EP1285473A2 - Brennstoffzellenstack, verfahren zu dessen montage und verwendung eines solchen brennstoffzellenstacks - Google Patents

Brennstoffzellenstack, verfahren zu dessen montage und verwendung eines solchen brennstoffzellenstacks

Info

Publication number
EP1285473A2
EP1285473A2 EP00991114A EP00991114A EP1285473A2 EP 1285473 A2 EP1285473 A2 EP 1285473A2 EP 00991114 A EP00991114 A EP 00991114A EP 00991114 A EP00991114 A EP 00991114A EP 1285473 A2 EP1285473 A2 EP 1285473A2
Authority
EP
European Patent Office
Prior art keywords
fuel cell
cell stack
elastic
stack
cell units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00991114A
Other languages
German (de)
English (en)
French (fr)
Inventor
Manfred Baldauf
Rittmar Von Helmolt
Manfred Poppinger
Rolf BRÜCK
Joachim Grosse
Jörg-Roman KONIECZNY
Peter Buchner
Arno Mattejat
Igor Mehltretter
Konrad Mund
Manfred Waidhas
Meike Reizig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH, Siemens AG filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP1285473A2 publication Critical patent/EP1285473A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Fuel cell stack method for assembling and using such a fuel cell stack
  • the invention relates to a fuel cell stack, method for assembling the fuel cell stack and use of such a fuel cell stack.
  • EP 0 795 205 B1 is a fuel cell and a
  • Fuel cell stack is known, in which the fuel cell units are mechanically stacked and held together by end plates with the aid of screw bolts. Sealing lips serve as sealing material on the individual bushings with a support ring as a mechanical abutment.
  • System-related to the design is that there is direct contact between the pole plates designed as bipolar plates and the membrane, which can lead to corrosion problems.
  • the object of the invention is to create a fuel cell stack which is suitable for all types of a PEM fuel cell and which at the same time overcomes the disadvantages of the prior art.
  • a method for assembling such a fuel cell stack is the subject of claim 11, a preferred use is specified in claim 14.
  • the invention relates to a fuel cell stack with at least two stacked fuel cell units and at least one end plate and / or a housing and / or an outermost pole plate or bipolar plate, the fuel cell units being connected to one another with a material with sealing and fixing properties.
  • the invention also relates to a method for assembling a fuel cell stack, in which at least two fuel cell units are connected to form a stack via a material with sealing and fixing properties, and the use of such a fuel cell stack in a fuel cell system with HT-PEM fuel cells.
  • the material also has adhesive properties, so that the fuel cell units connected via the material are bonded to one another and connected in a sealing manner. This means that either no further or only a slight sealing pressure is required due to end plates with a tensioning device.
  • the material is elastic, so that thermally induced volume changes in the non-elastic structural parts of the stack, such as in particular the bipolar plate, the electrode, the membrane and / or matrix, can be compensated for by the elasticity of the connecting material.
  • the mate ⁇ rial is periodic in part elastic. This is understood to mean that the material in successive areas is not continuously elastic, but alternately elastic and elastic, ie mechanically rigid, so that it also gives the stack mechanical strength.
  • the fibers can be made of metal, carbon, glass fibers or the like, that is to say those fibers which can absorb tensile forces in connection with the base material.
  • reinforced plastics refer to the glass-fiber ⁇ which can also be used.
  • cross-link materials in a targeted, localized manner, for example by so-called beam cross-linking. It can periodically or the same material. have elastic or non-elastic properties in sections. The non-elastic partial areas are preferably located on the outside of the stack.
  • the elements of the fuel cell unit - such as the membrane electrode unit and the pole plates - are likewise connected to one another via a material with sealing and fixing properties.
  • This connection is preferably designed such that there is no direct contact between a bipolar plate and the membrane and / or matrix, because there is a risk that the acid located on the membrane or matrix attacks the material and / or the surface coating of the pole plate.
  • the material is preferably a plastic that is stable up to approx. 300 ° C.
  • a polymer material that is made up of identical or different monomer units is suitable for this.
  • various monomeric units and additives occur in the plastic.
  • an elastomer is used as the material taken, preferably an adhesive elastomer and particularly preferably an adhesive elastomer with non-elastic partial areas and / or with periodically partially elastic areas.
  • the plastic forms a frame element that encloses the stack.
  • the plastic forms support rings and / or sealing rings that seal the fuel cell units to one another at the bushings of the axial channels and / or so-called manifolds.
  • the pole plates of neighboring cells are glued to one another by the material.
  • the support and / or sealing rings made of plastic are, as mentioned, reinforced with metal or glass fibers according to one embodiment.
  • the stack is accommodated in a pressure-carrying outer housing, so that no internal manifold is required, at least for a process gas and / or the cooling medium.
  • the fuel cell stack preferably forms a closed design.
  • an open stack design can also be realized if the fuel cell units are only partially sealed to one another.
  • open ⁇ stack design with Wasserstoffruckbuchung and reformer operation is because of inevitable impurities membrane a Gasremists-, for example, m the gas supply line is attached, is advantageous.
  • the stack in the open design is advantageously arranged with vertically oriented active cell areas so that the water drips out of the active cell areas.
  • the stack is additionally held together by tie rods and screw bolts on the end plates, it being possible for at least one tie rod to be guided through an axial supply channel, for example.
  • FIG. 1 shows a section through a fuel cell stack which is part of a fuel cell system
  • FIG. 2 shows a detail from FIG. 1 in the edge area
  • Figures 3 and 4 two alternative arrangements as a partial section before assembly
  • Figure 5 shows a sealing element that is alternately fixed and / or sealed.
  • a stack is a stack of at least two fuel cell units with the associated lines and at least part of the cooling system.
  • the entire fuel cell system that has one or more subsystems is referred to as a fuel cell system.
  • Each subsystem has at least one fuel cell unit, the corresponding supply lines, i.e. the process gas supply and discharge ducts, end plates and / or a housing and / or an outermost pole plate, a cooling system with cooling medium and cooling lines and a “fuel cell stack peripheral X.
  • This periphery includes, for example a reformer, compressor, blower and / or heating for process gas preheating, as well as other modules if necessary.
  • a fuel cell stack is denoted by 10 in FIG.
  • the stack consists of a large number of individual ones
  • MEA Membrane Electrode Assembly
  • the entire arrangement is held together by means of end plates 12 and 13 and a plurality of tie rods, of which the tie rods 14 and 15 can be seen in the figure.
  • the material formation 20 can be designed to be elastic in the area 21 in order to absorb temperature-related stresses, while in the areas 22 the material is elastic and serves, as it were, as a rigid frame.
  • Each fuel cell unit 11 comprises at least one membrane 110 and / or matrix with a chemical one and / or physically bound electrolytes and two electrodes 111 and 112, which are located on opposite sides of the membrane and / or matrix.
  • a reaction chamber 113, 114 borders on at least one electrode 111, 112, each of which has a pole plate or for two
  • the design of the sealing means 20 can be seen in detail from FIG. 2 in particular: there is a seal 21 in the inner region which is elastically sealing and is deformed in the process. In the outer area there is a seal 22 which has fixing properties and is not deformed. With this construction, in particular through the fixing seals 22, a stability of the arrangement is achieved.
  • a closed design of the fuel cell stack is realized.
  • corresponding openings are to be provided in the lower region in the case of a vertical arrangement of the individual fuel cell units 11, 11 of the fuel cell stack 10.
  • seals 20 made of the material with deformable areas 21 and non-deformable areas 22 are applied, for example vulcanized, to the bipolar plates 115.
  • the actual MEA is inserted between two such arrangements of bipolar plates 115 with the seals 21.
  • a force is required for sealing, which deforms the elastic regions 21 of the seals 20 until the non-elastic regions 22 lie on one another. The sum of the distances fixed in this way gives the total height of the stack.
  • a sealing element 40 can have alternating fixing and sealing properties.
  • the element 40 has an outer region 41, which is preformed, for example, in a bead-like manner and has natural inherent shadows and is suitable for compressing the MEA from the membrane 110 and electrodes 111, 112.
  • the area 42 aligned with the pole plate has fixing properties. These properties can be achieved, for example, by incorporating fibers made of other materials, for example metallic materials, or, in the case of certain polymers, by means of beam crosslinking.
  • the MEA can be sealed on the one hand in areas with elastic properties and likewise fixed in a support ring with non-elastic properties, so that the cell-internal force absorption is possible and the overall requirements for the end plates and their bracing become lower. This is possible because the plastic material used provides support functions at certain points.
  • a single or double-walled container can serve as the housing.
  • a possibility of insulation can play a role here, so that in the double-walled embodiment, for example, the cavity is filled with a latent heat storage material, preferably with paraffin.
  • the housing With an open stack design with housing and pressurization in the housing, the housing must be pressure-stable.
  • the invention improves the thermostability of the known stack structure, and allows an increase in the operation ⁇ temperature up to 300 ° C.
  • HT-PEM fuel cells which are operated in a specific manner at such working temperatures and are referred to as HT-PEM fuel cells.
  • HT-PEM fuel cells have operating temperatures between 80 and 300 ° C.
  • the use of corrosive phosphoric acid in such PEM fuel cells means that the selection of materials is of particular importance.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
EP00991114A 1999-12-23 2000-12-22 Brennstoffzellenstack, verfahren zu dessen montage und verwendung eines solchen brennstoffzellenstacks Withdrawn EP1285473A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19962682A DE19962682A1 (de) 1999-12-23 1999-12-23 Brennstoffzellenstack, die Verwendung eines Brennstoffzellenstacks und ein Verfahren zur Montage eines Brennstoffzellenstacks
DE19962682 1999-12-23
PCT/DE2000/004593 WO2001048845A2 (de) 1999-12-23 2000-12-22 Brennstoffzellenstack, verfahren zu dessen montage und verwendung eines solchen brennstoffzellenstacks

Publications (1)

Publication Number Publication Date
EP1285473A2 true EP1285473A2 (de) 2003-02-26

Family

ID=7934279

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00991114A Withdrawn EP1285473A2 (de) 1999-12-23 2000-12-22 Brennstoffzellenstack, verfahren zu dessen montage und verwendung eines solchen brennstoffzellenstacks

Country Status (7)

Country Link
US (1) US20030027031A1 (ja)
EP (1) EP1285473A2 (ja)
JP (1) JP2003529186A (ja)
CN (1) CN1460302A (ja)
CA (1) CA2395503A1 (ja)
DE (1) DE19962682A1 (ja)
WO (1) WO2001048845A2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10058381B4 (de) * 2000-11-24 2008-07-03 Inhouse Engineering Gmbh Modularer multifunktionaler Brennstoffzellenstapel mit Polymer-Eektrolyt-Membranen (PEM)
DE10152192B4 (de) * 2001-10-23 2004-10-28 Carl Freudenberg Kg Verfahren zur Herstellung einer Träger-Dichtung
EP1552573B1 (en) * 2002-10-14 2015-09-02 REINZ-Dichtungs-GmbH Electrochemical system
JP4422458B2 (ja) * 2002-11-07 2010-02-24 本田技研工業株式会社 燃料電池
EP1464730A1 (en) * 2003-04-04 2004-10-06 CASALE ChEMICALS S.A. Frame structure for an electrochemical reactor of the filter-press type
DE10324157B3 (de) * 2003-05-22 2004-08-19 Reinz-Dichtungs-Gmbh & Co. Kg Hochtemperatur-Brennstoffzellensystem
ITMI20031972A1 (it) * 2003-10-14 2005-04-15 Nuvera Fuel Cells Europ Srl Cella a combustibile a membrana con funzionamento stabile nel tempo
JP4862243B2 (ja) * 2003-12-24 2012-01-25 トヨタ自動車株式会社 燃料電池スタック
KR100551809B1 (ko) * 2004-03-27 2006-02-13 현대자동차주식회사 복합 가스켓을 포함하는 연료전지스택용 단셀 구조
JP4547177B2 (ja) * 2004-03-29 2010-09-22 本田技研工業株式会社 燃料電池
JP4780940B2 (ja) * 2004-07-29 2011-09-28 東海ゴム工業株式会社 固体高分子型燃料電池用セル
DE102006058369B4 (de) * 2006-12-08 2014-01-23 Sennheiser Electronic Gmbh & Co. Kg Elektroakustischer Wandler
DE102007002444A1 (de) * 2007-01-17 2008-07-24 Robert Bosch Gmbh Vorrichtung mit wenigstens einer elektrochemischen Zelle und Verfahren zum Betreiben einer Vorrichtung mit wenigstens einer elektrochemischen Zelle
DE102007003913B3 (de) * 2007-01-19 2008-05-29 Mechanik Center Erlangen Gmbh Anordnung mit zumindest zwei dicht aneinander liegenden, jeweils mit einem Fluid gefüllten Kammern
JP4252623B2 (ja) 2007-06-06 2009-04-08 パナソニック株式会社 高分子電解質型燃料電池
US8371587B2 (en) 2008-01-31 2013-02-12 GM Global Technology Operations LLC Metal bead seal for fuel cell plate
CN101261243B (zh) * 2008-04-14 2011-10-12 北京科技大学 一种螺旋扣式防侧漏氢传感器外壳结构
DE102009030016A1 (de) 2009-06-23 2010-12-30 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Spannungsversorung eines Kraftfahrzeugs mit einem Kühlerblock
DE102009030017A1 (de) 2009-06-23 2010-12-30 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Spannungsversorgung eines Kraftfahrzeugs mit einem Kühlerblock
CN102473929A (zh) * 2009-07-31 2012-05-23 现代Hysco株式会社 具有双重结构的金属分离板用垫片
KR101271398B1 (ko) * 2011-05-09 2013-06-11 한국에너지기술연구원 미세유로 가열기를 이용한 적층형 탄화수소 개질장치
JP5884713B2 (ja) * 2012-11-30 2016-03-15 トヨタ自動車株式会社 燃料電池および燃料電池スタック
EP2971258B1 (en) * 2013-03-12 2020-06-03 Next Hydrogen Corporation End pressure plate for electrolysers
FR3022398B1 (fr) * 2014-06-13 2019-01-25 Safran Aircraft Engines Structure et procede de fabrication ameliores pour une plaque bipolaire de pile a combustible
JP6915519B2 (ja) * 2017-12-08 2021-08-04 トヨタ自動車株式会社 燃料電池モジュール
DE102019217053A1 (de) * 2019-11-06 2021-05-06 Robert Bosch Gmbh Separatorplatte, insbesondere für eine Brennstoffzelle

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946767A (ja) * 1982-09-10 1984-03-16 Toshiba Corp りん酸電解質燃料電池
FR2719946A1 (fr) * 1988-03-01 1995-11-17 United Technologies Corp Dispositif d'étanchéité pour piles à combustible.
DE4309976A1 (de) * 1993-03-26 1994-09-29 Daimler Benz Ag Elektrochemische Mehrzellenbatterie
US5563762A (en) * 1994-11-28 1996-10-08 Northern Telecom Limited Capacitor for an integrated circuit and method of formation thereof, and a method of adding on-chip capacitors to an integrated circuit
JP3353567B2 (ja) * 1995-09-29 2002-12-03 松下電器産業株式会社 燃料電池
AU7181998A (en) * 1996-11-14 1998-06-03 Dais Corporation Fuel cell stack assembly
DE19703214C2 (de) * 1997-01-29 2003-10-30 Proton Motor Fuel Cell Gmbh Membran-Elektrodeneinheit mit integriertem Dichtrand und Verfahren zu ihrer Herstellung
DE19713250C2 (de) * 1997-03-29 2002-04-18 Ballard Power Systems Elektrochemischer Energiewandler mit Polymerelektrolytmembran
JP3918265B2 (ja) * 1997-11-21 2007-05-23 トヨタ自動車株式会社 燃料電池の製造方法
JPH11219714A (ja) * 1998-02-03 1999-08-10 Matsushita Electric Ind Co Ltd 燃料電池
DE19829142A1 (de) * 1998-06-30 2000-01-05 Manhattan Scientifics Inc Gasdichter Verbund aus Bipolarplatte und Membran-Elektroden-Einheit von Polymerelektrolytmembran-Brennstoffzellen
US6387557B1 (en) * 1998-10-21 2002-05-14 Utc Fuel Cells, Llc Bonded fuel cell stack assemblies
US6159628A (en) * 1998-10-21 2000-12-12 International Fuel Cells Llc Use of thermoplastic films to create seals and bond PEM cell components
US6399234B2 (en) * 1998-12-23 2002-06-04 Utc Fuel Cells, Llc Fuel cell stack assembly with edge seal
DE19926027A1 (de) * 1999-05-28 2000-11-30 Heliocentris Energiesysteme Membran-Elektroden-Einheit mit integriertem Dichtrand
EP1073138B1 (en) * 1999-07-26 2012-05-02 Tigers Polymer Corporation Sealing structure of fuel cell and process for molding rubber packing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0148845A2 *

Also Published As

Publication number Publication date
US20030027031A1 (en) 2003-02-06
JP2003529186A (ja) 2003-09-30
CA2395503A1 (en) 2001-07-05
CN1460302A (zh) 2003-12-03
WO2001048845A3 (de) 2002-10-31
WO2001048845A2 (de) 2001-07-05
DE19962682A1 (de) 2001-07-05

Similar Documents

Publication Publication Date Title
EP1285473A2 (de) Brennstoffzellenstack, verfahren zu dessen montage und verwendung eines solchen brennstoffzellenstacks
DE69923023T2 (de) Brennstoffzelle mit festen Polymerelektrolyten und Herstellungsverfahren dafür
DE102011105072B3 (de) Haltevorrichtung mit einer Membran einer Membran-Elektroden-Einheit für eine Brennstoffzelle und Verfahren zu deren Herstellung
DE112007002945B4 (de) Brennstoffzelle mit elastischem Element
DE212012000139U1 (de) Batteriesatzanordnung
DE10207743A1 (de) Elektrode für eine Polymerelektrolyt-Brennstoffzelle, Trennwand hierfür sowie Polymerelektrolyt-Brennstoffzelle und Elektrizitätserzeugungssystem unter Verwendung derselben
DE102010029872A1 (de) Batteriebaugruppe für Hybrid- oder Elektrofahrzeuge
DE102013021312A1 (de) Batterie
EP3963645A1 (de) Druckmodul, insbesondere für lithiumionen-batteriezellen
DE102006044148A1 (de) Nachgiebige Beschickungsrohre für ein planares Feststoffelektrolyt-Brennstoffzellen-System
DE102015225350A1 (de) Gehäuse zur Aufnahme eines Brennstoffzellen-, Batterie- oder Kondensatorstapels
DE102016004306A1 (de) Brennstoffzellenstapel, Brennstoffzellensystem, Fahrzeug und Verfahren zum Fertigen eines Brennstoffzellenstapels
WO2019020402A1 (de) Elektrochemisch aktive einheit für eine elektrochemische vorrichtung
EP3659200B1 (en) Systems and methods of fuel cell stack compression
WO2019237139A2 (de) Akkumulator
DE102023132353A1 (de) Separatorplatte für ein elektrochemisches system mit einer entlastungssicke
DE102019120606A1 (de) Gehäuse für eine Batteriezellen-Anordnung, Verfahren zu dessen Herstellung und temperierte Batteriezellen-Anordnung
DE2129187A1 (de) Brennstoffbatterie aus einer mehrzahl von brennstoffelementen
DE102011105071A1 (de) Haltevorrichtung mit einer Membran einer Membran-Elektroden-Einheit für eine Brennstoffzelle und Verfahren zu deren Herstellung
DE102007005589A1 (de) Dichtung für eine Brennstoffzelle und Herstellungsverfahren dafür
EP1481439A2 (de) Verfahren und vorrichtung zum stapeln von brennstoffzellen
DE102017111514A1 (de) Gehäuse für einen Stapel aus elektrochemischen Einheiten zur Montage in einer elektrochemischen Vorrichtung
WO2008071143A1 (de) Bipolarplatte und wiederholeinheit für einen brennstoffzellenstapel
WO2016087128A1 (de) Bauteil zur kraftaufnahme und/oder kraftverteilung in einem batteriezellenmodul
WO2008071141A2 (de) Wiederholeinheit für einen brennstoffzellenstapel und bipolarplatte für eine solche wiederholeinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020605

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040701