EP1283957B1 - Microbearbeitete fluidische vorrichtung und herstellungsverfahren - Google Patents

Microbearbeitete fluidische vorrichtung und herstellungsverfahren Download PDF

Info

Publication number
EP1283957B1
EP1283957B1 EP01951621A EP01951621A EP1283957B1 EP 1283957 B1 EP1283957 B1 EP 1283957B1 EP 01951621 A EP01951621 A EP 01951621A EP 01951621 A EP01951621 A EP 01951621A EP 1283957 B1 EP1283957 B1 EP 1283957B1
Authority
EP
European Patent Office
Prior art keywords
wafer
closure
support wafer
layer
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01951621A
Other languages
English (en)
French (fr)
Other versions
EP1283957A1 (de
Inventor
Harald T. Van Lintel
Didier Maillefer
Stephan Gamper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Debiotech SA
Original Assignee
Debiotech SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Debiotech SA filed Critical Debiotech SA
Publication of EP1283957A1 publication Critical patent/EP1283957A1/de
Application granted granted Critical
Publication of EP1283957B1 publication Critical patent/EP1283957B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body

Definitions

  • the invention relates to a fluidic device and its method of manufacturing.
  • the invention also relates to particular forms of fluidic devices constituting a liquid inlet control member, which forms, for example, a non-return valve, or a device for detecting liquid pressure.
  • the present invention also relates to a micropump constituting a fluidic device and which in particular, but not exclusively, forms a micropump for medical use that delivers regularly a controlled amount of a liquid medicine.
  • micropumps The manufacture of these fluidic devices and in particular these micropumps is based on silicon micro-machining technologies or any other micro-machinable material, in particular with the aid of photolithographic and etching techniques, laser ablation, micro-replication or others.
  • the order of the micropump is performed by varying the volume of the chamber of pumping (alternation of decreases and increases), for example by means of a control made by a piezoelectric actuator.
  • the present invention aims to provide a device fluidic material, for example a liquid inlet control member or a liquid pressure sensing element or micropump, which can be made in a simplified manner and constituting a fluidic device reliable in its operation by minimizing dead volumes.
  • a device fluidic material for example a liquid inlet control member or a liquid pressure sensing element or micropump
  • a fluidic device comprising the technical features according to claim 2.
  • said movable member reversibly approaches said support plate to form a contact between said member mobile and said support plate.
  • a stack comprising a covered silicon support plate of a layer of silicon oxide, itself covered with a layer of silicon.
  • This stack is commercially available and is usually referred to as SOI ("SILICON-ON-INSULATOR").
  • the formation of the different parts of the fluidic device is performed by selective etching from both sides of the stack, that is to say from both sides of the plate constituting this stacking: indeed, the layer of insulating material (silicon oxide in the case of an SOI stack) forms a stop or a barrier of attack during the micromachining of the support plate or the layer of silicon.
  • the layer of insulating material silicon oxide in the case of an SOI stack
  • the closing plate which allows to close including the cavity created in the machined silicon layer, is preferably made of glass or monocrystalline silicon.
  • a liquid input control member forming a valve anti-return, comprising a stack covered with a plate of closure, said stack comprising a support plate, preferably silicon, a layer of insulating material, preferably silicon oxide, at least partially covering said plate of support, and a monocrystalline or polycrystalline silicon layer covering said layer of insulating material and covered with said closure plate, said closure plate and / or said silicon being machined to define between said closure plate and said silicon layer, a cavity intended to be filled with liquid, said cavity having at least one machined clearance in any the thickness of the silicon layer, said support plate comprising at least one liquid inlet duct passing right through it and located at least opposite said cavity, said layer of material insulation having at least one area entirely free of material extending at least in the extension of said duct and said clearance, in order to define, with said cavity and in said layer of silicon, a movable member forming a valve for said valve, a portion said silicon layer surrounding said movable
  • said conduit liquid inlet of the liquid inlet control member defined in the foregoing paragraph is located nearby but not in the light of the said release, said movable member makes a movement between a position closed, in which the movable member is in sealing contact against said support plate which forms, at least around said duct, a seat for said valve, the flow of liquid being prevented between said conduit liquid inlet and the cavity, and an open position of the valve in which, the movable member is no longer in sealing contact against the plate of support around said duct, the movable member allows the flow of the liquid from said liquid inlet conduit to said clearance.
  • a pressure sensing member of liquid comprising a stack covered with a closure plate, said stack comprising a support plate, preferably in silicon, a layer of insulating material, preferably silicon, at least partially covering said support plate, and a monocrystalline or polycrystalline silicon layer covering said layer of insulating material and covered with said closure plate, said closure plate and / or said silicon layer being machined to defining, between said closure plate and said silicon layer, a cavity intended to be filled with liquid, said support plate having at least one conduit passing right through it and located view of said cavity, said layer of insulating material having at least an area entirely free of material placed at least in the extension of said conduit, to define, with said cavity and in said silicon layer, a movable member, said support plate in silicon having a portion opposite the mobile member forming an island separated from the rest of the support plate by said conduit, said member mobile being susceptible, thanks to its elasticity and under the pressure of fluid in said cavity, to approach revers
  • said body mobile device the liquid pressure sensing member defined in the preceding paragraph, is likely to move from an open position to a closed position in which the movable member is in contact physical with said portion located opposite the movable member which forms an island separated from the rest of the support plate by said conduit and which is a supporting part of the silicon wafer, this physical contact can be detected electrically.
  • a micropump comprising a stack covered with a closure plate, said stack having a support plate, preferably made of silicon, a layer of insulating material, preferably of silicon oxide, least partially said support plate, and a silicon layer monocrystalline or polycrystalline covering said layer of material insulation and covered with said closure plate, said plate closure and / or said silicon layer being machined to define, between said closure plate and said silicon layer, a cavity intended to be filled with liquid and comprising a chamber of pumping, said support plate comprising at least a first leads therethrough and located opposite said cavity, said layer of insulating material having at least a first zone entirely free of material placed at least in the extension said first conduit, to define, with said cavity and in said layer of silicon, a first movable member capable, under the pressure of liquid in said pumping chamber, to get closer to reversible of said support plate, said first movable member belonging to the flap of a liquid input control member, said micropump
  • the first mobile device of the liquid input control device defined in the preceding paragraph is suitable, under the pressure of liquid in the said pumping chamber, to come into sealed contact against said plate of support, by constituting the flap of said input control member of liquid.
  • this micropump comprises, in in addition, a second zone entirely free of material in said layer of insulating material which defines, with said cavity and in said silicon layer, a suitable second movable member, under the pressure of liquid in said pumping chamber, to approach said plate of support, said second movable member constituting the flap of a liquid outlet control member,
  • the present invention relates to different types of fluidic devices which are, according to the essential characteristic of the the present invention, made from a stack of the SOI type, that is to say having a support plate, preferably of silicon, covered with a layer of insulating material, preferably silicon, itself covered with a layer of silicon.
  • the present invention proposes the use of a stack whose initial thickness of the three components (support plate, layer of insulating material and silicon) ensures, on the one hand, a controlled thickness of the different parts of the fluidic device and, on the other hand, reduced dead volumes in a very important way compared to the prior art.
  • Another major advantage of the technology according to this invention is a simplification of the manufacturing process with respect to techniques of the prior art.
  • This liquid inlet control member 100 designed to forming a unidirectional valve or non-return valve, comprises a glass closure plate 20 disposed above a stack 30 which has been previously machined for the formation of the different parts functionalities of this control organ 100.
  • This stack 30 consists of a silicon layer 32 surmounting a layer of silicon oxide 34, itself arranged above a silicon support plate 36.
  • the stack 30 is machined by conventional techniques of photolithography and chemical etching to get the different functional elements of the input control device 100, in particular a cavity 38 and a movable member 40, before making the connection between the glass closure plate 20 and this stack 30.
  • This connection between the closure plate 20 and the free face of the silicon layer 32 is, in known manner, carried out by plate welding (anodic welding when the closing plate is made of glass) at the end of which we obtain a fastener in the form of a tight connection.
  • a liquid inlet duct 102 passes through the plate of silicon support in all its thickness since a first end 102a to a second end 102b. This second end 102b is adjacent to a circular zone 35 of the diaper of silicon oxide 34 entirely free of matter that extends well beyond the liquid inlet conduit 102.
  • the silicon layer 32 has been machined in part of its opposite side of the silicon support plate 36 in order to forming the cavity 38.
  • a clearance 104 corresponding to a removal of material throughout the thickness of the silicon layer 32, is located in the extension of the cavity 38 and the free zone 35 of silicon oxide, close but not directly to the second end 102b of the liquid inlet conduit 102 which is turned towards the silicon oxide layer 34.
  • the cavity 38 extends at least opposite this zone 35 and the liquid inlet conduit 102.
  • the liquid inlet control member 100 1 illustrated in FIG. 1A comprises a clearance 104 1 which has the shape of an open ring so that the movable member is connected to the rest of the body. the silicon layer 32 by an arm 41 to the left of Figure 1A.
  • the liquid inlet control member 100 2 illustrated in FIG. 1B has a clearance 104 2 which has the shape of three angular sectors having a central angle of the order of 120.degree. so that the movable member is connected to the remainder of the silicon layer 32 by three arms 41 each located between two of the aforementioned angular sectors.
  • the member 40 is movable in one direction perpendicular to the main plane of the stack 30, that is to say from below at the top in Figure 1 or orthogonal to the plane of the sheet for Figures 1A and 1B.
  • the mobile member 40 has a greater rigidity than in the case of the first embodiment.
  • this member 40 makes it elastically mobile according to a direction transverse to the main plane of the stack 30 or the glass closure plate 20, namely from top to bottom as indicated the double headed arrow in Figure 1.
  • the member 100 forming an inlet valve is illustrated in the rest position, that is to say partially open.
  • the movable member 40 rises under the pressure of liquid which is then higher in the conduit 102 than in the cavity 38, so that the valve is placed in its open position and allows the liquid to enter zone 35, pass into the clearance 104 to reach the cavity 38.
  • This organ 100 is likely to fit into a set fluidic complex in which the member 100 constitutes an element upstream of the liquid inlet.
  • the liquid present in the cavity 38 is likely to have a pressure greater than the liquid pressure in the inlet duct 102, which then allows the closing the organ 100 by lowering the movable member that comes in sealing contact against the face of the silicon support plate 36 turned towards the silicon layer all around the second end 102b of the conduit 102.
  • the relative elasticity of the silicon layer 32 thinned to the location of the cavity 38 allows, when the liquid pressure in the cavity 38 is no longer greater than the liquid pressure in the conduit 102, a return of the member 40 to its initial position as represented in FIG. 1, that is to say a partial closure of the organ
  • the movable member 40 is lowered completely until coming into sealing contact against the plate of support 36: the liquid inlet control member 100 is then closed.
  • this member 100 forms an inlet valve in which the body of the valve consists of the face of the organ mobile 40 turned towards the silicon support plate 36 and in which the seat of the valve is constituted by the region of the face of the silicon support plate 36 rotated towards the silicon 32 which surrounds the second end 102b of the conduit 102.
  • an isolated portion 106 of the movable member 40 located in the middle of the arm 41, has a thickness equal to the initial thickness of the silicon layer 32.
  • This portion 106 is in the extension of an element 110 located on the face 20a of the plate of closure 20 turned towards the stack or on the free face of said portion 106.
  • this element 110 is derived from a titanium layer deposited on the aforementioned face 20a of the closure plate 20. This element 110 presses down on the isolated portion 106 and place of force the movable member 40 in its closed position then corresponding to its rest position. The elasticity of the movable member 40 is however sufficient to allow its opening.
  • portion 106 and said element 110 form means of support placing said movable member 40, in its rest position, in said closed position.
  • Figures 3 and 3A relate to a third mode of realization of the liquid input control member constituting the first aspect of the invention.
  • the input control of liquid 100 "further comprises, with respect to the first and second embodiments of the liquid input control member, a second glass plate 20 '.
  • the upper closure plate 20 is a first closure plate 20 and the second glass plate 20 'forms a second closure plate which is fixed on the face of the support plate 36 opposed to said first glass closure plate 20.
  • This second glass closure plate 20 ' is provided a conduit 102 "to the through from one side.
  • a movable portion 361 is made throughout the thickness of the support plate 36, facing and in the extension of said cavity 38, said movable member 40 and said duct 102 "A. This movable portion 361 is located close to but not facing said clearance 104 2 .
  • a material-free annular space 102 is machined throughout the thickness of the support plate 36, facing said completely material-free zone 35 of the layer of insulating material 34, separating said movable portion 361 from the remainder of the support plate 36 and thereby forming said liquid inlet conduit 102 "of the support plate 36 which communicates with said clearance 104 2 .
  • the layer of insulating material 34 has a connecting zone 321 surrounded by the zone 35 which is then annular, the connecting zone 321 integrally connecting said movable portion 361 to said movable member 40, thus making the movable portion 361 tributary of the upward movement or descending from the movable member 40.
  • An annular valve element 370 made of a material anti-adhesion (preferably titanium) is located on the face of the second glass closure plate 20 'placed opposite said moving part 361.
  • valve element 370 when said movable member 40 is as close as possible to the support plate 36 (situation not shown), the face of the movable portion 361 turned towards the second closure plate 20 'and the face of the valve member 370 facing towards the support plate 36 are in sealing contact thereby putting the body of 100 "liquid inlet control in the closed position preventing the passage of liquid from the conduit 102 "a of the second plate of closing 20 'to said liquid inlet conduit 102 "of the support 36.
  • FIG. 3A showing the liquid inlet control member 100 "of FIG. 3 in a view from above after the closure plate 20 has been removed, it can be seen that there is a significant similarity with Figure 1B since the movable member 40 is also connected by three arms 41 to the remainder of the silicon layer 32.
  • the clearance 104 2 is thus also formed of three angular sectors having a center angle of about 120 ° and who are here annular.
  • Figures 4 and 4A relate to a fourth mode of realization of the liquid input control member constituting the second aspect of the invention.
  • the control device liquid inlet 100 "'further comprises, with respect to the first and second embodiments of the input control device of liquid, a second glass plate 20 '.
  • This second glass plate 20 forms a second glass closure plate that is attached to the face of the plate support 36 opposite to said first glass closure plate 20 and provided with a conduit 102 "to the through from one side.
  • a movable portion 361 is made throughout the thickness of the support plate 36 of the organ 100 "liquid inlet control, next to and in line of said cavity 38 and said movable member 40.
  • This mobile part 361 is annular (see FIGS. 4 and 4A) and is first delimited by a first annular volume 102 "a free of material that has been machined throughout the thickness of the plate support 36, facing said zone 35 completely free of material of the layer of insulating material 34 and of said cavity 38.
  • this first annular volume 102 "'separates said movable portion 361 from the remainder of the support plate 36.
  • This annular mobile portion 361 is then also delimited by a second cylindrical volume free of material 102 "which has been machined throughout the thickness of the support plate 36 at the location (in the middle) of the movable part 361.
  • second volume free of material 102 "'forms said liquid inlet conduit 102"' which communicates with the clearance 104 1 which is then located opposite and in the extension of this liquid inlet conduit 102 "'.
  • the layer of insulating material 34 of the liquid inlet control member 100"'according to FIG. fourth embodiment has a connecting zone 321 surrounded by the zone 35 and integrally connecting said movable portion 361 to said movable member 40 around the liquid inlet duct 102 "'and the clearance 104 1 .
  • link 321 and zone 35 are annular and concentric.
  • This liquid inlet control member 100 "'comprises in in addition to an annular valve element 370 made of an anti-adhesion material (preferably titanium) and located on the face of the second glass closure plate 20 'placed opposite said moving part 361.
  • an annular valve element 370 made of an anti-adhesion material (preferably titanium) and located on the face of the second glass closure plate 20 'placed opposite said moving part 361.
  • This annular valve element 370 surrounds said duct liquid inlet 102 "'of the support plate 36 but not the conduit 102 "a of the closure plate 20 'which opens into the first volume ring 102 "'is free of material from the support plate 36.
  • the liquid inlet control member 100 "'is in the open position (see FIGS. 4 and 4A) allowing the passage of liquid from the pipe 102" a from the second closure plate 20 'to the first annular volume 102 "' a of the support plate 36, then between the movable portion 361 and the valve member 370 to the liquid inlet conduit 102"'of the support plate 36, then towards the clearance 104 1 in the direction of the cavity 38.
  • valve element 370 of the third and fourth modes of realization of the liquid inlet control member (100 "and 100" ') could also be located on the face of said movable portion 361 placed in look at the second glass closure plate 20 'and / or be realized also in another anti-adhesion material like gold, oxide of silicon or silicon nitride.
  • the third and fourth embodiments of the liquid input control member respectively illustrated on the FIGS. 3, 3A and 4, 4A belong to a second type of device in which a second glass plate 20 'is required to deport the seat of the valve between this second glass plate 20 'and a movable portion 361 of the support plate 36 of the stack 30.
  • liquid input control devices 100 or 100" "is identical to that of the input control devices of 100 and 100 'liquid according to the first and second embodiments (respectively Figures 1, 1A, 1B and Figures 2, 2A, and 2B).
  • valve element 370 in the organs of 100 "or 100" liquid inlet control allows pre-tensioning the movable member 40 because the presence of the thickness of the valve member 370 shifts up as much (see Figures 3 and 4) the movable member 40 in the cavity 38.
  • micro-machining techniques that can be used to process stacking 30, one can control very precisely the volume of the liquid inlet ducts 102 "or 102" 'of the support plate 36 to minimize the dead volume generated by these ducts.
  • 100 "or 100" liquid inlet control devices which just described can be integrated into a micropump as will be described later in connection with FIGS. 7 and 8, as an inlet valve.
  • Figure 5 is shown a second aspect of the device fluidic device according to the present invention corresponding to a liquid pressure sensing 400 likely to be part of a more complex fluidic assembly that can also incorporate the organ liquid input control system 100 presented beforehand.
  • This liquid pressure sensing element 400 comprises a glass closure plate 20 disposed above a stack 30 which has been previously machined for the formation of different functional parts of this pressure sensing element of liquid 400.
  • This stack 30 consists of a silicon layer 32 surmounting a layer of silicon oxide 34, itself arranged above a silicon support plate 36.
  • the stack 30 is machined by conventional techniques of photolithography and chemical etching to get the different functional elements of this pressure sensing element of 400, in particular a cavity 38 and a movable member 40, before to make the connection between the glass closure plate 20 and this Stacking 30.
  • This connection between the closure plate 20 and the face free of the silicon layer 32 is, in known manner, carried out by plate welding (anodic welding when the closure plate is made of glass) at the end of which a fixation is obtained in the form of a waterproof connection.
  • This liquid pressure sensing element 400 comprises the cavity 38 in which circulates a fluid whose direction of flow has been illustrated by two horizontal arrows in Figure 5. Under the pressure of this liquid, the mobile member 40 is able to move vertically in moving closer to or away from the silicon support plate 36 (double-headed vertical arrow) until coming into contact with this silicon support plate 36.
  • the path of the liquid in the cavity 38 is therefore done from an entry 402 to the left of Figure 5 to an exit 404 located on the right side of FIG.
  • a series of section conduits 412 circular is hollowed out throughout the thickness of the support plate in silicon 36 facing this zone 35 and the movable member 40.
  • these conduits 412 are located equidistant from each other with respect to all the zone 35 at which the silicon oxide is removed from the layer 34.
  • Another duct 412 ' which has in cross-section a cylinder wall form, preferably annular, is dug into any the thickness of the silicon support plate 36 and surrounds the series of ducts 412. This duct 412 'allows to separate from the rest of the plate of silicon support 36 a support portion 414 in the form of a pierced cylinder by the ducts 412, located opposite the movable member 40 and connected to an electrical connection.
  • a portion 416 of the silicon oxide layer 34 is left intact on the edge of the bearing portion 414, adjacent the conduit 412 '. Indeed, this portion 416 connects the support portion 414 to the silicon layer 32 in surrounding the movable member 40, thereby forming means for joining.
  • the duct 412 'and portion 416 have a section cylinder wall shape circular while ducts 412 are regularly distributed over a circular shaped area.
  • the 412 ducts are regularly distributed over a form area rectangle
  • the portion 416 consists of two portions in the form of half circle located along the two opposite sides of the aforesaid rectangle by forming two "ears".
  • the duct 412 'surrounds the both the aforementioned zone of rectangular shape and the two portions 416, this led 412 'then having a section cylinder wall shape rectangular with two ears as a kind of four-leaf clover leaves or Greek cross.
  • This pressure sensing member 400 is formed of only when the liquid pressure exceeds a certain threshold in the cavity 38, the movable member 40 moves from its rest position or position open (shown in Fig. 5) at an active position or closed position in which the movable member 40 comes into contact with the part support 414 of the silicon support plate 36.
  • the contact between layer 32 (at the location of the movable member 40) and the plate 36 (at the location of the support part 414), both made of doped silicon forming a semiconductor playing the role of an integrated electrical conductor in a capacitive circuit creates, between the electrical connections respectively connected to the layer 32 and to the support portion 414 of the support 36, a brutal increase in capacity whose detection to know that a predetermined liquid pressure level has been reached in the cavity 38.
  • This liquid pressure sensing member 400 forms a liquid pressure sensor that operates capacitively.
  • other types of sensors can be created through this organ 400: a tunnel-effect sensor, with Schotky contact, by detection inductive, by optical detection (for example using a laser diode which identifies the curvature of the movable member 40) or using a gauge of constraint.
  • Such a liquid pressure sensing member 400 is very useful at the level of a fluidic assembly because it makes it possible to identify, in function of the pressure level that triggers the contact between the organ 40 and the support portion 414, that a predetermined pressure level is reached in the cavity 38.
  • this pressure sensor 400 is a sensor Differential taking as pressure reference the external pressure in ducts 412 and 412 'and in zone 35 free from material.
  • FIG. 6 relates to a second embodiment of the liquid pressure sensing element constituting the second aspect of the invention.
  • the pressure sensing element of 400 "'moreover, in comparison with the first mode of embodiment of the liquid pressure detecting member of FIGS. 5, 5A and 5B, a second glass plate 20 '.
  • the upper closure plate 20 is a first plate of 20 glass closure and the second glass plate 20 'forms a second closing plate which is fixed on the face of the plate of support 36 opposite said first glass closure plate 20.
  • the support plate 36 is provided with a conduit 422 the crossing right through.
  • the part that forms an island separated from the rest of the the support plate 36 constitutes a movable part 461.
  • the conduit 422 is annular in order to separate the part mobile 461 of the rest of the support plate 36 and the layer of material insulation 34 has a connecting zone 321 surrounded by the zone 35 and integrally connecting said movable portion 461 to said movable member 40.
  • this 400 "'liquid pressure sensing element further comprises a first conductive element 463 located on the face of said moving part 461 placed opposite the second glass closure plate 20 'and a second conductive element 465 located on the face of the second glass closure plate 20 'placed opposite said moving part 461.
  • said first and second conductive elements 463, 465 are able to form an electrical contact when said organ mobile 40 and said movable portion 461 which is integral with it, are approaching of the second glass closure plate 20 '.
  • the liquid pressure sensor 400 "' allows to locate, by the deformation that goes increasing of the organ mobile 40 due to the increase of the liquid pressure in the pumping chamber, a determined pressure threshold, with respect to the external pressure.
  • the second embodiment of the detection member pressure belongs to a second type of fluidic device in which a second glass plate 20 'is necessary to deport the electrical contact between this second glass plate 20 'and a movable portion 461 of the support plate 36 Stacking 30.
  • Pressure sensing control members 400 and 400 '" which have just been described can be integrated in a micropump as will be described later in connection with FIGS. 7 and 8, as an inlet valve.
  • the first and second aspects of the fluidic device according to the present invention which have just been described in connection with FIGS. at 6 perform different functions in application to a passage of liquid in a fluidic device and have a simple structure analog that can be produced by a very simple to implement.
  • organs 100, 100 ", 100" ', 400 and 400 "" were stated at the beginning of the description in connection with a method of manufacturing a device which process has adaptations for the realization of each of the organs 100, 100 ", 100", 400 and 400 "as set forth below.
  • the technique aforementioned plate welding consists of anodic welding. If the closing plate is made of silicon, a direct welding will allow the connection sealed with the silicon layer 32.
  • micromachining treatment of the stack 30 is carried out independently for each of its faces so that groups of steps b) and c), on the one hand, and d) and e), on the other hand can be performed one before the other as described previously or one after the other.
  • machining of the cavity 38, located between the silicon layer 32 and the closure plate 20 can be also by machining layer 32 and plate 20 or by machining of plate 20 only.
  • FIGS. 7 to 9 illustrating a micropump 500 forming a fluidic assembly incorporating a body of liquid inlet control 100, a pumping part 502, an organ pressure sensor 400 and a liquid outlet control member 200.
  • the micropump is provided with a plate of 20 'additional glass closure fixed by plate welding on the face of the support plate 36 opposite to the closure plate of glass 20, that is to say at the bottom in FIGS. 7 and 8.
  • closure plate 20 constitutes a first glass closure plate and the closure plate 20 'is a second glass closure plate fixed on the face of the support plate 36 opposite to the first plate glass closure 20.
  • the closure plate in glass 20 serves, in addition to sealingly closing the space of the micropump filled with liquid, stop during the upward movement of the pumping membrane 506.
  • elements 510 made of an anti-adhesion material are located on the face 20a of the closing plate 20 turned towards stacking.
  • these elements 510 come from a layer in titanium deposited on the aforementioned face 20a of the closure plate 20.
  • elements 510 form projections separated from each other which allow a flow of liquid between them while preventing the pumping membrane 506 to adhere to the closure plate 20.
  • these elements 510 can also be located on the silicon layer 32, namely in particular on the free face of the membrane 506.
  • the closure plate 20 ' also serves as an abutment element in the downward movement of membrane 506 by contact between the plate 20 'and the mobile pumping part 514.
  • the combination of these two stops (plates 20 and 20 ') makes it possible to control the amplitude of the vertical movement of the membrane 506 and to ensure the accuracy of pumped volume.
  • This layer 520 is in ring shape and positioned on the edge of a through opening 522 the additional closure plate 20 '.
  • the layer 520 is preferably made of titanium and prevents and the fixing between the mobile pumping part 514 and the plate of additional closure 20 'when plate welding between the stack 30 and the additional closure plate 20 '.
  • the layer 520 could have been deposited on the face of the mobile pumping part 514 turned in the opposite direction to the stack 30.
  • titanium can advantageously be replaced by another anti-adhesion material like gold, silicon oxide or silicon nitride.
  • This liquid inlet control member 100 comprises a zone 35 1 of the material-free silicon oxide layer 34, the cavity 38 1 and the clearance 104 which delimit the movable member 40 1 .
  • the liquid inlet control member 100 is illustrated in the rest position in FIGS. 7 and 8.
  • the micropump 500 comprises the pumping portion 502 provided with a pumping chamber 504 located in the extension of the cavity 38 1 and delimited between the plate closing glass 20 and the silicon layer 32 which has been machined on its side facing the glass closure plate 20.
  • a disk-shaped pumping membrane 506 is located in the silicon layer 32, facing a part of the chamber of pumping 504 and secondly an annular volume free of material 508 machined in the support plate 36, this annular volume free of material 508 being extended, in the silicon oxide layer 34 to level of a zone free of material 535.
  • This volume 508 makes it possible to separate from the remainder of the plate of silicon support 36 a movable pumping portion 514 in the form of solid cylinder and circular section, located next to the membrane of pumping 506 to which it is connected by a portion 516 of the layer of silicon oxide 34 left intact.
  • the volume 508 being isolated from the rest of the support plate 36, it can advantageously be integrated in the mobile pumping part 514 at least one liquid pressure sensing element, for example in the form of one or more liquid pressure sensors operating in a manner similar to that of Figures 5, 5A and 5B.
  • FIG. 16A Such an alternative embodiment is illustrated in FIG. 16A illustrating a pumping portion 502 'provided with eight detectors liquid pressure 400 'regularly angularly distributed at the level a moving part of pumping 514 'pierced through eight series of conduits 512 '.
  • These eight series of conduits 512 ' are isolated one others by a portion 516 'of the silicon oxide layer 34 left intact except for each detector 400 'in an area grouping the corresponding series of conduits 512 '.
  • a pumping portion 502 ' which is provided with at least two liquid pressure sensors 400 ' each forming a liquid pressure sensing member and which are angularly distributed at the level of said moving part of pumping 514 'which is pierced through at least two sets of conduits 512 '.
  • FIG. 16B Another variant embodiment of the pumping part is illustrated in Figure 16B as 502 ".
  • the eight series of conduits 512 'of FIG. 16A have been completed. by other conduits 512 'so that all these conduits cover an area ring for forming a ring liquid pressure sensor 400 "
  • the portion of the layer of silicon oxide 34 left intact is limited to a first portion ring 516 "located substantially at the edge of the movable portion of pumping 514 'and a second portion 516 "b located essentially at center of the mobile pumping part 514 '.
  • the mobile pumping part 514 ' is also pierced with preferably at its center, through a passage 540 in which is likely to be housed a control rod (not shown) one end of which is attached to the membrane 506 and the other end, projecting out of the opening 522, forms a handle.
  • This handle allows a user, if necessary, to fire, by means of of the aforementioned rod, on the membrane 506 to separate it from the plate of 20.
  • Such an action can be implemented in series for develop successive large sucking depressions in the pumping chamber 504 or to speed up the operation of the micropump. It should be noted that the presence of the passage 540 and the stem is independent of the presence of a pressure sensor in the mobile pump part 514.
  • control means of the micropump located opposite the pumping membrane 506 and referred to as Generic way actuator, can be integrated directly into the micropump, by fixing on the face of the glass plate 20 'turned into opposite direction to the stack and by attachment to the moving part of pumping 514, or be external to the micropump, being connected indirectly to the pumping membrane 506.
  • control means may in particular be piezoelectric, electromagnetic or pneumatic.
  • the micropump 500 illustrated in FIGS. 7 and 8 comprises the liquid pressure detector 400 described with reference to FIGS. 5A and 5B, the passage 412 being connected to the external pressure by the through a conduit 413 'passing through the additional glass closure plate 20'.
  • the other constituent elements of the liquid pressure sensing element 400 namely the zone 4 of the silicon oxide layer 34 free of material, the cavity 38 4 which defines the movable member 40 4 between a liquid inlet 402 and a liquid outlet 404.
  • the liquid pressure detection member 400 is represented in the rest position or in the open position, that is to say with a movable member 40 4 that is not in contact with the part 414. It should be noted that the electrical connections of the support portion 414 on the one hand and the silicon layer 32 on the other hand are not represented.
  • the pressure sensor serves to verify the proper functioning of the micropump by detecting the transient increase in fluid pressure at each stroke of pumping resulting from the deflection of the pumping membrane 506 (an increase in pressure corresponding to a movement towards the top of the membrane 506 in Figures 7 and 8 and vice versa).
  • liquid outlet control member 200 which forms a non-return valve
  • the liquid outlet is effected by a conduit liquid outlet 204 of the silicon support plate 36 which is extended, at the level of the additional glass closure plate 20 ', by a liquid outlet conduit 204'.
  • this liquid outlet control member 200 is a material-free zone 2 of the silicon oxide layer 34, a movable member 40 2 delimited by the cavity 38 2 , this mobile member 40 2 comprising an annular portion 206 forming the body of the valve and whose second end comes into contact with a release layer 210 located on the closure plate 20, the annular portion 206 being traversed by an orifice 208.
  • the control member of 200 is illustrated in Figures 7 and 8 in the closed position.
  • the liquid outlet control member 200 illustrated in a manner enlarged in FIG. 17, and its variant embodiment 300 illustrated on FIG. 18, are made from the same elements as the body 100 of Figure 1.
  • the liquid outlet control member 200 has a liquid inlet 202 at the cavity 38 2 and a liquid outlet conduit 204 machined through the entire thickness of the plate silicon support 36, facing the cavity 38.
  • the zone 2 of the material-free silicon oxide layer 34 is at least in the extension of the liquid outlet conduit 204 and extends slightly beyond all this conduit 204.
  • the mobile member 40 When the cavity 38 is made by machining the silicon layer 32, the mobile member 40 has been formed with a portion 206 extending over substantially the entire initial thickness of the silicon layer 32 and having a closed contour preferably annular. This portion 206 extends from a first end 206a facing the zone 2 of the layer of insulating material 34 to a second end 206b close to the face 20a of the closure plate 20 facing the stack 30.
  • This portion 206 has a cylindrical sleeve shape, preferably annular, and surrounds an orifice 208 located in the extension of the zone 2 and the conduit 204 with which the orifice 208 is in fluid communication.
  • the body mobile 40 extends substantially in the extension of the entire section the liquid outlet duct 204.
  • the seat of the valve is constituted by an anti-adhesion element 210, preferably titanium, located on the face 20a of the glass closure plate 20 placed opposite the movable member 40 2 .
  • This anti-adhesion element 210 has a shape similar to that of the portion 206, so preferably annular.
  • This anti-adhesion element 210 could also be located on the second end 206b of the portion 206 and be made also of another anti-adhesion material such as gold, silicon oxide or silicon nitride.
  • the body of the valve is constituted by the second end 206b of the annular portion 206 whose first end 206a is turned towards the silicon support plate 36 and so adjacent to the liquid outlet conduit 204.
  • the second end 206b of the annular portion 206 has a reduced thickness, the orifice 208 being wider at this level.
  • the liquid outlet control member 200 is shown in the rest position corresponding to a closed position, the liquid arriving through the inlet 202 being prevented from entering the orifice 208 by the portion 206 whose second end 206b is in contact sealed with said anti-adhesion element 210.
  • Sufficient liquid pressure in the liquid inlet 202 will exert a force on the movable member which will allow, if the liquid pressure in the outlet conduit 204 is lower than the liquid inlet pressure, the opening of the valve by bringing the movable member 40 2 closer to the silicon support plate 36 (case not shown). In this open position, the liquid is able to cross the second end 206b of the portion 206 which has moved away from said anti-adhesion element 210 and the closure plate 20, to enter the orifice 208 which is directly in communication fluid with the liquid outlet conduit 204.
  • said anti-adhesion element 210 prevents the connection between the body of the valve formed by the second end 206b of the portion 206 against the seat of the valve (face of said anti-adhesion member 210 facing the stack 30).
  • said anti-adhesion element 210 allows, by an initial elastic displacement of the movable member 40 2 , to create a pretension in the liquid outlet control member 200, namely that the valve remains closed in its rest position and for a liquid pressure not exceeding a predetermined threshold.
  • FIG. 18 shows a variant embodiment corresponding to a liquid outlet control member 300 for which the liquid inlet 302 is made in the cavity 38 while the 304 liquid outlet pipe passes right through the plate of glass closure 20.
  • the mobile member 40 of this output control member of 300 has a shape very similar to the movable member 40 of the FIG. 17: it comprises an annular portion 306 similar to the portion 206 but does not however include an orifice such as the orifice 208.
  • the annular portion 306 always plays the role of valve body by a sealed contact (closed position such as illustrated in FIG. 18) between the second end 306b of the portion ring 306 turned towards the closure plate and facing a anti-adhesion element 310 facing the stack 30.
  • the zone 35 of the silicon oxide layer 34 free of material extends opposite all the movable member 40.
  • the micropump 500 can be used in many applications, especially as a pump for medical use for the continuous delivery of a liquid medicine.
  • Such a pump can be, thanks to its very dimensions reduced, of "implantable” type, that is to say that can be arranged under the skin of the patient, or of the “external” type and connected by its organ 100, to the blood circulatory system of the patient by a port of entry at the level of the skin.
  • FIGS. 10 to 15 are illustrated the different steps of manufacture of the micropump 500 and which include in particular the manufacturing steps of the organs 100, 200 and 400 and the part of pumping 502, these steps being performed simultaneously.
  • machining reserved for machining, intended to vary the thickness of a plate or certain areas of a plate
  • structural reserved for machining that favors the conservation of the material of a layer in certain areas and the removal of all matter from this layer in other areas.
  • micropump 500 thus obtained is made in a very simple way and has characteristics thickness of each of these very regular constituent parts of the that it is made from the initial stack, which ensures especially a dead volume of pumping very limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • External Artificial Organs (AREA)
  • Measuring Fluid Pressure (AREA)
  • Check Valves (AREA)
  • Measuring Volume Flow (AREA)
  • Micromachines (AREA)

Claims (37)

  1. Verfahren zur Herstellung einer fluidische Vorrichtung, dadurch gekennzeichnet, daß es die folgenden Schritte umfaßt:
    es wird eine Aufschichtung (30) bereitgestellt, die eine Tragplatte (36), eine einzige Schicht aus Isoliermaterial (34), welche die Tragplatte (36) wenigstens teilweise bedeckt, sowie eine Schicht (32) aus monokristallinem oder polykristallinem Silizium umfaßt, welche die genannte Schicht aus Isoliermaterial (34) bedeckt und eine freie Fläche aufweist,
    es wird wenigstens eine Verschlußplatte( (20) bereitgestellt,
    aus der genannten Verschlußplatte (20) und/oder aus der freien Fläche der Siliziumschicht (32) wird durch Photolithographie und chemisches Ätzen ein Hohlraum (38) gearbeitet,
    es wird wenigstens ein Kanal (102; 412, 412'), welcher die Tragplatte (36) vollständig durchquert, durch Photolithographie und chemisches Ätzen hergestellt,
    die genannte Schicht aus Isoliermaterial (34) wird wenigstens über den genannten Kanal (102; 412, 412') chemisch geätzt, so daß ein Bereich der genannten Siliziumschicht (32) von der Schicht aus Isoliermaterial (34) befreit ist, wodurch ein dem Hohlraum benachbartes bewegliches Element (40) gebildet wird, das geeignet ist, sich unter einem Flüssigkeitsdruck in dem genannten Hohlraum (38) der Tragplatte (36) reversibel zu nähern,
    die Verschlußplatte (20) wird durch ein physikalisch-chemisches Verfahren, vorzugsweise durch Plattenschweißen, auf dichte Weise mit der freien Fläche der Siliziumschicht (32) verbunden.
  2. Fluidische Vorrichtung (100; 400; 500) umfassend eine Aufschichtung (30) vom Typ SILICON-ON-INSULATOR "SOI", die von einer Verschlußplatte (20) bedeckt ist,
    wobei die Aufschichtung (30) eine Tragplatte (36), eine einzige Schicht aus Isoliermaterial (34), welche die Tragplatte (36) wenigstens teilweise bedeckt, sowie eine Schicht (32) aus monokristallinem oder polykristallinem Silizium umfaßt, welche die genannte Schicht aus Isoliermaterial (34) bedeckt und von der Verschlußplatte (20) bedeckt ist,
       wobei die Verschlußplatte (20) und/oder die Siliziumschicht (32) bearbeitet wird bzw. werden, um zwischen der Verschlußplatte (20) und der Siliziumschicht (32) einen Hohlraum (38) zu bilden, der dazu bestimmt ist, mit Flüssigkeit gefüllt zu werden,
       wobei die Tragplatte (36) wenigstens einen Kanal (102; 412, 412') aufweist, der sie vollständig durchquert,
       wobei die Schicht aus lsoliermaterial (34) aus Siliziumoxid besteht und wenigstens einen vollkommen materialfreien Bereich (35) aufweist, der wenigstens in der Verlängerung des Kanals (102; 412, 412') gelegen ist und durch Strukturierung mittels chemischem Ätzen über den genannten Kanal (102; 412, 412') erhalten wird, um mit dem Hohlraum (38) und in der Siliziumschicht (32) ein bewegliches Element (40) zu bilden, das geeignet ist, sich aufgrund seiner Elastizität und unter dem Flüssigkeitsdruck in dem Hohlraum (38) der Tragplatte (36) reversibel zu nähern.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß sich das bewegliche Element (40) der Tragplatte (36) reversibel nähert, bis ein Kontakt zwischen dem beweglichen Element (40) und der Tragplatte (36) hergestellt ist.
  4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Verschlußplatte (20) aus Glas besteht.
  5. Vorrichtung nach irgendeinem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Tragplatte (36) aus Silizium, aus Quarz oder aus Saphir besteht.
  6. Vorrichtung nach irgendeinem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Tragplatte (36) eine Dicke aufweist, die zwischen 50 µm und 1 mm liegt.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Tragplatte (36) eine Dicke zwischen 300 µm und 500 µm aufweist.
  8. Vorrichtung nach irgendeinem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß die Schicht aus Isoliermaterial (34) eine Dicke zwischen 100 nm und 2 µm aufweist.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Schicht aus Isoliermaterial (34) eine Dicke aufweist, die zwischen 0,5 µm und 1 µm liegt.
  10. Vorrichtung nach irgendeinem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß die Siliziumschicht (32) eine Dicke zwischen 1 µm und 100 µm aufweist.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Siliziumschicht (32) eine Dicke aufweist, die zwischen 10 µm und 50 µm liegt.
  12. Fluidische Vorrichtung nach irgendeinem der Ansprüche 2 bis 11, dadurch gekennzeichnet, daß sie ein Element zur Kontrolle des Flüssigkeitseintritts (100; 100'; 100"; 100"') darstellt, das ein Rückschlagventil bildet, wobei der Hohlraum (38) wenigstens einen in die gesamte Dicke der Siliziumschicht (32) gearbeiteten Freiraum (104; 1041; 1042) aufweist,
       wobei der in der Tragplatte (36) ausgebildete Kanal einen Flüssigkeitseintrittskanal (102) bildet, der wenigstens dem Hohlraum (38) gegenüberliegt,
       wobei der vollständig materialfreie Bereich (35) sich wenigstens in der Verlängerung des Freiraums (104; 1041; 1042) erstreckt, wobei das bewegliche Element (40) eine Klappe für das genante Ventil bildet, wobei ein Teil der Siliziumschicht (32) das bewegliche Element (40) umgibt, das durch seine Elastizität und den Flüssigkeitsdruckunterschied zwischen dem Flüssigkeitseintrittskanal (102) und dem Hohlraum (38) die reversible Bewegung des beweglichen Elements (40) in Richtung auf die Tragplatte (36) ermöglicht.
  13. Fluidische Vorrichtung (100; 100') nach Anspruch 12, dadurch gekennzeichnet, daß der Flüssigkeitseintrittskanal (102) in der Nähe des genannten Freiraums (104) gelegen ist, aber diesem nicht gegenüberliegt, und daß das bewegliche Element (40) zwischen einer geschlossenen Stellung, in welcher das bewegliche Element (40) dicht an der Tragplatte (36) anliegt, die wenigstens um den Kanal (102) herum einen Sitz für das Ventil bildet, wobei die Flüssigkeitsströmung zwischen dem Flüssigkeitseinirittskanal (102) und dem Hohlraum (38) verhindert wird, und einer geöffneten Stellung des Ventils, in der das bewegliche Element (40) nicht mehr in dichtem Kontakt mit der Tragplatte (36) um den Kanal (102) ist, wobei das bewegliche Element (40) das Strömen der Flüssigkeit von dem Flüssigkeitseintrittskanal (102) zu dem Freiraum (104) hin ermöglicht, eine Bewegung ausführt.
  14. Fluidische Vorrichtung (100') nach Anspruch 13, dadurch gekennzeichnet, daß sie ferner zwischen der Verschlußplatte (20) und dem beweglichen Element (40) Stützmittel (106, 110) aufweist, die das bewegliche Element (40) in seiner Ruhestellung in die genannte geschlossene Position bringen.
  15. Fluidische Vorrichtung (100") nach Anspruch 12, dadurch gekennzeichnet, daß die Verschlußplatte (20) eine erste Verschlußplatte (20) ist, daß sie außerdem eine zweite Verschlußplatte (20') aufweist, die an der der ersten Verschlußplatte (20) entgegengesetzten Seite der Tragplatte (36) befestigt ist und die mit einem sie vollständig durchquerenden Kanal (102"a) versehen ist, daß ein bewegliches Teil (361) in der Tragplatte (36) gegenüber und in der Verlängerung des Hohlraums (38), des beweglichen Elements (40) und des Kanals (102"a) ausgebildet ist, wobei das bewegliche Teil (361) in der Nähe des Freiraums (1042) gelegen ist, aber diesem nicht gegenüberliegt, wobei ein materialfreier, ringförmiger Raum (102") in die gesamte Dicke der Tragplatte (36) gegenüber des vollständig materialfreien Bereichs (35) der Schicht aus Isoliermaterial (34) gearbeitet ist, wodurch das bewegliche Teil (361) von dem Rest der Tragplatte (36) getrennt und der Flüssigkeitseintrittskanal (102") gebildet wird, welcher mit dem Freiraum (1042) in Verbindung steht, daß die Schicht aus lsoliermaterial (34) einen Verbindungsbereich (321) aufweist, welcher das bewegliche Teil (361) mit dem beweglichen Element (40) fest verbindet, und daß sie außerdem ein ringförmiges Ventilelement (370) aufweist, das aus einem adhäsionshemmenden Material gefertigt ist, wobei das Ventilelement (370) entweder auf der Seite der zweiten Verschlußplatte (20') gelegen ist, welche dem beweglichen Teil (361) gegenüberliegt, so daß dann, wenn sich das bewegliche Element (40) so nah wie möglich an der Tragplatte (36) befindet, die der zweiten Verschlußplatte (20') zugewandte Seite des beweglichen Teils (361) und die der Tragplatte (36) zugewandte Seite des Ventilelements (370) in dichtem Kontakt sind, wodurch das Element zur Kontrolle des Flüssigkeitseintritts (100") in die Schließposition bewegt wird, oder es auf der Seite des beweglichen Teils (361) gelegen ist, welche der zweiten Verschlußplatte (20') gegenüberliegt, so daß dann, wenn sich das bewegliche Element (40) so nah wie möglich an der Tragplatte (36) befindet, die der zweiten Verschlußplatte (20') zugewandte Seite des Ventilelements (370) und die der Tragplatte (36) zugewandte Seite der zweiten Verschlußplatte (20') in dichtem Kontakt sind, wodurch das Element zur Kontrolle des Flüssigkeitseintritts (100") in die Schließstellung bewegt wird, wobei in der genannten Schließstellung der Flüssigkeitsdurchlaß von dem Kanal (102"a) der zweiten Verschlußplatte (20') zu dem Flüssigkeitseintrittskanal (102") der Tragplatte (36) verhindert wird.
  16. Fluidische Vorrichtung (100"') nach Anspruch 12, dadurch gekennzeichnet, daß die Verschlußplatte (20) eine erste Verschlußplatte (20) ist, daß sie ferner eine zweite Verschlußplatte (20') aufweist, die an der der ersten Verschlußplatte (20) entgegengesetzten Seite der Tragplatte (36) befestigt ist und die mit einem sie vollständig durchquerenden Kanal (102"a) versehen ist, daß ein ringförmiges bewegliches Teil (361) in der Tragplatte (36) gegenüber und in der Verlängerung des Hohlraums (38) und des beweglichen Elements (40) ausgebildet ist, wobei ein erster materialfreier, ringförmiger Raum (102"'a) in die gesamte Dicke der Tragplatte (36) gegenüber des vollständig materialfreien Bereichs (35) der Schicht aus Isoliermaterial (34) und des Hohlraums (38) gearbeitet ist, wodurch das bewegliche Teil (361) von dem Rest der Tragplatte (36) getrennt wird, wobei ein zweiter zylindrischer, materialfreier Raum (102"') in die gesamte Dicke der Tragplatte (36) an der Stelle des beweglichen Teils gearbeitet ist, wodurch der Flüssigkeitseintrittskanal (102) gebildet wird, welcher mit dem Freiraum (104) in Verbindung steht, daß die Schicht aus Isoliermaterial (34) einen Verbindungsbereich (321) aufweist, welcher das bewegliche Teil (361) mit dem beweglichen Element (40) um den Flüssigkeitseintrittskanal (102) und den Freiraum (1041) fest verbindet, und daß sie außerdem ein ringförmiges Ventilelement (370) aufweist, das den Flüssigkeitseintrittskanal (102"') umgibt und aus einem adhäsionshemmenden Material gefertigt ist, wobei das Ventilelement (370) entweder auf der Seite der zweiten Verschlußplatte (20') gelegen ist, welche dem beweglichen Teil (361) gegenüberliegt, so daß dann, wenn sich das bewegliche Element (40) so nah wie möglich an der Tragplatte (36) befindet, die der zweiten Verschlußplatte (20') zugewandte Seite des beweglichen Teils (361) und die der Tragplatte (36) zugewandte Seite des Ventilelements (370) in dichtem Kontakt sind, wodurch das Element zur Kontrolle des Flüssigkeitseintritts (100"') in die Schließposition bewegt wird, oder es auf der Seite des beweglichen Teils (361) gelegen ist, welche der zweiten Verschlußplatte aus Glas (20') gegenüberliegt, so daß dann, wenn sich das bewegliche Element (40) so nah wie möglich an der Tragplatte (36) befindet, die der zweiten Verschlußplatte (20') zugewandte Seite des Ventilelements (370) und die der Tragplatte (36) zugewandte Seite der zweiten Verschlußplatte (20') in dichtem Kontakt sind, wodurch das Element zur Kontrolle des Flüssigkeitseintritts (100"') in die Schließstellung bewegt wird, wobei in der genannten Schließstellung die Flüssigkeit, welche von dem Kanal (102"a) der zweiten Verschlußplatte (20') in den ersten ringförmigen Raum (102"'a) gelangt, daran gehindert wird, in den Flüssigkeitseintrittskanal (102"') der Tragplatte (36) einzudringen.
  17. Fluidische Vorrichtung nach irgendeinem der Ansprüche 2 bis 11, dadurch gekennzeichnet, daß sie ein Element zum Erfassen des Flüssigkeitsdrucks (400) bildet,
       wobei der in der Tragplatte (36) ausgebildete Kanal dem Hohlraum (38) gegenüberliegt,
       wobei die Siliziumtragplatte (36) einen dem beweglichen Element (40) gegenüberliegenden Teil (414) aufweist, der eine durch den Kanal (412') von der übrigen Tragplatte (36) getrennte Insel bildet.
  18. Fluidische Vorrichtung (400) nach Anspruch 17, dadurch gekennzeichnet, daß das bewegliche Element (40) geeignet ist, von einer geöffneten Stellung in eine geschlossene Stellung überzugehen, in der das bewegliche Element (40) mit dem dem beweglichen Element (40) gegenüberliegenden Teil (414), das eine durch den Kanal (412') von der übrigen Tragplatte (36) getrennte Insel und einen Stützteil (414) der Siliziumplatte bildet, in physikalischem Kontakt ist, wobei dieser physikalische Kontakt elektrisch erfaßt werden kann.
  19. Fluidische Vorrichtung (400) nach Anspruch 18, dadurch gekennzeichnet, daß sie außerdem zwischen dem Stützteil (414) und der Siliziumschicht (32) Mittel zum festen Verbinden (416) aufweist.
  20. Fluidische Vorrichtung (400"') nach Anspruch 17, dadurch gekennzeichnet, daß die Verschlußplatte (20) eine erste Verschlußplatte (20) ist, daß sie ferner eine zweite Verschlußplatte (20') aufweist, die an der der ersten Verschlußplatte (20) entgegengesetzten Seite der Tragplatte (36) befestigt ist, daß der Teil, welcher eine Insel bildet, die von der übrigen Tragplatte (36) getrennt ist, einen beweglichen Teil (461) bildet, und daß die genannte Schicht aus Isoliermaterial (34) einen Verbindungsbereich (321) aufweist, welcher den beweglichen Teil (461) mit dem beweglichen Element (40) fest verbindet.
  21. Fluidische Vorrichtung nach irgendeinem der Ansprüche 2 bis 11, dadurch gekennzeichnet, daß sie eine Mikropumpe bildet,
       wobei der Hohlraum (38) eine Pumpkammer (504) aufweist,
       wobei der in der Tragplatte (36) ausgebildete Kanal einen ersten Kanal (102, 508, 412, 412', 204) bildet, welcher dem genannten Hohlraum (38) gegenüberliegt,
       wobei der vollständig materialfreie Bereich einen ersten vollständig materialfreien Bereich (351) bildet, wobei das bewegliche Element (40) ein erstes bewegliches Element (40) bildet, das geeignet ist, sich unter dem Flüssigkeitsdruck in der Pumpkammer (504) der Tragplatte (36) reversibel zu nähern, wobei das erste bewegliche Element (40) zu der Klappe eines Elements zur Kontrolle des Flüssigkeitseintritts (100) gehört,
       wobei die Fluidische Vorrichtung ferner einen Pumpteil (502) aufweist, der Steuermittel, die mit einer Pumpmembran (506) versehen sind, um eine periodische Änderung des Volumens der Pumpkammer (504) zu bewirken, sowie Mittel zur Kontrolle des Flüssigkeitsaustritts (100) umfaßt.
  22. Fluidische Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, daß das erste bewegliche Element (40) geeignet ist, an der Tragplatte (36) in dichten Kontakt zu gelangen, wobei das erste bewegliche Element (40) die Klappe des genannten Elements zur Kontrolle des Flüssigkeitseintritts (100) bildet.
  23. Fluidische Vorrichtung nach Anspruch 22, dadurch gekennzeichnet, daß die Schicht aus Isoliermaterial (34) außerdem einen zweiten, vollständig materialfreien Bereich (354) aufweist, der mit dem Hohlraum (38) und in der Siliziumschicht (32) ein zweites bewegliches Element (40) definiert, das geeignet ist, sich unter dem Flüssigkeitsdruck in der Pumpkammer der Tragplatte (36) zu nähern, wobei das zweite bewegliche Element (40) die Klappe eines Elements zur Kontrolle des Flüssigkeitsaustritts (200) bildet.
  24. Fluidische Vorrichtung nach irgendeinem der Ansprüche 21 bis 23, dadurch gekennzeichnet, daß das Element zur Kontrolle des Flüssigkeitseintritts (100) mit irgendeinem der Ansprüche 12 bis 16 übereinstimmt.
  25. Fluidische Vorrichtung nach irgendeinem der Ansprüche 21 bis 24, dadurch gekennzeichnet, daß sie ferner wenigstens ein Element zur Erfassung des Flüssigkeitsdrucks (400) nach irgendeinem der Ansprüche 17 bis 20 aufweist.
  26. Fluidische Vorrichtung nach irgendeinem der Ansprüche 21 bis 25, dadurch gekennzeichnet, daß die Verschlußplatte (20) eine erste Verschlußplatte (20) aus Glas ist.
  27. Fluidische Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, daß sie darüber hinaus eine zweite Verschlußplatte (20') aus Glas aufweist, die an der der ersten aus Glas bestehenden Verschlußplatte (20) entgegengesetzten Seite der Tragplatte (36) befestigt ist.
  28. Fluidische Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, daß die Steuermittel der Mikropumpe der Pumpkammer (504) gegenüberliegen und durch Befestigung an der in entgegengesetzte Richtung zu der Aufschichtung (30) gewandten Seite der zweiten Verschlußplatte (20') direkt in die Mikropumpe integriert sind.
  29. Fluidische Vorrichtung nach irgendeinem der Ansprüche 21 bis 27, dadurch gekennzeichnet, daß die Steuermittel der Mikropumpe außerhalb der Mikropumpe angeordnet und indirekt mit der Pumpmembran (506) verbunden sind.
  30. Fluidische Vorrichtung nach irgendeinem der Ansprüche 21 bis 29, dadurch gekennzeichnet, daß die Steuermittel piezo-elektrisch, elektromagnetisch oder pneumatisch arbeiten.
  31. Fluidische Vorrichtung nach irgendeinem der Ansprüche 21 bis 28, dadurch gekennzeichnet, daß ein bewegliches Pumpteil (514; 514') in der Tragplatte (36) gegenüber der Pumpkammer (504) ausgebildet ist, wobei ein in die Tragplatte (36) gearbeiteter, materialfreier, ringförmiger Raum (508) das bewegliche Pumpteil (514; 514') von der übrigen Tragplatte (36) trennt, und daß die Steuermittel der Mikropumpe der Pumpkammer (504) gegenüberliegen und durch Befestigung an dem beweglichen Pumpteil (514; 514') direkt in die Mikropumpe integriert sind.
  32. Fluidische Vorrichtung nach Anspruch 31, dadurch gekennzeichnet, daß die Siliziumschicht (32) die Pumpmembran (506) gegenüber der Pumpkammer (504) bildet und daß das bewegliche Pumpteil (514') vollkommen von einem Durchgang (540) durchzogen ist, in dem ein Steuerstift gelagert werden kann, dessen eines Ende an der Membran (506) befestigt ist und dessen anderes Ende einen Griff bildet.
  33. Fluidische Vorrichtung nach Anspruch 31, dadurch gekennzeichnet, daß das bewegliche Teil (514; 514') wenigstens ein Element zur Erfassung des Flüssigkeitsdrucks beinhaltet.
  34. Fluidische Vorrichtung nach Anspruch 33, dadurch gekennzeichnet, daß das Pumpteil (502') mit wenigstens zwei Flüssigkeitsdruckfühlern (400') ausgestattet ist, die jeweils ein Element zur Erfassung des Flüssigkeitsdrucks bilden und die im Bereich des beweglichen Pumpteils (514'), das von wenigstens zwei Reihen von Kanälen (512') vollkommen durchzogen ist, gleichmäßig winkelmäßig verteilt sind.
  35. Fluidische Vorrichtung nach Anspruch 33, dadurch gekennzeichnet, daß das Pumpteil (502") mit einem ringförmigen Flüssigkeitsdruckfühler (400") ausgestattet ist, der Kanäle (512') aufweist, welche das bewegliche Teil (514') in einem ringförmigen Bereich vollständig durchqueren.
  36. Verwendung einer Fluidische Vorrichtung nach irgendeinem der Ansprüche 21 bis 35 als Pumpe für den medizinischen Gebrauch vom Typ "implantierbar".
  37. Verwendung einer Fluidische Vorrichtung nach irgendeinem der Ansprüche 21 bis 35 als Pumpe für den medizinischen Gebrauch vom Typ "extern".
EP01951621A 2000-05-25 2001-05-25 Microbearbeitete fluidische vorrichtung und herstellungsverfahren Expired - Lifetime EP1283957B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0006669 2000-05-25
FR0006669 2000-05-25
PCT/EP2001/007032 WO2001090577A1 (fr) 2000-05-25 2001-05-25 Dispositif fluidique micro-usine et son procede de fabrication

Publications (2)

Publication Number Publication Date
EP1283957A1 EP1283957A1 (de) 2003-02-19
EP1283957B1 true EP1283957B1 (de) 2005-10-26

Family

ID=8850593

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01951621A Expired - Lifetime EP1283957B1 (de) 2000-05-25 2001-05-25 Microbearbeitete fluidische vorrichtung und herstellungsverfahren

Country Status (9)

Country Link
US (2) US7005078B2 (de)
EP (1) EP1283957B1 (de)
JP (1) JP4776139B2 (de)
CN (1) CN1324238C (de)
AT (1) ATE307976T1 (de)
AU (2) AU7250001A (de)
CA (1) CA2410306C (de)
DE (1) DE60114411T2 (de)
WO (1) WO2001090577A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8167581B2 (en) 2006-09-04 2012-05-01 Debiotech Sa Device for delivering a liquid, the device comprising a pump and a valve
WO2014136090A1 (en) * 2013-03-07 2014-09-12 Debiotech S.A. Microfluidic valve having improved tolerance to particles

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347360B2 (en) 2003-12-10 2008-03-25 American Express Travel Related Services Company, Inc. Foldable transaction card systems for non-traditionally-sized transaction cards
FR2839712A1 (fr) * 2002-05-14 2003-11-21 Westonbridge Internat Ltd Dispositif micromecanique, en particulier fluidique, et son procede de fabrication, organe de controle d'entree de liquide et/ou organe de detection de pression de liquide et/ou micropompe formant un tel dispositif micromecanique
US20050160858A1 (en) * 2002-07-24 2005-07-28 M 2 Medical A/S Shape memory alloy actuator
AU2003245872A1 (en) * 2002-07-24 2004-02-09 M 2 Medical A/S An infusion pump system, an infusion pump unit and an infusion pump
US20040021741A1 (en) * 2002-07-30 2004-02-05 Ottenheimer Thomas H. Slotted substrate and method of making
EP1560616B1 (de) 2002-11-05 2018-01-24 Bigfoot Biomedical, Inc. Eine wegwerfbare, tragbare insulinspendervorrichtung, die kombination einer solchen vorrichtung und ein programmiergerät
WO2004052657A2 (en) * 2002-12-11 2004-06-24 American Express Travel Related Services Company, Inc. Foldable transaction card systems
CN1738656A (zh) 2002-12-23 2006-02-22 M2医药有限公司 一种一次性使用的可佩戴的胰岛素分配装置,这种装置和程序控制器的组合,以及控制这种装置工作的方法
WO2004056411A2 (en) * 2002-12-23 2004-07-08 M 2 Medical A/S Flexible piston rod
DE10321099A1 (de) * 2003-05-09 2004-11-25 Cgs Sensortechnik Gmbh Vorrichtung zur Druckmessung
DE10334240A1 (de) * 2003-07-28 2005-02-24 Robert Bosch Gmbh Verfahren zur Herstellung eines mikromechanischen Bauteils vorzugsweise für fluidische Anwendungen und Mikropumpe mit einer Pumpmembran aus einer Polysiliciumschicht
WO2005072794A2 (en) * 2004-01-29 2005-08-11 M 2 Medical A/S Disposable medicine dispensing device
WO2005072793A1 (en) 2004-01-29 2005-08-11 The Charles Stark Draper Laboratory, Inc. Implantable drug delivery apparatus
US7867194B2 (en) 2004-01-29 2011-01-11 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
US7872396B2 (en) 2004-06-14 2011-01-18 Massachusetts Institute Of Technology Electrochemical actuator
US7999435B2 (en) * 2004-06-14 2011-08-16 Massachusetts Institute Of Technology Electrochemical actuator
US7994686B2 (en) * 2004-06-14 2011-08-09 Massachusetts Institute Of Technology Electrochemical methods, devices, and structures
WO2005124918A2 (en) 2004-06-14 2005-12-29 Massachusetts Institute Of Technology Electrochemical actuating methods, devices and structures
US8247946B2 (en) 2004-06-14 2012-08-21 Massachusetts Institute Of Technology Electrochemical actuator
US7731678B2 (en) 2004-10-13 2010-06-08 Hyprotek, Inc. Syringe devices and methods for mixing and administering medication
WO2006056967A1 (fr) * 2004-11-29 2006-06-01 Debiotech Sa Dispositif microfluidique mecanique, le procede de fabrication d'un empilement intermediaire et de ce dispositif microfluidique, et une micropompe.
FR2881222A1 (fr) * 2005-01-25 2006-07-28 Debiotech Sa Procede de mesure de volume par profilometrie optique de surface dans un dispositif micromecanique et ensemble destine a une telle mesure
DE202006020986U1 (de) 2005-04-06 2011-08-05 Asante Solutions, Inc. Ein Stellglied
US8409142B2 (en) 2005-09-26 2013-04-02 Asante Solutions, Inc. Operating an infusion pump system
DK1933901T3 (en) 2005-09-26 2015-04-07 Asante Solutions Inc PORTABLE infusion pump FLEXIBLE SHOCK TOOL WITH HINGED PARTS
US7534226B2 (en) * 2005-09-26 2009-05-19 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
US8105279B2 (en) * 2005-09-26 2012-01-31 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
US8057436B2 (en) 2005-09-26 2011-11-15 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
US8551046B2 (en) 2006-09-18 2013-10-08 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
WO2007056504A1 (en) * 2005-11-08 2007-05-18 M2 Medical A/S Infusion pump system
US8192394B2 (en) * 2005-11-08 2012-06-05 Asante Solutions, Inc. Method and system for manual and autonomous control of an infusion pump
EP1945284B1 (de) * 2005-11-09 2019-12-18 Hyprotek, Inc. Spritzenvorrichtungen, bauteile von spritzenvorrichtungen und verfahren zur ausbildung von bauteilen und spritzenvorrichtungen
US8043206B2 (en) 2006-01-04 2011-10-25 Allergan, Inc. Self-regulating gastric band with pressure data processing
US7798954B2 (en) 2006-01-04 2010-09-21 Allergan, Inc. Hydraulic gastric band with collapsible reservoir
US7516661B2 (en) * 2006-02-23 2009-04-14 Honeywell International Inc. Z offset MEMS device
EP1839695A1 (de) * 2006-03-31 2007-10-03 Debiotech S.A. Vorrichtung zur Injektion einer medizinischen Flüssigkeit
FR2900400B1 (fr) * 2006-04-28 2008-11-07 Tronic S Microsystems Sa Procede collectif de fabrication de membranes et de cavites de faible volume et de haute precision
WO2008008845A2 (en) * 2006-07-11 2008-01-17 Microchips, Inc. Multi-reservoir pump device for dialysis, biosensing, or delivery of substances
US8202267B2 (en) * 2006-10-10 2012-06-19 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
US20080161754A1 (en) * 2006-12-29 2008-07-03 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
US8168140B2 (en) * 2007-01-31 2012-05-01 Agilent Technologies, Inc. Microfluidic apparatuses with nanochannels
US9046192B2 (en) 2007-01-31 2015-06-02 The Charles Stark Draper Laboratory, Inc. Membrane-based fluid control in microfluidic devices
US7833196B2 (en) 2007-05-21 2010-11-16 Asante Solutions, Inc. Illumination instrument for an infusion pump
US7794426B2 (en) * 2007-05-21 2010-09-14 Asante Solutions, Inc. Infusion pump system with contamination-resistant features
US7892199B2 (en) * 2007-05-21 2011-02-22 Asante Solutions, Inc. Occlusion sensing for an infusion pump
US7981102B2 (en) 2007-05-21 2011-07-19 Asante Solutions, Inc. Removable controller for an infusion pump
EP2178584A2 (de) * 2007-07-26 2010-04-28 Entra Pharmaceuticals Inc. Infusionspumpe mit einem elektrochemischen aktuator mit veränderlichem volumen
US7717903B2 (en) 2007-09-06 2010-05-18 M2 Group Holdings, Inc. Operating an infusion pump system
US7828528B2 (en) * 2007-09-06 2010-11-09 Asante Solutions, Inc. Occlusion sensing system for infusion pumps
US7935076B2 (en) 2007-09-07 2011-05-03 Asante Solutions, Inc. Activity sensing techniques for an infusion pump system
US7879026B2 (en) 2007-09-07 2011-02-01 Asante Solutions, Inc. Controlled adjustment of medicine dispensation from an infusion pump device
US8287514B2 (en) 2007-09-07 2012-10-16 Asante Solutions, Inc. Power management techniques for an infusion pump system
US7935105B2 (en) * 2007-09-07 2011-05-03 Asante Solutions, Inc. Data storage for an infusion pump system
DE102007045637A1 (de) * 2007-09-25 2009-04-02 Robert Bosch Gmbh Mikrodosiervorrichtung zum Dosieren von Kleinstmengen eines Mediums
US7934912B2 (en) * 2007-09-27 2011-05-03 Curlin Medical Inc Peristaltic pump assembly with cassette and mounting pin arrangement
US8083503B2 (en) * 2007-09-27 2011-12-27 Curlin Medical Inc. Peristaltic pump assembly and regulator therefor
US8062008B2 (en) * 2007-09-27 2011-11-22 Curlin Medical Inc. Peristaltic pump and removable cassette therefor
US8002737B2 (en) * 2007-10-04 2011-08-23 Hyprotek, Inc. Mixing/administration syringe devices, protective packaging and methods of protecting syringe handlers
US9522097B2 (en) 2007-10-04 2016-12-20 Hyprotek, Inc. Mixing/administration syringe devices, protective packaging and methods of protecting syringe handlers
DE102008003792A1 (de) * 2008-01-10 2009-07-16 Robert Bosch Gmbh Verfahren zum Herstellen einer Mikropumpe sowie Mikropumpe
US8708961B2 (en) * 2008-01-28 2014-04-29 Medsolve Technologies, Inc. Apparatus for infusing liquid to a body
EP2320836B1 (de) 2008-06-11 2015-08-12 Apollo Endosurgery, Inc. Implantierbares pumpensystem
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
JP5170250B2 (ja) * 2008-09-29 2013-03-27 株式会社村田製作所 圧電ポンプ
US8317677B2 (en) 2008-10-06 2012-11-27 Allergan, Inc. Mechanical gastric band with cushions
AU2008363189B2 (en) * 2008-10-22 2014-01-16 Debiotech S.A. Mems fluid pump with integrated pressure sensor for dysfunction detection
US20100185049A1 (en) 2008-10-22 2010-07-22 Allergan, Inc. Dome and screw valves for remotely adjustable gastric banding systems
US8678993B2 (en) 2010-02-12 2014-03-25 Apollo Endosurgery, Inc. Remotely adjustable gastric banding system
US8758221B2 (en) 2010-02-24 2014-06-24 Apollo Endosurgery, Inc. Source reservoir with potential energy for remotely adjustable gastric banding system
US8764624B2 (en) * 2010-02-25 2014-07-01 Apollo Endosurgery, Inc. Inductively powered remotely adjustable gastric banding system
US20110223253A1 (en) * 2010-03-15 2011-09-15 Artimplant Ab Physically stabilized biodegradable osteochondral implant and methods for its manufacture and implantation
US20110270025A1 (en) 2010-04-30 2011-11-03 Allergan, Inc. Remotely powered remotely adjustable gastric band system
US8337457B2 (en) 2010-05-05 2012-12-25 Springleaf Therapeutics, Inc. Systems and methods for delivering a therapeutic agent
KR101153613B1 (ko) * 2010-05-25 2012-06-18 삼성전기주식회사 마이크로 이젝터 및 그 제조방법
USD669165S1 (en) 2010-05-27 2012-10-16 Asante Solutions, Inc. Infusion pump
US9226840B2 (en) 2010-06-03 2016-01-05 Apollo Endosurgery, Inc. Magnetically coupled implantable pump system and method
US8517915B2 (en) 2010-06-10 2013-08-27 Allergan, Inc. Remotely adjustable gastric banding system
DE102010030504A1 (de) 2010-06-24 2011-12-29 HSG-IMIT-Institut für Mikro- und Informationstechnologie Quellstoffaktor mit elektrisch angetriebener fluidischer Transportvorrichtung
US8698373B2 (en) 2010-08-18 2014-04-15 Apollo Endosurgery, Inc. Pare piezo power with energy recovery
US9211207B2 (en) 2010-08-18 2015-12-15 Apollo Endosurgery, Inc. Power regulated implant
US8932031B2 (en) 2010-11-03 2015-01-13 Xylem Ip Holdings Llc Modular diaphragm pumping system
US8961393B2 (en) 2010-11-15 2015-02-24 Apollo Endosurgery, Inc. Gastric band devices and drive systems
CA2821979A1 (en) 2010-12-17 2012-06-21 Yet-Ming Chiang Electrochemical actuators
EP2469089A1 (de) 2010-12-23 2012-06-27 Debiotech S.A. Elektronisches Steuerungsverfahren und System für eine piezoelektrische Pumpe
CA2825757C (en) 2011-02-02 2019-09-03 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
US8852152B2 (en) 2011-02-09 2014-10-07 Asante Solutions, Inc. Infusion pump systems and methods
US8454581B2 (en) 2011-03-16 2013-06-04 Asante Solutions, Inc. Infusion pump systems and methods
US8585657B2 (en) 2011-06-21 2013-11-19 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
EP2551523A1 (de) 2011-07-29 2013-01-30 Debiotech S.A. Verfahren und Vorrichtung zur Betätigung einer präzisen MEMS-Mikropumpe mit niedrigem Verbrauch
US8808230B2 (en) 2011-09-07 2014-08-19 Asante Solutions, Inc. Occlusion detection for an infusion pump system
US20140224829A1 (en) 2011-09-21 2014-08-14 Bayer Medical Care Inc. Continuous Multi-Fluid Delivery System and Method
US8454557B1 (en) 2012-07-19 2013-06-04 Asante Solutions, Inc. Infusion pump system and method
US8454562B1 (en) 2012-07-20 2013-06-04 Asante Solutions, Inc. Infusion pump system and method
KR101452050B1 (ko) * 2012-11-12 2014-10-21 삼성전기주식회사 마이크로 펌프
US9427523B2 (en) 2012-12-10 2016-08-30 Bigfoot Biomedical, Inc. Infusion pump system and method
US20140276536A1 (en) 2013-03-14 2014-09-18 Asante Solutions, Inc. Infusion Pump System and Methods
KR20140081570A (ko) * 2012-12-21 2014-07-01 삼성전기주식회사 마이크로 펌프
US9446186B2 (en) 2013-03-01 2016-09-20 Bigfoot Biomedical, Inc. Operating an infusion pump system
KR20140118542A (ko) * 2013-03-29 2014-10-08 삼성전기주식회사 마이크로 펌프
US9446187B2 (en) 2013-06-03 2016-09-20 Bigfoot Biomedical, Inc. Infusion pump system and method
US9457141B2 (en) 2013-06-03 2016-10-04 Bigfoot Biomedical, Inc. Infusion pump system and method
US9561324B2 (en) 2013-07-19 2017-02-07 Bigfoot Biomedical, Inc. Infusion pump system and method
WO2015022176A1 (en) * 2013-08-12 2015-02-19 Koninklijke Philips N.V. Microfluidic device with valve
US10292424B2 (en) 2013-10-31 2019-05-21 Rai Strategic Holdings, Inc. Aerosol delivery device including a pressure-based aerosol delivery mechanism
US10569015B2 (en) 2013-12-02 2020-02-25 Bigfoot Biomedical, Inc. Infusion pump system and method
JP6081962B2 (ja) * 2014-06-20 2017-02-15 デビオテック ソシエテ アノニム 医療用ポンプ装置
US9629901B2 (en) 2014-07-01 2017-04-25 Bigfoot Biomedical, Inc. Glucagon administration system and methods
US10137246B2 (en) 2014-08-06 2018-11-27 Bigfoot Biomedical, Inc. Infusion pump assembly and method
EP3185931A1 (de) 2014-08-26 2017-07-05 Debiotech S.A. Erkennung einer infusionsanomalie
US9919096B2 (en) 2014-08-26 2018-03-20 Bigfoot Biomedical, Inc. Infusion pump system and method
US20170216523A1 (en) 2014-10-17 2017-08-03 Debiotech S.A. Secure Bolus-Control System
AU2016205275B2 (en) 2015-01-09 2020-11-12 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
CN104728492A (zh) * 2015-01-27 2015-06-24 东南大学 一种微型被动流量调节阀及其制作工艺
WO2016171659A1 (en) 2015-04-20 2016-10-27 Hewlett-Packard Development Company, L.P. Pump having freely movable member
WO2016171660A1 (en) 2015-04-20 2016-10-27 Hewlett-Packard Development Company, L.P. Pump having freely movable member
US10684662B2 (en) 2015-04-20 2020-06-16 Hewlett-Packard Development Company, L.P. Electronic device having a coolant
US9878097B2 (en) 2015-04-29 2018-01-30 Bigfoot Biomedical, Inc. Operating an infusion pump system
ITUB20151781A1 (it) * 2015-07-02 2017-01-02 Milano Politecnico Micropompa con attuazione elettrostatica
CA3009409A1 (en) 2016-01-05 2017-07-13 Bigfoot Biomedical, Inc. Operating multi-modal medicine delivery systems
US10449294B1 (en) 2016-01-05 2019-10-22 Bigfoot Biomedical, Inc. Operating an infusion pump system
CN107131333B (zh) * 2016-02-29 2020-05-22 博世汽车柴油系统有限公司 高压泵及其溢流组件
USD809134S1 (en) 2016-03-10 2018-01-30 Bigfoot Biomedical, Inc. Infusion pump assembly
CA3036266A1 (en) 2016-09-27 2018-04-05 Bigfoot Biomedical, Inc. Medicine injection and disease management systems, devices, and methods
WO2018111928A1 (en) 2016-12-12 2018-06-21 Mazlish Bryan Alarms and alerts for medication delivery devices and related systems and methods
USD836769S1 (en) 2016-12-12 2018-12-25 Bigfoot Biomedical, Inc. Insulin delivery controller
JP6666275B2 (ja) * 2017-01-19 2020-03-13 デビオテック ソシエテ アノニム 医療用ポンプ装置
USD839294S1 (en) 2017-06-16 2019-01-29 Bigfoot Biomedical, Inc. Display screen with graphical user interface for closed-loop medication delivery
EP3651647A1 (de) 2017-07-13 2020-05-20 Bigfoot Biomedical, Inc. Multiskalige anzeige von blutglukoseinformationen
EP3527826B1 (de) 2018-02-16 2020-07-08 ams AG Pumpstruktur, partikeldetektor und verfahren zum pumpen
US20200254985A1 (en) * 2019-02-12 2020-08-13 The Goodyear Tire & Rubber Company Brake pressure sensor for determination of braking efficiency
DE102019218485B4 (de) * 2019-11-28 2022-03-31 Festo Se & Co. Kg Arbeitseinrichtung
CN112452365B (zh) * 2020-11-23 2021-12-07 无锡市夸克微智造科技有限责任公司 微加工流体装置
CN112614797B (zh) * 2021-03-08 2021-07-02 杭州众硅电子科技有限公司 一种晶圆位置检测装置
EP4381192A1 (de) * 2021-08-04 2024-06-12 Aita Bio Inc. Mems-mikropumpe mit sensorintegration zur detektion einer abnormalen funktion
CN116658400B (zh) * 2023-08-01 2023-09-29 常州威图流体科技有限公司 一种流体输送装置、液冷散热模组及微流控芯片

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69104585T2 (de) 1990-10-30 1995-05-18 Hewlett Packard Co Mikropumpe.
DE4143343C2 (de) * 1991-09-11 1994-09-22 Fraunhofer Ges Forschung Mikrominiaturisierte, elektrostatisch betriebene Mikromembranpumpe
GB2266751A (en) 1992-05-02 1993-11-10 Westonbridge Int Ltd Piezoelectric micropump excitation voltage control.
US5759015A (en) * 1993-12-28 1998-06-02 Westonbridge International Limited Piezoelectric micropump having actuation electrodes and stopper members
CH689836A5 (fr) * 1994-01-14 1999-12-15 Westonbridge Int Ltd Micropompe.
JP2628019B2 (ja) * 1994-04-19 1997-07-09 株式会社日立製作所 静電駆動型マイクロアクチュエータとバルブの製作方法、及び静電駆動型ポンプ
JPH0823153A (ja) * 1994-07-05 1996-01-23 Sharp Corp 配線形成方法
EP0880817B1 (de) * 1996-02-10 2005-04-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bistabiler microantrieb mit gekoppelten membranen
US6123316A (en) * 1996-11-27 2000-09-26 Xerox Corporation Conduit system for a valve array
US6069392A (en) * 1997-04-11 2000-05-30 California Institute Of Technology Microbellows actuator
DE19719862A1 (de) * 1997-05-12 1998-11-19 Fraunhofer Ges Forschung Mikromembranpumpe
US6116863A (en) * 1997-05-30 2000-09-12 University Of Cincinnati Electromagnetically driven microactuated device and method of making the same
CA2301878A1 (en) 1997-08-20 1999-02-25 Westonbridge International Limited Micro pump comprising an inlet control member for its self-priming
US6126140A (en) * 1997-12-29 2000-10-03 Honeywell International Inc. Monolithic bi-directional microvalve with enclosed drive electric field
US6576478B1 (en) * 1998-07-14 2003-06-10 Zyomyx, Inc. Microdevices for high-throughput screening of biomolecules
JP2001304454A (ja) * 2000-04-27 2001-10-31 Matsushita Electric Works Ltd 半導体マイクロバルブ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8167581B2 (en) 2006-09-04 2012-05-01 Debiotech Sa Device for delivering a liquid, the device comprising a pump and a valve
WO2014136090A1 (en) * 2013-03-07 2014-09-12 Debiotech S.A. Microfluidic valve having improved tolerance to particles

Also Published As

Publication number Publication date
US7005078B2 (en) 2006-02-28
AU2001272500B2 (en) 2005-06-23
JP4776139B2 (ja) 2011-09-21
AU7250001A (en) 2001-12-03
JP2004505212A (ja) 2004-02-19
DE60114411D1 (de) 2005-12-01
CN1430703A (zh) 2003-07-16
EP1283957A1 (de) 2003-02-19
US20060027523A1 (en) 2006-02-09
US7311503B2 (en) 2007-12-25
WO2001090577A1 (fr) 2001-11-29
US20040052657A1 (en) 2004-03-18
DE60114411T2 (de) 2006-07-20
ATE307976T1 (de) 2005-11-15
CA2410306A1 (en) 2002-11-22
CA2410306C (en) 2009-12-15
CN1324238C (zh) 2007-07-04

Similar Documents

Publication Publication Date Title
EP1283957B1 (de) Microbearbeitete fluidische vorrichtung und herstellungsverfahren
EP0429591B1 (de) Mikropumpe
EP0739451B1 (de) Mikropumpe
CH682456A5 (fr) Micropompe.
EP0737273B1 (de) Mikropumpe
EP0879357B1 (de) Mikropumpe mit einem mikrobearbeiteten filter
CH679555A5 (de)
EP0670740A1 (de) Ventil zur behandlung von hydrocephalus
FR2582222A1 (fr) Dispositif implantable a action manuelle pour la distribution sequentielle de doses d'une substance, notamment therapeutique
EP2811951B1 (de) Vorrichtung zur verpackung und abgabe einer substanz zur ophthalmischen anwendung
FR2994228A1 (fr) Pompe realisee dans un substrat
FR2935370A1 (fr) Micropompe
FR3055429A1 (fr) Dispositif a actionnement electrostatique
WO2006056967A9 (fr) Dispositif microfluidique mecanique, le procede de fabrication d'un empilement intermediaire et de ce dispositif microfluidique, et une micropompe.
EP1467947B1 (de) Verfahren und bereich zur abdichtung zwischen zwei mikrostruktur-substraten
CH680009A5 (en) Micro-pump-for injection of medication dose
FR2650634A1 (fr) Micropompe perfectionnee
CH684209A5 (fr) Clapet intégré et micropompe comprenant un tel clapet.
CH683634A5 (fr) Clapet intégré et micropompe comprenant un tel clapet.
EP2932206B1 (de) Pumpe mit einer anordnung zur messung der temperatur oder der durchflussrate eines fluids
EP3975588B1 (de) Verfahren zur herstellung eines elektroakustischen transducers
WO2010139913A1 (fr) Organe de circulation fluidique, et ensemble de circulation fluidique comprenant au moins un tel organe
EP3838408B1 (de) Mikrofluidische vorrichtung mit auf papier basierenden substraten
CH683793A5 (fr) Clapet muni d'un détecteur de position par contact et micropompe comportant un tel clapet.
CH684286A5 (fr) Clapet muni d'un détecteur de position par contact et micropompe comportant un tel clapet.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021211

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEBIOTECH S.A.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60114411

Country of ref document: DE

Date of ref document: 20051201

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060206

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20060424

Year of fee payment: 6

Ref country code: MC

Payment date: 20060424

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20060503

Year of fee payment: 6

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070525

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: DEBIOTECH S.A.

Free format text: DEBIOTECH S.A.#28, AVENUE DE SEVELIN#1004 LAUSANNE (CH) -TRANSFER TO- DEBIOTECH S.A.#28, AVENUE DE SEVELIN#1004 LAUSANNE (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150521

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150520

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160519

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190529

Year of fee payment: 19

Ref country code: DE

Payment date: 20190521

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190522

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190521

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60114411

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200525