EP1294355A1 - Verwendung von inulinen und inulinderivaten tung z - Google Patents

Verwendung von inulinen und inulinderivaten tung z

Info

Publication number
EP1294355A1
EP1294355A1 EP01960327A EP01960327A EP1294355A1 EP 1294355 A1 EP1294355 A1 EP 1294355A1 EP 01960327 A EP01960327 A EP 01960327A EP 01960327 A EP01960327 A EP 01960327A EP 1294355 A1 EP1294355 A1 EP 1294355A1
Authority
EP
European Patent Office
Prior art keywords
acid
inulins
derivatives
inulin
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01960327A
Other languages
English (en)
French (fr)
Inventor
Andreas Rathjens
Louis Danoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Health and Care Products France SAS
Original Assignee
Cognis France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis France SAS filed Critical Cognis France SAS
Priority to EP01960327A priority Critical patent/EP1294355A1/de
Publication of EP1294355A1 publication Critical patent/EP1294355A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/10Anti-acne agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations

Definitions

  • the invention is in the field of skin cosmetics and relates to the use of inulins or inulin derivatives for a large number of applications in the treatment and care of human skin.
  • the object of the present invention was therefore to provide such active ingredients.
  • active ingredients should be made available which, on the one hand, permit use as an agent against skin aging, for example by stimulating the metabolism of the skin cells, and, on the other hand, are also used as sunscreens or other skin care products.
  • the invention relates to the use of inulins and / or inulin derivatives
  • inulins and their derivatives especially alkoxylation and / or alkylation products, have a large number of both cosmetic and pharmaceutical effects which make them appear particularly suitable for use in skin cosmetics. Further objects of the invention relate to the use of inulins and / or inulin derivatives
  • the inulins are among the vegetable storage substances that are produced in large quantities by over 30,000 plants, preferably chicory and dahlias. Structurally, it is a mixture of linear fructose polymers (oligofructosides) that have terminal glucose groups and have an average degree of oligomerization in the range from 5 to 30, preferably 10 to 20, in particular 13 to 15 (see the following figure):
  • the inulins can be alkoxylated in a manner known per se, i.e. the inulins are reacted in the presence of alkaline catalysts, such as sodium or potassium hydroxide, sodium methylate or potassium tert-butoxide at temperatures in the range from 50 to 150 ° C. with ethylene oxide, propylene oxide or mixtures thereof - in random or block distribution, where autogenous pressures of usually 1 to 5 bar. After the pressure drop has ended, the reaction products are depressurized and adjusted to a neutral pH by adding mineral acids.
  • alkylene oxide used is in itself not very critical, but so many alkylene oxide groups should be added that the oligomer is also given sufficient surface activity. Accordingly, 1 to 100 and preferably 25 to 75 equivalents of alkylene oxide can be added based on inulin.
  • reaction products of inulin with ethylene oxide and / or propylene oxide are used.
  • Classic alkylating agents such as halogenated hydroxypropylammonium or 2,3-epoxypropylammonium salts, which are commercially available under the name “QUAB ⁇ ”, are particularly suitable for the alkylation of the inulins.
  • reaction products of inulin with halogenated hydroxypropylammonium or 2,3-epoxypropylammonium salts are used.
  • Glycidol is also suitable and in a further embodiment, reaction products of inulin with glycidol are used.
  • Another interesting possibility to convert inulins into derivatives with active properties consists in the reaction with halogenated trialkylamines, especially diethylaminoethyl halides such as diethylaminoethyl chloride (DEAE-CI).
  • the reaction scheme is shown in the figure below.
  • reaction products of inulin with trialkyl amines are used.
  • tandem groups can also be identified that result from N-alkylation of a DEAE group that is already bound to the inulin scaffold.
  • inulin scaffold In this way, potentially cationic centers are built up, which play an important role in the interaction with negatively charged surfaces, such as skin and hair.
  • These derivatives are usually prepared by basic alkylation, for example in water, organic solvents (for example isopropyl alcohol) or aqueous / alcoholic mixtures.
  • 0.1 to 10 preferably 0.5 to 5 equivalents (Eq) of the alkylating agent can be used.
  • the choice of base is not very critical, for example it is advisable to work with 0.5 to 1 M sodium or potassium hydroxide solution.
  • the alkylation can be carried out at temperatures in the range from 0 to 150 ° C., but a temperature range from 20 to 100 and in particular 50 to 90 ° C. has proven to be particularly advantageous.
  • the resulting aqueous and / or organic solutions are advantageously neutralized by adding mineral acids and, for example, desalted by ultrafiltration or diafiltration, reverse osmosis or comparable processes.
  • the mostly colorless or slightly colored products are then freed from the solvent and dried. Lyophilization is particularly suitable for this.
  • the inulins or inulin derivatives are usually used in amounts of 0.0001 to 5, preferably 0.001 to 3 and in particular 0.01 to 1% by weight, based on the end formulations.
  • the inulins and / or inulin derivatives to be used according to the invention can be used to produce cosmetic and / or pharmaceutical preparations in the form of creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat masses, stick preparations, powders or ointments.
  • agents can also be used as further auxiliaries and additives, mild surfactants, oil bodies, emulsifiers, pearlescent waxes, consistency agents, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic active ingredients, UV light protection factors, antioxidants, deodorants, Antiperspirants, antidandruff agents, film formers, swelling agents, insect repellents, self-tanners, tyrosine inhibitors (depigmentation agents), hydrotropes, solubilizers, preservatives, perfume oils, dyes and the like.
  • Anionic, nonionic, ka ionic and / or amphoteric or amphoteric surfactants can be contained as surface-active substances, the proportion of the agents usually being about 1 to 70, preferably 5 to 50 and in particular 10 to 30% by weight.
  • anionic surfactants are soaps, alkylbenzenesulfonates, alkanesulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerin ether sulfates, fatty acid ether sulfates, hy- ether sulfates.
  • droxymischethersulfate monoglyceride (ether) sulfates, fatty acid amide thercarbonklaren (ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, E- and ride salts thereof, fatty acid isethionates, fatty acid sarcosinates, FettLiteretau-, N-acylamino acids, such as acyllactylates , Acyl tartrates, acyl glutamates and acyl aspartates, alkyl oligoglucoside sulfates, protein fatty acid condensates (especially vegetable products based on wheat) and alkyl (ether) phosphates.
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides, especially glucoronic acid, or glucoramic acid derivatives, and glucoronic acid nuclei (glucoronic acid) derivatives, in particular, glucoronic acid (G) -glucoronic acid (G) -glucoronic acid (G) -glucoric acid-derived (G) -glucoramic acid-derived (G) -glucoramic acid (G) -glucoric acid-derived (especially
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and esterquats, in particular quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • Typical examples of particularly suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefin sulfonates, fatty acid gluco amide fatty acids, alkyl carboxylates, fatty acid gluco amide fatty acids, fatty acid gluco amide fatty acids, fatty acid gluco amide fatty acids, fatty acid glucoamides, fatty acid glucoamides, fatty acid glucosacid fatty acids, fatty acid glucamate fatty acids, fatty acid glucosacid fatty acids, fatty acid glucosaccharides, fatty acid glucosacids, fatty acid fatty acids,
  • Guerbet alcohols based on fatty alcohols with 6 to 18, preferably 8 to 10 carbon atoms, esters of linear C 6 -C 22 fatty acids with linear or branched C 6 -C 22 fatty alcohols or esters of branched C 6 -C ⁇ come as, for example, Guerbet alcohols 3 - carboxylic acids with linear or branched C 6 -C 22 fatty alcohols, such as myristyl myristate, Myristyl palmitate, myristyl stearate, myristyl, Myristylbehenat, rucat Myristylisostearat Myristyle-, cetyl palmitate, cetyl palmitate, cetyl palmitate, cetyl stearate, Cetylisostearat, cetyl oleate, cetyl behenate, Cetylerucat, Stearylmyristat, stearyl, stearyl, Stearylisostearat, stearyl,
  • esters of linear C 6 -C 22 fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of Ci 8 -C 38 alkyl hydroxy carboxylic acids with linear or branched C 6 -C 22 fatty alcohols cf.
  • dioctyl malates esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols, triglycerides based on C 6 -C0 0 fatty acids, liquid mono- / di- / triglyceride mixtures based on C 6 -C 8 fatty acids, esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, especially benzoic acid, esters of C 2 -C 2 -dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms or polyols with 2 to 10 carbon atoms and 2 to 6 hydroxyl groups, vegetable oils, branched primary alcohols, substituted cyclohexanes, linear and branched C 6 -C 22 fatty alcohol carbonates, such as e.g.
  • dicaprylyl carbonates (Cetiol® CC), Guerbet carbonates based on fatty alcohols with 6 to 18, preferably 8 to 10 C atoms, esters of benzoic acid with linear and / or branched C 6 -C 22 alcohols (e.g.
  • Finsolv® TN linear or branched, symmetrical or asymmetrical dialkyl ethers with 6 to 22 carbon atoms per alkyl group, such as dicaprylyl ether (Cetiol® OE), ring opening products of epoxidized fatty acid esters with polyols, silicone oils (cyclomethicones, silicon methicone types, etc.) and / or aliphatic or naphthenic Hydrocarbons, such as, for example, squalane, squalene or dialkylcyclohexanes.
  • dicaprylyl ether such as dicaprylyl ether (Cetiol® OE), ring opening products of epoxidized fatty acid esters with polyols, silicone oils (cyclomethicones, silicon methicone types, etc.) and / or aliphatic or naphthenic Hydrocarbons, such as, for example, squalane, squalene or dialkylcyclohexa
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • Partial esters of polyglycerol (average degree of self-condensation 2 to 8), polyethylene glycol (molecular weight 400 to 5000), trimethylolpropane, pentaerythritol, sugar alcohols (eg sorbitol), alkyl glucosides (eg methyl glucoside, butyl glucoside, lauryl glucoside) as well as polyglucosides (eg cellulose) saturated and / or unsaturated, linear or branched fatty acids with 12 to 22 carbon atoms and / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 mol ethylene oxide;
  • Block copolymers e.g. Polyethylene glycol 30 dipolyhydroxystearate;
  • Polymer emulsifiers e.g. Pemulen types (TR-1, TR-2) from Goodrich;
  • the adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols or with castor oil are known, commercially available products. These are mixtures of homologs whose average degree of alkoxylation is the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate, with which the addition reaction is carried out.
  • C 2 8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • Alkyl and / or alkenyl oligoglycosides their preparation and their use are known from the prior art. They are manufactured in particular by converting glu cose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Suitable partial glycerides are hydroxystearic acid monoglyceride, hydroxystearic acid diglyceride, isostearic acid, Isostearinklarediglycerid, oleic acid monoglyceride, oleic acid diglyceride, Ricinolklaremoglycerid, Ricinolklarediglycerid, linoleic acid monoglyceride, Linolklarediglycerid, LinolenTalkremonoglycerid, Linolenchurediglycerid, Erucaklaremonoglycerid, Erucaklarediglycerid, Weinklaremonoglycerid, Weinklarediglyce- chloride, Citronenklamonoglycerid, Citronendiglycerid, ⁇ pfelklamonoglycerid, Malic acid diglyceride and their technical mixtures, which may still contain small amounts of triglyceride from the manufacturing process. Addition products of 1 to 30, preferably 5
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3 diisostearates (Lameform® TGI), polyglyceryl-4 isostates (Isolan® GI 34), polyglyceryl-3 oleates, diisostearoyl polyglyearylate-3 (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010 / 90), Polyglyceryl-3 Cetyl Ether ( Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate and
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol which are optionally reacted with 1 to 30 mol of ethylene oxide with lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example the coconut acylaminopropyldimethylammonium glycinate, and 2-alkyl-3-carboxylm -hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate
  • Suitable emulsifiers are also ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C 8 / i 8 alkyl or acyl group, contain at least one free amino group and at least one -COOH or -SO 3 H group in the molecule and are capable of forming internal salts .
  • suitable ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylamino-butyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each with about 8 to 18 carbon atoms in the alkyl group.
  • ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and Ci 2 / i 8 -acylsarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Typical examples of fats are glycerides, ie solid or liquid vegetable or animal products which essentially consist of mixed glycerol esters of higher fatty acids.
  • Natural waxes such as candelilla wax, carnauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, come among others , Ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin waxes, micro waxes; chemically modified waxes (hard waxes), such as montan ester waxes, Sasol waxes, hydrogenated jojoba waxes, and synthetic waxes, such as polyalkylene waxes and polyethylene glycol waxes.
  • lecithins In addition to fats, fat-like additives also come as additives Substances such as lecithins and phospholipids in question.
  • lecithins are those glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification.
  • Lecithins are therefore often used in the professional world as phosphatidylcholines (PC).
  • PC phosphatidylcholines
  • cephalins which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • glycerol phosphates glycerol phosphates
  • sphingosines or sphingolipids are also suitable.
  • Pearlescent waxes are: alkylene glycol esters, especially ethylene glycol stearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon atoms
  • Suitable consistency agents are primarily fatty alcohols or hydroxy fatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and, in addition, partial glycerides, fatty acids or hydroxy fatty acids.
  • a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates (eg carbopols) ® and Pemulen types from Goodrich; Synthalene® from Sigma; Keltrol types from Kelco; Sepigel types from Seppic; Salcare types from Allied Colloids), polyacrylamides, polymers, polyvinyl alcohol and polyvinyl pyrrolidone, surfactants such as ethoxylated fat
  • Acid glycerides esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides as well as electrolytes such as table salt and ammonium chloride.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate are used.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, such as, for example, a quaternized hydroxyethyl cellulose, which is available from Amerchol under the name Polymer JR 400®, cationic starch, copolymers of diallylammonium salts and acrylic amides, quaternized vinylpyrrolidone / vinylimidazole polymers, such as, for example, Luviquat® ( BASF), condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, such as amodimethicone, copolymers of adipic acid and dimiethylaraminohydroxyl ), Copolymers of acrylic acid with dimethyldiallylammonium chloride (Mer
  • Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and polyesters and their esters, uncrosslinked , Acrylamido-propyltrimethylammonium chloride / acrylate copolymers, octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinyl pyrrolidone, vinyl pyrrolidone / vinyl acetate copolymers, vinyl pyrrolidone / teraminate / vinyl acrylate methacrylate / vinyl methacrylate methacrylate
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl modified silicone compounds which are both liquid and resinous at room temperature can.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 91, 27 (1976).
  • UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and absorb the energy absorbed in the form of longer-wave radiation, e.g. To give off heat again.
  • UVB filters can be oil-soluble or water-soluble. As oil-soluble substances e.g. to call:
  • 4-aminobenzoic acid derivatives preferably 2-ethyl-hexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene); > Esters of salicylic acid, preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-isopropylbenzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4-methylbenzophenone, 2.2 ⁇ - dihydroxy-4-methoxybenzophenone;
  • esters of benzalmalonic acid preferably 4-methoxybenzmalonic acid di-2-ethylhexyl ester;
  • Triazine derivatives such as 2,4,6-trianilino- (p-carbo-2 ⁇ - ethyl-r-hexyloxy) -l, 3,5-triazine and octyl triazone, as described in EP 0818450 AI or dioctyl butamido triazone (Uvasorb® HEB);
  • Propane-1,3-diones such as 1- (4-tert-butylphenyl) -3- (4 , methoxyphenyl) propane-1,3-dione;
  • UV-A filters such as l- (4 ⁇ -tert-butylphenyl) -3- (4 , -methoxyphenyl) propane-l, 3-dione, 4-tert-butyl -4 - methoxydibenzoylmethane (Parsol® 1789), l-phenyl-3- (4 ⁇ -isopropylphenyl) propane-l, 3-dione and enamine compounds, as described in DE 19712033 AI (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • Particularly favorable combinations consist of the derivatives of benzoyl methane , for example 4-tert-butyl 4 ⁇ methoxydibenzoylmethane (Parsol 1789) and 2-cyano-3,3-phenylcinnamate-2-ethyl-hexyl ester (Octocrylene), in combination with Esters of cinnamic acid, preferably 2-ethylhexyl 4-methoxycinnamate and / or propyl 4-methoxycinnamate and / or isoamyl 4-methoxycinnamate.
  • benzoyl methane for example 4-tert-butyl 4 ⁇ methoxydibenzoylmethane (Parsol 1789) and 2-cyano-3,3-phenylcinnamate-2-ethyl-hexyl ester (Octocrylene)
  • Esters of cinnamic acid preferably 2-ethylhexyl 4-methoxyc
  • water-soluble filters such as 2-phenylbenzimidazole-5-sulfonic acid and its alkali, alkaline earth, ammonium, alkylammonium, alkanolammonium and glucammonium salts.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • salts NEN silicates (talc), barium sulfate or zinc stearate can be used.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobicized.
  • Typical examples are coated titanium dioxides, such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used. Further suitable UV light protection filters are in the overview by P.Finkel in S ⁇ FW-Journal 122, 543 (1996) and Parf.Kosm. 3, 11 (1999).
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • amino acids e.g. glycine, histidine, tyrosine, tryptophan
  • imidazoles e.g. urocanic acid
  • peptides such as D, L-carnosine, D-carnosine, L-carnosine and their derivatives (e.g.
  • carotenoids carotenoids
  • carotenes eg ⁇ -carotene, ⁇ -carotene, lycopene
  • chlorogenic acid and their derivatives lipoic acid and their derivatives (eg dihydrolipoic acid), aurothioglucose, propylthiou-racil and other thiols (eg thioredoxin, Glutathione, cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters ) and their salts, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleic acid and
  • (metal) chelators e.g. ⁇ -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin), ⁇ -hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts , Bilirubin, biliverdin, EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (e.g. ⁇ -linolenic acid, linoleic acid, oleic acid), folic acid and their derivatives, ubiquinone and ubiquinol and their derivatives, vitamin C and derivatives (e.g.
  • biogenic active ingredients are tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, (deoxy) ribonucleic acid and its fragmentation products, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils and essential oils, plant extracts and essential oils understand.
  • deodorants counteract, mask or eliminate body odors.
  • Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed.
  • deodorants contain active ingredients which act as germ-inhibiting agents, enzyme inhibitors, odor absorbers or odor maskers.
  • germ-inhibiting agents such as. B.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors include sterol sulfates or phosphates, such as, for example, nosterin, cholesterol, campesterin, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, monoethyl glutarate, diethyl glutarate, adipic acid, monoethyl adipate, diethyl adipate, such as malonic acid and malonic acid, malonic acid and malonic acid, Tartaric acid or tartaric acid diethyl ester, as well as zinc glycolate.
  • sterol sulfates or phosphates such as, for example, nosterin, cholesterol, campesterin, stigmasterol and sitosterol sulfate or phosphate
  • dicarboxylic acids and their esters such as, for example, glutaric acid, monoethyl glutarate, diethyl glutarate, adipic acid, monoe
  • Suitable odor absorbers are substances that absorb odor-forming compounds and can retain them to a large extent. They lower the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes must remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixators", such as, for example, the main component. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrance agents or perfume oils act as odor maskers and, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches as well as resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the jonones and methylcedryl ketone
  • the alcohols are anethole, citronellellone Eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of low volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, lentil flower oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdanum oil and lavender oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the secret sweat glands and thus counteract armpit wetness and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients:
  • non-aqueous solvents such as As ethanol, propylene glycol and / or glycerin.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active ingredients are e.g. Aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds z. B. with propylene glycol-1,2.
  • conventional oil-soluble and water-soluble auxiliaries can be present in smaller amounts in antiperspirants.
  • Such oil-soluble auxiliaries can e.g. his:
  • Usual water-soluble additives are, for example, preservatives, water-soluble fragrances, pH adjusting agents, for example buffer mixtures, water-soluble thickeners, for example water-soluble natural or synthetic polymers such as, for example, xanthan gum, hydroxyethyl cellulose, polyvinyl pyrrolidone or high molecular weight polyethylene oxides. film formers
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Piroctone olamine (1-hydroxy-4-methyl-6- (2,4,4-trimythylpentyl) -2- (1H) -pyridinone monoethanolamine salt
  • Baypival® (climbazole), Ketoconazol®, (4-acetyl -l - ⁇ - 4- [2- (2.4-dichlorophenyl) r-2- (1H-imidazol-l-ylmethyl) -l, 3-dioxylan-c-4-ylmethoxyphenyl ⁇ piperazine, ketoconazole, elubiol, selenium disulfide, sulfur colloidal sulfur polyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel tar distillate, salicylic acid (or in combination with hexachlorophene), undecylenic acid monoethanolamide sulfosuccinate Na salt, Lamepon® UD (protein undecylenic
  • Montmorillonites, clay minerals, pemulene and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • Possible insect repellents are N, N-diethyl-m-toluamide, 1,2-pentanediol or ethyl butyl acetylaminopropionate
  • Dihydroxyacetone is suitable as a self-tanner.
  • Arbutin, ferulic acid, kojic acid, coumaric acid and ascorbic acid (vitamin C) can be used as tyrosine inhibitors, which prevent the formation of melanin and are used in depigmenting agents.
  • Hydrotropes such as ethanol, isopropyl alcohol or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as, in particular, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Dialcohol amines such as diethanolamine or 2-amino-l, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Regulation.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, cumin, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, dried lica, celery, cardamom, costus, iris, calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), needles and twigs (spruce, fir , Pine, mountain pine), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linoline benzoate, benzyl formate, ethyl methylphenylglycinate, allylcyclohexylpropylate propylatepylatepylatepylatepylatepylatepylate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example, the jonones, ⁇ -isomethyl ionone and methyl cedryl ketone , the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • bergamot oil dihydromyrcenol, lilial, lyral, citronellol, phenylethyl alcohol, ⁇ -hexylcinnamaldehyde, geraniol, benzyl acetone, cyclamen aldehyde, linalool, Boisambrene Forte, Ambroxan, indole, hedione, Sandelice, lemon oil, mandarin oil, orange oil, allyl amyl glycolate, Cyclovertal, lavandin oil, muscatel Sage oil, ß-damascone, geranium oil bourbon, cyclohexyl salicylate, Vertofix Coeur, Iso-E-Super, Fixolide NP, evernyl, iraldein gamma, phenylacetic acid, geranyl acetate, benzyl acetate, rose oxide, romilllate, irot
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40% by weight. based on the mean - amount.
  • the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used.
  • UV-B radiation activates the enzyme phospholipase A2, which releases arachidonic acid from the cell membrane of the keratinocytes. Cydooxygenases convert the arachidonic acid into prostaglandins, which are secreted by the cell. The prostaglandins (PGE2) attach to special receptors in the skin and thus cause redness and swelling.
  • PGE2 The prostaglandins (PGE2) attach to special receptors in the skin and thus cause redness and swelling.
  • the UV-B damage is accompanied by the release of lactate dehydrogenase (LDH) and DNA fragments, which can be used as markers to detect the damage.
  • LDH lactate dehydrogenase
  • DNA fragments which can be used as markers to detect the damage.
  • human keratinocytes were incubated with the active ingredients at 37 ° C.
  • the cell number was then determined by an automatic cell counter and the content of cytoplasmic DNA using the ELISA method.
  • the amount of released LDH and PGE2 was measured enzymatically or also according to the ELISA method.
  • Elastase inhibition is a protease, which is excreted by the fibroblasts either during an inflammation by the leukocytes or as a result of UV-A damage and is partly responsible for the breakdown of dermal macromolecules such as collagen and elastin and thus for skin aging.
  • pancreatic elastase a serine protease
  • inulins are able to inhibit elastase and especially pancreatic elastase. It can a. can be attributed to an inhibition of the release of the elastase.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Toxicology (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Vorgeschlagen wird die Verwendung von Inulinen und/oder Inulinderivaten zur Herstellung von Hautpflegemitteln.

Description

Verwendung von Inulinen und Inulinderivaten
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der Hautkosmetik und betrifft die Verwendung von Inulinen bzw. Inulinderivaten für eine Vielzahl von Anwendungen in der Behandlung und Pflege der menschlichen Haut.
Stand der Technik
An moderne Hautbehandlungsmittel werden vom Verbraucher heute hohe Anforderungen gestellt, wobei der pflegende und präventive Charakter immer stärker in den Vordergrund rückt. So sollen die Zubereitungen beispielsweise gleichzeitig sowohl vor Austrocknen, Alterung und Faltenbildung schützen, die Immunabwehr stärken, als auch Lasuren bekämpfen - also anti-inflammatorisch wirksam sein - und der Haut ein angenehmes sensorisches Gefühl vermitteln. Für die Herstellung solcher Produkte besteht daher das Problem, ihren Zubereitungen eine Vielzahl von Wirkstoffen zuzusetzen, die gemeinsam das gewünschte Anforde- rungsprofil ergeben, ohne sich dabei gegenseitig zu stören oder gar unerwünschte Nebeneffekte zu erzeugen. Dem entsprechend besteht ein besonderes Interesse an Wirkstoffen, die die gewünschten Eigenschaften in sich vereinigen, zumal an solchen, die pflanzlicher Herkunft sind.
Die Aufgabe der vorliegenden Erfindung hat daher darin bestanden, solche Wirkstoffe zur Verfügung zu stellen.
Es sollten speziell Wirkstoffe zur Verfügung gestellt werden, die einerseits eine Verwendung als Mittel gegen die Hautalterung zulassen, indem sie beispielsweise den Metabolismus der Hautzellen stimulieren und andererseits auch Verwendung finden als Sonnenschutzmittel oder weiteren Hautpflegemitteln. Beschreibung der Erfindung
Gegenstand der Erfindung ist die Verwendung von Inulinen und/oder Inulinderivaten
> als Hautpflegemittel, insbesondere zur Pflege von trockener Haut ,
> als Sonnenschutzmitteln,
> als anti-inflammatorische und/oder lindernder und wohltuender Wirkstoffe, speziell für empflindliche Haut und solche, die durch Akne in Mitleidenschaft gezogen worden ist.
Überraschenderweise wurde gefunden, dass Inuline und deren Derivate, speziell Alkoxylie- rungs- und/oder Alkylierungsprodukte, über eine Vielzahl sowohl von kosmetischen als auch pharmazeutischen Wirkungen verfügen, die sie für den Einsatz in der Hautkosmetik besonders geeignet erscheinen lassen. Weitere Gegenstände der Erfindung betreffen die Verwendung von Inulinen und/oder Inulinderivaten
> als Mittel gegen die Hautalterung, insbesondere als Mittel gegen die durch UV- Strahlung induzierte Hautalterung.
> zur Herstellung einer Zubereitung zur Stimulierung der Erneuerung von Hautzellen und dermalen Makromolekülen,
> zur Herstellung einer Zubereitung zur Stimulation des Metabolismus und der Immunabwehr der menschlichen Haut, insbesondere zur Abwehr von oxidativem Streß, zur Stimulation der Synthese von Fettstoffen für das Stratum corneum und damit zum Schutz der Haut vor dem Austrocknen,
> zur Herstellung einer Zubereitung zur Verminderung der Proteolyse und Glycation von dermalen Makromolekülen, wie z.B. Kollagen, Elastin, Proteoglycan in der menschlichen Haut durch Protease-Inhibierung und insbesondere durch Elastase-Inhibierung,
> zur Herstellung einer Zubereitung zur Wundheilung sowie
> zur Herstellung eines Medikamentes gegen Akne.
Inuline und Inulinderivate
Wie Stärke zählen auch die Inuline, wie z.B. Inulin, Nystose oder Kestose, zu den pflanzlichen Speicherstoffen, die von über 30.000 Pflanzen, vorzugsweise von Zichorien und Dahlien in größeren Mengen gebildet werden. Strukturell handelt es sich um ein Gemisch linearer Fructosepolymere (Oligofructoside), die über terminale Glucosegruppen verfügen und einen mittleren Oligomerisierungsgrad im Bereich von 5 bis 30, vorzugsweise 10 bis 20, insbesondere 13 bis 15 aufweisen (siehe folgende Abbildung):
Inulin Nystose Kestose
Fructose Glucose
Sucrose
Herstellungsbedingt können im Handel befindliche Produkte, wie beispielsweise Frutafit® (Cosun) oder Raftiline® (Orafti) neben höheren Oligomeren auch Glucose, Fructose oder Saccharose enthalten. Die Anwendung der Inuline liegt im wesentlichen im Bereich der Nahrungsmitteladditive, beispielsweise als Süßstoffe oder Prebiotics für Milchprodukte.
Die Alkoxylierung der Inuline kann in an sich bekannter Weise erfolgen, d.h. die Inuline werden in Gegenwart von alkalischen Katalysatoren, wie beispielsweise Natrium- oder Kaliumhydroxid, Natriummethylat oder Kalium-tert.butylat bei Temperaturen im Bereich von 50 bis 150 °C mit Ethylenoxid, Propylenoxid oder deren Gemischen - in Random- oder Blockverteilung - umgesetzt, wobei sich autogene Drücke von in der Regel 1 bis 5 bar einstellen. Nach Beendigung des Druckabfalls werden die Reaktionsprodukte entspannt und durch Zugabe von Mineralsäuren auf einen neutralen pH-Wert eingestellt. Die Einsatzmenge an Alky- lenoxid ist an sich wenig kritisch, allerdings sollten so viele Alkylenoxidgruppen angelagert werden, daß dem Oligomer auch eine hinreichende Oberflächenaktivität verliehen wird. Demzufolge können bezogen auf Inulin 1 bis 100 und vorzugsweise 25 bis 75 Äquivalente Alkylenoxid zugegeben werden.
In einer besonderen Ausführungsform der Erfindung werden Umsetzungsprodukte von Inulin mit Ethylenoxid und/oder Propylenoxid verwendet. Zur Alkylierung der Inuline eignen sich insbesondere klassische Alkylierungsmittel, wie beispielsweise halogenierte Hydroxypropylammonium- oder 2,3-Epoxypropylammonium-salze, die unter der Bezeichnung „QUABλ im Handel erhältlich sind. In einer weiteren besonderen Ausführungsform werden Umsetzungsprodukte von Inulin mit halogenierten Hydroxypropylammonium- oder 2,3-Epoxypropyl-ammoniumsalzen verwendet.
Ebenfalls geeignet ist auch Glycidol und in einer weiteren Ausführungsform werden Umsetzungsprodukte von Inulin mit Glycidol eingesetzt. Eine weitere interessante Möglichkeit Inuline in Derivate mit aktiven Eigenschaften zu überführen, besteht in der Umsetzung mit halogenierten Trialkylaminen, speziell Diethylaminoethylhalogeniden wie dem Diethylami- noethylchlorid (DEAE-CI). Das Reaktionsschema ist in der nachfolgenden Abbildung wiedergegeben.
In einer besonderen Ausführungsform werden Umsetzungsprodukte von Inulin mit Trialkyl aminen verwendet.
In weiteren Ausführungsformen der Erfindung werden Umsetzungsprodukte von Inulin mit Mischungen von
• Propylenoxid und halogenierten Hydroxypropylammonium- und/oder 2,3-Epoxypropyl- ammoniumsalzen;
• Propylenoxid und halogenierten Trialkylaminen oder
• Glycidol bzw. Glycidolderivaten und halogenierten Trialkylaminen verwendet.
Neben einfachen DEAE-Funktionalitäten lassen sich auch sogenannte Tandem-Gruppen identifizieren, die durch N-Alkylierung einer schon am Inulingerüst gebundenen DEAE-Gruppe entstehen. Auf diese Weise werden potentiell kationische Zentren aufgebaut, welche bei der Wechselwirkung mit negativ geladenen Oberflächen, wie z.B. Haut und Haaren eine bedeutende Rolle spielen. Üblicherweise erfolgt die Herstellung dieser Derivate durch basische Alkylierung, beispielsweise in Wasser, organischen Lösungsmitteln (z.B. Isopropylalkohol) oder wäßrige/alkoholischen Gemischen. Bezogen auf die Inuline können 0,1 bis 10, vorzugsweise 0,5 bis 5 Äquivalente (Eq) des Alkylierungsmittels eingesetzt werden. Die Wahl der Base ist wenig kritisch, es empfiehlt sich beispielsweise mit 0,5 bis 1 M Natrium- oder Kaliumhydroxidlösung zu arbeiten. Die Alkylierung kann bei Temperaturen im Bereich von 0 bis 150 °C durchgeführt werden, ein Temperaturbereich von 20 bis 100 und insbesondere 50 bis 90 °C hat sich indes als besonders vorteilhaft erwiesen. Nach Abschluß der Reaktion werden die resultierenden wäßrigen und/oder organischen Lösungen vorteilhafterweise durch Zugabe von Mineralsäuren neutralisiert und beispielsweise durch Ultra- oder Diafiltration, Umkehrosmose oder vergleichbare Verfahren entsalzt. Die meist farblosen oder schwach gefärbten Produkte werden in der Regel anschließend vom Lösungsmittel befreit und getrocknet. Hierzu eignet sich insbesondere die Lyophilisierung. Üblicherweise werden die Inuline bzw. Inuli- nerivate in Mengen von 0,0001 bis 5, vorzugsweise 0,001 bis 3 und insbesondere 0,01 bis 1 Gew.-% - bezogen auf die Endformulierungen - eingesetzt.
Kosmetische und/oder pharmazeutische Zubereitungen
Die erfindungsgemäß zu verwendenden Inuline und/oder Inulinderivate können zur Herstellung von kosmetischen und/oder pharmazeutischen Zubereitungenin Form von Cremes, Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/ Fett- Massen, Stiftpräparaten, Pudern oder Salben dienen. Diese Mittel können ferner als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, biogene Wirkstoffe, UV-Lichtschutzfaktoren, Antioxidantien, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, Insektenrepellentien, Selbstbräuner, Tyrosininhibitoren (Depigmentierungs- mittel), Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten.
Tenside
Als oberflächenaktive Stoffe können anionische, nichtionische, ka ionische und/oder ampho- tere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsul- fonate, Alkylethersulfonate, Glycerinethersulfonate, α-MethylestersuIfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hy- droxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, E- thercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretau- ride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fett- säureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäure- derivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazo- liniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123- 217 verwiesen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäu- reglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Olkörper
Als Olkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-Cι3- Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristyle- rucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, I- sostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleyl- palmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmy- ristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Ci8-C38-Alkylhy- droxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen (vgl. DE 19756377 AI), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C6-Cι0-Fettsäuren, flüssige Mono-/Di- /Triglyceridmischungen auf Basis von C6-Ci8-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Cι2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, wie z.B. Dicaprylyl Carbonate (Cetiol® CC), Guer- betcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Silici- ummethicontypen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Emulqatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
> Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest; > Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
> Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polye- thylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylgluco- sid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Me- thylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
> Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
> Wollwachsalkohole;
> Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
> Block-Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate;
> Polymeremulgatoren, z.B. Pemulen-Typen (TR-l,TR-2) von Goodrich;
> Polyalkylenglycole sowie
> Glycerincarbonat.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Cι2 ι8-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfet- tungsmittel für kosmetische Zubereitungen bekannt.
Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glu- cose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycosjde, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oli- gomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Öl- säuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linol- säuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremonoglycerid, Weinsäurediglyce- rid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfelsäuremonoglycerid, Äpfelsäure- diglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandii- sostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrieru- cat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricino- leat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitansesquitartrat, Sorbitanditartrat, Sor- bitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostea- rate (Isolan® GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Iso- lan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Bees- wax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyce- ryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behen- säure und dergleichen.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sul- fonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldi- methylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl- 3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. E- benfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8/i8-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylamino- buttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N- Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das Ci2/i8-Acylsarcosin. Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquatemierte Difettsäuretrietha- noIaminester-Salze, besonders bevorzugt sind.
Fette und Wachse
Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawach.se sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polye- thylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC). Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1,2- Diacyl-sn-glycerin-3-phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.
Perlqlanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylengly- coldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubsti- tuierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Be- hensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Konsistenzqener und Verdickunαsmittel
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkylo- ligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Po- lyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Aerosil- Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® und Pemulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fett-
n säureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloli- goglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Uberfettungsmittel
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monogly- ceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Stabilisatoren
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Polymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Ac- rylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amo- dimethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis- Dimethylamino-l,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol. Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylace- tat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copoly- mere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamido- propyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmeth-acry- lat/tert.Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere, Polyvinylpyr- rolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethyl- methacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cosm.Toil. 108, 95 (1993) aufgeführt.
Siliconverbindunqen
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpoly- siloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, gly- kosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91, 27 (1976).
UV-Lichtschutzfilter und Antioxidantien
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
> 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4- Methylbenzyliden)campher wie in der EP 0693471 Bl beschrieben;
> 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethyl- hexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoe- säureamylester;
> Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxy- zimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2- ethylhexylester (Octocrylene); > Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-iso- propylbenzylester, Salicylsäurehomomenthylester;
> Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- Hydroxy-4-methoxy-4 -methylbenzophenon, 2,2λ-Dihydroxy-4-methoxybenzophenon;
> Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexyl- ester;
> Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2λ-ethyl-r-hexyloxy)-l,3,5-triazin und Octyl Triazon, wie in der EP 0818450 AI beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
> Propan-l,3-dione, wie z.B. l-(4-tert.Butylphenyl)-3-(4,methoxyphenyl)propan-l,3-dion;
> Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 Bl beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
> 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylam- monium-, Alkanolammonium- und Glucammoniumsalze;
> Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo- phenon-5-sulfonsäure und ihre Salze;
> Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bomylidenme- thyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise l-(4Λ-tert.Butylphenyl)-3-(4,-methoxyphenyl)propan-l,3-dion, 4-tert.-Butyl-4 - methoxydibenzoylmethan (Parsol® 1789), l-Phenyl-3-(4λ-isopropylphenyl)-propan-l,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 AI (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Besonders günstige Kombinationen bestehen aus den Derivate des Benzoylmethans,, z.B. 4-tert.-Butyl- 4λ-methoxydibenzoylmethan (Parsol® 1789) und 2-Cyano-3,3-phenylzimtsäure-2-ethyl- hexylester (Octocrylene) in Kombination mit Ester der Zimtsäure, vorzugsweise 4- Methoxyzimtsäure-2-ethylhexylester und/oder 4-Methoxyzimtsäurepropylester und/oder 4- Methoxyzimtsäureisoamylester. Vorteilhaft werden deartige Kombinationen mit wasserlöslichen Filtern wie z.B. 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze kombiniert.
Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze kön- nen Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) sowie Parf.Kosm. 3, 11 (1999) zu entnehmen.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryp- tophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Caroti- ne (z.B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiou- racil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ- Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distea- rylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α- Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronen- säure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ- Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-GIycosylrutin, Ferulasäure, Furfurylidenglucitol, Camosin, Butylhydroxytoluol, Butyl- hydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophe- non, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnSO4) Selen und dessen Derivate (z.B. Selen- Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Bioqene Wirkstoffe
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherol- palmitat, Ascorbinsäure, (Desoxy)Ribonucleinsäure und deren Fragmentierungsprodukte, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Deodorantien und keimhemmende Mittel
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren. Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4- Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N '-(3,4 dichlor- phenyl)hamstoff, 2,4,4 '-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3,5-dimethyl- phenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(l-methylethyl)-phenol, 2- Benzyl-4-chlorphenol, 3-(4-Chlorphenoxy)-l,2-propandiol, 3-Iod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4 '-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonocaprinat, Glyce- rinmonocaprylat, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N- alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise La- nosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkgly- cinat.
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfüms unbe- einträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa- licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lin- denblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandi- nöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boi- sambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Flo- ramat allein oder in Mischungen, eingesetzt.
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkri- nen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:
> adstringierende Wirkstoffe,
> Ölkomponenten,
> nichtionische Emulgatoren,
> Coemulgatoren,
> Konsistenzgeber,
> Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
> nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquich- lorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1,2. Aluminiumhydroxy- allantoinat, Aluminiumchloridtartrat, Aluminium-Zirkonium-Trichlorohydrat, Aluminium-Zirko- nium-tetrachlorohydrat, Aluminium-Zirkonium-pentachlorohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin. Daneben können in Antitranspirantien übliche öl- lösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllösli- chen Hilfsmittel können z.B. sein:
> entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
> synthetische hautschützende Wirkstoffe und/oder
> öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH- Wert-Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose, Polyvi- nylpyrrolidon oder hochmolekulare Polyethylenoxide. Filmbildner
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quater- niertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quatemäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Antischuppenwirkstoffe
Als Antischuppenwirkstoffe kommen Pirocton Olamin (l-Hydroxy-4-methyl-6-(2,4,4- trimythylpentyl)-2-(lH)-pyridinonmonoethanolaminsalz), Baypival® (Climbazole), Ketocona- zol®, (4-Acetyl-l-{-4-[2-(2.4-dichlorphenyl) r-2-(lH-imidazol-l-ylmethyl)-l,3-dioxylan-c-4- ylmethoxyphenyl}piperazin, Ketoconazol, Elubiol, Selendisulfid, Schwefel kolloidal, Schwefel- polyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel-teer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Undexylensäure Monoethanolamid Sulfosuccinat Na-Salz, Lamepon® UD (Protein-Undecylensäurekondensat), Zinkpyrithion, Aluminiumpyrithion und Magnesiumpyrithion / Dipyrithion-Magnesiumsulfat in Frage.
Quellmittel
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Insekten-Repellentien
Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1,2-Pentandiol oder Ethyl Buty- lacetylaminopropionate in Frage
Selbstbräuner und Depiqmentierunqsmittel
Als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispielsweise Arbutin, Ferulasäure, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage. Hydrotrope
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktioneile Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
> Glycerin;
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Buty- lenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
> technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
> Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethy- lolbutan, Pentaerythrit und Dipentaerythrit;
> Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
> Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
> Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
> Aminozucker, wie beispielsweise Glucamin;
> Dialkoholamine, wie Diethanolamin oder 2-Amino-l,3-propandiol.
Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Parfümöle
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang- Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Ange- lica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riech- stoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Lina- lylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropi- onat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronel- lyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Keto- nen z.B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur- Methode.
Beispiele
Wirkstoffe. Für die nachfolgenden Wirksamkeitstests wurden die Produkte gemäß Tabelle 1 verwendet:
Tabelle 1
Eingesetzte Inuline und Inulinderivate
1) Inulin Frutafit® IQ 2) Inulin Raftiline® HP
Wirksamkeit in der Hautverjüngung und bei der Repair-Wirkung. Zur Untersuchung der Wirksamkeit der Inuline bzw. Inulinderivate bei der Hautverjüngung bzw. im Hinblick auf die Stimulierung der Repair-Wirkung der Hautzellen wurde ihr Einfluß in Mengen von 0,0001 bis 3 Gew.-% auf das Wachstum bzw. die Überlebensrate von menschlichen Fibroblasten untersucht. Die Ergebnisse sind in Tabelle 2 zusammengefaßt. Angegeben ist der relative prozentuale Anstieg des ATP- bzw. Proteingehaltes gegen eine Kontrolle ohne Zusatz der Wirkstoffe (= 100 %).
Anti-Ageing Wirkung. Die Wirksamkeit gegen Hautalterung wurde in vitro anhand der Stimulierung der G6PDH (= Glucose-6-phosphat-dehydrogenase) Aktivität nach der Methode von Okada an menschlichen dermalen Fibroblasten untersucht. Der DNA-Gehalt in den Zellen wurde nach dem Verfahren von Desaulniers bestimmt. Die Ergebnisse sind in Tabelle 3 zusammengefaßt. Auch hier ist jeweils der relative Anstieg gegen einen Blindwert als Kontrolle (= 100 %) angegeben. Tabelle 2
Wachstum und Überlebensrate menschlicher Fibroblasten
Tabelle 3
GΘPDH-Aktivität und DNA-Gehalt in menschlichen Fibroblasten
Stimulation der Immunaktivität in vitro. Die Aktivität von Inulinen bei der Stimulierung der Immunaktivität wurde mittels ihrer Wirkung auf eine Zelllinie menschlicher polymorpho- nuclearer neutrophiler Granulocyten (PMN) untersucht. Hierzu wurden menschliche Leuko- cyten mit den Wirkstoffen über 24 h bei 37 °C und einer C02-Konzentration von 5 Vol.-% inkubiert. Anschließend wurde der Zellsuspension zur Auslösung eines Atmungsausbruchs ein Hefeextrakt vom Typ Zymosan zugesetzt und das System weitere 30 min unter den gleichen Bedingungen inkubiert. Die Quantifizierung der reaktiven Sauerstoffspezies („reactive oxygen species" = ROS) erfolgte mit Hilfe von Luminol, zur Auszählung der PMN wurde ein automatischer Zellzähler verwendet. Die Ergebnisse sind in Tabelle 4 zusammengefaßt. Auch hier erfolgte die Angabe wiederum gegen einen Kontrolle als Vergleichsstandard (= 100 %). Tabelle 4
Reactive oxygen species und Zellzahlen
Anti-inflammatorische Wirkung. UV-B-Strahlung aktiviert das Enzym Phospholipase A2, welches aus der Zellmembran der Keratinocyten Arachidonsäure freisetzt. Cydooxygenasen wandeln die Arachidonsäure in Prostaglandine um, die von der Zelle sekretiert werden. Die Prostaglandine (PGE2) lagern sich an spezielle Rezeptoren in der Haut und bewirken auf diese Weise Rötungen und Schwellungen. Mit der UV-B-Schädigung geht die Freisetzung von Lactat Dehydrogenase (LDH) sowie DNA-Fragmenten einher, welche als Marker zur Detektie- rung der Schädigung herangezogen werden können. Hierzu wurden menschliche Keratinocyten mit den Wirkstoffen über 24 h bei 37 °C und 5 Vol.-% C02 inkubiert und während dieser Zeit mit UV-B-Strahlung (50 mJ/cm2) geschädigt. Anschließend wurde die Zellzahl durch einen automatischen Zellzähler sowie der Gehalt an cytoplasmischen DNA nach der ELISA- Methode bestimmt. Die Messung der Menge an freigesetzter LDH und PGE2 erfolgte enzy- matisch bzw. ebenfalls nach der ELISA-Methode. Die Ergebnisse sind in Tabelle 5 zusammengefaßt. Die Angaben beziehen sich wieder auf eine Kontrolle als Standard (= 0 bzw. 100 %).
Tabelle 5 Anti-inflammatorische Wirkung
Inhibierung der Glycation von Kollagen. Zum Nachweis, dass die Inuline die nicht- enzymatische Glycation von Makromolekülen inhibieren, wurde Kollagen des Typs I mit Glucose und den Wirkstoffen über einen Zeitraum von 21 d bei 45 °C behandelt. Anschließend wurden die Suspensionen zentrifugiert und der Gehalt an Schiff'schen Basen in der überstehenden Flüssigkeit durch Fluoreszenzmessung bei 430 nm bestimmt. Die Ergebnisse sind in Tabelle 6 zusammengefaßt. Die Angaben beziehen sich wieder auf die Kontrolle als Standards (ohne Wirkstoff und ohne Glucose).
Tabelle 6
Ausbeute an Schiff'schen Basen
Elastaseinhibierung. Elastase ist eine Protease, welche entweder während einer Inflam- mation durch die Leukocyten oder infolge UV-A-Schädigung von den Fibroblasten ausgeschieden wird und für den Abbau von dermalen Makromolekülen, wie z.B. Kollagen und E- lastin und damit für die Hautalterung mitverantwortlich ist. Zur Untersuchung der Wirksamkeit der Inuline die Freisetzung von Elastase zu inhibieren wurde Pankreaselastase (eine Se- rin-Protease) untersucht und als Substrat Elastin mit Kongorot markiert. Das System wurde mit den Wirkstoffen über 30 min bei Raumtemperatur inkubiert und anschließend nach Zentrifugation die optische Dichte des Farbstoffes bei 520 nm bestimmt. Die Ergebnisse sind in Tabelle 7 zusammengefaßt. Die Angabe erfolgte wieder relativ zu einer Kontrolle als Standard (= 0 %). Tabelle 7 Elastaseinhibierung
Die Ergebnisse verdeutlichen, dass Inuline in der Lage sind, die Elastase und speziell die Pankreas-Elastase zu inhibieren. Es kann u. a. auf ein Inibierung der Freisetzung der Elastase zurückgeführt werden.

Claims

Patentansprüche
1. Verwendung von Inulinen und/oder Inulinderivaten als Hautpflegemittel, insbesondere zur Pflege von trockener Haut.
2. Verwendung von Inulinen und/oder Inulinderivaten als Sonnenschutz-mittel.
3. Verwendung von Inulinen und/oder Inulinderivaten als anti-inflammatorische und/oder lindernde und wohltuende Wirkstoffe.
4. Verwendung von Inulinen und/oder Inulinderivaten als Mittel gegen die Hautalterung.
5. Verwendung von Inulinen und/oder Inulinderivaten zur Herstellung einer Zubereitung zur Stimulierung der Erneuerung von Hautzellen und dermalen Makromolekülen.
6. Verwendung von Inulinen und/oder Inulinderivaten zur Herstellung einer Zubereitung zur Stimulation des Metabolismus und der Immunabwehr der menschlichen Haut, insbesondere zur Abwehr von oxidativem Streß, zur Stimulation der Synthese von Fettstoffen für das Stratum corneum und damit zum Schutz der Haut vor dem Austrocknen.
7. Verwendung von Inulinen und/oder Inulinderivaten zur Herstellung einer Zubereitung zur Verminderung der Proteolyse und Glycation von dermalen Makromolekülen in der menschlichen Haut.
8. Verwendung von Inulinen und/oder Inulinderivaten zur Herstellung einer Zubereitung zur Wundheilung.
9. Verwendung von Inulinen und/oder Inulinderivaten zur Herstellung eines Medikamentes gegen Akne.
10. Verwendung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man Umsetzungsprodukte von Inulin mit Ethylenoxid und/oder Propylenoxid einsetzt.
11. Verwendung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man Umsetzungsprodukte von Inulin mit halogenierten Hydroxypropylammonium- oder 2,3-Epoxypropyl-ammoniumsalzen („QUAB's") einsetzt.
12. Verwendung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man Umsetzungsprodukte von Inulinen mit halogenierten Trialkylaminen einsetzt.
13. Verwendung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man Umsetzungsprodukte von Inulinen mit Glycidol einsetzt.
14 . Verwendung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man Umsetzungsprodukte von Inulinen mit Propylenoxid und halogenierten Hydroxypropylammonium- oder 2,3-Epoxypropylammoniumsalzen einsetzt.
15. Verwendung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man Umsetzungsprodukte von Inulinen mit Propylenoxid und halogenierten Trialkylaminen einsetzt.
16. Verwendung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man Umsetzungsprodukte von Inulinen mit Glycidol bzw. Glycidolderivaten und halogenierten Trialkylaminen einsetzt.
17. Verwendung nach mindestens mindestens einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass man die Inuline und/oder Inulinerivate in Mengen von 0,0001 bis 5 Gew.-% - bezogen auf die Endzubereitungen - einsetzt.
EP01960327A 2000-06-28 2001-06-19 Verwendung von inulinen und inulinderivaten tung z Withdrawn EP1294355A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01960327A EP1294355A1 (de) 2000-06-28 2001-06-19 Verwendung von inulinen und inulinderivaten tung z

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00440192A EP1174118A1 (de) 2000-06-28 2000-06-28 Verwendung von Inulinen und Inulinderivaten
EP00440192 2000-06-28
EP01960327A EP1294355A1 (de) 2000-06-28 2001-06-19 Verwendung von inulinen und inulinderivaten tung z
PCT/EP2001/006864 WO2002000188A1 (de) 2000-06-28 2001-06-19 Verwendung von inulinen und inulinderivaten

Publications (1)

Publication Number Publication Date
EP1294355A1 true EP1294355A1 (de) 2003-03-26

Family

ID=8174140

Family Applications (3)

Application Number Title Priority Date Filing Date
EP00440192A Withdrawn EP1174118A1 (de) 2000-06-28 2000-06-28 Verwendung von Inulinen und Inulinderivaten
EP01960327A Withdrawn EP1294355A1 (de) 2000-06-28 2001-06-19 Verwendung von inulinen und inulinderivaten tung z
EP01955314A Withdrawn EP1294354A1 (de) 2000-06-28 2001-06-19 Verwendung von inulinen und inulinderivaten

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00440192A Withdrawn EP1174118A1 (de) 2000-06-28 2000-06-28 Verwendung von Inulinen und Inulinderivaten

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP01955314A Withdrawn EP1294354A1 (de) 2000-06-28 2001-06-19 Verwendung von inulinen und inulinderivaten

Country Status (5)

Country Link
US (2) US20030191087A1 (de)
EP (3) EP1174118A1 (de)
JP (2) JP2004501175A (de)
AU (2) AU2001277512A1 (de)
WO (2) WO2002000188A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2819404B1 (fr) 2001-01-12 2004-11-05 Oreal Compositions cosmetiques contenant un fructane et un polymere cationique et leurs utilisations
FR2819403B1 (fr) 2001-01-12 2004-10-15 Oreal Compositions cosmetiques contenant un fructane, un polysaccharide et un agent benefique et leurs utilisations
FR2831059B1 (fr) * 2001-10-18 2004-07-23 Jean Noel Thorel Utilisation des fructo-oligosaccharides comme actifs cosmetiques, compositions les comprenant et procede de conservation les utilisant
DE10207919A1 (de) * 2002-02-23 2003-09-18 Cognis Deutschland Gmbh Anti-Ageingmittel
DE10226818A1 (de) * 2002-06-15 2003-12-24 Wella Ag Verdicktes kationisches kosmetisches Mittel
EP2277867B1 (de) 2002-07-15 2012-12-05 Symphony Evolution, Inc. Verbindungen, pharmazeutische Zusammensetzungen die diese enthalten und ihre Verwendung zur Behandlung von Krebs
FR2848783B1 (fr) * 2002-12-18 2005-05-13 Agronomique Inst Nat Rech Utilisation de prebiotiques pour prevenir ou traiter le stress oxydant
DE10333245C5 (de) * 2003-07-21 2015-02-19 Henkel Ag & Co. Kgaa Präbiotisch wirksame Pflanzenextrakte
ES2371383T3 (es) 2003-09-26 2011-12-30 Exelixis, Inc. N-[3-fluoro-4-({6-(metiloxi)-7-[(3-morfolin-4-ilpropil)oxi]quinolin-4-il}oxi)fenil]-n'-(4-fluorofenil)ciclopropan-1,1-dicarboxamida para el tratamiento del cáncer.
EP1541117A1 (de) * 2003-12-12 2005-06-15 Tiense Suikerraffinaderij N.V. Abspülbare kosmetische Zusammensetzungen enthaltend Inulin-Typ Fructan
JP2006028075A (ja) * 2004-07-15 2006-02-02 Sanrihama Tokusan Nogyo Kyodo Kumiai リン酸化フルクタン及びその調製方法
EP1967178A1 (de) * 2007-03-07 2008-09-10 Raffinerie Notre Dame - Orafti S.A. Epilationszusammensetzungen auf Fructanbasis
WO2008138805A1 (en) * 2007-05-10 2008-11-20 L'oreal Cosmetic composition comprising an inulin derivative in the form of an emulsion expanded in volume
US20090155325A1 (en) * 2007-12-14 2009-06-18 Kimberly-Clark Worldwide, Inc. Formulation and products for promoting skin cleanliness and health
JP4959663B2 (ja) * 2008-09-30 2012-06-27 富士フイルム株式会社 水性化粧料及びその製造方法
TW202241853A (zh) 2009-01-16 2022-11-01 美商艾克塞里克斯公司 包含n-(4-{[6,7-雙(甲氧基)喹啉-4-基]氧基}苯基)-n'-(4-氟苯基)環丙烷-1,1-二甲醯胺之蘋果酸鹽之醫藥組合物及其用途
UA108618C2 (uk) 2009-08-07 2015-05-25 Застосування c-met-модуляторів в комбінації з темозоломідом та/або променевою терапією для лікування раку
FR2954140A1 (fr) * 2009-12-17 2011-06-24 Oreal Compositions cosmetiques ou dermatologiques a base de bacteriocines et de prebiotiques
GB2500585A (en) * 2012-03-23 2013-10-02 Univ Manchester Use of oligosaccharides to reduce skin pigmentation
US10300028B2 (en) * 2014-03-07 2019-05-28 Mark Tuffley Composition and method for enhancing wound healing
KR102015857B1 (ko) * 2019-04-08 2019-08-30 (주)우성씨앤티 가교 히알루론산과 프리바이오틱스를 활성 성분으로 포함하는 화장품 조성물
JP7478558B2 (ja) 2020-03-09 2024-05-07 株式会社ノエビア プロテオグリカン産生促進剤及び皮膚外用剤
JP2023167026A (ja) * 2022-05-11 2023-11-24 克昭 團 膵機能活性化剤、抗老化剤、2型糖尿病の治療薬または予防薬、医薬品、化粧品および食品または飲料

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172887A (en) * 1973-11-30 1979-10-30 L'oreal Hair conditioning compositions containing crosslinked polyaminopolyamides
WO1987002679A1 (en) * 1985-10-31 1987-05-07 The Australian National University Immunotherapeutic treatment
FR2678166B1 (fr) * 1991-06-27 1993-10-22 Bioeurope Compositions cosmetiques contenant des glucooligosaccharides.
EP0638589B1 (de) * 1993-08-10 1998-01-28 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Verfahren zur Herstellung von Inulinderivaten
JPH0753347A (ja) * 1993-08-19 1995-02-28 Mitsubishi Chem Corp 皮膚化粧料
ES2138745T5 (es) * 1994-07-07 2005-08-01 Tiense Suikerraffinaderij N.V. (Raffinerie Tirlemontoise S.A.) Composiciones polidispersadas fraccionadas.
DE4426216A1 (de) * 1994-07-23 1996-01-25 Merck Patent Gmbh Benzyliden-Norcampher-Derivate
DE4426215A1 (de) * 1994-07-23 1996-01-25 Merck Patent Gmbh Ketotricyclo [5.2.1.0] decan-Derivate
DE19503423A1 (de) * 1995-02-03 1996-08-08 Beiersdorf Ag Antiadhäsive Wirkstoffe
NL1000279C2 (nl) * 1995-05-02 1996-11-05 Suiker Unie Met hitte behandelde polysacharidecrème.
DE19607847C1 (de) * 1996-03-01 1997-11-20 Suedzucker Ag Aliphatische Carbonsäureester von Inulin
EP1293504A3 (de) * 1996-07-08 2003-11-05 Ciba SC Holding AG Triazinderivate als UV-Filter in kosmetischen Mitteln
JPH1072312A (ja) * 1996-09-02 1998-03-17 Shiseido Co Ltd 皮膚外用剤
NL1004153C2 (nl) * 1996-09-30 1998-03-31 Cooperatie Cosun U A Nieuwe fructaan-derivaten.
ES2246501T3 (es) * 1996-11-29 2006-02-16 Basf Aktiengesellschaft Preparados cosmeticos y farmaceuticos que contienen filtros uv-a fotoestables.
EP1125507A1 (de) * 2000-02-15 2001-08-22 Tiense Suikerraffinaderij N.V. (Raffinerie Tirlemontoise S.A.) Inulinprodukte mit verbesserten Nahrungseigenschaften

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0200188A1 *

Also Published As

Publication number Publication date
WO2002000188A1 (de) 2002-01-03
EP1294354A1 (de) 2003-03-26
US20030191087A1 (en) 2003-10-09
JP2004501175A (ja) 2004-01-15
WO2002000187A1 (de) 2002-01-03
AU2001277512A1 (en) 2002-01-08
AU2001281850A1 (en) 2002-01-08
US20030186934A1 (en) 2003-10-02
JP2004501176A (ja) 2004-01-15
EP1174118A1 (de) 2002-01-23

Similar Documents

Publication Publication Date Title
EP1480603B1 (de) Verwendung von zuckerestern in kosmetischen zubereitungen
EP1284133B1 (de) Wirkstoffmischungen
EP2012741B1 (de) Verdickungsmittel
EP1294355A1 (de) Verwendung von inulinen und inulinderivaten tung z
EP1524029B1 (de) Selbstemulgierende Zubereitungen
DE10059239A1 (de) Kosmetische und/oder pharmazeutische Emulsionen
EP1253906B1 (de) Kosmetische zubereitungen mit waltheria indica extrakten und ferulasäure
EP1138313A1 (de) Pro-liposomen
EP1440683A1 (de) Verwendung von Oligoglucosaminen in kosmetischen oder dermatologischen Zubereitungen
WO2001074302A1 (de) Pro-liposomal verkapselte zubereitungen
EP1437117A1 (de) Verwendung von Sinapinsäure und/oder Sinapinsäurederivaten
EP1292277A1 (de) Verfahren zum schutz der menschlichen haut
EP1254655B1 (de) Verwendung von Esterquats
WO2001074303A1 (de) Pro-liposomal verkapselte zubereitung
EP1283854B1 (de) Lösungsvermittler
DE10206353A1 (de) Verwendung von niedermolekularen Proteinhydralysaten
EP1264633B1 (de) Verwendung von Alkyl(ether)phosphaten(I)
WO2001006995A1 (de) Kosmetische mittel enthaltend hydroxychavicol
DE10004644B4 (de) Verwendung von Inulinderivaten als Verdickungsmittel
EP1309311A2 (de) Kosmetische zubereitungen, die dicarbonsäuren enthalten
EP1369411A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen mit Retinolestern
EP1206428B1 (de) Verwendung von hydroxyethern in kosmetischen und pharmazeutischen zubereitungen
EP1252880A1 (de) Verwendung von Milchproteinhydrolysaten
EP1138312A1 (de) Pro-liposomen
WO2002043674A1 (de) Kosmetische mikroemulsionen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021219

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE ES FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS FRANCE, S.A.S.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060103