rücklauf in die Argonausschleussäule 31 zurückgeleitet. Der gasförmig verbliebene Anteil wird als argonangereichertes "Produkt" 34 gasförmig aus dem Argonausschleussäulen-Kopfkondensator 17 entnommen und als Restgas durch eine separate Passagengruppe des Hauptwärmetauschers geführt (nicht dargestellt).
  • Durch die Integration der Argonausschleussäulen 31 in die Niederdrucksäule 2 und durch die Anordnung des Argonausschleussäulen-Kopfkondensators über der Hochdrucksäule 1 verbraucht die Argonausschleusung keine zusätzliche Aufstellfläche gegenüber der reinen Stickstoff-Sauerstoff-Trennung. Bei der Anwendung des Ausführungsbeispiels sind die Säulendurchmesser aus Transporthöhengründen beschränkt. Der Durchmesser der Niederdrucksäule 2 ist unterhalb und oberhalb des Trennwandabschnittes maximal im Sinne dieser Begrenzung. Die Erhöhung der Sauerstoffausbeute und die Effizienz der Trennung kann somit ohne nennenswerte Vergrößerung der Anlage erzielt werden.
  • In dem Trennwandabschnitt A2 wird im zweiten Teilraum 29 (Argonausschleussäule 31) eine Packung höherer Dichte als im ersten Teilraum 28 (Argonabschnitt der Niederdrucksäule 2) eingesetzt, zum Beispiel 750 m2/m3 parallel zu 500 m2/m3 oder 500 m2/m3 parallel zu 350 m2/m3. Insbesondere ist dabei zu berücksichtigen, dass bei Ausfall der Argonausschleussäule notfalls das gesamte aus dem Abschnitt A1 aufsteigende Gas durch den ersten Teilraum 28 geleitet werden kann, ohne ein Fluten der Niederdrucksäule 2 zu verursachen. Die Packung im ersten Teilraum 28 (dem Argonabschnitt) sollte daher weniger dicht als diejenige im Sauerstoffabschnitt A1 sein.
  • Das Ausführungsbeispiel der Figur 2 unterscheidet sich von demjenigen der Figur 1 durch eine Hilfssäule 140 und durch die Einleitung turbinenentspannter Luft 141 in die Niederdrucksäule 2. Einander entsprechende Elemente tragen in beiden Zeichnungen dieselben Bezugszeichen.
  • Die turbinenentspannte Luft 141 könnte alternativ in die Hilfssäule 140 oder verteilt in die Hilfssäule 140 und die Niederdrucksäule 2 eingeleitet werden. Die beschriebenen Merkmale zum Umgang mit turbinenentspannter Luft können auch bei dem Ausführungsbeispiel der Figur 1 angewendet werden.
  • Die Hilfssäule 140 und der Argonausschleussäulen-Kopfkondensator 17 sind in einem gemeinsamen Behälter angeordnet und zwar so, dass der Argonausschleussäulen-Kopfkondensator 17 als Sumpfheizung der Hilfssäule 140 wirkt. Das Gas aus dem Verdampfungsraum des Argonausschleussäulen-Kopfkondensators 17 wird hier nicht in die Niederdrucksäule eingeleitet (Leitung 18 in Figur 1), sondern als aufsteigendes Gas in die Hilfssäule 140 eingeleitet.
  • Als Rücklaufflüssigkeit am Kopf der Hilfssäule 140 wird ein Teil 136b des unterkühlten flüssigen Unreinstickstoffs 36 aus der Hochdrucksäule 1 eingesetzt; der Rest 136a strömt wie gehabt zum Kopf der Niederdrucksäule 2.
  • Ein Teil 108b der unterkühlten flüssigen Luft 108 kann der Hilfssäule 140 an einer Zwischenstelle zugespeist werden. Der Rest 108a geht wie in Figur 1 an die erste Zwischenstelle der Niederdrucksäule 2. Vom Kopf der Hilfssäule 140 wird gasförmiger Unreinstickstoff 138b abgezogen und mit dem gasförmigen Unreinstickstoff 138a vom Kopf der Niederdrucksäule 2 vermischt. Der Gesamtstrom 38 wird nach Anwärmung im Unterkühlungs-Gegenströmer 7 über Leitung 39 weiter zum Hauptwärmetauscher geführt (nicht dargestellt). Alternativ können die beiden Stickstoffströme 138a, 138b auch getrennt zum und durch den Hauptwärmetauscher geleitet werden; in diesem Fall können die beiden Säulen mit unterschiedlichem Kopfdruck betrieben und damit gegebenenfalls Energie gespart werden.
  • Mit Hilfe der Hilfssäule 140 wird der obere Abschnitt A3 der Niederdrucksäule entlastet. Dieser kann also mit einer geringeren Kapazität ausgelegt werden. Beispielsweise kann bei gleich bleibendem Kolonnendurchmesser eine weniger dichte Packung eingesetzt und damit die Bauhöhe der Niederdrucksäule 2 reduziert werden.
  • Außerdem weist das Ausführungsbeispiel der Figur 2 eine Tasse 150 in der Hilfssäule 140 und eine Leitung 151 auf. Die in der Hilfssäule 140 herabfließende Flüssigkeit wird in der Tasse 150 oberhalb des Argonausschleussäulen-Kopfkondensators teilweise oder vollständig aufgefangen. Die aufgefangene Flüssigkeit wird teilweise oder vollständig über die Leitung 151 in die Niederdrucksäule 2 eingeleitet, vorzugsweise oberhalb der Leitung 18. Dadurch wird eine Vermischung dieser Flüssigkeit mit dem flüssigen Rohsauerstoff 16 aus der Hochdrucksäule 1 beziehungsweise der nicht verdampften Flüssigkeit aus dem Verdampfungsraum des Argonausschleussäulen-Kopfkondensators 17 vermieden. Außerdem ist eine vorteilhafte Regelung des Argonausschleussäulen-Kopfkondensators möglich.

Claims (10)

  1. Destillationssäulen-System zur Erzeugung von Sauerstoff durch Tieftemperaturzerlegung von Luft mit
    - einer Hochdrucksäule (1) und einer Niederdrucksäule (2),
    - einem Hauptkondensator (3), der als Kondensator-Verdampfer ausgebildet ist, wobei der Verflüssigungsraum des Hauptkondensators (3) mit dem Kopf der Hochdrucksäule (2) in Strömungsverbindung (9, 10, 11, 12) steht und der Verdampfungsraum des Hauptkondensators (3) mit der Niederdrucksäule (2) in Strömungsverbindung steht,
    - einer Argonausschleussäule (31), die in Strömungsverbindung mit einer Zwischenstelle (A1/A2) der Niederdrucksäule (2) steht,
    - und mit einem Argonausschleussäulen-Kopfkondensator (17), der als Kondensator-Verdampfer ausgebildet ist, wobei der Verflüssigungsraum des Argonausschleussäulen-Kopfkondensators (17) mit dem Kopf der Argonausschleussäule (31) in Strömungsverbindung steht und der Verdampfungsraum des Argonausschleussäulen-Kopfkondensators 17) mit einer Quelle (2) für Kühlflüssigkeit in Strömungsverbindung (15, 16) steht,
    dadurch gekennzeichnet, dass
    - die Hochdrucksäule (1) und die Niederdrucksäule (2) nebeneinander angeordnet sind,
    - die Niederdrucksäule (2) einen unteren Abschnitt (A1), einen mittleren Abschnitt (A2) und einen oberen Abschnitt (A3) aufweist, wobei der mittlere Abschnitt (A2) als Trennwandabschnitt ausgebildet ist, in dem eine vertikale Trennwand (27) einen ersten Teilraum (28) und einen zweiten Teilraum (29) voneinander abtrennt,
    - der erste Teilraum (28) unten mit dem unteren Abschnitt (A1) und oben mit dem oberen Abschnitt (A3) in Strömungsverbindung steht,
    - der zweite Teilraum (29) unten mit dem unteren Abschnitt (A1) in Strömungsverbindung steht und oben mit einer oberen Wand (30) gegenüber dem oberen Abschnitt (A3) gasdicht verschlossen ist und die Argonausschleussäule (31) bildet,
    - das obere Ende des zweiten Teilraums (29) über eine Argongasleitung (32) und eine Argonflüssigkeitsleitung (33) mit dem Argonausschleussäulen-Kopfkondensator (17) verbunden ist und
    - der Argonausschleussäulen-Kopfkondensator (17) über der Hochdrucksäule (1) angeordnet ist.
  2. Destillationssäulen-System nach Anspruch 1, dadurch gekennzeichnet, dass der Hauptkondensator (3) zwischen Hochdrucksäule (1) und Argonausschleussäulen-Kopfkondensator (17) angeordnet ist.
  3. Destillationssäulen-System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Hochdrucksäule (1), Hauptkondensator (3) und Argonausschleussäulen-Kopfkondensator (17) in einer gemeinsamen ersten Coldbox angeordnet sind.
  4. Destillationssäulen-System nach einem der Anspruch 3, dadurch gekennzeichnet, dass die Niederdrucksäule (2) ebenfalls in der ersten Coldbox angeordnet ist.
  5. Destillationssäulen-System nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Querschnitt des zweiten Teilraums (29) 25 bis 60 %, insbesondere zwischen 30 % und 50 % des Gesamtquerschnitts des mittleren Abschnitts der Niederdrucksäule (2) beträgt.
  6. Destillationssäulen-System nach einem der Ansprüche 1 bis 5, gekennzeichnet durch eine Hilfssäule (140), deren Sumpfbereich zum Einleiten mindestens eines Teils des Gases aus dem Verdampfungsraum des Argonausschleussäulen-Kopfkondensators (17) ausgestaltet ist, und durch eine Flüssigstickstoffleitung (136b) zum Einleiten flüssigen Stickstoffs auf den Kopf der Hilfssäule (140).
  7. Destillationssäulen-System nach Anspruch 6, gekennzeichnet durch eine oder mehrere Flüssigkeitsleitungen (18,151) zum Einleiten einer oder mehrerer Flüssigkeiten von einer oder mehreren Zwischenstellen oder dem Sumpf der Hilfssäule (140) in die Niederdrucksäule (2).
  8. Destillationssäulen-System nach Anspruch 6 oder 7, gekennzeichnet durch eine Zwischenfraktionsleitung (108a) zum Einleiten einer Zwischenfraktion (6, 108) der Hochdrucksäule (1) in die Hilfssäule (140).
  9. Destillationssäulen-System nach einem der Ansprüche 6 bis 8, gekennzeichnet durch Mittel (150) zum Auffangen mindestens eines Teils der in der Hilfssäule (140) herabfließenden Flüssigkeit unmittelbar oberhalb des Sumpfes und durch Mittel (151) zum Einleiten der aufgefangenen Flüssigkeit in die Niederdrucksäule (2).
  10. Verfahren zur Erzeugung von Sauerstoff durch Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System mit einer Hochdrucksäule (1), einer Niederdrucksäule (2) und einer Argonausschleussäule (31) sowie mit einem Hauptkondensator (3) und einem Argonausschleussäulen-Kopfkondensator (17), die beide als Kondensator-Verdampfer ausgebildet sind, wobei bei dem Verfahren
    - Einsatzluft der Hochdrucksäule (1) zugeleitet wird,
    - Kopfgas (9, 10) der Hochdrucksäule (1) in den Verflüssigungsraum des Hauptkondensators (3) eingeleitet wird und in dem Verflüssigungsraum des Hauptkondensators (3) erzeugter Flüssigstickstoff (11, 12) in die Hochdrucksäule (1) eingeleitet wird,
    - Sumpfflüssigkeit der Niederdrucksäule (2) im Verdampfungsraum des Hauptkondensators (3) verdampft wird und dabei gewonnenes Gas in die Niederdrucksäule (2) eingeleitet wird,
    - eine argonangereicherte Fraktion von einer Zwischenstelle (A1/A2) der Niederdrucksäule (2) in die Argonausschleussäule (31) eingeleitet wird,
    - Kopfgas (32) der Argonausschleussäule (31) in den Verflüssigungsraum des Argonausschleussäulen-Kopfkondensators (17) eingeleitet wird und in dem Verflüssigungsraum des Argonausschleussäulen-Kopfkondensators (17) erzeugte Flüssigkeit auf den Kopf der Argonausschleussäule (31) aufgegeben wird und
    - Sumpfflüssigkeit (15) der Hochdrucksäule (1) in den Verdampfungsraum des Argonausschleussäulen-Kopfkondensators 17) geleitet (16) wird,
    dadurch gekennzeichnet, dass
    - die Hochdrucksäule (1) und die Niederdrucksäule (2) nebeneinander angeordnet sind,
    - die Niederdrucksäule (2) einen unteren Abschnitt (A1), einen mittleren Abschnitt (A2) und einen oberen Abschnitt (A3) aufweist,
    - wobei der mittlere Abschnitt (A2) als Trennwandabschnitt ausgebildet ist, in dem eine vertikale Trennwand (27) einen ersten Teilraum (28) und einen zweiten Teilraum (29) voneinander abtrennt,
    - der erste Teilraum (28) unten mit dem unteren Abschnitt (A1) und oben mit dem oberen Abschnitt (A3) in Strömungsverbindung steht,
    - der zweite Teilraum (29) die Argonausschleussäule (31) bildet, indem die argonangereicherte Fraktion von der Zwischenstelle (A1/A2) der Niederdrucksäule (2) unten in den zweiten Teilraum (29) eingeleitet wird, wobei der zweite Teilraum (29) oben mit einer oberen Wand (30) gegenüber dem oberen Abschnitt (A3) der Niederdrucksäule (2) gasdicht verschlossen ist,
    - vom oberen Ende des zweiten Teilraums (29) eine argonangereicherte Gasfraktion (32) abgezogen und in den Verflüssigungsraum des Argonausschleussäulen-Kopfkondensators (17) eingeleitet wird und in dem Verflüssigungsraum des Argonausschleussäulen-Kopfkondensators (17) erzeugte Flüssigkeit (33) zum oberen Ende des zweiten Teilraums (29) zurückgeleitet wird und dass
    - der Argonausschleussäulen-Kopfkondensator (17) über der Hochdrucksäule (1) angeordnet ist.
EP15000744.1A 2015-03-13 2015-03-13 Destillationssäulen-system und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft Withdrawn EP3067648A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15000744.1A EP3067648A1 (de) 2015-03-13 2015-03-13 Destillationssäulen-system und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15000744.1A EP3067648A1 (de) 2015-03-13 2015-03-13 Destillationssäulen-system und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft

Publications (1)

Publication Number Publication Date
EP3067648A1 true EP3067648A1 (de) 2016-09-14

Family

ID=52736796

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15000744.1A Withdrawn EP3067648A1 (de) 2015-03-13 2015-03-13 Destillationssäulen-system und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft

Country Status (1)

Country Link
EP (1) EP3067648A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520207A (zh) * 2017-09-18 2019-03-26 乔治洛德方法研究和开发液化空气有限公司 用于通过低温蒸馏分离空气的方法和单元
CN112469952A (zh) * 2018-08-22 2021-03-09 林德有限责任公司 空气分离设备、用于借助于空气分离设备低温分离空气的方法和用于创建空气分离设备的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE827364C (de) 1949-04-23 1952-06-13 Linde Eismasch Ag Verfahren zur Gewinnung von Sauerstoff
US2762208A (en) 1952-12-19 1956-09-11 Air Reduction Separation of the constituents of air
BE644230A (de) * 1963-02-25 1964-06-15
US5235816A (en) 1991-10-10 1993-08-17 Praxair Technology, Inc. Cryogenic rectification system for producing high purity oxygen
EP1108965A1 (de) * 1999-12-13 2001-06-20 Air Products And Chemicals, Inc. Mehrkomponenten-Fluid-Destillationsverfahren zur Herstellung eines Argon-angereicherten Stroms in einem Tieftemperaturluftzerlegungsverfahren
US6748763B2 (en) 2000-05-31 2004-06-15 Linde Ag Multistoreyed bath condenser
WO2013131559A1 (en) * 2012-03-06 2013-09-12 Air Products And Chemicals, Inc. Structured packing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE827364C (de) 1949-04-23 1952-06-13 Linde Eismasch Ag Verfahren zur Gewinnung von Sauerstoff
US2762208A (en) 1952-12-19 1956-09-11 Air Reduction Separation of the constituents of air
BE644230A (de) * 1963-02-25 1964-06-15
US5235816A (en) 1991-10-10 1993-08-17 Praxair Technology, Inc. Cryogenic rectification system for producing high purity oxygen
EP1108965A1 (de) * 1999-12-13 2001-06-20 Air Products And Chemicals, Inc. Mehrkomponenten-Fluid-Destillationsverfahren zur Herstellung eines Argon-angereicherten Stroms in einem Tieftemperaturluftzerlegungsverfahren
US6748763B2 (en) 2000-05-31 2004-06-15 Linde Ag Multistoreyed bath condenser
EP1287302B1 (de) 2000-05-31 2005-09-21 Linde AG Mehrstöckiger badkondensator
WO2013131559A1 (en) * 2012-03-06 2013-09-12 Air Products And Chemicals, Inc. Structured packing

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Dual LP Column with Argon", IP.COM JOURNAL, IP.COM INC., WEST HENRIETTA, NY, US, 24 November 2008 (2008-11-24), XP013127145, ISSN: 1533-0001 *
CHEMICAL ENGINEERING PROGRESS, vol. 63, no. 2, 1967, pages 35
HAUSENLLINDE: "Monografie", 1985, article "Tieftemperaturtechnik"

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520207A (zh) * 2017-09-18 2019-03-26 乔治洛德方法研究和开发液化空气有限公司 用于通过低温蒸馏分离空气的方法和单元
CN109520207B (zh) * 2017-09-18 2022-04-08 乔治洛德方法研究和开发液化空气有限公司 用于通过低温蒸馏分离空气的方法和单元
CN112469952A (zh) * 2018-08-22 2021-03-09 林德有限责任公司 空气分离设备、用于借助于空气分离设备低温分离空气的方法和用于创建空气分离设备的方法
CN112469952B (zh) * 2018-08-22 2022-06-14 林德有限责任公司 空气分离设备、用于借助于空气分离设备低温分离空气的方法和用于创建空气分离设备的方法

Similar Documents

Publication Publication Date Title
EP3133361B1 (de) Destillationssäulen-system und anlage zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
EP1482266B1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP0669508B1 (de) Verfahren und Vorrichtung zur Gewinnung von reinem Argon
EP2841858A2 (de) Transportables paket mit einer coldbox,tieftemperatur-luftzerlegungsanlage und verfahren zum herstellen einer tieftemperatur-luftzerlegungsanlage
WO2016146246A1 (de) Anlage zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
WO2013041229A1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2986924B1 (de) Nachrüstbare vorrichtung zur tieftemperaturzerlegung von luft, nachrüstanlage und verfahren zum nachrüsten einer tieftemperatur-luftzerlegungsanlage
WO2020038608A1 (de) Luftzerlegungsanlage, verfahren zur tieftemperaturzerlegung von luft und verfahren zur erstellung einer luftzerlegungsanlage
EP3327393A1 (de) Verfahren und vorrichtung zur gewinnung eines hochreinsauerstoffproduktstroms durch tieftemperaturzerlegung von luft
EP1319913A1 (de) Vorrichtung und Verfahren zur Erzeugung gasförmigen Sauerstoffs unter erhöhtem Druck
DE102016002115A1 (de) Destillationssäulen-System und Verfahren zur Erzeugung von Sauerstoff durch Tieftemperaturzerlegung von Luft
EP3067648A1 (de) Destillationssäulen-system und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
EP3067650B1 (de) Anlage und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
EP2645032A1 (de) Transportables Paket mit einer Coldbox und Verfahren zum Herstellen einer Tieftemperatur-Luftzerlegungsanlage
EP2865978A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft und Tieftemperatur-Luftzerlegungsanlage
WO2016146238A1 (de) Destillationssäulen-system, anlage und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
EP2831524A2 (de) Transportables paket mit einer coldbox und verfahren zum herstellen einer tieftemperatur-luftzerlegungsanlage
WO2020038607A2 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
DE102013017590A1 (de) Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP3040665A1 (de) Destillationssäulen-system und anlage zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
DE102016003383A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102019001960A1 (de) Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
EP3910274A1 (de) Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungs anlage
WO2023030683A1 (de) Anlage und verfahren zur tieftemperaturzerlegung von luft
EP3163237A1 (de) Destillationssäulen-system und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170315