EP1282804B1 - Vorrichtung zur kühlung von bahnen mittels wasserspülung für einen wassertrockner - Google Patents

Vorrichtung zur kühlung von bahnen mittels wasserspülung für einen wassertrockner Download PDF

Info

Publication number
EP1282804B1
EP1282804B1 EP01931169A EP01931169A EP1282804B1 EP 1282804 B1 EP1282804 B1 EP 1282804B1 EP 01931169 A EP01931169 A EP 01931169A EP 01931169 A EP01931169 A EP 01931169A EP 1282804 B1 EP1282804 B1 EP 1282804B1
Authority
EP
European Patent Office
Prior art keywords
web
air
dryer
spray
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01931169A
Other languages
English (en)
French (fr)
Other versions
EP1282804A2 (de
Inventor
Steven J. Zagar
Paul Seidl
Jerry Packer
David Welter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Durr Megtec LLC
Original Assignee
Megtec Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Megtec Systems Inc filed Critical Megtec Systems Inc
Publication of EP1282804A2 publication Critical patent/EP1282804A2/de
Application granted granted Critical
Publication of EP1282804B1 publication Critical patent/EP1282804B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • F26B13/101Supporting materials without tension, e.g. on or between foraminous belts
    • F26B13/104Supporting materials without tension, e.g. on or between foraminous belts supported by fluid jets only; Fluid blowing arrangements for flotation dryers, e.g. coanda nozzles

Definitions

  • the present invention relates to a web flotation dryer for the evaporative cooling of a running web.
  • a conventional arrangement for contactlessly supporting and drying a moving web includes upper and lower sets of air bars extending along a substantially horizontal stretch of the web. Heated air issuing from the air bars floatingly supports the web and expedites web drying.
  • the air bar array is typically inside a dryer housing which can be maintained at a slightly sub-atmospheric pressure by an exhaust blower that draws off the volatiles emanating from the web as a result of the drying of the ink thereon, for example.
  • U.S. Patent No. 5,333,395 discloses a drying apparatus for traveling webs which includes a cooling tunnel directly connected with the dryer, a combustion chamber for combusting solvent which becomes volatile during drying of the web, heat exchangers, etc.
  • U.S. Patent No. 5,038,495 discloses a cooling device for cooling a web of material exiting a dryer.
  • the cooling device comprises a substantially closed housing with an inlet and an outlet slit for the web of material.
  • the housing includes a feed aperture at the outlet slit side for feeding outside air into the housing, and a discharge aperture at the inlet slit side for discharging air from the housing into the dryer. Air is fed through the housing counterflow to the direction of web travel. A series of nozzles bring the infed air into contact with the web of material.
  • the trapped air enters between the roller and the portion of the web that curves around it, forming a film between the roll and the curved web portion. It will be evident that where a web is to be heated or cooled by a roller around which it is partially wrapped, an insulating film of air between the web and the roller will materially reduce the efficiency of the heat transfer.
  • the air film that is carried with the moving web may result in solvent condensing on the chill roll surface. The result can be condensate marking, streaking, spotting and/or smudging of the printed web.
  • the accumulation (thickness) of the condensate film increases and may transfer to the printed web, thereby affecting quality and salability of the finished product.
  • the accumulation and thickness of the condensate is associated with the air gap developed between the web and the chill roll surface, and results in the phenomenon of "web lift-off," a clearance gap between the web proper and the surface of the roll.
  • the web After being heated by the dryer and cooled by suitable means such as a chill roll stand, the web has generally lost a significant amount of its moisture. Excessive moisture loss can cause deleterious curling or waviness of the web.
  • a printed web is typically heated in an air flotation dryer to about 250°F or higher to remove mineral oil solvents from the printing ink. Approximately 90% of the mineral oil solvents are removed in the dryer and carried away in the dryer ventilation exhaust air. It is impractical to remove all of the mineral oil solvents in the drying process, since this would be detrimental to the quality of the printed product.
  • the approximately 10% residual solvents remaining in the ink and paper are essentially non-volatile at room temperature. These residual solvents become particularly problematic as the web exits the dryer and initially cools; the residual ink solvents exhibit sufficient volatility to give off solvent vapors, which condense in the surrounding ambient air causing visible smoke.
  • the condensed solvents often deposit on subsequent web processing equipment such as the chill rolls and folding equipment, causing problems of image marking and re-softening of the dried ink on the web.
  • Cooling by spraying fine water droplets onto the web have found good success in controlling vapor smoke.
  • Local air currents and air film (boundary layer) near the web surface prevent fine droplets from reaching the web surface and reduce the effectiveness of cooling.
  • water spray directed near or beyond the edges of the web does not evaporate by contact with the web, but rather may deposit on other surfaces within the enclosure containing the spray devices and subsequently evaporate. Such deposition cools such surfaces and promotes solvent vapors to condense thereon, causing solvent drips as mentioned above.
  • US 3,823,488 discloses a web dryer having flotation nozzles which sprays the web. However, no means are disclosed to contain the water vapour and mist in the web boundary layer.
  • Printed or coated webs are processed in a variety of widths according to the requirements of the production order.
  • a spray cooling apparatus such as that of the present invention must have the ability to process the maximum design web width of the printing press as well as small widths, such as webs with widths only 25% of the maximum width. Furthermore, the webs with narrower widths may run at various positions within the maximum width of the press line. Conventional methods of handling the different web widths attempted to inactivate those nozzles positioned outside of the active web width. This required a number of automatic systems to set the water flow valves properly. It therefore would be desirable to effectively and efficiently lower the bulk temperature of the web in order to decrease the heat load of the cooling or chill rolls, or even eliminate the chill rolls or other cooling means such as an air-based cooling zone.
  • Lowered web bulk temperature decreases the evaporation rate of the solvent mixture coating the web, thereby reducing the visible vapors evolving from the web. Condensation that normally occurs at the dryer exit and on the cooling rolls is controlled to a minimum, and the product quality of the web is improved in view of the absence of excessive moisture loss from the web.
  • the problems of the prior art have been overcome by the present invention, which provides apparatus and a method for the evaporative cooling of a web within a dryer in a compact manner.
  • Excess fluid overspray is controlled, thereby avoiding problems with fluid depositing on internal surfaces of the dryer, which can cause mineral build-up and can result in web breaks or quality defects if fluid drips onto the web.
  • a water delivery system is used which directs a water mist to the web by appropriate design and placement of the spray nozzles.
  • the quantity of water delivered to the web is regulated, and is preferably based upon web temperature.
  • Excess mist is controlled by directing hot air to effectively vaporize the excess mist before it is able to contact the internal surfaces of the dryer enclosure and its internal components.
  • the invention is defined in claim 1.
  • the preferred location of the spray cooling apparatus of the present invention is in the web exit zone of a flotation dryer, or immediately following the location where the web exits the dryer.
  • a spray manifold arrangement is thus placed in a dryer housing or within a housing extension added to the dryer, and is compact in length, preferably less than 0.76 m (30 inches) in the direction of web travel.
  • water is the preferred fluid and will be used hereinafter as the illustrative example.
  • an enclosure 10 such as a web flotation dryer enclosure, the outer walls of which are preferably insulated.
  • a plurality of upper and lower web flotation bars 11 are in fluid communication with suitable ducting (not shown) and supply heated air to both float and dry the running web 5.
  • suitable ducting not shown
  • Some or all of the flotation bars can be based on the Coanda principle for efficient heat transfer, such as the HI-FLOAT® air bar commercially available from MEGTEC Systems.
  • a conventional air foil nozzle 13' and possibly also an air knife nozzle 13" is positioned at or near the web exit slot 14 as shown.
  • FIG. 2 shows a preferred embodiment of the spray manifold 15.
  • a catch pan 20 is mounted to the flotation nozzle support frame (not shown) with spaced mounting tabs 16, 16'.
  • the catch pan 20 is positioned below the nozzles 18 (relative to the web), and catches excess water droplets that do not impinge upon the web and are not otherwise evaporated.
  • the spray manifold 15 is preferably rotatably mounted such as with linkage assemblies 17, 17' in a quick-removal mounting fixture attached to the catch pan 20.
  • An actuator can be used to rotate the manifold assembly so that the nozzles 18 are directed away from the web 5.
  • Affixed to the manifold 15 are a plurality of spray nozzles 18, which are preferably threaded into the manifold pipe.
  • the nozzles 18 are self-atomizing, are evenly spaced for uniformity, and are positioned close to the web such that the momentum of discharge is sufficiently great enough to overcome the local air currents and air boundary layer near the surface of the moving web.
  • Suitable self-atomizing high pressure spray nozzles are commercially available from Lechler.
  • Suitable spacing of the nozzles 18 is from about 2.5 to about 10.2 cm (about 1 to about 4 inches) between nozzle discharge orifices. Other nozzle spacings may be selected by those skilled in the art to achieve uniform application of the desired amount of water evenly across the width of the web 5.
  • Operable distances of the spray nozzles 18 from the web 5 are from about 2.5 to about 10.2 cm (about 1 to about 4 inches).
  • the spray discharge is a flat pattern or is conical, with a spray pattern included angle of 45 to 90 degrees being preferred.
  • Other spray patterns may be chosen, provided that uniform application of the desired amount of water is achieved.
  • Normal pressures required for proper discharge of the spray are from 3.5 to 55 bar (50 to 800 psig), which driving force can be provided by commercially available positive displacement pumps.
  • the quantity of water delivered from the spray nozzles 18 to the web 5 is carefully regulated. Regulation can be accomplished using a variable speed drive in electrical communication with the driving force for the water spray, which is preferably a positive displacement pump. Web exit temperature is measured, preferably in a non-contact manner such as with an infrared pyrometer commercially available from Raytek, and a closed loop control of the water supply pressure is used to control the variable speed drive, which in turn regulates the pump. For example, it is often desirable to cool the web 5 to a temperature within a range of 99 to 110°C (210 to 230°F).
  • Water delivery to the nozzles 18 is typically controllable within a range of about 2.27 to about 13.6 grammes (0.005 to about 0.03 pounds) of water per 454 g (pound) of paper (web) to be cooled, depending upon paper basis weight and temperature conditions. Based upon the measured temperature of the web exiting the dryer, the closed loop control can send a signal to the variable speed drive to supply more or less water to the nozzles 18.
  • the present invention also provides a means to handle excess water spray that is not deposited directly onto the web 5. Fine spray or mist that remains airborne or is sprayed beyond the edges of the web width is evaporated with a directed flow of hot air from dedicated evaporator nozzles positioned opposite the water spray manifold 15. This enables the processing of webs of any width or position within the maximum limit of the press line without the need for operator intervention or special web width sensors and controls.
  • one or more evaporator nozzles 25, preferably two or three nozzles 25, are positioned from about 10.2 to 30.5 cm (4 to about 12 inches) from the discharge of the water spray nozzles 18.
  • the evaporator nozzles 25 are in communication, via suitable ducting (not shown) with a source of hot air, and project a uniform flow of hot air towards the water spray manifold 15.
  • the nozzles may be designed to removably fit the existing positions of a standard air bar dryer nozzle, thereby providing simple connection to the existing ducting and source of hot air.
  • the hot air has a temperature in the range of about 104.4 to 121°C (220 to 250°F).
  • the source of the hot air is not particularly limited, and may be from a separate industrial duty air heater selected by one skilled in the art, or preferably may be taken from an existing hot air plenum in the web dryer 10.
  • the evaporator nozzles 25 preferably include a distribution plate 26 on the discharge face to diffuse the airflow evenly over the entire area of discharge to obtain a discharge air velocity in the range of about 91 to about 305 m (300 to about 1000 feet) per minute. Additional flow distributors inside the evaporator nozzle housings may be designed by those skilled in the art in order to obtain the necessary discharge airflow uniformity.
  • the discharge diffuser plate 26 is a perforated plate, having an open area of from about 10 to about 20%, and is preferably removable from the evaporator nozzle 25 for ease of cleaning of potential contaminants such as mineral deposits from water, condensed solvents or paper chards from the web 5.
  • Figure 3 also illustrates a compressed air supply with suitable valving feeding the nozzles 18, and a water supply with filter, pump and suitable valving feeding the nozzles 18.
  • Preferably flexible hosing 48 is used to connect the air and water supply for ease of removal.
  • two evaporator nozzles 25, each having an inclined discharge face relative to the longitudinal centerline of the web 5, are positioned to form a symmetric concave surface which directs the hot air toward the spray manifold 15 and contains the excess water mist for a sufficient time to completely evaporate the water prior to it depositing on any surface (other than the web).
  • the spray manifold 15 may be directed upward or downward in the case of horizontal web runs, or may be directed horizontally in the case of a vertical run, or may be directed at virtually any angle necessary to provide directed water spray at approximately 90° to the web 5.
  • Water spray may be applied to one or both sides of the web 5, depending upon the amount of cooling necessary.
  • the preferred nozzles 18 are of the self-sealing type, which stop flow when supply pressure is below a predetermined level, such as 2.1 bar (30 psig), in order to avoid water drippage from the nozzles 18 to the web below.
  • Another important aspect of the present invention is proper web flotation support and stabilization.
  • a web span such as that containing the spray manifold and evaporator nozzles of the present invention, it is often necessary to float the web or at least to assist the existing web flotation nozzle system in the dryer.
  • at least one flotation support nozzle is preferred to be located at the exit of the dryer immediately inside the dryer enclosure, or in the case of an add-on dryer enclosure extension, just inside the exit of the enclosure extension.
  • the flotation support nozzle is an airfoil type nozzle 13' providing single-side support of the web 5 ( Figure 1), positioned on the same side of the web as the spray manifold 15 and in the range of about 12.7 to about 38 cm (5 to about 15 inches) away from the manifold 15.
  • the air jet from the airfoil nozzle 13' is directed inward to the enclosure, away from the web exit slot 14, against the direction of web travel. This air jet assists in capturing the boundary layer of air traveling with the web and directs it back into the enclosure.
  • An additional seal air nozzle 13, such as an air knife nozzle, is preferably located directly opposite the airfoil nozzle 13' and also immediately inside the enclosure, to capture and redirect the web boundary layer on the side of the web opposite the spray manifold 15.
  • an air sweep plate 60 is used to minimize or prevent the area above the water spray nozzles 18 from becoming wet. This arrangement is shown in Figure 4.
  • the air sweep plate 60 is in communication with the top air supply header 61 as illustrated in Figure 5.
  • the air sweep plate redirects the air issuing from the top supply header in a direction substantially parallel to the running web. The airflow from the air sweep plate is sufficient to minimize or prevent this area from becoming wet from the spray nozzles.
  • the air sweep plate 60 includes a plurality (three shown) of slots 62, preferably about 0.16 cm in width and 36 cm long (about 1/16" in width and 14" long), suitably angled to redirect the air appropriately.
  • the airflow is depicted by arrows 63 in Figure 6A.
  • Figure 4 also illustrates one preferred air bar and hole bar arrangement in a dryer.
  • Positions 67, 69 and 72 in communication with the upper air supply header 61 are each occupied by a hole bar HB.
  • Position 68 in communication with the upper air supply header is occupied by a HI-FLOAT air bar HF commercially available from Megtec Systems, Inc.
  • Position 73 is covered by a blank off plate B0 to prevent air from issuing from the air supply in this area.
  • Position 74 in communication with the upper air supply 61 is occupied by a Thermo Foil air bar TF commercially available from Megtec Systems, Inc.
  • position 141 is occupied by a HI-FLOAT air bar HF an opposes the hole bar HB at position 67.
  • Position 142 is occupied by a hole bar HB and opposes the HI-FLOAT bar HF at position 68.
  • Positions 143 and 146 are each occupied by a Thermo Foil air bar TF and oppose the respective hole bars HB at positions 69 and 72.
  • Position 147 is occupied by a blank off plate BO.
  • a dampered air knife DAK is used at position 148.
  • the water supplied for web cooling is also sufficient to cool the manifold 15 and prevent boiling and evaporation within the manifold 15 and nozzles 18.
  • printing process conditions require the apparatus to withstand hot air temperatures of 250° or higher without the concurrent operation of the water spray function for certain periods of normal operation.
  • a means of purging the manifold 15 of water during such periods is provided in order to avoid the boiling of water within the manifold 15. This function is necessary to minimize buildup of mineral deposits within the manifold system, which may lead to nozzle plugging and poor atomization of the water, and it reduces the hazard of hot water and steam issuing unexpectedly from the spray manifold 15.
  • appropriate valving is provided to switch communication of the manifold 15 from a source of water supply to a source of compressed air, for example. Suitable controls are utilized so that the switching occurs when cooling of the web is not called for.
  • Water spray impinging on the web 5 during purging is avoided by rotating the manifold assembly 15 to direct the purge water away from the web and into a catch pan or other receptacle.
  • An alternative method of interrupting the impingement of water spray onto the web during purging is to rotate a shield of metal or other suitable material into position in between the spray nozzle(s) 18 and the web.
  • Figure 2 shows a manifold water supply connection 30 which, through suitable hosing, provides fluid communication between a water supply source and the manifold 15.
  • the manifold 15 also has a water purge connection 31, which also connects through suitable hosing and allows for the purging feature discussed above.
  • the manifold 15 also can be purged by again switching from the water supply to a compressed gas supply, while concurrently opening a purge outlet in the water spray manifold 15 in order to empty the contents of the manifold 15 into a drainline or other suitable receptacle.
  • Water from the drainline and catch pan 20 may be directed within the dryer enclosure to an evaporator pan 37 located in the hot dryer environment, thereby eliminating the need for drain disposal of purge or excess water.
  • Supply water for the manifold 15 preferably should be free of minerals and salts in order to prevent buildup of scale or rust.
  • Mineral-free water may be produced from processes or from potable water by commercially available systems such as reverse osmosis.
  • soft water may be used, such as that produced by commercial water softeners using an ion exchange process. In the latter case, cleaning and maintenance of the spray manifold and evaporator bars must be undertaken periodically, as the amount of minerals in the supply water is increased.
  • the present invention provides a means for quick removal for cleaning or replacement of the spray manifold and the evaporator nozzle diffuser plate, each of which is designed to be interchangeable with spare elements of the same type. Dirty elements may be rotated out with new or previously cleaned elements in order to minimize downtime for maintenance.
  • the water pressure to the nozzles is increased to a high pressure in the range of 55 to 69 bars (800 to 1000 psig) while directing the spray away from the web by the rotatable means, or by blocking the spray by the use of a shield as discussed above.
  • High pressure is maintained for a controlled period of time, preferably in the range of 5 to 30 seconds, after which normal control pressure is applied.
  • the spray nozzles are then rotated into position (or the shield rotated out of position) to impinge water spray on the web.
  • the high pressure cleaning cycle also may be activated when the web cooling operation is stopped and prior to the air purge cycle.
  • the high pressure cleaning cycle also may be activated manually by an operator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Claims (15)

  1. Bahn-Flotationstrockner fur das Verdampfungskuhlen einer laufenden Bahn, mit:
    einem Gehause (10), das einen Bahn-Einlass und einen Bahn-Auslass (14) aufweist;
    einem Spruh-Verteiler (15) mit zumindest einer Spruh-Duse (18) in Fluid-Kommunikation mit einer FluidQuelle, um Fluid auf eine Oberflache der laufenden Bahn in dem Gehause zu spruhen;
    zumindest einer Verdampfer-Duse (25), die der zumindest einen Spruh-Duse (18) gegenuberliegt, um heißes Gas in Richtung auf den Spruh-Verteiler zuzufuhren, um uberschussiges Fluid zu verdampfen, das aus der zumindest einen Spruh-Duse (18) gesprüht wurde; und
    zumindest eine Flotationshalte-Duse (13'), die an dem Bahn-Auslass (14) angeordnet ist, um Luft in das innere der Gehauses (10) und weg von dem Bahn-Auslass (14) zu richten.
  2. Bahn-Flotationstrockner nach Anspruch 1, außerdem mit einer Vielzahl von Luftbalken (11) zum schwebenden Halten und Trocknen der laufenden Bahn.
  3. Bahn-Flotationstrockner nach einem der vorhergehenden Anspruche, außerdem mit einem Behaltnis (20) unter dem Verteiler (15) zum Sammeln von uberschussigem Fluid.
  4. Bahn-Flotationstrockner nach einem der vorhergehenden Anspruche, bei dem die laufende Bahn zwischen der zumindest einen Verdampfer-Duse (25) und der zumindest einen Spruh-Duse (18) angeordnet ist.
  5. Bahn-Flotationstrockner nach einem der vorhergehenden Anspruche, außerdem mit Temperaturmesseinrichtungen zum Messen der Temperatur der Bahn und Einrichtungen, die auf die Temperaturmesseinrichtungen ansprechen, um die Menge an Spray zu steuern, das durch die zumindest eine Spruh-Duse (18) ausgestoßen wird.
  6. Bahn-Flotationstrockner nach einem der vorhergehenden Anspruche, bei dem eine Vielzahl von Spruh-Dusen (18) vorgesehen ist.
  7. Bahn-Flotationstrockner nach einem der vorhergehenden Anspruche, bei dem eine Vielzahl von Verdampfer-Dusen (25) vorgesehen ist.
  8. Bahn-Flotationstrockner nach einem der vorhergehenden Anspruche, bei dem die laufende Bahn eine langsgerichtete Mittellinie hat, wobei zumindest zwei Verdampfer-Dusen (25) vorgesehen sind und wobei die zumindest zwei Verdampfer-Dusen (25) bezüglich der langsgerichteten Mittellinie schrag angeordnet sind.
  9. Bahn-Flotationstrockner nach einem der vorhergehenden Anspruche, bei dem das Fluid Wasser enthalt.
  10. Bahn-Flotationstrockner nach einem der vorhergehenden Anspruche, bei dem der Verteiler (15) bezüglich der Bahn drehbar ist.
  11. Bahn-Flotationstrockner nach einem der vorhergehenden Anspruche, außerdem mit einer Luftblasplatte (60) die gegenuberliegend zu der zumindest einen Spruh-Duse (18) angeordnet ist, wobei aus der Luftblasplatte (60) Luft austritt, um das ausgespruhte Fluid in eine Richtung weg von der Luftblasplatte (60) zu lenken.
  12. Bahn-Flotationstrockner nach einem der Anspruche 3 bis 11, bei dem die zumindest eine Spruh-Duse (18) drehbar ist.
  13. Bahn-Flotationstrockner nach Anspruch 11, bei dem die Luftblasplatte (60) in Fluid-Kommunikation mit der Quelle erhitzter Luft steht.
  14. Bahn-Flotationstrockner nach einem der Anspruche 1 bis 13, außerdem mit einer Luftvorhang-Düse (13), die gegenuber der Flotationshalte-Duse (15) angeordnet ist.
  15. Bahn-Flotationstrockner nach Anspruch 14, wobei die Luftvorhang-Duse (13) ein Luftmesser ist.
EP01931169A 2000-05-17 2001-05-01 Vorrichtung zur kühlung von bahnen mittels wasserspülung für einen wassertrockner Expired - Lifetime EP1282804B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US20485600P 2000-05-17 2000-05-17
US204856P 2000-05-17
PCT/US2001/040649 WO2001088448A2 (en) 2000-05-17 2001-05-01 Water spray web cooling apparatus for web dryer

Publications (2)

Publication Number Publication Date
EP1282804A2 EP1282804A2 (de) 2003-02-12
EP1282804B1 true EP1282804B1 (de) 2005-07-13

Family

ID=22759735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01931169A Expired - Lifetime EP1282804B1 (de) 2000-05-17 2001-05-01 Vorrichtung zur kühlung von bahnen mittels wasserspülung für einen wassertrockner

Country Status (6)

Country Link
EP (1) EP1282804B1 (de)
AT (1) ATE299577T1 (de)
AU (1) AU2001257629A1 (de)
CA (1) CA2406110C (de)
DE (1) DE60111936T2 (de)
WO (1) WO2001088448A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8162293B2 (en) 2007-10-31 2012-04-24 Richard Goldmann Device for applying cooling mist and dry air to individuals
SE532624C2 (sv) * 2008-06-19 2010-03-09 Andritz Technology And Asset Management Gmbh Kylning av en cellulosamassabana
CN114279195B (zh) * 2021-12-31 2022-08-19 宿迁至诚纺织品股份有限公司 一种化纤纺纱用烘干除湿装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT951025B (it) * 1971-04-28 1973-06-30 Monforts Fa A Impianto per la guida ed il traspor to allo stato flottante di materia le a nastro esteso in larghezza
US5070628A (en) * 1990-01-16 1991-12-10 W. R. Grace & Co.-Conn. Rotatable slot nozzle air bar
DE4431252B4 (de) * 1994-09-02 2004-01-29 V.I.B. Systems Gmbh Verfahren und Vorrichtung zum Bedrucken einer Materialbahn
US6207020B1 (en) * 1998-05-12 2001-03-27 International Paper Company Method for conditioning paper and paperboard webs
DE19901801C2 (de) * 1999-01-19 2003-12-11 Baldwin Germany Gmbh Vorrichtung zum Konditionieren einer Papierbahn

Also Published As

Publication number Publication date
WO2001088448A3 (en) 2002-03-14
AU2001257629A1 (en) 2001-11-26
CA2406110C (en) 2008-12-02
DE60111936D1 (de) 2005-08-18
DE60111936T2 (de) 2006-04-20
EP1282804A2 (de) 2003-02-12
WO2001088448A2 (en) 2001-11-22
CA2406110A1 (en) 2001-11-22
ATE299577T1 (de) 2005-07-15

Similar Documents

Publication Publication Date Title
CA1208005A (en) Web dryer solvent vapor control means
US6775925B2 (en) Water spray web cooling apparatus for web dryer
CA2166589C (en) In-line processing of a heated and reacting continuous sheet of material
US6735883B1 (en) Electrostatic assisted web cooling and remoistening device
EP0396173B1 (de) Vorrichtung zum Abkühlen einer aus einem Trockner kommenden Materialbahn
US4263724A (en) Traveling web drying apparatus
JP4822036B2 (ja) 乾燥装置
US6923121B2 (en) Apparatus and method for remoistening a product web
EP1282804B1 (de) Vorrichtung zur kühlung von bahnen mittels wasserspülung für einen wassertrockner
JP2000211205A (ja) 乾燥した巻取紙を再加湿する装置
AU760388B2 (en) Electrostatic assisted web cooling and remoistening device
CN101715372A (zh) 具备冷却和材料回收能力的幅面涂层涂覆器
JP7493106B2 (ja) ノンインパクト印刷装置により印刷されたシートを乾燥させる乾燥機を備えるシート印刷機械
CN116669962B (zh) 具有对由无印版印刷装置印刷的单张纸进行干燥的干燥器的单张纸印刷机
JPH01267040A (ja) 印刷機における排煙装置
JPS61206655A (ja) オフセツト印刷機用乾燥装置
JP2005319812A (ja) オフセット輪転印刷機のインキ乾燥装置
JP2005319812A5 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021128

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MEGTEC SYSTEMS, INC.

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK FR GB LI NL

17Q First examination report despatched

Effective date: 20040421

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB LI NL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050713

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050713

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050713

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60111936

Country of ref document: DE

Date of ref document: 20050818

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070503

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070510

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120425

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160527

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60111936

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201