EP1297615A1 - Procede pour faire fonctionner un moteur a courant continu sans balais - Google Patents

Procede pour faire fonctionner un moteur a courant continu sans balais

Info

Publication number
EP1297615A1
EP1297615A1 EP01960409A EP01960409A EP1297615A1 EP 1297615 A1 EP1297615 A1 EP 1297615A1 EP 01960409 A EP01960409 A EP 01960409A EP 01960409 A EP01960409 A EP 01960409A EP 1297615 A1 EP1297615 A1 EP 1297615A1
Authority
EP
European Patent Office
Prior art keywords
motor
commutation
voltage
speed
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01960409A
Other languages
German (de)
English (en)
Inventor
Hans-Peter Feustel
Reinhard Orthmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conti Temic Microelectronic GmbH
Original Assignee
DaimlerChrysler AG
Conti Temic Microelectronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG, Conti Temic Microelectronic GmbH filed Critical DaimlerChrysler AG
Publication of EP1297615A1 publication Critical patent/EP1297615A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • Electric drive units are used in a wide range of applications; For example, various moving parts of the motor vehicle in motor vehicles can be adjusted by means of electrical drive units (e.g. seats,
  • Electrical drive units consist of an electric motor for generating and providing electrical drive power and a control module for controlling and monitoring the electric motor (for example for regulating the speed and power of the electric motor).
  • the electric motors can be used as
  • AC motors AC motors
  • DC motors DC motors
  • the commutation of the motor trains is linked to a position detection, i.e. If the commutation is carried out depending on the position (position) of the rotor that is measured directly or determined from other motor sizes, these are treated like electronically commutated (self-commutating) DC motors (EC-DC-
  • Commutated synchronous motors of this type are referred to as brushless DC motors.
  • the amplitude of the input voltage (DC voltage) supplied to the individual windings of the synchronous motor during commutation of the motor strands is varied in order to vary the speed of the synchronous motor.
  • the amplitude of the input voltage is generally varied by means of a clocked operation (for example, realized by means of pulse width modulation) of the commutation switches which carry out the commutation of the motor trains (in particular designed as commutation transistors); ie the commutation switches (commutation transistors) are used both for commutation of the motor branches and for clocking the input voltage and thus for adjusting the
  • the invention has for its object to provide a method for operating a brushless DC motor according to the preamble of claim 1, with which a simple, reliable and inexpensive operation of the brushless DC motor is made possible.
  • the synchronous motor is exactly the currently required motor voltage as the input voltage supplied (the difference between the motor voltage and the maximum input voltage is converted into power loss) - and after reaching a speed threshold value dependent on a predetermined voltage threshold value for the input voltage in a second speed range following the first speed range towards higher speeds a shift of the vectors (field orientation) of the motor voltage is regulated - ie the voltage angle between the DC voltage of the brushless DC motor applied to the respective motor winding of the synchronous motor (the "outer” motor voltage of the synchronous motor or motor terminal voltage) and the voltage on the rotor of the synchronous motor (the “inner” motor voltage of the synchronous motor or EMF or magnet wheel voltage) are rotated.
  • the input voltage supplied to vary the speed of the synchronous motor (this is applied to the commutation switches or commutation transistors for commutating the motor lines - the synchronous motor) is continuously changed in the first speed range by means of linear control by adjusting the amplitude of the motor terminal voltage and in the second speed range by means of vector control Regulated via the field orientation by increasing the effective motor current of the synchronous motor and thus by increasing the motor torque, in particular the first speed range is regulated with the linear control of the input voltage (or motor terminal voltage) up to such a speed
  • Threshold value specifying voltage threshold extends, at which the synchronous motor reaches its maximum motor terminal voltage (ie at which the motor terminal voltage of the synchronous motor becomes equal to the maximum input voltage of the brushless DC motor, for example equal to the operating voltage of the brushless DC motor), so that in the second speed range at maximum and constant amplitude of the motor terminal voltage of the synchronous motor by vector control increases the effective motor current of the synchronous motor and thus the engine torque is increased.
  • suitable dimensioning of the brushless DC motor or the synchronous motor preferably a synchronous motor with a high number of windings that reaches its maximum motor terminal voltage even at low speeds, a second speed range that is large compared to the first speed range (that is, the one specified by the voltage threshold value) is obtained Speed threshold is low).
  • the generation of a regulated DC voltage as an input voltage in the first speed range can either be realized by a linear regulation of the commutation switches (commutation transistors) itself or by a linear control device of the control module of the electrical drive unit connected upstream of the brushless DC motor; ie the control element is either designed as a separate control device upstream of the brushless DC motor or the commutation switches (commutation transistors) themselves take over its function.
  • the linear control of the input voltage in the first speed range is preferably carried out by a certain number of linearly controlled commutation switches (commutation transistors), with only one of the commutation switches (commutation transistors) used in this control phase for commutating the motor trains being controlled linearly or all in
  • This activation phase of the synchronous motor used to commutate the motor strands can be regulated linearly (commutation transistors) (usually with a brushless DC motor, two commutation switches or commutation transistors are provided for commutation of the motor strands in each activation phase of the synchronous motor). Since the first speed range extends only up to relatively low speeds of the synchronous motor (here is the
  • the power loss is the product of the voltage difference between the input voltage of the brushless DC motor and the motor voltage (motor terminal voltage) of the synchronous motor on the one hand and the motor current of the control element (either the upstream linear control device or the commutation switch itself)
  • Synchronous motor on the other hand also low.
  • the linear control takes place in an area with low motor currents of the synchronous motor (in particular when using the brushless DC motor in fans or pumps) and therefore also low power losses, so that no disruptive effects on the operation of the brushless DC motor occur and no oversized or additional components required for high power losses are required.
  • the commutation switches the commutation transistors
  • the commutation transistors are not operated in a clocked manner (not in switching operation) and consequently. Little or no interference in the supply line for supplying the input voltage occurs, EMC measures can be omitted or severely restricted.
  • the commutation switches themselves are controlled linearly in the first speed range, no additional power components or actuators are required for the linear control; since only in the first speed range due to the low motor currents of the synchronous motor. A low power loss occurs, "commercially available" commutation switches (commutation transistors) can be used.
  • FIG. 1 shows a schematic block diagram of the essential components of the brushless DC motor
  • FIG. 2 shows the time course of the motor voltage and motor current of the synchronous motor of the brushless DC motor when commutating or controlling the motor windings of the synchronous motor
  • FIG. 3 shows the voltage-dependent course of the speed of the Brushless DC motor synchronous motor.
  • the brushless DC motor 1 is supplied with the variable input voltage as DC voltage via the supply line 11 to vary the speed n M of the synchronous motor 10, the input voltage being obtained from the supply voltage U B of the brushless DC motor 1 (e.g. the supply voltage is U B 1 3.5 V).
  • the brushless DC motor 1 has six commutation transistors 3 to 8 operated in a bridge circuit as commutation switches, with two commutation transistors 3, 4; for each activation phase for commutation of the motor strands of the synchronous motor 10. 5, 6; 7, 8 are provided.
  • Synchronous motor 10 evaluated for example, three Hall sensors generating a digital output signal are provided as position sensors 9; the output signal of the position sensor 9 is carried out by a commutation logic 2 which, depending on the current motor position of the synchronous motor 1 0, drives the commutation transistors 3 to 8 and thus switches the motor windings of the synchronous motor 10 on (commutates).
  • a commutation logic 2 which, depending on the current motor position of the synchronous motor 1 0, drives the commutation transistors 3 to 8 and thus switches the motor windings of the synchronous motor 10 on (commutates).
  • FIG. 2 shows the time sequence of the commutation of the synchronous motor 10, which is driven by three-phase current in three control phases, for the motor voltage (the motor terminal voltage UM applied to the windings of the synchronous motor 10) and the motor current of the synchronous motor 10.
  • the switching on (commutation) of the motor lines of the synchronous motor 10 is carried out cyclically each time the synchronous motor 10 is rotated by 60 ° (detection by position encoder 9), the one specified by the commutation logic 2 and realized by switching the commutation transistors 3 to 8
  • Commutation time for switching on the motor current in the respective motor train of the synchronous motor 10 (times t1, t3, t5, t7, t9, ... for the positive half-wave of the motor terminal voltage U and times t2, t4, t ⁇ , t8, ... for the negative half-wave the motor terminal voltage UM) is then carried out when the motor terminal voltage U M has reached its respective maximum value (and since ⁇ corresponds approximately to a DC voltage); this creates a ripple in the current profile of the sum of the motor currents of the individual motor lines. Detected total current avoided, so that there is approximately a direct current in the supply line 1 1 (and therefore no current peaks occur).
  • FIG. 3 shows the course of the motor voltage (motor terminal voltage UM) as a function of the speed n 'of the synchronous motor 10.
  • Speed n M in the first speed range 1 2 up to the speed threshold value n s the motor terminal voltage UM applied to the motor windings of the synchronous motor 10 is changed by a linear control (continuously), in the second speed range 1 3 from the speed threshold value n s up to the nominal value n N the speed n ⁇ of the synchronous motor 10 is the internal motor voltage or pole wheel voltage or EMF at constant motor terminal voltage U by regulating the field orientation; that is, in the first speed range 1 2, the speed n M of the synchronous motor 1 0 is a function of the motor terminal voltage UM, in the second speed range 13 a function of the voltage angle between constant motor terminal voltage U and the internal motor voltage (pole wheel voltage or EMF) of the synchronous motor 10.
  • the speed threshold value n s is defined as the speed n M of the synchronous motor 10 at which the input voltage U. and thus the motor terminal voltage UM of the synchronous motor 10 reaches the value of the supply voltage UB, that is to say the motor terminal voltage U reaches its maximum value U MA *. takes.
  • this maximum value U MA of the motor terminal voltage UM is already reached at low speeds n M of the synchronous motor 10 - that is, the speed threshold value n s is correspondingly low, so that the second speed range 13 also regulates the field orientation low speeds n M of the synchronous motor 10 begins.
  • the speed n M of the synchronous motor 10 should be varied in a speed range between 400 rpm and 2400 rpm (nominal speed n N ); at the nominal speed n N of ex.
  • the defined power of the synchronous motor 10 or of the brushless DC motor 1 is output at 2400 rpm.
  • the synchronous motor 10 has, for example. a maximum power consumption of 400 W with a motor terminal voltage UM of 1 3.5 V and thus a maximum motor current of 30 A, which is divided by commutation using 6 commutation transistors 3 to 8 on the motor windings of the synchronous motor 1 0. Due to the non-linear load characteristic of the fan, the maximum power loss (e.g. approx. 45 W) occurs at 70% of the nominal speed n N (e.g. 1 680 rpm) in linear control.
  • n N e.g. 1 680 rpm
  • the maximum power loss of each of the commutation transistors is 3 to 8 7.5 W (if all 6 commutation transistors act as a control element) or 1 5 W (if only 3 commutation transistors act as a control element).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

L'objectif de l'invention est de varier de façon simple et sans panne le régime du moteur synchrone d'un moteur à courant continu sans balais, alimenté d'une tension d'entrée de courant continu pour la commutation des phases du moteur. Cet objectif est atteint par le fait que, dans une première plage de régime et jusqu'à une valeur seuil du régime, la tension d'entrée est soumise à une régulation linéaire, et que, dans une deuxième plage de régime faisant suite à la première, avec des régimes plus élevés, la tension d'entrée est soumise à une régulation vectorielle. L'invention concerne également un procédé pour varier le régime d'un moteur de ventilateur.
EP01960409A 2000-07-06 2001-06-28 Procede pour faire fonctionner un moteur a courant continu sans balais Withdrawn EP1297615A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10032896 2000-07-06
DE10032896A DE10032896A1 (de) 2000-07-06 2000-07-06 Verfahren zum Betrieb eines bürstenlosen Gleichstrommotors
PCT/EP2001/007384 WO2002003538A1 (fr) 2000-07-06 2001-06-28 Procede pour faire fonctionner un moteur a courant continu sans balais

Publications (1)

Publication Number Publication Date
EP1297615A1 true EP1297615A1 (fr) 2003-04-02

Family

ID=7648023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01960409A Withdrawn EP1297615A1 (fr) 2000-07-06 2001-06-28 Procede pour faire fonctionner un moteur a courant continu sans balais

Country Status (4)

Country Link
US (1) US6838842B2 (fr)
EP (1) EP1297615A1 (fr)
DE (1) DE10032896A1 (fr)
WO (1) WO2002003538A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975082B2 (en) * 2003-03-03 2005-12-13 Crain Stephen G Variable speed drive with a synchronous electric motor
DE102006007610A1 (de) 2006-02-14 2007-08-16 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Antriebseinrichtung für eine Verstelleinrichtung zum Verstellen eines Fahrzeugteils und Verfahren zum Betrieb einer Antriebseinrichtung
US20090058330A1 (en) * 2007-08-30 2009-03-05 Seagate Technology Llc Driving a multi-phased motor
DE102008029910C5 (de) * 2008-06-24 2020-03-05 BSH Hausgeräte GmbH Verfahren zur Lastzustandserkennung einer Pumpe
US10821591B2 (en) 2012-11-13 2020-11-03 Milwaukee Electric Tool Corporation High-power cordless, hand-held power tool including a brushless direct current motor
FR3013534B1 (fr) * 2013-11-20 2017-04-21 Valeo Systemes Thermiques Alimentation d'un moteur electrique
CN105007010B (zh) * 2015-08-04 2017-08-01 西北工业大学 一种水下航行器用大功率双轴对转无刷直流电机调速方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359674A (en) * 1979-02-22 1982-11-16 Matsushita Electric Industrial Co., Ltd. Control system for a DC motor
US4751438A (en) * 1985-12-18 1988-06-14 Sundstrand Corporation Brushless DC motor control
US4988273A (en) * 1989-06-23 1991-01-29 Cincinnati Milacron Inc. Injection molding machines having a brushless DC drive system
DE4142274C2 (de) * 1991-12-20 2002-03-28 Bosch Gmbh Robert Schaltungsanordnung zum Betreiben eines Mehrphasen-Synchronmotors an einem Gleichspannungsnetz
DE4310260C1 (de) * 1993-03-30 1994-09-08 Bosch Gmbh Robert Elektronische Steuervorrichtung für einen elektronisch kommutierten Gleichstrommotor (EC-Motor)
KR0130537B1 (ko) * 1994-05-31 1998-04-09 이대원 토크리플을 최소화시킨 브러쉬없는 직류전동기 제어시스템
JP3333793B2 (ja) * 1994-09-22 2002-10-15 サンデン株式会社 ブラシレスモータ装置
US5825972A (en) * 1995-02-17 1998-10-20 Dell Usa, L.P. Direct current fan motor speed controller
JPH08275599A (ja) * 1995-03-30 1996-10-18 Meidensha Corp 永久磁石同期電動機の制御方法
JP3489071B2 (ja) * 1997-02-07 2004-01-19 株式会社ゼクセルヴァレオクライメートコントロール ブラシレスモータの駆動制御装置
DE19725136C2 (de) * 1997-06-13 2001-01-11 Siemens Ag Verfahren und Vorrichtung zur Stromregelung einer feldorientiert betriebenen, permanenterregten Synchronmaschine mit trapezförmiger EMK
DE19757894A1 (de) * 1997-12-24 1999-07-08 Mulfingen Elektrobau Ebm System zur Drehzahlsteuerung von elektronisch kommutierten Gleichstrommotoren

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO0203538A1 *

Also Published As

Publication number Publication date
US20030146729A1 (en) 2003-08-07
US6838842B2 (en) 2005-01-04
WO2002003538A1 (fr) 2002-01-10
DE10032896A1 (de) 2002-01-24

Similar Documents

Publication Publication Date Title
EP0989666B9 (fr) Système de commande de vitesse de moteurs AC
DE69822896T2 (de) Verfahren und gerät zur steuerung eines bürstenlosen elektrischen motors
EP1499008B1 (fr) Méthode et système de commande pour la commutation électronique d'un moteur DC sans balais
DE102007040560A1 (de) Verfahren zur Ansteuerung eines Umrichters sowie zugehörige Vorrichtung
DE4310260C1 (de) Elektronische Steuervorrichtung für einen elektronisch kommutierten Gleichstrommotor (EC-Motor)
EP2681841A2 (fr) Unité de commande
EP0986855B1 (fr) Moteur a commutation electrique
DE3940569C2 (fr)
WO2002003538A1 (fr) Procede pour faire fonctionner un moteur a courant continu sans balais
EP1071200B1 (fr) Moteur électroniquement commutable
EP2659582B1 (fr) Procédé et dispositif pour faire fonctionner un moteur électrique à excitation séparée ou hybride
EP0714162A2 (fr) Circuit de commande d'une moteur commuté électroniquement
EP3285381A1 (fr) Procédé de fonctionnement d'une machine électrique et machine électrique
DE10332228B4 (de) Steuerungsverfahren für einen bürstenlosen Elektromotor, insbesonde Lüftermotor
DE19815896C2 (de) Drehzahl-Steuervorrichtung für einen elektronisch kommutierten mehrphasigen Elektromotor
EP2104221A1 (fr) Procédé de commande d'un moteur électrique multiphasé monté en étoile
EP0837553B1 (fr) Circuit de commande pour un moteur à courant continu sans balais
EP1533892B1 (fr) Méthode pour réduire le temps de freinage d'un moteur
BE1030973B1 (de) Antriebssystem
EP1077523A2 (fr) Procédé et dispositif d'entraínement d'un moteur à courant continu sans balais
DE102017130869A1 (de) Elektrisches Getriebe und Verfahren zum Betreiben eines Elektromotors
DE102021126628A1 (de) Elektrische Maschine
EP1092263A1 (fr) Moteur a commutation electrique
EP4372977A1 (fr) Système d'entraînement
DE10157900A1 (de) Geberlose Kommutierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040316

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTI TEMIC MICROELECTRONIC GMBH

17Q First examination report despatched

Effective date: 20040316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110104