EP1301698A1 - Procede pour la desulfuration d'au moins un catalyseur de stockage des nox place dans un conduit d'echappement d'un moteur a combustion interne - Google Patents

Procede pour la desulfuration d'au moins un catalyseur de stockage des nox place dans un conduit d'echappement d'un moteur a combustion interne

Info

Publication number
EP1301698A1
EP1301698A1 EP01949366A EP01949366A EP1301698A1 EP 1301698 A1 EP1301698 A1 EP 1301698A1 EP 01949366 A EP01949366 A EP 01949366A EP 01949366 A EP01949366 A EP 01949366A EP 1301698 A1 EP1301698 A1 EP 1301698A1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
phase
desulfurization
catalytic converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01949366A
Other languages
German (de)
English (en)
Other versions
EP1301698B1 (fr
Inventor
Ekkehard Pott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1301698A1 publication Critical patent/EP1301698A1/fr
Application granted granted Critical
Publication of EP1301698B1 publication Critical patent/EP1301698B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides

Definitions

  • the invention relates to a method for desulfurization of at least one NO x storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine with the features mentioned in the preamble of claim 1.
  • regeneration parameters such as a minimum temperature at the NO x storage catalytic converter and a working mode of the internal combustion engine, must be set with ⁇ ⁇ 1 during the desulfurization.
  • a proportion of reducing gas components such as CO, HC or H 2
  • a proportion of oxygen in the exhaust gas At ⁇ > 1 (lean atmosphere) the oxygen concentration is dominant and the NO x reduction is hindered.
  • SO 2 is formed during combustion of the internal combustion engine in a lean atmosphere by combustion of changing sulfur components in the fuel. Like the NO obs, this is absorbed by the NO x storage catalytic converter in a lean atmosphere. The SO 2 absorption reduces NOx - storage capacity of the NO x storage catalyst and leads to the formation of local inhomogeneities due to rapid sulfate grain formation. Such inhomogeneities offer a point of attack for corrosive processes which can result in permanent damage to the NO x storage catalytic converter.
  • a desulfurization time depends on the one hand on the level of the temperature, which can of course also be above a minimum temperature, and on the other hand on a position of the lambda value.
  • the desulfurization time is shortened with rising temperatures and / or falling lambda values.
  • H 2 S is predominantly formed at very low lambda values, while SO 2 is predominantly formed at lambda values just below 1.
  • the formation of H 2 S should be suppressed if possible, since this is odor-intensive.
  • complete conversion of the reducing gas components at very low lambda values is no longer possible, so that a breakthrough of pollutants cannot be avoided.
  • the object of the process according to the invention is to carry out the desulfurization taking account of time-varying catalyst states.
  • the formation of H 2 S should be largely suppressed and, on the other hand, the desulfurization time should be kept as short as possible, so that additional fuel consumption due to desulfurization can be reduced.
  • this object is achieved by the method for desulfurization with the features mentioned in claim 1.
  • the internal combustion engine is operated in a second phase after reaching the first threshold value in the rich working mode with ⁇ ⁇ 1 until a second threshold value for lambda or a measured or calculated H 2 S concentration downstream of the NO x storage catalytic converter occurs at the gas sensor Threshold (S s ) reached,
  • the desulfurization can be carried out with very short desulfurization times and with monitoring of the H 2 S emission.
  • the phases of rich and lean exposure to the NO x storage catalytic converter are controlled or regulated, so that a very precise adaptation to the actual catalytic converter conditions and conditions during the desulfurization can take place in this way.
  • the threshold value for the H 2 S concentration is set to a value ⁇ 100 ppm, preferably ⁇ 50 ppm, in particular ⁇ 10 pprn.
  • the H 2 S concentration can be determined with the aid of a sulfur-sensitive measuring device arranged downstream of the NO x storage catalytic converter based on a signal for a content of a sulfur-containing component in the exhaust gas.
  • Electrochemical cells can be used as the sensor element of such a sulfur-containing measuring device, in which an electromotive force is detected as a function of a sulfur concentration in the vicinity of the measuring electrodes. Systems are also conceivable in which resistances of the sensor element or its conductivity, which depend on the sulfur concentration, are measured via resistance cells.
  • Such sensor elements are known for example from DE 31 122 18 and EP 0 700 517 B1. Accordingly, a calculated or measured value for the H 2 S concentration can be used to determine an end of the time phase. It is also preferred to redefine the setpoints and / or the threshold values in each new desulfurization cycle (first and second phase). These can then be varied in particular as a function of a currently stored sulfur mass, a sulfur mass at the beginning of the desulfurization, a catalyst temperature, an oxygen storage capacity or a duration of the first and second phases. It is also conceivable to vary the temperature during the desulfurization. The measures shown allow the desulfurization to be adapted much more dynamically to the current state of the catalyst.
  • Figure 1 shows an arrangement of a catalyst system in an exhaust duct of an internal combustion engine
  • FIG. 2 shows a course of lambda in front of and behind a NO x .
  • FIG. 10 An arrangement of a catalytic converter system 10 in an exhaust duct 12 of an internal combustion engine 14 is shown schematically in FIG.
  • the catalytic converter system 10 comprises a NO x storage catalytic converter 16 and a pre-catalytic converter 18 as well as various temperature sensors 22.
  • gas sensors 19, 20, 21 in the exhaust gas duct 12, which are used to detect at least one gas component of an exhaust gas of the internal combustion engine and a signal corresponding to a content provide the gas component on the exhaust gas.
  • gas sensors 19, 20, 21 are known and can be, for example, NO x sensors or lambda sensors.
  • a sulfur-sensitive measuring device 23 can be arranged downstream of the NO x storage catalytic converter 16 in the exhaust gas duct 12 of the internal combustion engine 14 his.
  • the measuring device 23 enables a concentration determination of a sulfur-containing component, such as sulfur dioxide SO 2 . Based on the resistance or the conductivity of a sensor element of such a measuring device 23, the concentration of the sulfur-containing component can be deduced by comparison with a stored characteristic curve.
  • the H 2 S concentration can also be determined on the basis of empirical values with operating parameters of the internal combustion engine 14, such as, for example, the lambda value detected by the gas sensor 21. With a corresponding design of the measuring device 23, it is also conceivable to directly record the H 2 S concentration. The measured or calculated H 2 S concentration is then used for the further regulation of the desulfurization process shown here.
  • a working mode of the internal combustion engine 14 can be regulated by means of an engine control unit 24. If, for example, a working mode with ⁇ ⁇ 1 (rich atmosphere) is desired, an oxygen concentration in an intake manifold 26 must be reduced before a fuel-air mixture is combusted. This increases the proportion of reducing gas components in the exhaust gas compared to a proportion of oxygen. For example, such a working mode can take place by reducing a volume flow of intake air by means of a throttle valve 28 and by simultaneously supplying low-oxygen exhaust gas via an exhaust gas reflux valve 30.
  • absorbed SO 2 is stored in the form of sulfate in the NO x storage catalytic converter 16, although reversibility of this storage process, in contrast to the storage of NO x, requires significantly higher temperatures.
  • a minimum desulfurization temperature and a lambda value ⁇ 1 must therefore be available for desulfurization (regeneration parameters).
  • the efficiency can be detected with the aid of the gas sensor 21, which measures a NO x concentration behind the NO x storage catalytic converter 16. Based on empirical values or by measuring the NO x concentration upstream of the NO x storage catalytic converter 16 - for example with at least one of the gas sensors 19, 20 - the NO storage efficiency can be determined in this way and a conclusion can be drawn about a degree of sulfurization.
  • a current temperature (catalyst temperature) on the NO x storage catalytic converter 16 can be detected via the temperature sensors 22, while the current lambda value upstream of the NO x storage catalytic converter 16 can in turn be determined via at least one of the gas sensors 19 and / or 20.
  • a desulfurization time depends on the temperature at the NO x storage catalytic converter 16 and the position of the lambda value.
  • the desulfurization time decreases as the temperature rises and the lambda value falls.
  • the temperature can be significantly higher than the minimum temperature and can also be changed during the desulfurization according to a temperature model.
  • the desulfurization predominantly leads to H 2 S, while at lambda values just below 1, predominantly SO 2 is formed. Since H 2 S is odor-intensive, its formation in the process according to the invention should be largely suppressed. Another disadvantage is that at very low lambda values a complete conversion of the reducing gas components is no longer possible and so-called pollutant breakthroughs occur. Since the H 2 S formation is kinetically inhibited compared to the SO 2 formation, the H 2 S formation can be suppressed by periodically changing the working mode of the internal combustion engine.
  • FIG. 2 shows a course of a lambda value in front of and behind the NO x storage catalytic converter 16 as an example. Furthermore, FIG. 2 shows a course of the H 2 S concentration as it is measured with the aid of the measuring device 23 downstream of the NO x Storage catalyst 16 is detectable.
  • the course of the lambda value in front of the NO x storage catalytic converter 16 (solid line) can be monitored with the gas sensor 20, while the gas sensor 21 shows a course of the lambda value behind the NO x storage catalytic converter 16 (dashed line).
  • the internal combustion engine 14 After reaching the minimum temperature at a time T-
  • the internal combustion engine 14 is regulated during the phase t-] in such a way that a lambda value corresponding to a predefinable target value W m is established in front of the NO x storage catalytic converter 16.
  • the target value W m should be in a lambda range of 1.01 to 4.00, preferably 1.02 to 1.7, in particular 1.03 to 1.1.
  • a change in the lambda value behind the NO x storage catalytic converter 16 takes place with a time delay. This time delay is based not only on a dead volume of the NO x storage catalytic converter 16, but is also dependent on the removal and storage of the oxygen in the NO x storage catalytic converter 16.
  • the lambda value behind the NO x storage catalytic converter increases 16 steeply, the steepness of the increase being determinable by the height of the setpoint W m . The higher W m is, the steeper the region 40 rises.
  • the lambda value behind the NO x storage catalytic converter 16 reaches a first threshold value S m , whereupon the internal combustion engine 14 is set to the rich working mode.
  • a target value Wf for lambda is again determined in front of the NO x storage catalytic converter 16.
  • the lower part of FIG. 2 shows a curve of the H 2 S concentration downstream of the NO x storage catalytic converter 16.
  • the H 2 S concentration is close to zero.
  • the H 2 S concentration gradually increases (range 60) only when the change to rich operation begins (time T 2 ).
  • the increase is generally not linear, but exponential, as the kinetic factors in H 2 S formation fade into the background with increasing duration of the second phase t 2 .
  • a renewed change of the working mode can now be triggered by either the lambda value downstream of the NO x storage catalytic converter 16 reaching a rich threshold value S f or - as shown here - the H 2 S concentration exceeding a threshold value S s (time T 4 ) ,
  • the threshold value S s is usually set to a value of ⁇ 100 ppm, preferably ⁇ 50 ppm, in particular ⁇ 10 ppm.
  • the internal combustion engine 14 is again operated under a lean atmosphere, in accordance with the desired value W m . Due to the volume, the lambda value falls behind the NO x storage catalytic converter 16 for a short time in an area 52, and then subsequently increases again in an area 54. Conversely, the H 2 S concentration rises briefly (area 62), only to then drop again very quickly to very low emission values (area 64). A steepness of the increase in the area 54 is determined not only by the position of the setpoint W m , but also by an additional oxygen storage in the NO x storage catalytic converter 16. From a point in time T 5 , an oxygen storage capacity is exhausted and therefore the lambda value rises adjoining area 58 is steeper.
  • phase t 2 follows again, that is to say a change to a rich atmosphere is initiated (time T 6 ).
  • Phase t-] and phase t 2 repeat until a predeterminable degree of sulfurization is reached and then the internal combustion engine 14 is switched back to normal operation.
  • the setpoints W and / or the threshold values S f , S m , S s can be redefined in each new cycle of desulfurization (phases ti and t 2 ) depending on the catalyst state parameters.
  • Catalyst state parameters come into consideration here, such as a currently stored sulfur mass, a sulfur mass at the beginning of desulfurization, a catalyst temperature, an oxygen storage capacity or a duration of the preceding phases ti and t 2 .
  • the redefinition enables an optimal compromise to be found between the shortest possible desulfurization time on the one hand and the lowest possible pollutant emissions during the desulfurization on the other.

Abstract

L'invention concerne un procédé pour la désulfuration d'au moins un catalyseur de stockage des NOx placé dans un conduit d'échappement d'un moteur à combustion interne. Selon ce procédé, au moins un capteur de gaz est placé en aval du catalyseur de stockage des NOx et, lorsque la nécessité d'une désulfuration a été constatée, une température minimale au niveau du catalyseur de stockage des NOx et un mode de fonctionnement riche du moteur à combustion interne avec λ < 1 sont réglés par influence au moins temporaire d'au moins un paramètre de fonctionnement du moteur à combustion interne. Selon l'invention, a) le moteur à combustion interne (14) est d'abord exploité, dans une première phase (t1) après constat de la nécessité de désulfuration et en présence de la température minimale, en mode de fonctionnement pauvre avec λ > 1 jusqu'à ce qu'une première valeur de seuil (Sm) pour lambda soit atteinte au niveau du capteur de gaz (21), b) le moteur à combustion interne (14) est ensuite exploité dans une deuxième phase (t2) après atteinte de la première valeur de seuil (Sm) en mode de fonctionnement riche avec λ < 1 jusqu'à ce que, au niveau du capteur de gaz (21), une deuxième valeur de seuil (Sf) pour lambda soit atteinte ou qu'une concentration mesurée ou calculée en H2S atteigne une valeur de seuil (Ss) en aval du catalyseur de stockage des NOx, c) la première phase (t1) puis la deuxième phase (t2) sont répétées jusqu'à ce qu'un degré de sulfuration prédéfini soit atteint.
EP01949366A 2000-07-05 2001-05-29 Procede pour la desulfuration d'au moins un catalyseur de stockage des nox place dans un conduit d'echappement d'un moteur a combustion interne Expired - Lifetime EP1301698B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10032561 2000-07-05
DE2000132561 DE10032561A1 (de) 2000-07-05 2000-07-05 Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator
PCT/EP2001/006098 WO2002002921A1 (fr) 2000-07-05 2001-05-29 Procede pour la desulfuration d'au moins un catalyseur de stockage des nox place dans un conduit d'echappement d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1301698A1 true EP1301698A1 (fr) 2003-04-16
EP1301698B1 EP1301698B1 (fr) 2007-04-18

Family

ID=7647803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01949366A Expired - Lifetime EP1301698B1 (fr) 2000-07-05 2001-05-29 Procede pour la desulfuration d'au moins un catalyseur de stockage des nox place dans un conduit d'echappement d'un moteur a combustion interne

Country Status (3)

Country Link
EP (1) EP1301698B1 (fr)
DE (2) DE10032561A1 (fr)
WO (1) WO2002002921A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10238771B4 (de) * 2002-08-23 2009-01-22 Umicore Ag & Co. Kg Verfahren zur Desulfatisierung eines Stickoxid-Speicherkatalysators
GB2396122A (en) * 2002-12-12 2004-06-16 Ford Global Tech Inc A method for desulphating NOx traps and a method for sulphating an internal combustion engine emission control system under test conditions.
DE10321873A1 (de) * 2003-05-15 2004-12-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine, in deren Abgasbereich ein Katalysator angeordnet ist
DE10349854B4 (de) * 2003-10-22 2012-08-23 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
DE102004002292B4 (de) * 2004-01-16 2010-08-12 Audi Ag Abgaskatalysator und Verfahren zum Betreiben einer Abgaskatalysatorvorrichtung
FR2891864B1 (fr) 2006-11-15 2009-09-18 Peugeot Citroen Automobiles Sa Ligne d'echappement pour moteur a combustion interne, du type comportant un pain catalytique renfermant un piege a nox, et utilisation dudit pain.
CN103025171B (zh) * 2010-05-18 2016-03-02 雅培制药有限公司 具有延长的贮存期的超声处理的营养产品
FR2970741A3 (fr) * 2011-01-24 2012-07-27 Renault Sa Procede d'injection de carburant dans un moteur a combustion interne
KR101684540B1 (ko) 2015-08-25 2016-12-08 현대자동차 주식회사 린 녹스 트랩과 선택적 환원 촉매를 구비한 배기 가스 정화 장치에서 린 녹스 트랩의 탈황 방법 및 배기 가스 정화 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE312218C (fr)
EP0244127A1 (fr) * 1986-04-16 1987-11-04 Johnson Matthey, Inc., Procédé pour le réglage catalytique des gaz déchappement de véhicules automobiles
JP3423953B2 (ja) 1993-05-20 2003-07-07 エクソンモービル リサーチ アンド エンジニアリング カンパニー 硫黄活性度測定方法及びセンサ
GB2324052A (en) * 1997-04-11 1998-10-14 Ford Motor Co Heating of a storage trap
DE19816175A1 (de) * 1998-04-14 1999-10-21 Degussa Verfahren zur Überprüfung der Funktionstüchtigkeit eines Stickoxid-Speicherkatalysators
EP1102921B1 (fr) * 1998-08-07 2002-06-05 Volkswagen Aktiengesellschaft PROCEDE DE DESULFATATION D'UN CATALYSEUR ACCUMULATEUR DE NO x? EN FONCTION DE LA TEMPERATURE ET DE LA VALEUR LAMBDA
DE19926146A1 (de) * 1999-06-09 2000-12-14 Volkswagen Ag Verfahren zur Initiierung und Überwachung einer Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator
DE19961165A1 (de) * 1999-12-17 2001-08-02 Volkswagen Ag Verfahren zur Entschwefelung eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Speicherkatalysators

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0202921A1 *

Also Published As

Publication number Publication date
EP1301698B1 (fr) 2007-04-18
DE10032561A1 (de) 2002-07-11
DE50112377D1 (de) 2007-05-31
WO2002002921A1 (fr) 2002-01-10

Similar Documents

Publication Publication Date Title
EP1183453B1 (fr) PROCEDE DE DESULFURATION D&#39;AU MOINS UN CATALYSEUR ACCUMULANT DU NOx, AGENCE DANS UN CONDUIT DE GAZ D&#39;ECHAPPEMENT D&#39;UN MOTEUR A COMBUSTION INTERNE
EP1250524B1 (fr) PROCEDE DE DESULFURATION D&#39;UN CATALYSEUR ACCUMULATEUR DE NOx MONTE DANS LE CANAL POUR GAZ D&#39;ECHAPPEMENT D&#39;UN MOTEUR A COMBUSTION INTERNE
DE60104737T2 (de) Abgasreinigungsgerät und -verfahren, für eine Brennkraftmaschine
DE69925172T2 (de) Abgasreinigungvorrichtung für eine Brennkraftmaschine
DE10139992B4 (de) Verfahren zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase
DE10243370B4 (de) Verfahren zum Reinigen von Abgas einer Brennkraftmaschine
EP1272744B1 (fr) DISPOSITIF ET PROCEDE POUR DETERMINER LA NECESSITE DE REGENERATION D&#39;UN CATALYSEUR ACCUMULATEUR DE NOx
EP1301698B1 (fr) Procede pour la desulfuration d&#39;au moins un catalyseur de stockage des nox place dans un conduit d&#39;echappement d&#39;un moteur a combustion interne
DE102006017300B4 (de) Verfahren zur Regeneration von zumindest einer oxidierend arbeitenden Abgasreinigungseinrichtung und zumindest einer reduzierend arbeitenden Abgasreinigungseinrichtung sowie Vorrichtung zum Durchführen des Verfahrens
DE102017115399A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE10003903B4 (de) Vorrichtung und Verfahren zur Steuerung eines Betriebes eines Mehrzylindermotors für Kraftfahrzeuge mit einer mehrflutigen Abgasreinigungsanlage
EP1252420B1 (fr) Dispositif et procede de commande d&#39;une regeneration de nox d&#39;un catalyseur accumulateur de nox
DE10032560B4 (de) Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator
DE102006035350B4 (de) Abgasreinigungsvorrichtung
EP1370758B1 (fr) Procede permettant de commander l&#39;operation de chauffage d&#39;un systeme catalytique
DE19735011B4 (de) Verbrennungsmotor mit Abgaskatalysator und Verfahren zum Betreiben eines Verbrennungsmotors
DE10115962B4 (de) Verfahren zur Entschwefelung eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE10010031B4 (de) Verfahren und Vorrichtung zur Durchführung einer NOx-Regeneration eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE10305451A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10130053B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines NOX-Speicherkatalysators
DE10034143A1 (de) Verfahren zur Adaption eines Katalysatortemperatur-Sollbereichs für einen NOx-Speicherkatalysator
DE10123148A1 (de) Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
DE10114523B4 (de) Verfahren zur Steuerung einer NOx-Regeneration eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE10347446B4 (de) Verfahren zur Aufheizung und zur Desulfatisierung eines Hauptkatalysators einer mehrflutigen Abgaslage einer mehrzylindrigen Brennkraftmaschine eines Fahrzeugs, insbesondere eines Kraftfahrzeugs
DE10046249B4 (de) HC-sensitive Messeinrichtung und Verfahren zur Steuerung derselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030205

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 50112377

Country of ref document: DE

Date of ref document: 20070531

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070729

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200527

Year of fee payment: 20

Ref country code: DE

Payment date: 20200531

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200528

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50112377

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210528