EP1282885A1 - Systeme de comptage d'etres vivants - Google Patents

Systeme de comptage d'etres vivants

Info

Publication number
EP1282885A1
EP1282885A1 EP01921484A EP01921484A EP1282885A1 EP 1282885 A1 EP1282885 A1 EP 1282885A1 EP 01921484 A EP01921484 A EP 01921484A EP 01921484 A EP01921484 A EP 01921484A EP 1282885 A1 EP1282885 A1 EP 1282885A1
Authority
EP
European Patent Office
Prior art keywords
cells
task
living beings
counting
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01921484A
Other languages
German (de)
English (en)
Other versions
EP1282885B1 (fr
Inventor
Bruno Gilbert Meunier
Jean-Pierre Paul Fernand Deparis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National de Recherche sur les Transports et leur Securite INRETS
Original Assignee
Institut National de Recherche sur les Transports et leur Securite INRETS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National de Recherche sur les Transports et leur Securite INRETS filed Critical Institut National de Recherche sur les Transports et leur Securite INRETS
Publication of EP1282885A1 publication Critical patent/EP1282885A1/fr
Application granted granted Critical
Publication of EP1282885B1 publication Critical patent/EP1282885B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M1/00Design features of general application
    • G06M1/08Design features of general application for actuating the drive
    • G06M1/10Design features of general application for actuating the drive by electric or magnetic means
    • G06M1/101Design features of general application for actuating the drive by electric or magnetic means by electro-optical means
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/16Actuation by interference with mechanical vibrations in air or other fluid
    • G08B13/1609Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems
    • G08B13/1645Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems using ultrasonic detection means and other detection means, e.g. microwave or infrared radiation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/191Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using pyroelectric sensor means

Definitions

  • the object of the invention is a system for counting living beings, moving on a first surface and passing through a second cylindrical surface of substantially vertical generator.
  • a system consists of a set of N thermal radiation detection cells and an electronic device for acquiring and processing the signals delivered by these cells.
  • US Pat. No. 5,068,537 describes another system for counting living beings in motion using a large number of cells arranged on a single line. The system is designed so that a medium-sized living being is detected by at least two cells. Each cell having only one detector, the system does not allow the determination of the direction of crossing of the living beings counted.
  • thermopiles which are characterized by their ability to detect even very slow variations in temperature in their field of vision.
  • the system for counting living beings that is the subject of the invention comprises a set of N thermal radiation detection cells as well as an electronic device for acquiring and processing the signals delivered by these cells.
  • Each cell comprises in particular a thermopile comprising at least one sensitive element, a means focusing the thermal radiation on the sensitive elements of this thermopile, this focusing means creating an elongated field of vision in a direction, a mask limiting this field of vision and a amplifier of the signal delivered by the thermopile.
  • the N detection cells are equally distributed according to two curves when N is even and are distributed according to two curves with a difference of one unit when N is odd, the distribution cells on each curve being uniform at an identical pitch P for each of the two curves, one of these curves identifying with the director of the cylindrical surface traversed by living beings, and the other curve being distant from the previous one with a length D equal to at least 5 cm, the direction of elongation of the field of vision of each cell being substantially tangent to one of the two curves.
  • a filter generally placed in the thermopile in front of the sensitive element limits the sensitivity to thermal radiation from temperature bodies close to ambient temperature, which corresponds to far infrared radiation in the band of wavelengths from 7 to About 14 ⁇ m.
  • the focusing means of each cell is adapted to the number, the arrangement and the geometry of the sensitive element or elements of the thermopile so as to create a field of vision elongated in one direction and as narrow as possible in the direction perpendicular to the previous one.
  • the focusing means is preferably produced using one or more lenses. It can optionally be made by pinhole or by mirror.
  • thermopile comprises a single sensitive element with an elongated surface or when the thermopile comprises an alignment of sensitive elements whose surfaces have dimensions which are substantially similar in two orthogonal directions.
  • several lenses are used, preferably when the thermopile has only one sensitive element, the surface of which has dimensions which are substantially similar in two orthogonal directions.
  • step P of distribution of the detection cells close to the width of a living being statistically representative of the beings of minimum size belonging to the population to be counted.
  • this step P is substantially equal to 45 cm.
  • the system which is the subject of the invention is used to count living beings crossing a plane; in this case, the curves on which the cells are distributed are parallel lines.
  • the opening of the field of vision can be chosen for each cell belonging to the same line, so as to ensure the juxtaposition of the zones seen by two successive cells on the same line, at a height close to the minimum size of a living being statistically representative of the beings belonging to the population to be counted.
  • a first task of this algorithm initializes the parameters specifying the configuration of the system.
  • a second task of this algorithm successively ensures for each cell, the reading and processing of the digital values delivered by the electronic acquisition device.
  • a third task of this algorithm ensures the adaptation of the sensitivity threshold of the cells.
  • a fourth task of this algorithm analyzes for all the couples of successive cells the information resulting from the second task.
  • a fifth task of this algorithm analyzes the results of the fourth task and deduces therefrom the counting of living beings, their direction of crossing and their speed of movement.
  • a sixth task of this algorithm exploits the counting thus obtained according to the envisaged application.
  • a seventh task of this algorithm manages the execution rate of the preceding tasks according to the sampling frequency of the signals delivered by the cells.
  • the fifth task of the algorithm can be designed so as to allow the grouping, in the form of entities, of the pairs of successive cells for which the information originating from the fourth task of the algorithm corresponds to the crossing of a living being or a group of living beings, the information from the couples of each entity specifying this number of living beings, the direction of their crossing and the speed of their displacement.
  • the system for counting living things which is the subject of the invention offers various advantages over known systems and in particular its easy integration for any passage width to be monitored; its excellent metering performance even at a low passage height; its adaptability of implantation in particular environments; its ability to count dense crowds and slow moving living things.
  • FIGS. 1 to 14 The system for counting living beings that is the subject of the invention can be described without limitation by means of the following example illustrated by FIGS. 1 to 14. This example corresponds to the counting of human beings crossing a plane, using eight equally spaced cells on two lines.
  • FIG. 1 schematically represents a system which is the subject of the invention comprising eight cells arranged in two alignments.
  • FIGS. 2a and 2b represent two views of a thermal radiation detection cell used in the system shown diagrammatically in FIG. 1.
  • Figure 3 shows an array of Fresnel lenses used in the cell shown in Figures 2a and 2b.
  • FIGS. 4a and 4b show the cell shown in Figures 2a and 2b with its field of vision.
  • FIGS. 5a and 5b represent two views, in two orthogonal directions, of a group of two successive cells, each of them belonging to a different alignment, as well as the fields of vision of these cells.
  • Figure 6a shows, in top view, five successive cells belonging to the system shown in Figure 1.
  • Figures 6b and 6c show, in top view, the areas seen by the five cells shown schematically in Figure 6a, respectively at the level 1 m and at ground level.
  • FIGS. 7a to 7e show, in top view, five successive phases of the crossing of a human being perpendicular to the alignments of the cells and for a representation of the areas seen according to FIG. 6b.
  • FIG. 7z schematizes the temporal evolution of the signals delivered by the thermopile of each cell, for the crossing defined by FIGS. 7a to 7e.
  • FIGS. 8a to 8e represent, in top view, five successive phases of the crossing of a human being obliquely to the alignments of the cells and for a representation of the zones seen according to FIG. 6b.
  • FIG. 8z diagrams the temporal evolution of the signals delivered by the thermopile of each cell, for the crossing defined by FIGS. 8a to 8e.
  • FIG. 9 shows the chronological sequence, in the form of a flowchart, of the various tasks for processing the electrical signals delivered by the cells.
  • FIGS 10, 11, 12 and 13 show four specific tasks in the flowchart shown in Figure 9.
  • Figure 14 shows the table used by the particular task shown in Figure 13.
  • FIG. 1 shows the ground 0, a set of eight thermal radiation detection cells distributed in two alignments, a first alignment 1 comprising four cells 11; 12; 13; 14, a second alignment 2 comprising four cells 21; 22; 23; 24, two human beings 4 and 5, an electronic device 6 for acquiring and digitizing the signals delivered by the cells, these signals possibly being sampled at the level of the cells, an electronic device 7 for processing the digital values delivered by the device acquisition 6, a device 8 for exploiting the information coming from the processing device 7, a medium 3 connecting all the cells to the acquisition device 6.
  • the eight cones Ill at l l4 and l21 at l24 diagram the fields of vision of each of the cells. The intersections of these cones with a plane parallel to the ground 0 and situated at a height of 1 m define the zones seen at this height and are shown diagrammatically by the eight ellipses 211 to 214 and 221 to 224.
  • FIG. 2a is a schematic section of a cell by a plane perpendicular to the two alignments of the cells.
  • FIG. 2b is a schematic section of the same cell, orthogonal to the section shown in Figure 2a.
  • This cell comprises a thermopile 30, the sensitive element 31 of which provides an electrical signal of small amplitude proportional to the thermal radiation received through the infrared filter 32, an amplification and shaping stage 33 of the electrical signal delivered by the thermopile 30 , a device 38 connecting the amplification and shaping stage 33 to the medium 3, an array of Fresnel lenses 34 with focal distance 40, placed at a distance equal to this focal distance 40 in front of the sensitive element 31 of the thermopile 30, a mask 35 placed in front of the array of Fresnel lenses 34 and a sealed housing 36, opaque to electromagnetic radiation and the inner surface of which absorbs thermal radiation.
  • the array of Fresnel lenses 34 comprises eight elements 34a to 34h.
  • FIG. 3 represents the network of Fresnel lenses 34.
  • This network is made up of eight elementary Fresnel lenses 34a at 34h. These lenses are juxtaposed and their optical centers are aligned along the straight line 39.
  • Figures 4a and 4b show the cell shown in Figures 2a and 2b according to the same projections. These figures show the elementary fields of vision 37c, 37d, 37e and 37f associated with the unmasked elementary Fresnel lenses 34c, 34d, 34e and 34f.
  • FIGS. 5a and 5b represent successive cells 11 and 21 as well as their respective fields of vision 111 and 121. These two cells belong to a different alignment.
  • Figure 5a shows the fields of vision perpendicular to the normal direction of movement of human beings.
  • Figure 5b shows the fields of vision according to the normal direction of movement of human beings.
  • the view represented in FIG. 5a highlights the small opening of the fields of vision 111 and 121 as well as the small distance D 42 between the two alignments 1 and 2.
  • the view represented in FIG. 5b highlights the significant opening of the fields of vision 111 and 121 as well as the half-step P / 2 41 between these cells.
  • Figure 6a shows a top view of the five cells 11; 21; 12; 22; 13 arranged in the two alignments 1 and 2 distant from the distance D 42. This view also shows the half-step P / 2 41 between two successive cells.
  • Figure 6b shows a top view of the arrangement of zones 211; 221; 212; 222; 213 views at a height of 1 m above ground level 0 and corresponding respectively to cells 11; 21; 12; 22; 13.
  • This FIG. 6b highlights the juxtaposition of the zones seen by two successive cells arranged on the same alignment.
  • FIG. 6c shows a top view of the arrangement of the zones seen at ground level 0, 311; 321; 312; 322; 313 corresponding respectively to cells 11; 21; 12; 22; 13.
  • This FIG. 6c highlights the partial superposition of the zones seen by two successive cells arranged on the same alignment.
  • FIGS. 7a to 7e respectively represent, in top view, five successive phases a, b, c, d, e of the crossing of a human being 4 perpendicular to the alignments 1 and 2, as well as the areas seen at a height of 1 m above the level of ground, shown in Figure 6b.
  • FIG. 7z diagrams the oscillograms of the electrical signals 411; 421; 412; 422; 413 delivered respectively by cells 11; 21; 12; 22; 13.
  • the level of each electrical signal 411; 421; 412; 422; 413 is linked to the fraction of the view area occupied by the human being which crosses the fields of vision of the cells 11; 21; 12; 22; 13.
  • phase a human being 4 is not present in any of the areas seen 211; 221; 212; 222; 213.
  • the electrical signals 411; 421; 412; 422; 413 shown in Figure 7z have a zero level.
  • phase b human being 4 completely occupies the zone seen 212.
  • the level of signal 413 has a peak of very low amplitude.
  • the areas seen 211; 221; 222 are not occupied by humans 4.
  • the levels of the corresponding signals 411; 421; 422 remain void.
  • human being 4 continues to occupy the entire view area 212.
  • the level of signal 412 remains at a maximum. Human being 4 partially occupies the seen areas 221 and 222.
  • the level of signals 421 and 422 is medium.
  • the areas seen 211 and 213 are not occupied by humans 4.
  • phase d the human being 4 leaves the view area 212.
  • the level of the signal 412 becomes zero again.
  • Human being 4 continues to partially occupy the zones seen 221 and 222.
  • the level of signals 421 and 422 remains medium.
  • the areas seen 211 and 213 are not occupied by human beings 4.
  • the levels of the corresponding signals 411 and 413 remain zero.
  • phase e human being 4 leaves the seen areas 221 and 222.
  • the level of signals 421 and 422 becomes zero again.
  • the areas seen 211; 212; 213 are not occupied by humans 4.
  • the levels of the corresponding signals 411; 412; 413 remain void.
  • FIGS. 8a to 8e respectively represent, in top view, five successive phases a, b, c, d, e of the crossing of a human being 5 obliquely with the alignments 1 and 2, as well as the zones seen at a height of 1 m above ground level, shown in Figure 6b.
  • FIG. 8z diagrams the oscillograms of the electrical signals 511; 521; 512; 522; 513 delivered respectively by cells 11; 21; 12; 22; 13.
  • each electrical signal 511; 521; 512; 522; 513 is linked to the fraction of the view area occupied by humans which crosses the fields of vision of cells 11; 21; 12; 22; 13. In phase a, human being 5 is not present in any of the areas seen 211; 221; 212; 222; 213.
  • the electrical signals 511; 521; 512; 522; 513 shown in Figure 8z have a zero level.
  • phase b human being 5 partially occupies the areas seen 212 and 213.
  • the level of signals 512 and 513 is medium.
  • the areas seen 211; 221; 222 are not occupied by human beings 5.
  • the levels of the corresponding signals 511; 521; 522 are void.
  • phase c human being 5 occupies almost the entire view area 212.
  • the level of signal 512 reaches a maximum.
  • the human being 5 partially occupies the seen areas 221 and 222.
  • the level of the signals 521 and 522 is medium.
  • the areas seen 211 and 213 are not occupied by human beings 5.
  • the levels of the corresponding signals 511 and 513 remain zero.
  • phase d human being 5 leaves the seen areas 212 and 222.
  • the level of signals 512 and 522 becomes zero again. Human 5 fully occupies the view area 221.
  • the level of signal 521 reaches a maximum.
  • the areas seen 211 and 213 are not occupied by human beings 5.
  • the levels of the corresponding signals 511 and 513 remain zero.
  • phase e human being 5 leaves the view area 221.
  • the level of signal 521 becomes zero again.
  • the areas seen 211; 212; 213; 222 are not occupied by human beings 5.
  • the levels of the corresponding signals 511; 512; 513; 522 remain void. All the levels of the signals being zero, the human being 5 will be able to be counted with discrimination of the direction of crossing of the alignments.
  • FIG. 9 shows the chronological sequence, in the form of a flowchart, of the various tasks for processing in real time the digital values originating from the electronic device 6 for acquiring and digitizing the electrical signals 411; 421; 412; 422; 413, delivered by the five cells 11; 21; 12; 22; 13.
  • This flowchart is implemented by the electronic device 7.
  • the flowchart in FIG. 9 has an entry point 601 and an exit point 699. It comprises seven tasks 603; 700; 800; 900; 1000; 605; 607.
  • the task 603 allows the initialization of the parameters specifying the configuration of the counting system: number of cells, height of the cells with respect to the ground, pitch P and distance D as well as processing parameters: sampling frequency of the electrical signals delivered by cells and initial cell sensitivity threshold.
  • the task 603 positions the cells in the INVALID memorized state as well as the pairs of successive cells, that is to say the pairs such as the pair 11; 21 couple monitoring 21; 12, itself followed by the couple 12; 22 and so on, in the INVALID memorized state.
  • Task 700 successively ensures for each cell the reading and processing of the digital values delivered by the electronic device 6.
  • the task 800 ensures for the system object of the invention the adaptation of the sensitivity threshold of the cells, used by the task 700.
  • the task 900 analyzes for all the couples of successive cells, the information resulting from the task 700.
  • Task 1000 analyzes the results of task 900 and deduces the count of human beings.
  • Task 605 allows the electronic device 8 to use the counting performed by task 1000, depending on the application envisaged.
  • Task 607 manages the execution rate of tasks 700 to 605 according to the sampling frequency; this task 607 is executed at all times (t). To this end, task 607 delays the connection 607/1 to task 700.
  • Task 607 also makes it possible to permanently quit the execution of tasks 700 to 605 by connection 607/0 to exit point 699.
  • an index k is associated with each cell.
  • the value 1 of the index k is associated with an extreme cell, 11 for example; the value 2 of the index k is associated with the successive cell, here cell 21, and so on.
  • an index m is associated with each pair of successive cells.
  • the value 1 of the index m is associated with an extreme torque, 11; 21 for example; the value 2 of the index m is associated with the successive couple, here the couple 21; 12, and so on.
  • FIGS 10, 11, 12 and 13 show respectively in the form of flowcharts the chronological sequence of the elementary tasks constituting the tasks 700;
  • This task repeats for each digital value delivered by the electromechanical device 6 the elementary tasks 705 to 719.
  • Task 703 initializes the index k associated with the cell whose digital value is read and processed to 1.
  • Task 705 controls the acquisition and digitization by the electronic device 6 of the electrical signal delivered at the instant (t) by the cell considered.
  • Task 707 processes the digital value delivered by task 705 with a view to homogenizing all the digital values of the signals delivered.
  • Task 709 stores the value processed by task 707 if it corresponds to a local maximum, determined from values previously processed by task 707 for this cell.
  • the value memorized by task 709 is used for the adaptation in task 800 of the cell sensitivity threshold.
  • Test 711 checks the superiority of the value processed by task 707 over the sensitivity threshold of the cells.
  • the 711/1 connection is effective if the 711 test is TRUE; in this case a human being is in the field of vision of the cell considered.
  • Task 712 stores the value processed by task 707 and the instant (t); it positions the cell in question in the ACTIVE instant state.
  • Test 713 checks the superiority of the value processed by task 707 over the sensitivity threshold of the cells, at the previous instant (t-1).
  • Connection 713/1 is effective if test 713 is TRUE; in this case a human being has just left the field of vision of the cell in question; task 715 analyzes the successive values memorized by task 712 in order to extract therefrom information characteristic of the crossing of a human being: instant of start of the crossing, instant of end of the crossing, instant corresponding to the median of the memorized values and average of these values; it positions the cell considered in the memorized state
  • VALID All this information is stored for analysis by task 900. Connection 713/0 is effective if test 713 is FALSE; in this case, no human being is in the field of vision of the cell considered.
  • Task 714 positions the cell considered in the PASSIVE instant state.
  • Task 717 increments the index k associated with a cell.
  • Test 719 checks that the new index k is less than or equal to the total number of cells. Connection 719/1 is effective if test 719 is TRUE; in this case all the cells have not been treated and we return to task 705.
  • Connection 719/0 is effective if test 719 is FALSE; in this case all the cells have been treated.
  • This task comprises two elementary tasks 803 and 805 ensuring the adaptation of the sensitivity threshold of the cells as a function of the last V values stored.
  • V being chosen arbitrarily according to the application, for example according to the frequency of crossing of living beings or according to a fixed number of crossings; this number can be chosen in the range from 20 to 100.
  • the test 803 verifies that all the cells are in the instantaneous state PASSIVE and that at least V values have been memorized by task 709 of task 700.
  • the connection 803/1 is effective if test 803 is TRUE; in this case, the sensitivity threshold of the cells can be adapted.
  • Task 805 calculates the moving average over all of the last V values stored by task 709 in FIG. 10 and deduces therefrom the new sensitivity threshold of the cells.
  • the 803/0 connection is effective if the 803 test is FALSE; in this case the sensitivity threshold of the cells cannot be adjusted.
  • This task repeats for each pair of cells the elementary tasks 905 to 911. It analyzes the characteristic information extracted for each cell by the task 700 and deduces therefrom the characteristic information of each pair.
  • Task 903 initializes the index m associated with the pair of cells to be analyzed to 1.
  • the 905 test verifies that the two cells forming the couple considered are in the VALID memorized state and that there is a period of common occupation during which the human being is simultaneously in the field of vision of the two cells, which amounts to to consider that the human being is in the field of vision of the couple.
  • the 905/1 connection is effective if test 905 is TRUE.
  • Task 907 analyzes the characteristic information extracted for each cell of the pair of successive cells considered and deduces therefrom the characteristic information of the crossing of a human being for this pair: instant of start of common occupation, instant of end of common occupation , mean of the couple, that is to say mean of the means calculated for the cells of the couple, signature of the chronology of occupation of the cells of the couple; the state of the pair of successive cells is considered to be VALID.
  • the signature of the chronology of occupation of the cells of the couple is chosen arbitrarily POSITIVE if the human being crosses the alignment 1 then the alignment 2 and NEGATIVE if the human being crosses the alignment 2 then the alignment 1.
  • the 905/0 connection is effective if test 905 is FALSE.
  • Task 909 increments the index m associated with a couple.
  • the 911 test checks that the new index m is less than or equal to the total number of couples.
  • the 911/1 connection is effective if the 911 test is TRUE; in this case all the couples have not been analyzed and we return to test 905.
  • the 911/0 connection is effective if the 911 test is FALSE; in this case all the couples have been analyzed.
  • Task 1003 initializes at 1 l index m associated with the pair of cells to be analyzed and initializes the content of the entity to zero, which means that the entity contains no pair.
  • Test 1005 verifies that the torque considered is in the VALID state. The 1005/0 connection is effective if the 1005 test is FALSE.
  • Task 1006 resets the content of the entity to zero, which means that the entity contains no pairs.
  • the 1005/1 connection is effective if the 1005 test is TRUE.
  • Task 1007 includes the couple considered in the entity.
  • Test 1009 verifies that there is a period of time during which one or more human beings are in the field of vision of the couple considered and of the next couple.
  • the 1009/0 connection is effective if the 1009 test is FALSE; in this case, the entity is complete, it can be analyzed to count human beings.
  • Task 1011 uses the table shown in Figure 14 to analyze the entity and determine in real time the number of human beings and their direction of crossing.
  • Task 1013 updates the characteristic information of the pairs and cells contained in the entity then re-initializes the content of the entity to 0. The state of these couples and the memorized state of these cells are repositioned at l INVALID state.
  • the 1009/1 connection is effective if the 1009 test is TRUE; in this case, the following couple is likely to be included in the entity.
  • Task 1015 increments the index m associated with a couple.
  • Test 1017 checks that the new index m is less than or equal to the total number of couples.
  • Connection 1017/1 is effective if test 1017 is TRUE; in this case all the couples have not been analyzed and we return to test 1005.
  • Connection 1017/0 is effective if test 1017 is FALSE; in this case all the couples have been analyzed.
  • Figure 14 shows the table for analyzing the characteristic numbers of the entity created during task 1000.
  • This table has as many columns and rows as there are cells in the system.
  • This table defines the number of human beings associated with the entity as well as their crossing direction according to the characteristic numbers of the entity.
  • the column numbers correspond to the possible values taken by the number X and the row numbers correspond to the possible values taken by the number Y.
  • the empty boxes in the table correspond to impossible situations; the other boxes in the table contain either a letter or at least a signed integer whose module represents the number of human beings counted and whose sign corresponds to the initial crossing of alignment 1 if it is positive and to the crossing initial alignment 2 if it is negative.
  • the letters A, B and C in the table correspond to the special cases for which the counting of human beings is conditioned by additional information.
  • the letter A is to be replaced by (+1) when the average of the couple with the POSITIVE signature is greater than the average of the couple with the NEGATIVE signature.
  • the letter A is to be replaced by (-1) when the average of the couple with the POSITIVE signature is lower than the average of the couple with the NEGATIVE signature.
  • the letter B is to be replaced by the set (+1) & (-1) when the couple with the POSITIVE signature has been included in the entity before or after the other couples and by (- 2) in other cases.
  • the letter C is to be replaced by the set (+1) & (-1) when the couple with the NEGATIVE signature has been included in the entity before or after the other couples and by (+2) in other cases.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

SYSTEME DE COMPTAGE D'ETRES VIVANTS
L'objet de l'invention est un système de comptage d'êtres vivants, se déplaçant sur une première surface et traversant une seconde surface cylindrique de génératrice sensiblement verticale. Un tel système est constitué d'un ensemble de N cellules de détection de rayonnement thermique et d'un dispositif électronique d'acquisition et de traitement des signaux délivrés par ces cellules.
On connaît de nombreux systèmes de comptage d'êtres vivants en mouvement basés sur la détection de rayonnement thermique. La demande internationale WO 9210812 décrit un tel système de comptage, utilisant une cellule unique qui comporte un capteur et une lentille positionnée devant lui. Ce capteur est composé de deux rangées de détecteurs pyroélectiques. La lentille focalise le rayonnement thermique sur chacun des détecteurs. Ce type de détecteur de rayonnement thermique ne permet de déceler que des variations relativement rapides de température dans le champ de vision. La cellule crée deux plans de surveillance parallèles formés par les axes des faisceaux associés aux détecteurs. Après acquisition des signaux électriques délivrés par les détecteurs, une unité de traitement évalue le nombre d'êtres vivants franchissant les deux plans et leurs sens de déplacement. Ce dispositif est adapté au comptage dans des passages de faible hauteur et de faible largeur, porte d'autobus par exemple. Ce dispositif est pratiquement inutilisable dans des passages de largeur importante compte tenu de la divergence du champ de vision du capteur. En outre, l'utilisation de détecteurs pyroélectriques prévue dans le cadre de cette demande internationale rend difficile la détection d'êtres vivants en mouvement lent. Le brevet US 4,799,243 décrit un autre système de comptage d'êtres vivants en mouvement. Ce système est constitué de cellules, chaque cellule comportant deux détecteurs de rayonnement thermique et une lentille. Ces deux détecteurs créent pour chaque cellule deux champs de vision disjoints, sensiblement symétriques par rapport à la verticale. L'arrangement des cellules tel qu'il est prévu dans ce brevet est choisi pour couvrir la totalité de la largeur du passage à surveiller avec un recouvrement des champs de vision selon une direction perpendiculaire au sens de traversée et une séparation des champs de vision selon le sens de traversée. Un tel arrangement ne permet pas le comptage d'êtres vivants trop proches les uns des autres selon le sens de traversée. Le brevet US 5,068,537 décrit un autre système de comptage d'êtres vivants en mouvement utilisant un grand nombre de cellules disposées sur une seule ligne. Le système est conçu de sorte qu'un être vivant de taille moyenne soit détecté par au moins deux cellules. Chaque cellule ne comportant qu'un détecteur , le système ne permet pas la détermination du sens de traversée des êtres vivants comptés.
Dans le système de comptage d'êtres vivants objet de l'invention, les détecteurs de rayonnement thermique utilisés sont des thermopiles qui se caractérisent par leur capacité à détecter des variations même très lentes de température dans leur champ de vision.
Le système de comptage d'êtres vivants objet de l'invention comporte un ensemble de N cellules de détection de rayonnement thermique ainsi qu'un dispositif électronique d'acquisition et de traitement des signaux délivrés par ces cellules. Chaque cellule comporte notamment une thermopile comprenant au moins un élément sensible, un moyen focalisant le rayonnement thermique sur les éléments sensibles de cette thermopile, ce moyen de focalisation créant un champ de vision allongé selon une direction, un masque limitant ce champ de vision et un amplificateur du signal délivré par la thermopile. Dans le système de comptage d'êtres vivants, objet de l'invention, les N cellules de détection sont équiréparties selon deux courbes lorsque N est pair et sont réparties selon deux courbes avec une différence d'une unité lorsque N est impair, la répartition des cellules sur chaque courbe étant uniforme selon un pas P identique pour chacune des deux courbes, l'une de ces courbes s'identifiant à la directrice de la surface cylindrique traversée par les êtres vivants, et l'autre courbe étant distante de la précédente d'une longueur D égale à 5 cm au moins, la direction d'allongement du champ de vision de chaque cellule étant sensiblement tangente à l'une des deux courbes.
Un filtre généralement placé dans la thermopile devant l'élément sensible limite la sensibilité au rayonnement thermique des corps de température proche de la température ambiante, ce qui correspond à des rayonnements de l'infrarouge lointain dans la bande de longueurs d'ondes de 7 à 14 μm environ. Le moyen de focalisation de chaque cellule est adapté au nombre, à la disposition et à la géométrie du ou des éléments sensibles de la thermopile de façon à créer un champ de vision allongé selon une direction et aussi étroit que possible selon la direction perpendiculaire à la précédente. Le moyen de focalisation est réalisé de manière préférentielle à l'aide d'une ou de plusieurs lentilles. Il peut éventuellement être réalisé par sténopé ou par miroir. Selon l'invention, on utilise une seule lentille, de préférence lorsque la thermopile comporte un seul élément sensible de surface allongée ou lorsque la thermopile comporte un alignement d'éléments sensibles dont les surfaces ont des dimensions sensiblement voisines selon deux directions orthogonales. Selon l'invention, on utilise plusieurs lentilles, de préférence lorsque la thermopile ne comporte qu'un seul élément sensible dont la surface a des dimensions sensiblement voisines selon deux directions orthogonales.
Dans les systèmes objet de l'invention, il est judicieux de choisir un pas P de répartition des cellules de détection voisin de la largeur d'un être vivant statistiquement représentatif des êtres de taille minimale appartenant à la population à compter. Lorsqu'il s'agit de compter des êtres humains ce pas P est sensiblement égal à 45 cm. Plus particulièrement, le système objet de l'invention est utilisé pour compter des êtres vivants traversant un plan ; dans ce cas, les courbes sur lesquelles les cellules sont réparties sont des droites parallèles.
L'ouverture du champ de vision, selon la direction d'allongement de ce champ, peut être choisie pour chaque cellule appartenant à une même droite, de manière à assurer la juxtaposition des zones vues par deux cellules successives sur la même droite, à une hauteur voisine de la taille minimale d'un être vivant statistiquement représentatif des êtres appartenant à la population à compter.
Lorsqu'en outre il s'agit de compter des êtres humains traversant un plan, il est opportun de concevoir le système objet de l'invention de sorte que l'étendue de la zone vue par chaque cellule à une hauteur de 1 m et mesurée selon l'alignement est sensiblement égale à 45 cm.
Le système de comptage d'êtres vivants objet de l'invention comporte un dispositif électronique de traitement des signaux délivrés par les cellules qui exploite un algorithme. Une première tâche de cet algorithme initialise les paramètres précisant la configuration du système. Une deuxième tâche de cet algorithme assure successivement pour chaque cellule la lecture et le traitement des valeurs numériques délivrées par le dispositif électronique d'acquisition. Une troisième tâche de cet algorithme assure l'adaptation du seuil de sensibilité des cellules. Une quatrième tâche de cet algorithme analyse pour tous les couples de cellules successives les informations issues de la deuxième tâche. Une cinquième tâche de cet algorithme analyse les résultats de la quatrième tâche et en déduit le comptage des êtres vivants, leur sens de traversée et leur vitesse de déplacement. Une sixième tâche de cet algorithme exploite le comptage ainsi obtenu en fonction de l'application envisagée. Une septième tâche de cet algorithme gère la cadence d'exécution des tâches précédentes selon la fréquence d'échantillonnage des signaux délivrés par les cellules. Dans les systèmes de comptage d'êtres vivants objet de l'invention, on peut concevoir la cinquième tâche de l'algorithme de manière à y permettre le regroupement, sous forme d'entités, des couples de cellules successives pour lesquels les informations issues de la quatrième tâche de l'algorithme correspondent à la traversée d'un être vivant ou d'un groupe d'êtres vivants, les informations des couples de chaque entité précisant ce nombre d'êtres vivants, le sens de leur traversée et la vitesse de leur déplacement.
Le système de comptage d'êtres vivants objet de l'invention offre divers avantages par rapport aux systèmes connus et notamment son intégration aisée pour toute largeur de passage à surveiller ; sa performance de comptage excellente même pour une faible hauteur de passage ; son adaptabilité d'implantation dans des environnements particuliers ; sa capacité de comptage de foules denses et d'êtres vivants en mouvement lent.
Le système de comptage d'êtres vivants objet de l'invention peut être décrit à titre non limitatif à l'aide de l'exemple suivant illustré par les figures 1 à 14. Cet exemple correspond au comptage d'êtres humains traversant un plan, au moyen de huit cellules équiréparties sur deux droites.
La figure 1 représente schématiquement un système objet de l'invention comportant huit cellules disposées selon deux alignements. Les figures 2a et 2b représentent deux vues d'une cellule de détection de rayonnement thermique utilisée dans le système schématisé à la figure 1. La figure 3 montre un réseau de lentilles de Fresnel utilisé dans la cellule montrée aux figures 2a et 2b.
Les figures 4a et 4b représentent la cellule montrée aux figures 2a et 2b avec son champ de vision. Les figures 5a et 5b représentent deux vues, selon deux directions orthogonales, d'un groupe de deux cellules successives, chacune d'elles appartenant à un alignement différent, ainsi que les champs de vision de ces cellules.
La figure 6a représente, en vue de dessus, cinq cellules successives appartenant au système montré à la figure 1. Les figures 6b et 6c représentent, en vue de dessus, les zones vues par les cinq cellules schématisées à la figure 6a, respectivement au niveau de 1 m et au niveau du sol.
Les figures 7a à 7e représentent, en vue de dessus, cinq phases successives de la traversée d'un être humain perpendiculairement aux alignements des cellules et pour une représentation des zones vues selon la figure 6b. La figure 7z schématise l'évolution temporelle des signaux délivrés par la thermopile de chaque cellule, pour la traversée définie par les figures 7a à 7e.
Les figures 8a à 8e représentent, en vue de dessus, cinq phases successives de la traversée d'un être humain obliquement aux alignements des cellules et pour une représentation des zones vues selon la figure 6b. La figure 8z schématise l'évolution temporelle des signaux délivrés par la thermopile de chaque cellule, pour la traversée définie par les figures 8a à 8e.
La figure 9 montre l'enchaînement chronologique, sous forme d'un organigramme, des différentes tâches de traitement des signaux électriques, délivrés par les cellules.
Les figures 10, 11, 12 et 13 montrent quatre tâches particulières de l'organigramme montré à la figure 9.
La figure 14 montre le tableau utilisé par la tâche particulière montrée à la figure 13.
La figure 1 montre le sol 0, un ensemble de huit cellules de détection de rayonnement thermique réparties selon deux alignements, un premier alignement 1 comportant quatre cellules 11 ; 12 ; 13 ; 14, un second alignement 2 comportant quatre cellules 21 ; 22 ; 23 ; 24, deux êtres humains 4 et 5, un dispositif électronique 6 d'acquisition et de numérisation des signaux délivrés par les cellules, ces signaux étant éventuellement échantillonnés au niveau des cellules, un dispositif électronique 7 de traitement des valeurs numériques délivrées par le dispositif d'acquisition 6, un dispositif 8 d'exploitation des informations issues du dispositif de traitement 7, un médium 3 connectant toutes les cellules au dispositif d'acquisition 6. Les huit cônes Ill à l l4 et l21 à l24 schématisent les champs de vision de chacune' des cellules. Les intersections de ces cônes avec un plan parallèle au sol 0 et situé à une hauteur de 1 m définissent les zones vues à cette hauteur et sont schématisées par les huit ellipses 211 à 214 et 221 à 224.
La figure 2a est une coupe schématique d'une cellule par un plan perpendiculaire aux deux alignements des cellules.
La figure 2b est une coupe schématique de la même cellule, orthogonale à la coupe montrée à la figure 2a. Cette cellule comporte une thermopile 30 dont l'élément sensible 31 fournit un signal électrique de faible amplitude proportionnelle au rayonnement thermique reçu au travers du filtre infrarouge 32 , un étage d'amplification et de mise en forme 33 du signal électrique délivré par la thermopile 30, un dispositif 38 connectant l'étage d'amplification et de mise en forme 33 au médium 3, un réseau de lentilles de Fresnel 34 de distance focale 40, placé à une distance égale à cette distance focale 40 devant l'élément sensible 31 de la thermopile 30, un masque 35 placé devant le réseau de lentilles de Fresnel 34 et un boîtier 36 étanche, opaque aux rayonnements électromagnétiques et dont la surface intérieure absorbe les rayonnements thermiques. Le réseau de lentilles de Fresnel 34 comporte huit éléments 34a à 34h.
La figure 3 représente le réseau de lentilles de Fresnel 34. Ce réseau est composé de huit lentilles de Fresnel élémentaires 34a à 34h. Ces lentilles sont juxtaposées et leurs centres optiques sont alignés selon la droite 39. Les figures 4a et 4b représentent la cellule montrée aux figures 2a et 2b selon les mêmes projections. Ces figures montrent les champs de vision élémentaires 37c, 37d, 37e et 37f associés aux lentilles de Fresnel élémentaires non masquées 34c, 34d, 34e et 34f.
Les figures 5a et 5b représentent des cellules successives 11 et 21 ainsi que leurs champs de vision respectifs 111 et 121. Ces deux cellules appartiennent à un alignement différent. La figure 5a montre les champs de vision perpendiculairement au sens de déplacement normal des êtres humains. La figure 5b montre les champs de vision selon le sens de déplacement normal des êtres humains. La vue représentée à la figure 5a met en évidence la faible ouverture des champs de vision 111 et 121 ainsi que la faible distance D 42 entre les deux alignements 1 et 2. La vue représentée à la figure 5b met en évidence l'ouverture importante des champs de vision 111 et 121 ainsi que le demi-pas P/2 41 entre ces cellules.
La figure 6a représente une vue de dessus des cinq cellules 11 ; 21 ; 12 ; 22 ; 13 disposées selon les deux alignements 1 et 2 distants de la distance D 42. Cette vue montre également le demi-pas P/2 41 entre deux cellules successives.
La figure 6b montre en vue de dessus l'arrangement des zones 211 ; 221 ; 212 ; 222 ; 213 vues à une hauteur de 1 m au dessus du niveau du sol 0 et correspondant respectivement aux cellules 11 ; 21 ; 12 ; 22 ; 13. Cette figure 6b met en évidence la juxtaposition des zones vues par deux cellules successives disposées sur un même alignement. La figure 6c montre en vue de dessus l'arrangement des zones vues au niveau du sol 0, 311 ; 321 ; 312 ; 322 ; 313 correspondant respectivement aux cellules 11 ; 21 ; 12 ; 22 ; 13. Cette figure 6c met en évidence la superposition partielle des zones vues par deux cellules successives disposées sur un même alignement.
Les figures 7a à 7e représentent respectivement, en vue de dessus, cinq phases successives a, b, c, d, e de la traversée d'un être humain 4 perpendiculairement aux alignements 1 et 2, ainsi que les zones vues à une hauteur de 1 m au dessus du niveau du sol, montrées à la figure 6b. La figure 7z schématise les oscillogrammes des signaux électriques 411 ; 421 ; 412 ; 422 ; 413 délivrés respectivement par les cellules 11 ; 21 ; 12 ; 22 ; 13. Le niveau de chaque signal électrique 411 ; 421 ; 412 ; 422 ; 413 est lié à la fraction de la zone vue occupée par l'être humain qui traverse les champs de vision des cellules 11 ; 21 ; 12 ; 22 ; 13.
Dans la phase a, l'être humain 4 n'est présent dans aucune des zones vues 211 ; 221 ; 212 ; 222 ; 213. Les signaux électriques 411 ; 421 ; 412 ; 422 ; 413 montrés à la figure 7z ont un niveau nul. Dans la phase b, l'être humain 4 occupe entièrement la zone vue 212. Le niveau du signal
412 est maximal. L'être humain 4 occupe très partiellement la zone vue 213. Le niveau du signal 413 présente un pic de très faible amplitude. Les zones vues 211 ; 221 ; 222 ne sont pas occupées par l'être humain 4. Les niveaux des signaux correspondants 411 ; 421 ; 422 restent nuls. Dans la phase c, l'être humain 4 continue d'occuper entièrement la zone vue 212. Le niveau du signal 412 reste maximal. L'être humain 4 occupe partiellement les zones vues 221 et 222. Le niveau des signaux 421 et 422 est moyen. Les zones vues 211 et 213 ne sont pas occupées par l'être humain 4. Les niveaux des signaux correspondants 411 et
413 restent nuls. Dans la phase d, l'être humain 4 quitte la zone vue 212. Le niveau du signal 412 redevient nul. L'être humain 4 continue d'occuper partiellement les zones vues 221 et 222. Le niveau des signaux 421 et 422 reste moyen. Les zones vues 211 et 213 ne sont pas occupées par l'être humain 4. Les niveaux des signaux correspondants 411 et 413 restent nuls. Dans la phase e, l'être humain 4 quitte les zones vues 221 et 222. Le niveau des signaux 421 et 422 redevient nul. Les zones vues 211 ; 212 ; 213 ne sont pas occupées par l'être humain 4. Les niveaux des signaux correspondants 411 ; 412 ; 413 restent nuls. Tous les niveaux des signaux étant nuls, l'être humain 4 va pouvoir être compté avec discrimination du sens de traversée des alignements. Les figures 8a à 8e représentent respectivement, en vue de dessus, cinq phases successives a, b, c, d, e de la traversée d'un être humain 5 obliquement aux alignements 1 et 2, ainsi que les zones vues à une hauteur de 1 m au dessus du niveau du sol, montrées à la figure 6b. La figure 8z schématise les oscillogrammes des signaux électriques 511 ; 521 ; 512 ; 522 ; 513 délivrés respectivement par les cellules 11 ; 21 ; 12 ; 22 ; 13. Le niveau de chaque signal électrique 511 ; 521 ; 512 ; 522 ; 513 est lié à la fraction de la zone vue occupée par l'être humain qui traverse les champs de vision des cellules 11 ; 21 ; 12 ; 22 ; 13. Dans la phase a, l'être humain 5 n'est présent dans aucune des zones vues 211 ; 221 ; 212 ; 222 ; 213. Les signaux électriques 511 ; 521 ; 512 ; 522 ; 513 montrés à la figure 8z ont un niveau nul.
Dans la phase b, l'être humain 5 occupe partiellement les zones vues 212 et 213. Le niveau des signaux 512 et 513 est moyen. Les zones vues 211 ; 221 ; 222 ne sont pas occupées par l'être humain 5. Les niveaux des signaux correspondants 511 ; 521 ; 522 sont nuls.
Dans la phase c, l'être humain 5 occupe presque entièrement la zone vue 212. Le niveau du signal 512 atteint un maximum. L'être humain 5 occupe partiellement les zones vues 221 et 222. Le niveau des signaux 521 et 522 est moyen. Les zones vues 211 et 213 ne sont pas occupées par l'être humain 5. Les niveaux des signaux correspondants 511 et 513 restent nuls.
Dans la phase d, l'être humain 5 quitte les zones vues 212 et 222. Le niveau des signaux 512 et 522 redevient nul. L'être humain 5 occupe entièrement la zone vue 221. Le niveau du signal 521 atteint un maximum. Les zones vues 211 et 213 ne sont pas occupées par l'être humain 5. Les niveaux des signaux correspondants 511 et 513 restent nuls. Dans la phase e, l'être humain 5 quitte la zone vue 221. Le niveau du signal 521 redevient nul. Les zones vues 211 ; 212 ; 213 ; 222 ne sont pas occupées par l'être humain 5. Les niveaux des signaux correspondants 511 ; 512 ; 513 ; 522 restent nuls. Tous les niveaux des signaux étant nuls, l'être humain 5 va pouvoir être compté avec discrimination du sens de traversée des alignements. La figure 9 montre l'enchaînement chronologique, sous forme d'un organigramme, des différentes tâches de traitement en temps réel des valeurs numériques issues du dispositif électronique 6 d'acquisition et de numérisation des signaux électriques 411 ; 421 ; 412 ; 422 ; 413 , délivrés par les cinq cellules 11 ; 21 ; 12 ; 22 ; 13. Cet organigramme est mis en œuvre par le dispositif électronique 7. L'organigramme de la figure 9 a un point d'entrée 601 et un point de sortie 699. Il comporte sept tâches 603 ; 700 ; 800 ; 900 ; 1000 ; 605 ; 607.
La tâche 603 permet l'initialisation des paramètres précisant la configuration du système de comptage : nombre de cellules, hauteur des cellules par rapport au sol, pas P et distance D ainsi que des paramètres de traitement : fréquence d'échantillonnage des signaux électriques délivrés par les cellules et seuil initial de sensibilité des cellules. La tâche 603 positionne les cellules à l'état mémorisé INVALIDE ainsi que les couples de cellules successives, c'est-à-dire les couples tels que le couple 11 ; 21 suivi de couple 21 ; 12, lui-même suivi du couple 12 ; 22 et ainsi de suite, à l'état mémorisé INVALIDE. La tâche 700 assure successivement pour chaque cellule la lecture et le traitement des valeurs numériques délivrées par le dispositif électronique 6.
La tâche 800 assure pour le système objet de l'invention l'adaptation du seuil de sensibilité des cellules, utilisé par la tâche 700. La tâche 900 analyse pour tous les couples de cellules successives, les informations issues de la tâche 700.
La tâche 1000 analyse les résultats de la tâche 900 et en déduit le comptage des êtres humains.
La tâche 605 permet l'exploitation par le dispositif électronique 8, du comptage réalisé par la tâche 1000, en fonction de l'application envisagée. La tâche 607 gère la cadence d'exécution des tâches 700 à 605 selon la fréquence d'échantillonnage ; cette tâche 607 est exécutée à chaque instant (t). A cette fin, la tâche 607 temporise le branchement 607/1 vers la tâche 700. La tâche 607 permet également de quitter définitivement l'exécution des tâches 700 à 605 par le branchement 607/0 vers le point de sortie 699. Pour l'exécution des tâches 700, 800, 900 et 1000, on associe un indice k à chaque cellule. La valeur 1 de l'indice k est associée à une cellule extrême, 11 par exemple ; la valeur 2 de l'indice k est associée à la cellule successive, ici la cellule 21, et ainsi de suite.
De même on associe un indice m à chaque couple de cellules successives. La valeur 1 de l'indice m est associée à un couple extrême, 11 ; 21 par exemple ; la valeur 2 de l'indice m est associée au couple successif, ici le couple 21 ; 12, et ainsi de suite.
Les figures 10, 11, 12 et 13 montrent respectivement sous forme d'organigrammes l'enchaînement chronologique des tâches élémentaires constitutives des tâches 700 ;
800 ; 900 et 1000. Sur la figure 10, on voit le point d'entrée 701 et le point de sortie 799 de la tâche 700.
Cette tâche répète pour chaque valeur numérique délivrée par le dispositif électromque 6 les tâches élémentaires 705 à 719.
La tâche 703 initialise à 1 l'indice k associé à la cellule dont on lit et dont on traite la valeur numérique. La tâche 705 commande l'acquisition et la numérisation par le dispositif électronique 6 du signal électrique délivré à l'instant (t) par la cellule considérée.
La tâche 707 assure le traitement de la valeur numérique délivrée par la tâche 705 en vue de l'homogénéisation de l'ensemble des valeurs numériques des signaux délivrés.
La tâche 709 mémorise la valeur traitée par la tâche 707 si elle correspond à un maximum local, déterminé à partir de valeurs traitées antérieurement par la tâche 707 pour cette cellule. La valeur mémorisée par la tâche 709 est utilisée pour l'adaptation dans la tâche 800 du seuil de sensibilité des cellules.
Le test 711 vérifie la supériorité de la valeur traitée par la tâche 707 sur le seuil de sensibilité des cellules. Le branchement 711/1 est effectif si le test 711 est VRAI ; dans ce cas un être humain est dans le champ de vision de la cellule considérée.
La tâche 712 mémorise la valeur traitée par la tâche 707 et l'instant (t) ; elle positionne la cellule considérée dans l'état instantané ACTIF.
Le branchement 711/0 est effectif si le test 711 est FAUX. Le test 713 vérifie la supériorité de la valeur traitée par la tâche 707 sur le seuil de sensibilité des cellules, à l'instant précédent (t-1).
Le branchement 713/1 est effectif si le test 713 est VRAI ; dans ce cas un être humain vient de quitter le champ de vision de la cellule considérée ; la tâche 715 analyse les valeurs successives mémorisées par la tâche 712 pour en extraire des informations caractéristiques de la traversée d'un être humain : instant de début de la traversée, instant de fin de la traversée, instant correspondant à la médiane des valeurs mémorisées et moyenne de ces valeurs ; elle positionne la cellule considérée dans l'état mémorisé
VALIDE. Toutes ces informations sont mémorisées pour être analysées par la tâche 900. Le branchement 713/0 est effectif si le test 713 est FAUX ; dans ce cas, aucun être humain n'est dans le champ de vision de la cellule considérée.
La tâche 714 positionne la cellule considérée dans l'état instantané PASSIF.
La tâche 717 incrémente l'indice k associé à une cellule.
Le test 719 vérifie que le nouvel indice k est inférieur ou égal au nombre total de cellules. Le branchement 719/1 est effectif si le test 719 est VRAI ; dans ce cas toutes les cellules n'ont pas été traitées et on retourne à la tâche 705.
Le branchement 719/0 est effectif si le test 719 est FAUX ; dans ce cas toutes les cellules ont été traitées.
Sur la figure 11, on voit le point d'entrée 801 et le point de sortie 899 de la tâche 800. Cette tâche comporte deux tâches élémentaires 803 et 805 assurant l'adaptation du seuil de sensibilité des cellules en fonction des V dernières valeurs mémorisées par la tâche 709 de la figure 10 ; V étant choisi arbitrairement en fonction de l'application, par exemple en fonction de la fréquence de traversée des êtres vivants ou en fonction d'un nombre fixe de traversées ; ce nombre peut être choisi dans la fourchette allant de 20 à 100.
Le test 803 vérifie que toutes les cellules sont dans l'état instantané PASSIF et qu'au moins V valeurs ont été mémorisées par la tâche 709 de la tâche 700. Le branchement 803/1 est effectif si le test 803 est VRAI ; dans ce cas, le seuil de sensibilité des cellules peut être adapté. La tâche 805 calcule la moyenne glissante sur l'ensemble des V dernières valeurs mémorisées par la tâche 709 de la figure 10 et en déduit le nouveau seuil de sensibilité des cellules.
Le branchement 803/0 est effectif si le test 803 est FAUX ; dans ce cas le seuil de sensibilité des cellules ne peut pas être adapté.
Sur la figure 12, on voit le point d'entrée 901 et le point de sortie 999 de la tâche 900. Cette tâche répète pour chaque couple de cellules les tâches élémentaires 905 à 911. Elle analyse les informations caractéristiques extraites pour chaque cellule par la tâche 700 et en déduit les informations caractéristiques de chaque couple.
La tâche 903 initialise à 1 l'indice m associé au couple de cellules à analyser. Le test 905 vérifie que les deux cellules formant le couple considéré sont dans l'état mémorisé VALIDE et qu'il existe une période d'occupation commune pendant laquelle l'être humain est simultanément dans le champ de vision des deux cellules, ce qui revient à considérer que l'être humain est dans le champ de vision du couple. Le branchement 905/1 est effectif si le test 905 est VRAI.
La tâche 907 analyse les informations caractéristiques extraites pour chaque cellule du couple de cellules successives considéré et en déduit les informations caractéristiques de la traversée d'un être humain pour ce couple : instant de début d'occupation commune, instant de fin d'occupation commune, moyenne du couple c'est-à-dire moyenne des moyennes calculées pour les cellules du couple, signature de la chronologie d'occupation des cellules du couple ; l'état du couple de cellules successives est considéré comme VALIDE. La signature de la chronologie d'occupation des cellules du couple est choisie arbitrairement POSITIVE si l'être humain franchit l'alignement 1 puis l'alignement 2 et NEGATIVE si l'être humain franchit l'alignement 2 puis l'alignement 1. Le branchement 905/0 est effectif si le test 905 est FAUX. La tâche 909 incrémente l'indice m associé à un couple.
Le test 911 vérifie que le nouvel indice m est inférieur ou égal au nombre total de couples. Le branchement 911/1 est effectif si le test 911 est VRAI ; dans ce cas tous les couples n'ont pas été analysés et on retourne au test 905.
Le branchement 911/0 est effectif si le test 911 est FAUX ; dans ce cas tous les couples ont été analysés.
Sur la figure 13, on voit le point d'entrée 1001 et le point de sortie 1099 de la tâche 1000. Cette tâche répète pour chaque couple de cellules les tâches élémentaires 1005 à 1017 afin d'analyser les informations caractéristiques extraites pour chaque couple durant la tâche 900 ainsi que les informations caractéristiques extraites pour chaque cellule durant la tâche 700. Cette analyse permet de construire des entités constituées soit d'un couple isolé dont l'état est VALIDE, soit de couples successifs dont l'état est VALIDE et pour lesquels il existe un laps de temps pendant lequel un ou plusieurs êtres humains sont simultanément dans leur champ de vision. Plus précisément une entité est caractérisée par un nombre X de couples dont la signature de la chronologie d'occupation est POSITIVE ainsi que par un nombre Y de couples dont la signature de la chronologie d'occupation est NEGATIVE. L'analyse de ces nombres caractéristiques de l'entité permet de déterminer en temps réel le nombre d'êtres humains associés à cette entité ainsi que leur sens de traversée, selon une règle précisée à la figure 14. La tâche 1003 initialise à 1 l'indice m associé au couple de cellules à analyser et initialise à zéro le contenu de l'entité, ce qui signifie que l'entité ne contient aucun couple. Le test 1005 vérifie que le couple considéré est dans l'état VALIDE. Le branchement 1005/0 est effectif si le test 1005 est FAUX.
La tâche 1006 réinitialise à zéro le contenu de l'entité, ce qui signifie que l'entité ne contient aucun couple. Le branchement 1005/1 est effectif si le test 1005 est VRAI. La tâche 1007 inclut le couple considéré dans l'entité.
Le test 1009 vérifie qu'il existe un laps de temps pendant lequel un ou plusieurs êtres humains sont dans le champ de vision du couple considéré et du couple suivant. Le branchement 1009/0 est effectif si le test 1009 est FAUX ; dans ce cas, l'entité est complète, elle peut être analysée pour compter les êtres humains. La tâche 1011 utilise le tableau montré sur la figure 14 pour analyser l'entité et déterminer en temps réel le nombre d'êtres humains et leur sens de traversée. La tâche 1013 remet à jour les informations caractéristiques des couples et des cellules contenus dans l'entité puis ré-initialise le contenu de l'entité à 0. L'état de ces couples et l'état mémorisé de ces cellules sont repositionnés à l'état INVALIDE.
Le branchement 1009/1 est effectif si le test 1009 est VRAI ; dans ce cas, le couple suivant est susceptible d'être inclus dans l'entité.
La tâche 1015 incrémente l'indice m associé à un couple.
Le test 1017 vérifie que le nouvel indice m est inférieur ou égal au nombre total de couples.
Le branchement 1017/1 est effectif si le test 1017 est VRAI ; dans ce cas tous les couples n'ont pas été analysés et on retourne au test 1005.
Le branchement 1017/0 est effectif si le test 1017 est FAUX ; dans ce cas tous les couples ont été analysés.
La figure 14 montre le tableau d'analyse des nombres caractéristiques de l'entité créée durant la tâche 1000. Ce tableau possède autant de colonnes et de lignes qu'il y a de cellules dans le système. Ce tableau définit le nombre d'êtres humains associés à l'entité ainsi que leur sens de traversée en fonction des nombres caractéristiques de l'entité. Les numéros des colonnes correspondent aux valeurs possibles prises par le nombre X et les numéros des lignes correspondent aux valeurs possibles prises par le nombre Y. Les cases vides du tableau correspondent à des situations impossibles ; les autres cases du tableau comportent soit une lettre, soit au moins un entier signé dont le module représente le nombre d'êtres humains comptés et dont le signe correspond à la traversée initiale de l'alignement 1 s'il est positif et à la traversée initiale de l'alignement 2 s'il est négatif.
Les lettres A, B et C du tableau correspondent aux cas particuliers pour lesquels le comptage des êtres humains est conditionné par des informations complémentaires. La lettre A est à remplacer par (+1) lorsque la moyenne du couple possédant la signature POSITIVE est supérieure à la moyenne du couple possédant la signature NEGATIVE. La lettre A est à remplacer par (-1) lorsque la moyenne du couple possédant la signature POSITIVE est inférieure à la moyenne du couple possédant la signature NEGATIVE. La lettre B est à remplacer par l'ensemble (+1) & (-1) lorsque le couple possédant la signature POSITIVE a été inclus dans l'entité avant ou après les autres couples et par (- 2) dans les autres cas.
La lettre C est à remplacer par l'ensemble (+1) & (-1) lorsque le couple possédant la signature NEGATIVE a été inclus dans l'entité avant ou après les autres couples et par (+2) dans les autres cas.

Claims

REVENDICATIONS - Système de comptage d'êtres vivants se déplaçant sur une première surface (0) et traversant une seconde surface cylindrique de génératrice sensiblement verticale, constitué d'un ensemble de N cellules (11) de détection de rayonnement thermique ainsi que d'un dispositif électronique d'acquisition et de traitement des signaux délivrés par ces cellules, caractérisé en ce que chacune de ces cellules comporte notamment une thermopile (30) comprenant au moins un élément sensible (31), un moyen focalisant (34) le rayonnement thermique sur les éléments sensibles de cette thermopile, ce moyen de focalisation créant un champ de vision (111) allongé selon une direction, un masque (35) limitant ce champ de vision et un amplificateur du signal délivré par la thermopile (30) et caractérisé en ce que les N cellules (11) de détection sont équiréparties entre deux courbes lorsque N est pair et sont réparties entre deux courbes avec une différence d'une unité lorsque N est impair, la répartition des cellules sur chaque courbe étant uniforme selon un pas P identique pour chacune des deux courbes, l'une de ces courbes s'identifiant à la directrice de la surface cylindrique traversée par les êtres vivants, et l'autre courbe étant distante de la précédente d'une longueur D (42) égale à 5 cm au moins, la direction d'allongement du champ de vision de chaque cellule étant sensiblement tangente à l'une des deux courbes. - Système de comptage d'êtres vivants conforme à la revendication 1, caractérisé en ce que le moyen de focalisation (34) de chaque cellule est réalisé à l'aide d'une seule lentille et en ce que la thermopile comporte un seul élément sensible de surface allongée ou un alignement d'éléments sensibles dont les surfaces ont des dimensions sensiblement voisines selon deux directions orthogonales. - Système de comptage d'êtres vivants conforme à la revendication 1, caractérisé en ce que le moyen de focalisation (34) de chaque cellule est réalisé à l'aide de plusieurs lentilles et en ce que la thermopile ne comporte qu'un seul élément sensible dont la surface a des dimensions sensiblement voisines selon deux directions orthogonales. - Système de comptage d'êtres vivants conforme à la revendication 1, caractérisé en ce que le pas P est choisi voisin de la largeur d'un être vivant statistiquement représentatif des êtres de taille minimale appartenant à la population à compter. - Système de comptage d'êtres vivants conforme à la revendication 4, caractérisé en ce que les êtres vivants sont des êtres humains et en ce que le pas P est sensiblement égal à 45 cm. - Système de comptage d'êtres vivants conforme à la revendication 1, caractérisé en ce que la surface cylindrique traversée par les êtres vivants est un plan, les courbes selon lesquelles les cellules sont réparties étant des droites parallèles. - Système de comptage d'êtres vivants conforme à la revendication 6, caractérisé en ce que l'ouverture du champ de vision (111), selon la direction d'allongement de ce champ, est choisie pour chaque cellule appartenant à une même droite, de manière à assurer la juxtaposition des zones vues (211)(212) par deux cellules (11)(12) successives sur la même droite (1), à une hauteur voisine de la taille minimale d'un être vivant statistiquement représentatif des êtres appartenant à la population à compter. - Système de comptage d'êtres vivants conforme à la revendication 7, caractérisé en ce que les êtres vivants sont des êtres humains et en ce que l'étendue de la zone vue par chaque cellule à une hauteur de 1 m et mesurée selon l'alignement, est sensiblement égale à 45 cm. - Système de comptage d'êtres vivants conforme à la revendication 1, caractérisé en ce que le dispositif électronique (7) de traitement des signaux délivrés par les cellules exploite un algorithme dont une première tâche (603) initialise les paramètres précisant la configuration du système, dont une deuxième tâche (700) assure successivement pour chaque cellule la lecture et le traitement des valeurs numériques délivrées par le dispositif électronique d'acquisition, dont une troisième tâche (800) assure l'adaptation du seuil de sensibilité des cellules, dont une quatrième tâche (900) compare pour tous les couples de cellules successives les informations issues de la deuxième tâche (700), dont une cinquième tâche (1000) analyse les résultats de la quatrième tâche (900) et en déduit le comptage des êtres vivants, leur sens de traversée et leur vitesse de déplacement, dont une sixième tâche (605) exploite le comptage ainsi obtenu en fonction de l'application envisagée et dont une septième tâche (607) gère la cadence d'exécution des tâches précédentes selon la fréquence d'échantillonnage des signaux délivrés par les cellules. - Système de comptage d'êtres vivants conforme à la revendication 9, caractérisé en ce que l'analyse réalisée par la cinquième tâche (1000) de l'algorithme assure le regroupement, sous forme d'entités, des couples de cellules successives pour lesquels les informations issues de la quatrième tâche (900) correspondent à la traversée d'un être vivant ou d'un groupe d'êtres vivants, les informations des couples de chaque entité précisant ce nombre d'êtres vivants, le sens de leur traversée et la vitesse de leur déplacement.
EP01921484A 2000-05-18 2001-04-05 Systeme de comptage d'etres vivants Expired - Lifetime EP1282885B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0006346A FR2809212B1 (fr) 2000-05-18 2000-05-18 Systeme de comptage d'etres vivants
FR0006346 2000-05-18
PCT/FR2001/001024 WO2001088858A1 (fr) 2000-05-18 2001-04-05 Systeme de comptage d'etres vivants

Publications (2)

Publication Number Publication Date
EP1282885A1 true EP1282885A1 (fr) 2003-02-12
EP1282885B1 EP1282885B1 (fr) 2005-03-16

Family

ID=8850361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01921484A Expired - Lifetime EP1282885B1 (fr) 2000-05-18 2001-04-05 Systeme de comptage d'etres vivants

Country Status (10)

Country Link
US (1) US20030183767A1 (fr)
EP (1) EP1282885B1 (fr)
JP (1) JP2004510128A (fr)
AT (1) ATE291262T1 (fr)
AU (1) AU2001248468A1 (fr)
DE (1) DE60109442T2 (fr)
ES (1) ES2237565T3 (fr)
FR (1) FR2809212B1 (fr)
PT (1) PT1282885E (fr)
WO (1) WO2001088858A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200643824A (en) * 2005-04-12 2006-12-16 Koninkl Philips Electronics Nv Pattern based occupancy sensing system and method
FR2899003B1 (fr) * 2006-03-27 2008-09-19 Eco Compteur Sarl Dispositif de comptage et de determination du sens de passage d'etres vivants
EP3349190A1 (fr) * 2017-01-13 2018-07-18 Siemens Schweiz AG Compteur de personnes
EP3794498A1 (fr) 2018-05-18 2021-03-24 Essity Hygiene and Health Aktiebolag Détection de présence et d'absence
FR3088460A1 (fr) 2018-11-09 2020-05-15 Jean-Claude Dubois Dispositif de capture de frequentation miniaturise
FR3099591B1 (fr) 2019-07-31 2022-01-28 Dubois Jean Claude Capteur thermique stéréoscopique miniaturisé pour dispositif de comptage automatique

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623792C1 (de) * 1986-07-15 1987-12-10 Messerschmitt Boelkow Blohm Einrichtung zur Feststellung der Personenzahl und Richtung innerhalb eines zu ueberwachenden Raumes oder einer Durchgangsschleuse
EP0262438B1 (fr) 1986-09-29 1992-12-02 Siemens Aktiengesellschaft Emetteur laser à semi-conducteur comprenant un résonateur externe formé d'un coupleur directionnel à fibre sélectif en fréquence
US4799243A (en) 1987-09-01 1989-01-17 Otis Elevator Company Directional people counting arrangement
JPH0786537B2 (ja) * 1987-09-26 1995-09-20 松下電工株式会社 人体検出装置
JP2538091B2 (ja) 1990-03-19 1996-09-25 松下電器産業株式会社 客数センサ
DE4040811A1 (de) 1990-12-14 1992-07-09 Iris Gmbh Infrared & Intellige Richtungsselektive zaehl- und schaltvorrichtung
JP2963236B2 (ja) * 1991-05-02 1999-10-18 エヌシーアール インターナショナル インコーポレイテッド 通過人数の計数方法
DE4220508C2 (de) * 1992-06-22 1998-08-20 Iris Gmbh Infrared & Intellige Vorrichtung zur Erfassung von Personen
JPH078735U (ja) * 1993-07-09 1995-02-07 株式会社村田製作所 赤外線センサ装置
JPH0862044A (ja) * 1994-08-18 1996-03-08 Matsushita Electric Ind Co Ltd 熱画像検出装置
JPH0962822A (ja) * 1995-08-28 1997-03-07 Matsushita Electric Ind Co Ltd 人体移動検知装置および通過人数検知装置
JP3233584B2 (ja) * 1996-09-04 2001-11-26 松下電器産業株式会社 通過人数検知装置
JPH10104085A (ja) * 1996-10-02 1998-04-24 Shimadzu Corp 焦電型赤外線検出器
JPH10132954A (ja) * 1996-10-28 1998-05-22 Shimadzu Corp 自動ドアセンサ
JPH11183247A (ja) * 1997-12-22 1999-07-09 Matsushita Electric Ind Co Ltd 焦電型赤外線センサ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0188858A1 *

Also Published As

Publication number Publication date
WO2001088858A1 (fr) 2001-11-22
EP1282885B1 (fr) 2005-03-16
FR2809212A1 (fr) 2001-11-23
FR2809212B1 (fr) 2002-08-30
JP2004510128A (ja) 2004-04-02
DE60109442T2 (de) 2006-04-13
AU2001248468A1 (en) 2001-11-26
PT1282885E (pt) 2005-07-29
ATE291262T1 (de) 2005-04-15
US20030183767A1 (en) 2003-10-02
ES2237565T3 (es) 2005-08-01
DE60109442D1 (de) 2005-04-21

Similar Documents

Publication Publication Date Title
EP2460146B1 (fr) Système de comptage d'un déplacement élémentaire d'une personne
FR2489501A1 (fr) Appareil de localisation optique de position
FR2824903A1 (fr) Amelioration aux procedes et dispositifs de mesure par imagerie confocale a chromatisme etendu
FR2539506A1 (fr) Appareil de localisation optique de position
FR2794246A1 (fr) Dispositif apte a determiner la position d'un objet dans un repere oxz
EP1282885B1 (fr) Systeme de comptage d'etres vivants
FR2625396A1 (fr) Procede et dispositif pour determiner la position du centre d'un signal lumineux recu dans un detecteur a mosaique a couplage de charges
EP1433012B1 (fr) Dispositif optronique de veille passive
FR2479447A1 (fr) Procede et dispositif pour le mesurage sans contact d'une dimension
FR2536174A1 (fr) Procede et dispositif de detection sans contact du mouvement d'un objet
EP0276513B1 (fr) Dispositif de détection d'intrusion et de reconnaissance de véhicules terrestres
FR2710433A1 (fr) Procédé pour reconnaître des objets, déplacés dans des images successives dans le temps appartenant à une séquence.
FR2624983A1 (fr) Procede et dispositif de detection d'objets en mouvement a des vitesses variables dans une certaine zone
CN109154663A (zh) 用于直接检测激光雷达的多元件法布里-珀罗标准具干涉仪
WO2002046796A1 (fr) Procede, systeme et dispositif pour detecter un corps a proximite d'une interface de type eau/air
FR2858450A1 (fr) Procede et systeme pour detecter un corps dans une zone situee a proximite d'une interface
EP1079349A2 (fr) Détection de la position et du mouvement d'images au niveau des sous-pixels
EP0138646B1 (fr) Dispositif d'analyse de champ spatial pour la localisation angulaire d'objects rayonnants
WO2001069542A1 (fr) Appareil de comptage de personnes ou d'objets
FR2720839A1 (fr) Vélocimètre laser à effet doppler portable.
FR2747199A1 (fr) Dispositif pour la localisation d'un objet mobile
CH573635A5 (en) Cash-box with automatic money counting unit - is fitted with detector for number of coins in each coin row
FR2782384A1 (fr) Dispositif de mesure de la taille de particules en deplacement, notamment pour des mesures pluviometriques
JPH0611433A (ja) 微粒子計測装置及び微粒子検出方法
EP1808817A1 (fr) Lecteur-recuperateur de bracelets, pour le controle d'acces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021112

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEPARIS, JEAN-PIERRE, PAUL, FERNAND

Inventor name: MEUNIER, BRUNO, GILBERT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050405

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050405

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60109442

Country of ref document: DE

Date of ref document: 20050421

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050616

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050616

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Effective date: 20050525

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2237565

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20090327

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20100511

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100513

Year of fee payment: 10

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110421

Year of fee payment: 11

Ref country code: ES

Payment date: 20110418

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110421

Year of fee payment: 11

Ref country code: BE

Payment date: 20110414

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110421

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20111006

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 291262

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110405

BERE Be: lapsed

Owner name: INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS

Effective date: 20120430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60109442

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120405

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190416

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430