EP1306301B1 - Device for counteracting hub vortex cavitation of propellers and/or marine propulsion units - Google Patents

Device for counteracting hub vortex cavitation of propellers and/or marine propulsion units Download PDF

Info

Publication number
EP1306301B1
EP1306301B1 EP02090313A EP02090313A EP1306301B1 EP 1306301 B1 EP1306301 B1 EP 1306301B1 EP 02090313 A EP02090313 A EP 02090313A EP 02090313 A EP02090313 A EP 02090313A EP 1306301 B1 EP1306301 B1 EP 1306301B1
Authority
EP
European Patent Office
Prior art keywords
propeller
hub
vortex
blade
hvv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02090313A
Other languages
German (de)
French (fr)
Other versions
EP1306301A1 (en
Inventor
Reinhard Dr. Habil. Schulze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Marine Systems GmbH
Original Assignee
Howaldtswerke Deutsche Werft GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howaldtswerke Deutsche Werft GmbH filed Critical Howaldtswerke Deutsche Werft GmbH
Publication of EP1306301A1 publication Critical patent/EP1306301A1/en
Application granted granted Critical
Publication of EP1306301B1 publication Critical patent/EP1306301B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/18Propellers with means for diminishing cavitation, e.g. supercavitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • B63H2001/283Propeller hub caps with fins having a pitch different from pitch of propeller blades, or a helix hand opposed to the propellers' helix hand

Definitions

  • the invention relates to a device for counteracting flow vortices generated in the hub region of propellers and / or propeller drives in the surrounding fluid. It is a rotationally symmetric transition part (Hub Vortex Vane) between a propeller and the adjacent fluid in the jet direction (incompressible medium) on the same axis of rotation as the propeller.
  • the device can be carried out co-rotating with the propeller or fixed. Fields of application are primarily possible in shipbuilding and aircraft construction.
  • Propellers of propellers and propellers form at the hub ends as well as at the outer edges of the propeller blades energetic edge vortex.
  • the inner edge vortexes of all the propeller blades unite to form a hub vortex in the surrounding fluid in the jet direction behind the propeller, whereby the geometric location of the hub vortex coincides well with the rotational axis of the propeller. It is irrelevant for the formation of the hub vortex whether there is still a flow body behind the actual propeller or not.
  • Highly loaded propellers with relatively large hub diameters usually form stronger hub vertebrae than weakly loaded propellers with relatively small hub diameters.
  • the invention has for its object to develop a solution for a significant reduction in energy losses through the formation of the hub vortex, for a noise reduction by fluctuating phenomena in the hub vortex in Propellerabstrom and in particular for the noise reduction caused by the hub vortex cavitation phenomena (hub cavitation).
  • this object is solved by the features of claim 1.
  • Advantageous embodiments of the invention are contained in the accompanying claims 2 and 3.
  • the invention is based on a device for counteracting flow vortices generated in the hub region of propellers and / or propeller drives in the surrounding fluid, which has at least one blade, the curvature of the blade being directed counter to the curvature of the propeller.
  • the blade extends from a cone-shaped transition part via a cylindrical hub part to the re-cone-shaped divergent closure part, wherein the outer termination of the blade is effected by a cylindrical shell of 10 to 50% of the length of the blade surface.
  • a plurality of blades are distributed in meridional arrangement regularly on the circumference of the device.
  • the blades start in their radial extent in the axis of rotation of the propeller and do not exceed a limit radius (R G ) within which the tangential component (V T ) of the velocity (V W ) of the turbulent flow is greater than that by the propeller rotation caused peripheral speed (V U ).
  • the invention is based on the finding that by appropriate design or shaping of the device, the formation of vortices by the propeller in the hub environment can be counteracted by the pressure conditions in this environment are selectively changed by the design of the device. Since the geometric location of the hub vortex (inner peripheral vortex), in contrast to the tip vortex (outer peripheral vortex) is well known (propeller rotational axis) and independent of the propeller speed and ship speed, secondary measures can only counteract the formation of the hub vortex.
  • the hub vortex vane contains at least one blade 12 which during operation ensures a reduction of the hub vortex strength and the associated hub vortex cavitation.
  • An HVV can be retrofitted at any time. No other components need to be replaced; all other components of the drive system can be retained unchanged.
  • a plurality of regularly distributed on the circumference of the HVV blades 12 are provided, which are arranged approximately in meridionaler orientation.
  • the number of vanes is independent of the number of vanes and the outer diameter of the HVV is limited to about 0.16 of the propeller diameter (with co-rotating HVV).
  • the inner boundary of the blades is formed by a rotary body of the shape according to the reference numerals 9, 10, 11 and the outer boundary by a ring of the shape 13.
  • the special inner and outer boundaries serve to largely suppress possible secondary cavitation phenomena at the inner and outer ends of the blade (s).
  • the HVV according to the invention is applicable both to helical propellers operating as pressure propellers and to traction propellers.
  • FIGS. 2 to 4 show different application possibilities of the HVV.
  • the screw propeller operating according to FIG. 2 as a pressure propeller 1 with propeller hub 2 has a co-rotating HVV 6 which lies behind the propeller 1 in the jet direction.
  • the vortex forming behind the propeller 1 along the HVV 6 initially consists of several vortices of the various wings, which then very quickly form into a single vortex, leaving its trace in a narrow area along the axis of rotation of the propeller. This behavior is shown in FIG. 1.
  • the direction of rotation of this vortex coincides with the direction of rotation of the propeller and the Tangential velocities of the vortex are greatest inside (in the vortex eye potential-theoretic infinitely large) and decrease to the outside.
  • V T tangential velocities (V T ) of the fluid to the vortex eye (in the hub vortex identical to the propeller axis of rotation) towards a purely potential theory law
  • toughness-related influences (Oseen vortex) approximately with a suitable value for the rotation age t
  • the inner and outer termination of the blade surfaces is particularly advantageous over known solutions in terms of avoiding hub vortex.
  • the inner connection of the blade surfaces takes place from a cone-shaped transition part 9 from the pressure-side propeller hub end 2 via the cylindrical hub part 10 of the HVV to the again cone-shaped divergent closure part 11 of the hub of the HVV.
  • the outer conclusion of the Vane surfaces of the HVV is effected by a cylindrical shell 13 of 10 to 50% of the length of the blade surfaces.
  • the hydrodynamic benefit of dividing the hub of the HVV into the three sections 9-11 is the concentration of the individual (hub side) edge vortex portions of the propeller blades into a concentrated hub vortex, the diversion of the tangential velocity components throughout the blade 12 and the "defibering" of one possible residual vortex portion in the region of the divergent conical closing part 11.
  • the diameter of the cylindrical intermediate piece 10 should coincide with the diameter of the viscosity-induced vortex core (vortex age).
  • the hydrodynamic benefit of the cylindrical surface 13 around the blades is to prevent possible parasitic cavitation phenomena at the outer end of the blades.
  • FIGS. 6 and 7 Shown is the "downdraft" component 14 of the velocity distribution in the vicinity of the propeller blades 1 which is the main cause of the occurrence of the tangential speeds behind the propeller. Due to the generally existing increase in the pitch angle of the propeller blades to the axis of rotation and due to the eddy-induced increase in the tangential velocities, the curvatures of the blades 12 must change as a function of the radius, so that the flow lines are deflected as possible in the beam direction 15. In FIGS. 6 and 7, these ratios for different radii ratios are shown as cylinder developments for the radii ratios 0.10 and 0.15.
  • FIGS. 2 to 4 Possible applications and embodiments of the HVV are shown in FIGS. 2 to 4.
  • the co-rotating embodiment according to FIG. 2 is advantageous.
  • a fixed embodiment as outlined in Fig. 3 hydrodynamically advantageous.
  • a fixed embodiment at the end of the nacelle according to FIG. 4 advantageous.
  • HVV high thrust on a relatively small area and thus forced hub vortex. Due to the high loss, a high improvement can be achieved when using an inventively designed HVV.
  • HVV HVV
  • FIG. 8 For a pressure propeller arrangement according to FIG. 2, the achievable benefit by means of a HVV (“HVV”) is illustrated in FIG. 8 by means of measurements.
  • HVV HVV
  • Normal normal frequently used hub end
  • SA divergent hub processes

Abstract

The camber on a propeller blade (12) acts in the opposite direction to the camber on the propeller. The propeller blade spreads from a conical transitional part (9) over a cylindrical hub part (10) to again a conical divergent end part (11). The outer end part of the propeller blade is formed by a cylindrical outer casing (13) equaling 10 to 50 percent of the length of the propeller blade's surface area.

Description

Die Erfindung bezieht sich auf eine Vorrichtung zur Entgegenwirkung von im Nabenbereich von Propellern und/oder Propellerantrieben im umgebenden Fluid erzeugten Strömungswirbeln. Dabei handelt es sich um ein rotationssysmmetrisches Übergangsteil (Hub Vortex Vane) zwischen einem Propeller und dem in Strahlrichtung angrenzenden Fluid (inkompressibles Medium) auf derselben Rotationsachse wie der Propeller. In Abhängigkeit von der jeweiligen Ausführung des Propellerantriebes (Wellenanlage, Motorgondel, Getriebegondel) und möglicher weiterer Anhänge (z.B. Ruder oder Leiteinrichtungen) kann die Vorrichtung mitdrehend mit dem Propeller oder feststehend ausgeführt werden. Anwendungsbereiche sind vorrangig im Schiffund Flugzeugbau möglich.
Propeller von Schiffs- und Luftschrauben bilden an den nabenseitigen Enden ebenso wie an den äußeren Rändern der Propellerblätter energiereiche Randwirbel aus. Im Unterschied zu den äußeren Randwirbeln der einzelnen Propellerblätter vereinigen sich die inneren Randwirbel aller Propellerblätter zu einem Nabenwirbel im umgebenden Fluid in Strahlrichtung hinter dem Propeller, wobei der geometrische Ort des Nabenwirbels wohldefiniert mit der Drehachse des Propellers zusammenfällt. Dabei ist es für die Ausbildung des Nabenwirbels unerheblich, ob sich hinter dem eigentlichen Propeller noch ein Strömungskörper befindet oder nicht. Hochbelastete Propeller mit verhältnismäßig großen Nabendurchmessern bilden meist stärkere Nabenwirbel aus als schwach belastete Propeller mit verhältnismäßig kleinen Nabendurchmessern. In den Patentschriften US 4 212 586 [2], 1978, EP 255 136 [3], 1987, EP 758 606, 1996 [4] werden verschiedene Varianten zur Reduktion des Nabenwirbelanteils vorgestellt. In der Druckschrift [1] :"An investigation into effective boss cap designs to eliminate propeller hub vortex cavitation" von Atlar, M.; Patience, G. (Osterveld, M.W.C.; Tan, S.G. editors: Practical Design of Ships and Mobile Units,1998 Elsevier Science B.V.)
wird eine ausführliche Übersicht über den Stand der Technik gegeben. In [2] wird eine Variante der Reduktion des Nabenwirbels untersucht, bei die Abgase eines Verbrennungsmotors durch die Nabe geleitet werden, und so versucht wird, das sich durch den Nabenwirbel ausbildende Unterdruckgebiet zu eleminieren. In [3] werden in Interaktion mit jedem einzelnen Propellerblatt auf dem Nabenablauf zusätzliche Flügel angebracht, die einen nabenwirbelreduzierenden Effekt haben sollen.
Für die Geräuschminderung an Marineschiffen, insbesondere bei U-Booten, wurde bisher beim Propellerentwurf versucht durch besondere Steigungs- und Wölbungsverteilungen der Propeller der Bildung dieser Randwirbel entgegenzuwirken. Dies konnte aber nur mit deutlichen Wirkungsgradverlusten erreicht werden.
The invention relates to a device for counteracting flow vortices generated in the hub region of propellers and / or propeller drives in the surrounding fluid. It is a rotationally symmetric transition part (Hub Vortex Vane) between a propeller and the adjacent fluid in the jet direction (incompressible medium) on the same axis of rotation as the propeller. Depending on the particular design of the propeller drive (shaft system, engine nacelle, gear pod) and possible other attachments (eg rudders or vanes), the device can be carried out co-rotating with the propeller or fixed. Fields of application are primarily possible in shipbuilding and aircraft construction.
Propellers of propellers and propellers form at the hub ends as well as at the outer edges of the propeller blades energetic edge vortex. In contrast to the outer edge vortexes of the individual propeller blades, the inner edge vortexes of all the propeller blades unite to form a hub vortex in the surrounding fluid in the jet direction behind the propeller, whereby the geometric location of the hub vortex coincides well with the rotational axis of the propeller. It is irrelevant for the formation of the hub vortex whether there is still a flow body behind the actual propeller or not. Highly loaded propellers with relatively large hub diameters usually form stronger hub vertebrae than weakly loaded propellers with relatively small hub diameters. In the patents US 4,212,586 [2], 1978, EP 255 136 [3], 1987, EP 758 606, 1996 [4] various variants for the reduction of the hub vortex are presented. In the document [1]: "An investigation into effective boss cap designs to eliminate propeller stroke vortex cavitation" of Atlar, M .; Patience, G. (Osterveld, MWC; Tan, SG editors: Practical Design of Ships and Mobile Units, 1998 Elsevier Science BV)
a detailed overview of the state of the art is given. In [2], a variant of the reduction of the hub vortex is examined, in which the exhaust gases of an internal combustion engine are passed through the hub, and thus an attempt is made to eliminate the negative pressure area formed by the hub vortex. In [3], in interaction with each individual propeller blade on the hub run additional wings are attached, which should have a hub vortex reducing effect.
For noise reduction on naval ships, especially in submarines, the propeller design attempted to counteract the formation of these edge vortices by means of special pitch and vault distributions. However, this could only be achieved with significant efficiency losses.

Während bei den auf [2] basierenden relativ häufig im Sportbootsektor angewandten Methoden zur Reduktion der nachteiligen Einflüsse des Nabenwirbels lediglich die Druckverhältnisse im Umgebungsbereich der Propellernabe beeinflußt wurden, kann mit dieser Ausführungsform weder die eigentliche Wirbelstärke des Nabenwirbels noch eine Drehmomentreduktion erfolgen. Ein weiterer entscheidender Nachteil ist die starke zusätzliche Geräuschemission im Bereich des Propellers und das Aufrechterhalten der Nabenwirbelkavitation. Außerdem ist die Umweltverträglichkeit in Frage gestellt.
Bei den Nabenkappenflossen gemäß [3] befinden sich auf der Nabenablaufkappe des Propellers genau so viele Zusatzflügel wie der Propeller Blätter hat und stehen in direkter Wechselwirkung mit diesen. Sie sind (im Wesentlichen) außerhalb des später betrachteten Grenzradiusses angebracht (vgl. Fig. 1 bis Fig. 3 in [3]) und können ihre optimale Wirkung nur für einen relativ kleinen Fortschrittsgradbereich (Belastungsbereich) entfalten, da sich in Abhängigkeit vom Fortschrittsgrad die Positionen der inneren Randwirbel der einzelnen Propeller verändern. Trotz ihres wirbelreduzierenden Effektes können insbesondere bei höheren Belastungen noch parasitäre Kavitationserscheinungen mit ihrem nachteiligen Effekt auf die Geräuschabstrahlung auftreten.
While only the pressure conditions in the surrounding area of the propeller hub were influenced by the methods used to reduce the adverse influences of the hub vortex based on [2], which are relatively common in the recreational craft sector, neither the true vortex strength of the hub vortex nor a torque reduction can be achieved with this embodiment. Another crucial disadvantage is the strong additional noise emission in the area of the propeller and the maintenance of the hub cavitation. In addition, the environmental compatibility is in question.
In the hub cap fins according to [3] are on the hub cap of the propeller as many additional wings as the propeller leaves has and are in direct interaction with these. They are (essentially) located outside the limit radius considered later (see Fig. 1 to Fig. 3 in [3]) and can develop their optimal effect only for a relatively small degree of progression (load range), since, depending on the degree of progression Change the positions of the inner edge vortex of the individual propellers. Despite their vortex-reducing effect parasitic cavitation phenomena with their adverse effect on the noise emission can occur especially at higher loads.

In [4] sind die Leitflossen zur Reduktion des Nabenwirbels bereits innerhalb des später erklärten Grenzradiusses nach Konzentration der Randwirbel zu einem einheitlichen Nabenwirbel angebracht und ergeben in ihrer meist größeren Anzahl als die Propellerflügelzahl einen wirkungsgradsteigernden Effekt, können aber noch nicht vollständig die parasitären Kavitationserscheinungen mit ihrem nachteiligen Effekt auf die Geräuschabstrahlung unterdrücken.In [4] the fins for reducing the hub vortex are already attached within the later explained Grenzradiusses after concentration of the edge vortex to a uniform Hub vortex and result in their usually larger number than the Propellerflügelzahl an efficiency-enhancing effect, but can not fully complete the parasitic Kavitationserscheinungen with their suppress the adverse effect on the noise emission.

Der Erfindung liegt die Aufgabe zugrunde, eine Lösung für eine deutliche Reduzierung der Energieverluste durch die Ausbildung des Nabenwirbels, für eine Geräuschminderung durch fluktuierende Erscheinungen im Bereich des Nabenwirbels im Propellerabstrom und insbesondere für die Geräuschminderung der durch den Nabenwirbel verursachten Kavitationserscheinungen (Nabenwirbelkavitation) zu entwickeln.
Erfindungsgemäß wird diese Aufgabe durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausbildungen der Erfindung sind in den zugehörigen Ansprüchen 2 und 3 enthalten.
Die Erfindung geht aus von einer Vorrichtung zur Entgegenwirkung von im Nabenbereich von Propellern und/oder Propellerantrieben im umgebenden Fluid erzeugten Strömungswirbeln, die mindestens eine Schaufel aufweist, wobei die Wölbung der Schaufel der Wölbung des Propellers entgegengerichtet ist.
Die Schaufel verläuft erfindungsgemäßvon einem konusförmigen Übergangsteil über ein zylindrisches Nabenteil zum wieder konusförmigen divergierendem Abschlußteil, wobei der äußere Abschluss der Schaufel durch einen zylinderförmigen Mantel von 10 bis 50 % der Länge der Schaufelfläche erfolgt. Nach einem bevorzugten Merkmal sind mehrere Schaufeln in meridionaler Anordnung regelmäßig auf den Umfang der Vorrichtung verteilt.
Nach einem besonders bevorzugten Merkmal beginnen die Schaufeln in ihrer radialen Erstreckung in der Rotationsachse des Propellers und überschreiten einen Grenzradius (RG) nicht, innerhalb welchem die Tangentialkomponente (VT) der Geschwindigkeit (VW) der Wirbelströmung größer ist als die durch die Propellerdrehung verursachte Umfangsgeschwindigkeit (VU).
The invention has for its object to develop a solution for a significant reduction in energy losses through the formation of the hub vortex, for a noise reduction by fluctuating phenomena in the hub vortex in Propellerabstrom and in particular for the noise reduction caused by the hub vortex cavitation phenomena (hub cavitation).
According to the invention, this object is solved by the features of claim 1. Advantageous embodiments of the invention are contained in the accompanying claims 2 and 3.
The invention is based on a device for counteracting flow vortices generated in the hub region of propellers and / or propeller drives in the surrounding fluid, which has at least one blade, the curvature of the blade being directed counter to the curvature of the propeller.
According to the invention, the blade extends from a cone-shaped transition part via a cylindrical hub part to the re-cone-shaped divergent closure part, wherein the outer termination of the blade is effected by a cylindrical shell of 10 to 50% of the length of the blade surface. According to a preferred feature, a plurality of blades are distributed in meridional arrangement regularly on the circumference of the device.
According to a particularly preferred feature, the blades start in their radial extent in the axis of rotation of the propeller and do not exceed a limit radius (R G ) within which the tangential component (V T ) of the velocity (V W ) of the turbulent flow is greater than that by the propeller rotation caused peripheral speed (V U ).

Der Erfindung liegt die Erkenntnis zugrunde, dass durch entsprechende Ausgestaltung bzw. Formgebung der Vorrichtung, der Bildung von Wirbeln durch den Propeller in der Nabenumgebung entgegengewirkt werden kann, indem die Druckverhältnisse in dieser Umgebung durch die Ausgestaltung der Vorrichtung gezielt verändert werden.
Da der geometrische Ort des Nabenwirbels (innerer Randwirbel) im Gegensatz zum Spitzenwirbel (äußerer Randwirbel) wohlbekannt (Drehachse des Propellers) und unabhängig von der Propellerdrehzahl und Schiffsgeschwindigkeit ist, kann durch sekundäre Maßnahmen nur der Ausbildung des Nabenwirbels entgegengewirkt werden.
The invention is based on the finding that by appropriate design or shaping of the device, the formation of vortices by the propeller in the hub environment can be counteracted by the pressure conditions in this environment are selectively changed by the design of the device.
Since the geometric location of the hub vortex (inner peripheral vortex), in contrast to the tip vortex (outer peripheral vortex) is well known (propeller rotational axis) and independent of the propeller speed and ship speed, secondary measures can only counteract the formation of the hub vortex.

Durch die erfindungsgemäße Ausgestaltung der Vorrichtung kann zumindest im Nabenbereich aus den Wirbeln Energie zurückgewonnen und die Kavitationsausbildung weitestgehend verzögert werden, womit der Wirkungsgrad eines Schiffsantriebes nennenswert verbessert werden und die Ortungsreichweite eines Marineschiffes erheblich reduziert werden kann.
Die Vorteile der Erfindung beruhen auf der erfindungsgemäß erstmals realisierten Kombination von einer deutlichen wirkungsgradsteigernden Wirkung und einer weitestgehenden Vermeidung jeglicher Kavitationserscheinungen (mit ihrem nachteiligen Effekt auf die Geräuschabstrahlung). In Versuchsreihen zeigten sich im Vergleich zu anderen Typen von Nabenkappenflossen für die erfindungsgemäße Vorrichtung der höchste Wirkungsgradgewinn. Ein zusätzlicher Gewinn ergibt sich auf Seiten des Propellerentwurfes für kavitationsfreie Auslegungen, dass man keine wirkungsgradsenkende Maßnahmen zur Vermeidung von Nabenwirbelkavitation mehr ergreifen muß. D.h. bereits der entworfene Propeller hat selbst einen höheren Wirkungsgrad der noch durch die Energierückgewinnung durch die HVV aus den Nabenwirbelverlusten vergrößert wird.
As a result of the configuration of the device according to the invention, energy can be recovered from the vortices, at least in the hub region, and the cavitation formation can be largely delayed, whereby the efficiency of a ship propulsion system can be significantly improved and the detection range of a naval vessel can be considerably reduced.
The advantages of the invention are based on the inventively realized for the first time combination of a significant efficiency-enhancing effect and the greatest possible avoidance of any cavitation phenomena (with their adverse effect on the noise emission). In test series showed the highest efficiency gain compared to other types of Nabenkappenflossen for the device according to the invention. An additional benefit arises on the part of the propeller design for cavitation-free designs, that you no longer need to take measures to prevent Hubavigation cavitation. This means that even the designed propeller itself has a higher efficiency which is increased by the energy recovery by the HVV from the hub vortex losses.

Die Erfindung soll nachstehend anhand eines Ausführungsbeispiels näher erläutert werden. In den Zeichnungen zeigen die

Fig.1:
Wirbelbildung hinter einem Propeller entlang der eines Hub Vortex Vane (nachfolgend HVV genannt),
Fig. 2:
eine Applikation 6 einer HVV als Ersatz für einen normalen Nabenablauf bei dem die HVV mit dem Propeller mitrotiert,
Fig. 3:
eine HVV 6 ist am Ruderblatt 7 eines Schiffes fixiert,
Fig. 4:
die HVV ist am Ende einer Motorgondel/Pod/Getriebegehäuse 8 fest montiert,
Fig. 5:
schematische Darstellung einer möglichen Ausführung eines Hub Vortex Vane,
Fig.6:
schematische Darstellung der "Abwind"komponente der Geschwindigkeitsverteilung in der Nähe der Propellerblätter für die Radienverhältnisse 0.1 als Zylinderabwicklungen,
Fig.7:
schematische Darstellung der "Abwind"komponente der Geschwindigkeitsverteilung in der Nähe der Propellerblätter für die Radienverhältnisse 0.15 als Zylinderabwicklungen,
Fig.8:
Darstellung der Abhängigkeit des Gütegrades der Propulsion von der Reynoldszahl.
The invention will be explained below with reference to an embodiment. In the drawings show the
Fig.1:
Vortex formation behind a propeller along a Hub Vortex Vane (hereafter referred to as HVV),
Fig. 2:
an application 6 of a HVV as a replacement for a normal hub run in which the HVV rotates with the propeller,
3:
a HVV 6 is fixed to the rudder blade 7 of a ship,
4:
the HVV is permanently mounted at the end of a motor nacelle / pod / gearbox 8,
Fig. 5:
schematic representation of a possible embodiment of a Hub Vortex Vane,
Figure 6:
schematic representation of the "downwind" component of the velocity distribution in the vicinity of the propeller blades for the radii ratios 0.1 as cylinder developments,
Figure 7:
schematic representation of the "downwind" component of the velocity distribution in the vicinity of the propeller blades for the radii ratios 0.15 as cylinder developments,
Figure 8:
Representation of the dependence of the degree of quality of the Propulsion on the Reynolds number.

Gemäß einer fertigungstechnisch einfachen Ausgestaltung der erfindungsgemäßen Vorrichtung enthält der Hub Vortex Vane mindestens eine Schaufel 12 die im Betrieb für eine Reduktion der Nabenwirbelstärke und der damit verbundenen Nabenwirbelkavitation sorgt. Eine HVV ist jederzeit nachrüstbar, dazu sind keine weiteren Bauteile auszutauschen, vielmehr können alle übrigen Bauteile des Antriebssystems unverändert beibehalten werden.According to a production-technically simple embodiment of the device according to the invention, the hub vortex vane contains at least one blade 12 which during operation ensures a reduction of the hub vortex strength and the associated hub vortex cavitation. An HVV can be retrofitted at any time. No other components need to be replaced; all other components of the drive system can be retained unchanged.

Vorzugsweise sind mehrere, auf den Umfang der HVV regelmäßig verteilte Schaufeln 12 vorgesehen, die annähernd in meridionaler Ausrichtung angeordnet sind. Die Anzahl der Schaufeln ist unabhängig von der Propellerflügelzahl und der Außendurchmesser der HVV ist auf ungefähr 0.16 des Propellerdurchmnessers (bei mitrotierenden HVV) beschränkt. Die innere Begrenzung der Schaufeln wird durch einen Rotationskörper der Gestalt gemäß der Bezugszeichen 9, 10, 11 und die äußere Begrenzung durch einen Ring der Gestalt 13 gebildet. Die speziellen inneren und äußeren Begrenzungen dienen einer weitgehenden Unterdrückung möglicher sekundärer Kavitationserscheinungen am inneren und äußeren Ende der Schaufel(n).Preferably, a plurality of regularly distributed on the circumference of the HVV blades 12 are provided, which are arranged approximately in meridionaler orientation. The number of vanes is independent of the number of vanes and the outer diameter of the HVV is limited to about 0.16 of the propeller diameter (with co-rotating HVV). The inner boundary of the blades is formed by a rotary body of the shape according to the reference numerals 9, 10, 11 and the outer boundary by a ring of the shape 13. The special inner and outer boundaries serve to largely suppress possible secondary cavitation phenomena at the inner and outer ends of the blade (s).

Durch entgegengesetzte Ausrichtungen der starken Wölbung der Nabenschaufeln und der Wölbung der Propellerflügel ist es möglich die hohen Tangentialgeschwindigkeiten in Nabennähe so in Strahlrichtung umzulenken, dass ein zusätzlicher Schub erzeugt wird. Das dabei durch die Umlenkung auftretende Drehmoment ist dem den Propeller antreibenden Motormoment gleichgerichtet, was einer Leistungseinsparung gleichkommt. Außerdem führt die vollständige Beseitigung des Nabenwirbels zu einer Reduzierung der Schallabstrahlung.By opposite orientations of the strong curvature of the hub blades and the curvature of the propeller blades, it is possible to redirect the high tangential speeds near the hub so in the beam direction that an additional thrust is generated. The thereby occurring by the deflection torque is rectified to the propeller driving engine torque, which equates to a power saving. In addition, the complete elimination of the hub vortex leads to a reduction of the sound radiation.

Die erfindungsgemäße HVV ist sowohl bei Schraubenpropellern, die als Druckpropeller arbeiten, als auch bei Zugpropellern anwendbar.The HVV according to the invention is applicable both to helical propellers operating as pressure propellers and to traction propellers.

Besonders geeignet ist die Anwendung an Propellern für höhere Schubbelastungsgrade, z. B. an Propellern, die einen hohen Schub auf vergleichsweise geringer Fläche erzeugen und dabei zwangsweise eine verstärkte Nabenwirbelbildung verursachen. Hierbei ist das erreichbare Verbesserungspotential entsprechend groß.
Die Fig. 2 bis Fig. 4 zeigen unterschiedliche Applikationsmöglichkeiten der HVV auf.
Particularly suitable is the use of propellers for higher shear load levels, z. As on propellers, which produce a high thrust on a relatively small area and thereby forcibly cause an increased hub vortex formation. Here, the achievable improvement potential is correspondingly large.
FIGS. 2 to 4 show different application possibilities of the HVV.

Der gemäß Fig. 2 als Druckpropeller 1 mit Propellernabe 2 arbeitende Schraubenpropeller hat eine mitdrehende HVV 6, die in Strahlrichtung hinter dem Propeller 1 liegt. Der sich hinter dem Propeller 1 entlang der HVV 6 bildende Wirbel, besteht zunächst aus mehreren Wirbeln der verschiedenen Flügel, die sich dann sehr schnell zu einem einzigen Wirbel zusammenformen, der seine Spur in einem eng begrenzten Gebiet entlang der Drehachse des Propellers hinterlässt. Dieses Verhalten ist in der Fig. 1 dargestellt. Die Drehrichtung dieses Wirbels fällt dabei mit der Drehrichtung des Propellers zusammen und die Tangentialgeschwindigkeiten des Wirbels sind innen am größten (im Wirbelauge potentialtheoretisch unendlich groß) und nehmen nach außen ab.The screw propeller operating according to FIG. 2 as a pressure propeller 1 with propeller hub 2 has a co-rotating HVV 6 which lies behind the propeller 1 in the jet direction. The vortex forming behind the propeller 1 along the HVV 6 initially consists of several vortices of the various wings, which then very quickly form into a single vortex, leaving its trace in a narrow area along the axis of rotation of the propeller. This behavior is shown in FIG. 1. The direction of rotation of this vortex coincides with the direction of rotation of the propeller and the Tangential velocities of the vortex are greatest inside (in the vortex eye potential-theoretic infinitely large) and decrease to the outside.

Wegen der Zunahme der Tangentialgeschwindigkeiten (VT) des Fluids zum Wirbelauge (beim Nabenwirbel identisch mit Propellerdrehachse) hin nach einem rein potentialtheoretischen Gesetz VT = V T = Γ B 2 π r

Figure imgb0001
B Nabenwirbelstärke), bzw. unter Berücksichtigung zähigkeitsbedingter Einflüsse (Oseen-Wirbel) näherungsweise mit einem geeigneten Wert für das Wirbelalter t V T = Γ B 2 π r 1 - e - r 2 4 υ t
Figure imgb0002
treten innerhalb eines Grenzradiusses R G Γ B 2 π n
Figure imgb0003
(∼ 0.16 RP mit RP = 1/2 DP Propellerradius)Because of the increase of the tangential velocities (V T ) of the fluid to the vortex eye (in the hub vortex identical to the propeller axis of rotation) towards a purely potential theory law V T = V T = Γ B 2 π r
Figure imgb0001
(N B hub vortex strength), or taking into account toughness-related influences (Oseen vortex) approximately with a suitable value for the rotation age t V T = Γ B 2 π r 1 - e - r 2 4 υ t
Figure imgb0002
occur within a border radius R G Γ B 2 π n
Figure imgb0003
(~ 0.16 R P with R P = 1/2 D P propeller radius)

Tangentialgeschwindigkeiten VT auf, die deutlich höher sind als die Umfangsgeschwindigkeit VU eines mit der Propellerdrehzahl n rotierenden Punktes im Abstand r von der Drehachse. Bis zu dem Grenzradius RG ist ein Energierückgewinnung bei einer mitrotierenden HVV möglich. Für eine fest montierte HVV (vgl. Fig. 3 und Fig. 4) gibt es diesen Grenzradius nicht.
Die Schaufeln 12 der HVV erstrecken sich aus diesem Grund von der Propellerachse bis maximal dem Grenzradius RG, um die Wirkung der Schaufeln optimal zu nutzen. Die Wölbung der Schaufelflächen ist der der Propellerflächen entgegengesetzt. Auf die Weise werden die Wirbelströme in Strahlrichtung umgelenkt, wobei ein zusätzlicher Schub erzeugt wird. In dem dargestellten Ausführungsbeispiel sind acht, auf den Umfang der HVV verteilte Schaufeln (Fig. 5) gezeigt, die sich von dem der Propellernabe Pos. 2 in Fig. 1 zugekehrten Ende 9 bis zum Ende der HVV bei 11 aus Fig. 5 erstrecken.
Tangential speeds V T on, which are significantly higher than the peripheral speed V U of a rotating with the propeller speed n point at a distance r from the axis of rotation. Up to the limit radius R G energy recovery is possible with a co-rotating HVV. For a permanently mounted HVV (see Fig. 3 and Fig. 4) there is not this limit radius.
For this reason, the blades 12 of the HVV extend from the propeller axis to at most the limit radius R G in order to optimally utilize the effect of the blades. The curvature of the blade surfaces is opposite to that of the propeller surfaces. In this way, the eddy currents are deflected in the direction of the beam, with an additional thrust being generated. In the illustrated embodiment, eight blades (FIG. 5) distributed on the circumference of the HVV are shown, which extend from the end 9 facing the propeller hub 2 in FIG. 1 to the end of the HVV at 11 of FIG.

Besonders vorteilhaft gegenüber bekannten Lösungen hinsichtlich der Vermeidung von Nabenwirbeln ist der innere und äußere Abschluß der Schaufelflächen. Die innere Anbindung der Schaufelflächen erfolgt von einem konusförmigen Übergangsteil 9 vom druckseitigen Propellernabenende 2 über den zylindrischen Nabenteil 10 der HVV zum wieder konusförmigen divergierendem Abschlußteil 11 der Nabe der HVV. Der äußere Abschluß der Schaufelflächen der HVV erfolgt durch einen zylinderförmigen Mantel 13 von 10 bis 50 % der Länge der Schaufelflächen.Particularly advantageous over known solutions in terms of avoiding hub vortex is the inner and outer termination of the blade surfaces. The inner connection of the blade surfaces takes place from a cone-shaped transition part 9 from the pressure-side propeller hub end 2 via the cylindrical hub part 10 of the HVV to the again cone-shaped divergent closure part 11 of the hub of the HVV. The outer conclusion of the Vane surfaces of the HVV is effected by a cylindrical shell 13 of 10 to 50% of the length of the blade surfaces.

Der hydrodynamische Nutzen der Aufteilung der Nabe der HVV auf die drei Abschnitte 9 bis 11 besteht in der Konzentration der einzelnen (nabenseitigen) Randwirbelanteile der Propellerflügel zu einem konzentrierten Nabenwirbel, der Umlenkung der tangentialen Geschwindigkeitskomponenten im gesamten Bereich der Schaufeln 12 und der "Zerfaserung" eines möglichen Restwirbelanteils im Bereich des divergenten konischen Abschlußteils 11. Der Durchmesser des zylindrischen Zwischenstückes 10 sollte mit dem Durchmesser des zähigkeitsbedingten Wirbelkerns (Wirbelalter ) zusammenfallen. Der hydrodynamische Nutzen der zylindrischen Mantelfläche 13 um die Schaufeln besteht in einer Verhinderung möglicher parasitärer Kavitationserscheinungen am äußeren Ende der Schaufeln.The hydrodynamic benefit of dividing the hub of the HVV into the three sections 9-11 is the concentration of the individual (hub side) edge vortex portions of the propeller blades into a concentrated hub vortex, the diversion of the tangential velocity components throughout the blade 12 and the "defibering" of one possible residual vortex portion in the region of the divergent conical closing part 11. The diameter of the cylindrical intermediate piece 10 should coincide with the diameter of the viscosity-induced vortex core (vortex age). The hydrodynamic benefit of the cylindrical surface 13 around the blades is to prevent possible parasitic cavitation phenomena at the outer end of the blades.

Zur Darstellung der Ableitung der Form der Schaufelflächen dienen die Figuren 6 und 7. Dargestellt ist die "Abwind"komponente 14 der Geschwindigkeitsverteilung in der Nähe der Propellerblätter 1 die die wesentliche Ursache für das Zustandekommen der Tangentialgeschwindigkeiten hinter dem Propeller ist. Durch die im Allgemeinen vorhandene Zunahme des Steigungswinkel der Propellerblätter zur Drehachse zu und durch die wirbelbedingte Zunahme der Tangentialgeschwindigkeiten, müssen sich die Krümmungen der Schaufeln 12 in Abhängigkeit vom Radius verändern, so dass die Strömungslinien möglichst in Strahlrichtung 15 umgelenkt werden. In den Fig. 6 und Fig. 7 sind diese Verhältnisse für unterschiedliche Radienverhältnisse als Zylinderabwicklungen für die Radienverhältnisse 0.10 und 0.15 dargestellt.To illustrate the derivation of the shape of the blade surfaces serve Figures 6 and 7. Shown is the "downdraft" component 14 of the velocity distribution in the vicinity of the propeller blades 1 which is the main cause of the occurrence of the tangential speeds behind the propeller. Due to the generally existing increase in the pitch angle of the propeller blades to the axis of rotation and due to the eddy-induced increase in the tangential velocities, the curvatures of the blades 12 must change as a function of the radius, so that the flow lines are deflected as possible in the beam direction 15. In FIGS. 6 and 7, these ratios for different radii ratios are shown as cylinder developments for the radii ratios 0.10 and 0.15.

Anwendungsmöglichkeiten und Ausgestaltungsformen der HVV sind in Fig. 2 bis Fig. 4 gezeigt. Für Druckpropelleranordnungen in Verbindung mit normalen Wellenanlagen oder an Getriebegondeln oder an Pods oder an sonstigen Motorgondeln ist die mitdrehende Ausführungsform entsprechend Fig. 2 von Vorteil. Für Propelleranordnungen auf die hinter dem Propeller Anhänge wie z.B. ein Ruderplatt folgen, ist eine feststehende Ausführungsform wie in Fig. 3 skizziert, hydrodynamisch vorteilhaft. Für Zugpropelleranordnungen an Getriebgondeln, Pods oder Motorgondeln ist eine feststehende Ausführungsform am Ende der Gondel entsprechend Fig. 4 vorteilhaft.Possible applications and embodiments of the HVV are shown in FIGS. 2 to 4. For pressurized propeller arrangements in conjunction with normal shaft systems or on gear pods or on pods or other motor nacelles, the co-rotating embodiment according to FIG. 2 is advantageous. For propeller arrangements to follow behind the propeller attachments such as a rudder plate, a fixed embodiment as outlined in Fig. 3, hydrodynamically advantageous. For traction propeller arrangements Transmission gondolas, pods or motor nacelles is a fixed embodiment at the end of the nacelle according to FIG. 4 advantageous.

Die Anwendung von besonders ausgebildeten HVV ist insbesondere an Propellern für höhere Schubbelastungsgrade wichtig. Derartige Propeller erzeugen einen hohen Schub auf vergleichsweise geringer Fläche und damit zwangsweise verstärkte Nabenwirbel. Aufgrund des hohen Verlustes kann bei Anwendung einer erfindungsgemäß ausgebildeten HVV eine hohe Verbesserung erreicht werden.The use of specially trained HVV is particularly important on propellers for higher shear rates. Such propellers produce a high thrust on a relatively small area and thus forced hub vortex. Due to the high loss, a high improvement can be achieved when using an inventively designed HVV.

Für eine Druckpropelleranordnung gemäß der Figur 2 wird in Figur 8 der erreichbare Nutzen mittels einer HVV ("HVV") an Hand von Messungen dargestellt. Im Vergleich zu einem normalen häufig eingesetzten Nabenabschluß ("Normal") durch eine einfache konische Nabenkappe steigt der Wirkungsgradgewinn mit der Reynoldszahl deutlich an. Die Nabenwirbelkavitation konnte durch Anwendung vollständig unterdrückt werden. Werden zur Unterdrückung der Nabenwirbelkavitation wie sonst üblich divergente Nabenabläufe ("Divergent") eingesetzt steigt bei Verwendung der HVV der Wirkungsgradgewinn noch deutlich an.For a pressure propeller arrangement according to FIG. 2, the achievable benefit by means of a HVV ("HVV") is illustrated in FIG. 8 by means of measurements. Compared to a normal frequently used hub end ("Normal") by a simple conical hub cap, the efficiency gain increases significantly with the Reynolds number. The hub vertebra cavitation could be completely suppressed by application. If, as usual, divergent hub processes ("divergent") are used to suppress hub cavitation, the efficiency gain still increases significantly when HVV is used.

Liste der verwendeten BezugszeichenList of reference numbers used

1.1.
Propeller, Schiffschraube, LuftschraubePropeller, propeller, propeller
2.Second
Propellernabepropeller hub
3.Third
Antriebswelle des PropellersDrive shaft of the propeller
4.4th
AblaufhaubeTrap cover
5.5th
Nabenwirbelhub vortices
6.6th
Hub-Vortex-Vane (HVV)Hub Vortex Vane (HVV)
7.7th
Ruderblattrudder blade
8.8th.
Getriebegehäuse eines rundumsteuerbaren Antriebes, Motorgondel, Pod mit MotorGearbox of all-round drive, motor nacelle, pod with motor
9.9th
Übergangsteil Propeller-HVVTransition part propeller HVV
10.10th
Zylindrisches Nabenzwischenstück der HVVCylindrical hub joint of the HVV
11.11th
Konisches Abschlußteil der Nabe der HVVConical end part of the hub of the HVV
12.12th
Schaufeln, Flossen der HVVShovels, fins of HVV
13.13th
Zylindermantel der HVVCylinder shell HVV
14.14th
"Abwind" des Propellers an einem Flügel"Downwind" of the propeller on a wing
15.15th
Axiale StrahlrichtungAxial beam direction

Claims (3)

  1. Device for counteracting flow vortices that are generated in the surrounding fluid in the hub region of propellers and/or propeller drives, the said device including at least one blade, wherein the curvature of the blade is in the opposite direction to the curvature of the propeller, characterised in that the blade (12) extends from a conical transition portion (9) over a cylindrical hub portion (10) to the diverging end portion (11) that is once again conical, wherein the outer end portion of the blade (12) is formed by a cylindrical outer casing (13) that is between 10 and 50% of the length of the blade surface area.
  2. Device according to claim 1, characterised in that a plurality of blades (12) are distributed regularly on the periphery of the device disposed in a meridional manner.
  3. Device according to one of the abovementioned claims, characterised in that the radial extension of the blades begins in the axis of rotation of the propeller and does not exceed a boundary radius (RG), inside which the tangential component (VT) of the speed (VW) of the vortex is greater than the peripheral speed (VU) caused by the rotation of the propeller.
EP02090313A 2001-10-26 2002-09-04 Device for counteracting hub vortex cavitation of propellers and/or marine propulsion units Expired - Lifetime EP1306301B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10152977A DE10152977C1 (en) 2001-10-26 2001-10-26 Device for counteracting flow vortices generated in the hub area of propellers and / or propeller drives in the surrounding fluid
DE10152977 2001-10-26

Publications (2)

Publication Number Publication Date
EP1306301A1 EP1306301A1 (en) 2003-05-02
EP1306301B1 true EP1306301B1 (en) 2006-12-20

Family

ID=7703859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02090313A Expired - Lifetime EP1306301B1 (en) 2001-10-26 2002-09-04 Device for counteracting hub vortex cavitation of propellers and/or marine propulsion units

Country Status (7)

Country Link
EP (1) EP1306301B1 (en)
AT (1) ATE348752T1 (en)
DE (2) DE10152977C1 (en)
DK (1) DK1306301T3 (en)
ES (1) ES2276888T3 (en)
NO (1) NO336514B1 (en)
PT (1) PT1306301E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103803040A (en) * 2014-01-24 2014-05-21 中国船舶重工集团公司第七○二研究所 Propeller hub vortex eliminating wheel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011055515A1 (en) 2011-11-18 2013-05-23 Becker Marine Systems Gmbh & Co. Kg Propeller arrangement, in particular for watercraft

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4212586A (en) * 1978-12-19 1980-07-15 Aguiar Mervyn F Turboexhaust hub extension for a marine propeller
DE3037369A1 (en) * 1980-09-01 1982-03-11 Escher Wyss Gmbh, 7980 Ravensburg Low drive marine screw - has set of vanes around rear end of hub smoothing water flow
AU593670B2 (en) * 1986-07-31 1990-02-15 Mikado Propeller Co., Ltd. A screw propeller boss cap with fins
EP0758606A1 (en) * 1995-08-16 1997-02-19 Schottel-Werft Josef Becker GmbH & Co KG. Hub cap for ship propellers
US6244912B1 (en) * 2000-03-20 2001-06-12 Electric Boat Corporation Strut-mounted marine propulsion unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103803040A (en) * 2014-01-24 2014-05-21 中国船舶重工集团公司第七○二研究所 Propeller hub vortex eliminating wheel

Also Published As

Publication number Publication date
ATE348752T1 (en) 2007-01-15
DE50208997D1 (en) 2007-02-01
DE10152977C1 (en) 2003-05-08
ES2276888T3 (en) 2007-07-01
DK1306301T3 (en) 2007-04-10
PT1306301E (en) 2007-02-28
NO20025144D0 (en) 2002-10-25
NO20025144L (en) 2003-04-28
EP1306301A1 (en) 2003-05-02
NO336514B1 (en) 2015-09-14

Similar Documents

Publication Publication Date Title
EP2060485B1 (en) Rudder assembly for ships with high speeds with a cavitation reducing, twisted, in particular floating rudder
EP2060482B1 (en) Kort nozzle
WO1992005341A1 (en) Rotor
EP2277772B1 (en) Ducted propeller for ships
DE102011055515A1 (en) Propeller arrangement, in particular for watercraft
DE102009040471A1 (en) Mechanically propelled ship propulsor with high efficiency
EP2570341B1 (en) Propeller nozzle
DE202013101943U1 (en) Device for reducing the power requirement of a watercraft
EP0790921B1 (en) Watercraft drive with a rudder propeller
EP2281743B1 (en) Propeller engine pod
EP3164329B1 (en) Pod propulsion system with tractor propeller
EP1306301B1 (en) Device for counteracting hub vortex cavitation of propellers and/or marine propulsion units
DE3508203A1 (en) Marine propulsion
CH660770A5 (en) Turbine
DE102010022070A1 (en) Drive unit for watercraft, has driving element comprising drive blades that include convex outer surface edge and concave inner surface edge in cross-section, where drive blades are helically arranged at radial distance around shaft
EP2072392B1 (en) Boot drive screw
AT525998B1 (en) Drive unit for a watercraft with water guiding elements
EP1315653B1 (en) Driving mechanism for fast watercraft
EP2948366B1 (en) Ship propulsion arrangement
DE1808637A1 (en) Propeller system
EP0405137B1 (en) Propeller
EP4365072A1 (en) Nozzle propeller for propulsion systems
DE112012007098T5 (en) Ship propulsion device and ship provided with such a device
DE10206530A1 (en) Propulsion for water vehicles
DE102007045904A1 (en) Flow dynamic surface, particularly carrier, guiding and control surfaces of aircraft, water craft, drive propeller, fan, helicopter and wind-power plant, has free point arranged at surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030917

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOWALDTSWERKE-DEUTSCHE WERFT GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50208997

Country of ref document: DE

Date of ref document: 20070201

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070320

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070400525

Country of ref document: GR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070314

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2276888

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070921

BERE Be: lapsed

Owner name: HOWALDTSWERKE-DEUTSCHE WERFT G.M.B.H.

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208997

Country of ref document: DE

Representative=s name: WABLAT LANGE KARTHAUS ANWALTSSOZIETAET, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH

Effective date: 20131230

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208997

Country of ref document: DE

Representative=s name: WABLAT LANGE KARTHAUS ANWALTSSOZIETAET, DE

Effective date: 20140103

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208997

Country of ref document: DE

Effective date: 20140103

Ref country code: DE

Ref legal event code: R081

Ref document number: 50208997

Country of ref document: DE

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: HOWALDTSWERKE-DEUTSCHE WERFT GMBH, 24143 KIEL, DE

Effective date: 20140103

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208997

Country of ref document: DE

Representative=s name: PATENTANWAELTE BRESSEL UND PARTNER MBB, DE

Effective date: 20140103

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20140219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50208997

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208997

Country of ref document: DE

Representative=s name: PATENTANWAELTE BRESSEL UND PARTNER MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208997

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50208997

Country of ref document: DE

Effective date: 20150206

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50208997

Country of ref document: DE

Representative=s name: PATENTANWAELTE BRESSEL UND PARTNER MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50208997

Country of ref document: DE

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP MARINE SYSTEMS GMBH, 24143 KIEL, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20190903

Year of fee payment: 18

Ref country code: NL

Payment date: 20190918

Year of fee payment: 18

Ref country code: DK

Payment date: 20190920

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20190923

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190920

Year of fee payment: 18

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20200930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210922

Year of fee payment: 20

Ref country code: FR

Payment date: 20210921

Year of fee payment: 20

Ref country code: FI

Payment date: 20210921

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20210902

Year of fee payment: 20

Ref country code: SE

Payment date: 20210920

Year of fee payment: 20

Ref country code: DE

Payment date: 20210920

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211119

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50208997

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220928

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220905