EP1276979B1 - Method and device for controlling a drive unit of a vehicle - Google Patents

Method and device for controlling a drive unit of a vehicle Download PDF

Info

Publication number
EP1276979B1
EP1276979B1 EP01940148A EP01940148A EP1276979B1 EP 1276979 B1 EP1276979 B1 EP 1276979B1 EP 01940148 A EP01940148 A EP 01940148A EP 01940148 A EP01940148 A EP 01940148A EP 1276979 B1 EP1276979 B1 EP 1276979B1
Authority
EP
European Patent Office
Prior art keywords
pass
signal
time
filter
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01940148A
Other languages
German (de)
French (fr)
Other versions
EP1276979A1 (en
Inventor
Andreas Huber
Horst Wagner
Ruediger Fehrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1276979A1 publication Critical patent/EP1276979A1/en
Application granted granted Critical
Publication of EP1276979B1 publication Critical patent/EP1276979B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • the invention relates to a method and a device for controlling a drive unit of a vehicle according to the preambles of the independent claims.
  • a method and such a device for controlling a drive unit of a vehicle is known, for example, from DE 195 34 633.
  • torque changes of the engine are delayed by low-pass filtering of the driver's specification.
  • a pulse-shaped course of the injection quantity is proposed in order to achieve a soft application of the engine, after which the injected fuel quantity is released for acceleration without delay.
  • the driving behavior can be designed largely independent of the impact load damping.
  • the masses of the drive train are accelerated by at least one momentum and delayed again before hitting the new plant position, the position of this pulse relative to the time of the quantity change request and the position of the pulses to each other is variable or applicable.
  • FIG. 1 shows an overview block diagram of a device for implementation 2 shows a detailed representation as a block diagram of the device according to the invention, and FIG. 3 shows different signals plotted over time.
  • FIG. 1 shows an overview block circuit diagram of a device for controlling the drive unit of a vehicle, in which the procedure according to the invention can be used.
  • the procedure according to the invention is described using the example of a diesel internal combustion engine.
  • the procedure according to the invention can also be used in other types of internal combustion engines, in particular in spark-ignited internal combustion engines.
  • an internal combustion engine is referred to, which is connected, inter alia, with a controller 110.
  • the controller 110 processes signals from various sensors 115 as well as a signal QKF provided by a filter means 120.
  • the filter means 120 the signal QK is fed as input.
  • the filter means further processes the output signals of various sensors 125.
  • the signal QK is provided by a setpoint 130.
  • the quantity specification is applied by an accelerator pedal position sensor 140, various sensors 135 with signals.
  • the accelerator pedal position sensor Based on the position of the accelerator pedal, the accelerator pedal position sensor generates a signal FP with respect to the accelerator pedal position.
  • the accelerator pedal position sensor can be designed, for example, as a rotary potentiometer. In this case, a resistance value and / or the voltage drop at the potentiometer is used as a signal.
  • the quantity set point 130 calculates the signal QK, which represents a measure of the power desired by the internal combustion engine.
  • the specification of the amount of fuel QK takes place, for example, as a function of sensors 135 which detect different temperature values, pressure values and other operating states.
  • this is preferably the amount of fuel to be injected.
  • this is preferably a signal that indicates the throttle position or the ignition timing.
  • the injection quantity in a diesel internal combustion engine may not be released suddenly. It is sufficient to filter the injection quantity only in the amount range in which the internal combustion engine moves relative to the body.
  • This filtering of the fuel quantity signal is carried out by the filter means 120, wherein the filtering takes place as a function of different state variables which characterize the state of the internal combustion engine and / or of the driven vehicle.
  • the filtering preferably takes place as a function of the rotational speed, which is detected by means of a rotational speed sensor 125.
  • the transmission behavior of the filter means 120 is shown in FIG. 2.
  • the filtered quantity signal QKF is supplied to the controller 110.
  • the actuator 110 is, for example, a fuel metering device defining the amount of fuel to be injected. This may be, for example, a solenoid valve. Depending on the filtered fuel quantity signal QKF and the output signals of other sensors 115, the actuator 110 measures the corresponding fuel quantity of the internal combustion engine 100.
  • the procedure according to the invention is not restricted to the application in diesel internal combustion engines. It can also be used in other internal combustion engines. Further, it is not limited to the application in the fuel injection. It can also be used in other power output determining quantities, such as the throttle position or the ignition angle
  • the filter means 120 is shown in more detail in FIG. Already described in Figure 1 elements are marked with corresponding reference numerals.
  • the quantity request signal QK reaches a first dead-time element 200, a second dead-time element 220 and a third dead-time element 250.
  • the output signal of the first dead-time element 200 is applied to a low-pass filter 210.
  • the signal QKF0 At the output of the low-pass filter 210 is the signal QKF0, with which a first node 215 is applied.
  • the output signal of the second deadtime element 220 passes through a first input limit 230 to a first high pass 240.
  • the output QKF1 At the output of the first high pass is the output QKF1, with which the first node 215 is acted upon.
  • the output signal of the third dead-time element 250 passes through a second input limit 260 to a second high-pass filter 270.
  • the output signal of the second high-pass filter 270 reaches a second connection point 280, at whose second input the output signal of the first connection point 215 is present.
  • the output signal of the node 280 passes through an output limit 290 as a filtered quantity request QKF to the actuator 110th
  • low-pass filter 210 a PTD1 element is preferably used. According to the invention, however, other filters with low-pass behavior can also be used. As the first and second high pass filters are preferably used with DT1 behavior. But there are also other filters with high passability usable.
  • the third deadtime element 250, the second input limit 260 and / or the second high-pass 270 it is possible for the third deadtime element 250, the second input limit 260 and / or the second high-pass 270 to be omitted.
  • the arrangement of the deadtime elements 200, 220 and 250 is chosen only as an example. These dead-time elements can also be arranged after the input limit or after the low pass or after the high passes. Instead of dead-time elements, it is also possible to use special low-passes or high-passes which contain higher order terms. Furthermore, it is possible that, depending on the embodiment, the input limits 230, 260, and the output limit 290 are omitted.
  • the low-pass filter 210 determines the static transmission behavior of the filter. Likewise, this transmission element essentially determines the response to the driver's request.
  • a fuel quantity pulse is required which ensures the acceleration and deceleration of the masses.
  • This fuel quantity pulse is provided by the high pass filters 240 and 270.
  • the deadtime elements 220 and 250 the signals of the filters 210,240 and / or 270 are phase-shifted from each other in time. As a result, the temporal sequence of the pulses and thus the desired course of the output signal is ensured.
  • suitable choice and / or dimensioning of the deadtime elements is the location of this pulse relative to the time of quantity change request and the position of the pulses is applied to each other. It is particularly advantageous if the dead time elements and thus the phase shift can be specified variably as a function of the operating state of the internal combustion engine and / or of the vehicle. Suitable parameters for characterizing the operating state are the rotational speed of the internal combustion engine, the load of the internal combustion engine, the driving speed and / or other variables.
  • High gains of the high passes 240 and 270 enable the load impact damping even with small changes in the quantity specification QK.
  • the input buffers 230 and 260 prevent too much interference with large changes in the signal QK.
  • the input limits 230 and 260 can be specified as a function of the desired quantity QK.
  • the drive train is usually safe. Changes in the quantity request QC in this area usually do not cause a state transition between push and pull. As a result, no load impact can occur here.
  • the input limits 230 and 260 are designed such that a deactivation of the load impact damping takes place in these operating points.
  • the output limit 290 ensures that the maximum permissible quantity values are not exceeded.
  • the output signal QKF1 of the first high pass is plotted.
  • this filter generates a positive pulse at time T1 and a negative pulse at time T3. That the first high-pass generates a positive mass and a negative mass during transition to an increased amount of fuel.
  • the output signal QKF2 of the second high pass 270 is plotted.
  • the second high pass produces a negative mass impulse when moving to higher amounts and a positive mass impulse when moving to lower, lower levels.
  • the dead time element 250 delays the respective quantity pulse by a certain delay time. That the negative pulse does not occur at time T1 but at time T2 and the positive pulse does not occur at time T3 but at time T4.
  • a first high-pass filter generates a positive or negative quantity pulse in each case during the transition to higher or lower quantities.
  • the second high-pass produces a time-delayed one inverse Quantity pulse.
  • the low pass connected in parallel immediately forwards the corresponding quantity request with a given course.
  • the procedure according to the invention is not limited to the described embodiment. It can also be used corresponding digital filter, which have a corresponding behavior. It is essential that the filtering takes place in such a way that when there is a transition to a changed signal, the filtered signal has at least one corresponding pulse. This means that when there is a transition to an increased value, a positive pulse takes place, and a transition to a lower value results in a negative pulse.
  • the desired quantity, with which the actuator is acted upon filtered accordingly.
  • the output signal of the sensor 140 or another size corresponding to the driver's request is filtered accordingly.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs gemäß den Oberbegriffen der unabhängigen Ansprüche.The invention relates to a method and a device for controlling a drive unit of a vehicle according to the preambles of the independent claims.

Ein Verfahren und eine solche Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs ist beispielsweise aus der DE 195 34 633 bekannt. Bei dem dort beschriebenen Verfahren und der dort beschriebenen Vorrichtung werden Momentenänderungen des Motors durch Tiefpassfilterung der Fahrervorgabe verzögert. Desweiteren wird ein impulsförmiger Verlauf der Einspritzmenge vorgeschlagen, um ein weiches Anlegen des Motors zu erreichen, wobei danach die eingespritzte Kraftstoffmenge zur Beschleunigung unverzögert freigegeben wird.A method and such a device for controlling a drive unit of a vehicle is known, for example, from DE 195 34 633. In the method described there and the device described therein, torque changes of the engine are delayed by low-pass filtering of the driver's specification. Furthermore, a pulse-shaped course of the injection quantity is proposed in order to achieve a soft application of the engine, after which the injected fuel quantity is released for acceleration without delay.

Durch die Tiefpassfilterung kommt es zu einer Beeinträchtigung der Spontanität des Fahrverhaltens. Darüber hinaus ist bei modernen Antriebsstrangkonzepten eine Wechselwirkung zwischen Motorbewegung und Antriebsstrang zu beobachten, so dass sich der Lastschlag noch verstärken kann.Due to the low-pass filtering, the spontaneity of the driving behavior is impaired. In addition, in modern drivetrain concepts, an interaction between engine movement and drivetrain is observed, so that the impact load can still increase.

Zur Vermeidung solcher Probleme ist ein Verfahren bzw. eine Vorrichtung gemäss den unabhängigen Ansprüche vorgesehen.To avoid such problems, a method and a device according to the independent claims is provided.

Dadurch, dass ein Filter verwendet wird, bei dem wenigstens zwei Hochpass- und ein Tiefpass parallel geschaltet sind, können Zustandswechsel zwischen Schub und Zug sehr schnell durchgeführt werden. Durch den schnellen Zustandswechsel kann eine spontane Fahrzeugreaktion auf die Fahrervorgabe realisiert werden. Die Dämpfung des Stosses beim Auftreffen in die neue Anlageposition bewirkt eine deutliche Verringerung des Geräuschs beim Lastwechselvorgang, eine Verringerung des Lastschlages bei Lastwechseln in Folge von kleinen Änderungen der Fahrervorgabe und eine verminderte Anregung des Antriebsstrangs zum Ruckeln.By using a filter in which at least two high-pass and one low-pass are connected in parallel, state changes between thrust and train can be carried out very quickly. Due to the rapid change of state, a spontaneous vehicle reaction to the driver's specification can be realized. The damping of the shock when hitting the new plant position causes a significant reduction in the noise during the load change process, a reduction in the load impact during load changes as a result of small changes in driver specification and a reduced excitation of the drive train to bucking.

Dadurch dass die Signale des Hoch- und des Tiefpassfilters parallel geschaltet sind, und dass deren zeitliche Phasenlage an die Motortriebsstrangkombination applikativ angepasst wird, kann das Fahrverhalten weitgehend unabhängig von der Lastschlagdämpfung ausgelegt werden.Characterized in that the signals of the high and the low pass filter are connected in parallel, and that their temporal phase angle is adapted applicatively to the motor drive train combination, the driving behavior can be designed largely independent of the impact load damping.

Bei langsamen Änderungen der Fahrervorgabe ist ein komfortabler Zustandsübergang auch ohne Beschleunigung und Verzögerung der Massen möglich. Bei solchen Anregungen erfolgt kein Eingriff des Lastschlagdämpfers.With slow changes of the driver specification, a comfortable state transition is possible even without acceleration and deceleration of the masses. With such suggestions, no intervention of the Lastschlagdämpfers.

Durch die spezielle Kombination der Filter werden die Massen des Antriebsstranges durch wenigstens einen Momentenimpuls beschleunigt und vor dem Auftreffen auf die neue Anlageposition wieder verzögert, wobei die Lage dieses Impulses relativ zum Zeitpunkt der Mengenwunschänderung sowie die Lage der Impulse zueinander variabel bzw. applizierbar ist.Due to the special combination of filters, the masses of the drive train are accelerated by at least one momentum and delayed again before hitting the new plant position, the position of this pulse relative to the time of the quantity change request and the position of the pulses to each other is variable or applicable.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen Figur 1 ein Übersichtsblockschaltbild einer Vorrichtung zur Durchführung der erfindungsgemäßen Vorgehensweise, Figur 2 eine detaillierte Darstellung als Blockdiagramm der erfindungsgemäßen Vorrichtung und Figur 3 verschiedene über der Zeit aufgetragenen Signale.The invention will be explained below with reference to the embodiments shown in the drawing. FIG. 1 shows an overview block diagram of a device for implementation 2 shows a detailed representation as a block diagram of the device according to the invention, and FIG. 3 shows different signals plotted over time.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Figur 1 zeigt ein Übersichtsblockschaltdiagramm einer Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs, bei der die erfindungsgemäße Vorgehensweise angewendet werden kann. Dort ist die erfindungsgemäße Vorgehensweise am Beispiel einer Dieselbrennkraftmaschine beschrieben. Die erfindungsgemäße Vorgehensweise kann aber auch bei anderen Typen von Brennkraftmaschinen, insbesondere bei fremdgezündeten Brennkraftmaschinen, eingesetzt werden.FIG. 1 shows an overview block circuit diagram of a device for controlling the drive unit of a vehicle, in which the procedure according to the invention can be used. There, the procedure according to the invention is described using the example of a diesel internal combustion engine. However, the procedure according to the invention can also be used in other types of internal combustion engines, in particular in spark-ignited internal combustion engines.

Mit 100 ist eine Brennkraftmaschine bezeichnet, welche unter anderem mit einem Steller 110 verbunden ist. Der Steller 110 verarbeitet Signale verschiedener Sensoren 115 sowie ein Signal QKF, das von einem Filtermittel 120 bereitgestellt wird. Dem Filtermittel 120 wird als Eingangsgröße das Signal QK zugeleitet. Das Filtermittel verarbeitet weiter die Ausgangssignale verschiedener Sensoren 125. Das Signal QK wird von einer Mengenvorgabe 130 bereitgestellt. Die Mengenvorgabe wird von einem Fahrpedalstellungssensor 140, verschiedener Sensoren 135 mit Signalen beaufschlagt.With 100 an internal combustion engine is referred to, which is connected, inter alia, with a controller 110. The controller 110 processes signals from various sensors 115 as well as a signal QKF provided by a filter means 120. The filter means 120, the signal QK is fed as input. The filter means further processes the output signals of various sensors 125. The signal QK is provided by a setpoint 130. The quantity specification is applied by an accelerator pedal position sensor 140, various sensors 135 with signals.

Ausgehend von der Stellung des Fahrpedals erzeugt der Fahrpedalstellungssensor ein Signal FP bzgl. der Fahrpedalstellung. Der Fahrpedalstellungssensor kann beispielsweise als Drehpotentiometer ausgeführt sein. In diesem Fall wird ein Widerstandswert und/oder der Spannungsabfall am Potentiometer als Signal verwendet.Based on the position of the accelerator pedal, the accelerator pedal position sensor generates a signal FP with respect to the accelerator pedal position. The accelerator pedal position sensor can be designed, for example, as a rotary potentiometer. In this case, a resistance value and / or the voltage drop at the potentiometer is used as a signal.

Ausgehend von dem Ausgangssignal des Fahrpedalstellungssensor 140 und den Ausgangssignalen der verschiedenen Sensoren 135 berechnet die Mengenvorgabe 130 das Signal QK, das ein Maß für die von der Brennkraftmaschine gewünschte Leistung darstellt. Die Vorgabe der Kraftstoffmenge QK erfolgt beispielsweise abhängig von Sensoren 135 die verschiedene Temperaturwerte, Druckwerte und weitere Betriebszustände erfassen.Based on the output signal of the accelerator pedal position sensor 140 and the output signals of the various sensors 135, the quantity set point 130 calculates the signal QK, which represents a measure of the power desired by the internal combustion engine. The specification of the amount of fuel QK takes place, for example, as a function of sensors 135 which detect different temperature values, pressure values and other operating states.

Bei einer Dieselbrennkraftmaschine handelt es sich hierbei vorzugsweise um die einzuspritzende Kraftstoffmenge. Bei einer fremdgezündeten Brennkraftmaschine handelt es sich hierbei vorzugsweise um ein Signal, das die Drosselklappenstellung oder der Zündzeitpunkt anzeigt.In a diesel internal combustion engine, this is preferably the amount of fuel to be injected. In a spark-ignited internal combustion engine, this is preferably a signal that indicates the throttle position or the ignition timing.

Um den Lastschlag zu vermeiden, darf die Einspritzmenge bei einer Dieselbrennkraftmaschine nicht sprungartig freigegeben werden. Dabei genügt es, die Einspritzmenge nur in dem Mengenbereich zu filtern, in dem die Brennkraftmaschine sich relativ zur Karosserie bewegt. Diese Filterung des Kraftstoffmengensignals erfolgt durch das Filtermittel 120, wobei die Filterung abhängig von verschiedenen Zustandsgrößen,die den Zustand der Brennkraftmaschine und/oder des angetriebenen Fahrzeugs charakterisieren, erfolgt. Bevorzugt erfolgt die Filterung abhängig von der Drehzahl, die mittels eines Drehzahlsensors 125 erfaßt wird. Das Übertragungsverhalten des Filtermittels 120 ist in Figur 2 dargestellt.. Das gefilterte Mengensignal QKF wird dem Steller 110 zugeführt.In order to avoid the impact of the load, the injection quantity in a diesel internal combustion engine may not be released suddenly. It is sufficient to filter the injection quantity only in the amount range in which the internal combustion engine moves relative to the body. This filtering of the fuel quantity signal is carried out by the filter means 120, wherein the filtering takes place as a function of different state variables which characterize the state of the internal combustion engine and / or of the driven vehicle. The filtering preferably takes place as a function of the rotational speed, which is detected by means of a rotational speed sensor 125. The transmission behavior of the filter means 120 is shown in FIG. 2. The filtered quantity signal QKF is supplied to the controller 110.

Bei dem Steller 110 handelt es sich beispielsweise um eine die einzuspritzende Kraftstoffmenge festlegende Kraftstoffzumeßeinrichtung. Hierbei kann es sich beispielsweise um ein Magnetventil handeln. Abhängig von dem gefilterten Kraftstoffmengensignal QKF und den Ausgangssignalen weiterer Sensoren 115 mißt der Steller 110 die entsprechende Kraftstoffmenge der Brennkraftmaschine 100 zu.The actuator 110 is, for example, a fuel metering device defining the amount of fuel to be injected. This may be, for example, a solenoid valve. Depending on the filtered fuel quantity signal QKF and the output signals of other sensors 115, the actuator 110 measures the corresponding fuel quantity of the internal combustion engine 100.

Die erfindungsgemäße Vorgehensweise ist nicht auf die Anwendung bei Diesel-Brennkraftmaschinen beschränkt. Sie kann auch bei anderen Brennkraftmaschinen eingesetzt werden. Ferner ist sie nicht auf die Anwendung bei der Kraftstoffeinspritzung beschränkt. Sie kann auch bei anderen die Leistungsabgabe bestimmenden Größen, wie beispielsweise die Drosselklappenstellung oder den Zündwinkel eingesetzt werdenThe procedure according to the invention is not restricted to the application in diesel internal combustion engines. It can also be used in other internal combustion engines. Further, it is not limited to the application in the fuel injection. It can also be used in other power output determining quantities, such as the throttle position or the ignition angle

Das Filtermittel 120 ist in Figur 2 detaillierter dargestellt. Bereits in Figur 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen gezeichnet. Das Mengenwunschsignal QK gelangt zu einem ersten Totzeitglied 200, zu einem zweiten Totzeitglied 220 und zu einem dritten Totzeitglied 250. Mit dem Ausgangssignal des ersten Totzeitgliedes 200 wird ein Tiefpass 210 beaufschlagt. Am Ausgang des Tiefpasses 210 liegt das Signal QKF0 an, mit dem ein erster Verknüpfungspunkt 215 beaufschlagt wird.The filter means 120 is shown in more detail in FIG. Already described in Figure 1 elements are marked with corresponding reference numerals. The quantity request signal QK reaches a first dead-time element 200, a second dead-time element 220 and a third dead-time element 250. The output signal of the first dead-time element 200 is applied to a low-pass filter 210. At the output of the low-pass filter 210 is the signal QKF0, with which a first node 215 is applied.

Das Ausgangssignal des zweiten Totzeitgliedes 220 gelangt über eine erste Eingangsbegrenzung 230 zu einem ersten Hochpass 240. Am Ausgang des ersten Hochpasses liegt das Ausgangssignal QKF1 an, mit dem der erste Verknüpfungspunkt 215 beaufschlagt wird.The output signal of the second deadtime element 220 passes through a first input limit 230 to a first high pass 240. At the output of the first high pass is the output QKF1, with which the first node 215 is acted upon.

Das Ausgangssignal des dritten Totzeitgliedes 250 gelangt über eine zweite Eingangsbegrenzung 260 zu einem zweiten Hochpass 270. Das Ausgangssignal des zweiten Hochpasses 270 gelangt zu einem zweiten Verknüpfungspunkt 280, an dessen zweitem Eingang das Ausgangssignal des ersten Verknüpfungspunktes 215 anliegt. Das Ausgangssignal des Verknüpfungspunktes 280 gelangt über eine Ausgangsbegrenzung 290 als gefilterter Mengenwunsch QKF zu dem Steller 110.The output signal of the third dead-time element 250 passes through a second input limit 260 to a second high-pass filter 270. The output signal of the second high-pass filter 270 reaches a second connection point 280, at whose second input the output signal of the first connection point 215 is present. The output signal of the node 280 passes through an output limit 290 as a filtered quantity request QKF to the actuator 110th

Als Tiefpass 210 wird vorzugsweise ein PTD1-Glied verwendet. Erfindungsgemäß können aber auch andere Filter mit Tiefpassverhalten eingesetzt werden. Als erster und zweiter Hochpass werden vorzugsweise Filter mit DT1-Verhalten verwendet. Es sind aber auch andere Filter mit Hochpassverhalten verwendbar.As low-pass filter 210, a PTD1 element is preferably used. According to the invention, however, other filters with low-pass behavior can also be used. As the first and second high pass filters are preferably used with DT1 behavior. But there are also other filters with high passability usable.

Bei einer vereinfachten Ausführungsform ist es möglich, dass das dritte Totzeitglied 250, die zweite Eingangsbegrenzung 260 und/oder der zweite Hochpass 270 weggelassen wird. Die Anordnung der Totzeitglieder 200, 220 und 250 ist nur beispielhaft gewählt. Diese Totzeitglieder können auch nach der Eingangsbegrenzung oder nach dem Tiefpass bzw. nach den Hochpässen angeordnet sein. Anstelle der Totzeitglieder können auch spezielle Tiefpässe bzw. Hochpässe verwendet werden, die Glieder höherer Ordnung enthalten. Desweiteren ist es möglich, dass je nach Ausgestaltung die Eingangsbegrenzungen 230, 260, bzw. die Ausgangsbegrenzung 290 weggelassen werden.In a simplified embodiment, it is possible for the third deadtime element 250, the second input limit 260 and / or the second high-pass 270 to be omitted. The arrangement of the deadtime elements 200, 220 and 250 is chosen only as an example. These dead-time elements can also be arranged after the input limit or after the low pass or after the high passes. Instead of dead-time elements, it is also possible to use special low-passes or high-passes which contain higher order terms. Furthermore, it is possible that, depending on the embodiment, the input limits 230, 260, and the output limit 290 are omitted.

Der Tiefpass 210 bestimmt das statische Übertragungsverhalten des Filters. Ebenso bestimmt dieses Übertragungsglied im wesentlichen das Ansprechverhalten auf den Fahrerwunsch.The low-pass filter 210 determines the static transmission behavior of the filter. Likewise, this transmission element essentially determines the response to the driver's request.

Bei einer Änderung der Eingangsgröße QK wird je ein Kraftstoffmengenimpuls benötigt, der die Beschleunigung und Verzögerung der Massen gewährleistet. Dieser Kraftstoffmengenimpuls wird durch die Hochpassfilter 240 und 270 bereitgestellt. Durch die Totzeitglieder 220 und 250 werden die Signale der Filter 210,240 und/oder 270 gegeneinander zeitlich phasenverschoben. Dadurch wird die zeitliche Abfolge der Impulse und damit der gewünschte Verlauf des Ausgangssignals gewährleistet. Durch geeignete Wahl und/oder Dimensionierung der Totzeitglieder ist die Lage dieses Impulses relativ zum Zeitpunkt der Mengenwunschänderung sowie die Lage der Impulse zueinander applizierbar ist. Besonders vorteilhaft ist es, wenn die Totzeitglieder und damit die Phasenverschiebung variabel abhängig vom Betriebszustand der Brennkraftmaschine und/oder des Fahrzeugs vorgebbar sind. Geeignete Parameter zur Charakterisierung des Betriebszustandes sind die Drehzahl der Brennkraftmaschine, die Last der Brennkraftmaschine, die Fahrgeschwindigkeit und/oder weitere Größen.If the input quantity QK is changed, a fuel quantity pulse is required which ensures the acceleration and deceleration of the masses. This fuel quantity pulse is provided by the high pass filters 240 and 270. By the deadtime elements 220 and 250, the signals of the filters 210,240 and / or 270 are phase-shifted from each other in time. As a result, the temporal sequence of the pulses and thus the desired course of the output signal is ensured. By suitable choice and / or dimensioning of the deadtime elements is the location of this pulse relative to the time of quantity change request and the position of the pulses is applied to each other. It is particularly advantageous if the dead time elements and thus the phase shift can be specified variably as a function of the operating state of the internal combustion engine and / or of the vehicle. Suitable parameters for characterizing the operating state are the rotational speed of the internal combustion engine, the load of the internal combustion engine, the driving speed and / or other variables.

Hohe Verstärkungen der Hochpässe 240 und 270 ermöglichen die Lastschlagdämpfung schon bei kleinen Änderungen der Mengenvorgabe QK. Die Eingangsbegrenzungen 230 und 260 verhindern einen zu großen Eingriff bei großen Änderungen des Signals QK.High gains of the high passes 240 and 270 enable the load impact damping even with small changes in the quantity specification QK. The input buffers 230 and 260 prevent too much interference with large changes in the signal QK.

Bevorzugt ist vorgesehen, dass die Eingangsbegrenzungen 230 und 260 abhängig vom Mengenwunsch QK vorgebbar sind. Bei mittleren und hohen Lasten liegt der Antriebsstrang üblicherweise sicher an. Änderungen des Mengenwunsches QK in diesem Bereich verursachen in der Regel keinen Zustandsübergang zwischen Schub und Zug. Dadurch kann auch hier kein Lastschlag auftreten. Die Eingangsbegrenzungen 230 und 260 sind derart ausgebildet, dass eine Deaktivierung der Lastschlagdämpfung in diesen Betriebspunkten erfolgt.It is preferably provided that the input limits 230 and 260 can be specified as a function of the desired quantity QK. For medium and high loads, the drive train is usually safe. Changes in the quantity request QC in this area usually do not cause a state transition between push and pull. As a result, no load impact can occur here. The input limits 230 and 260 are designed such that a deactivation of the load impact damping takes place in these operating points.

Die Ausgangsbegrenzung 290 gewährleistet, dass die höchstzulässigen Mengenwerte nicht überschritten werden. Durch geeignete Wahl der Totzeitglieder, der Eingangsbegrenzung, des Übertragungsverhalten der Hochpässe, des Tiefpass und der Ausgangsbegrenzung lässt sich das Verhalten des Filters an beliebige Fahrzeuge optimal anpassen.The output limit 290 ensures that the maximum permissible quantity values are not exceeded. By suitable choice of the deadtime elements, the input limit, the transmission behavior of the high passes, the low pass and the output limit, the behavior of the filter can be optimally adapted to any vehicle.

In Figur 3 ist das zeitliche Verhalten der verschiedenen Signale beispielhaft aufgetragen. Zum Zeitpunkt T1 ändert sich der Mengenwunsch zu einer erhöhten Menge. Zum Zeitpunkt T3 geht der Mengenwunsch auf seinen ursprünglichen Wert zurück. Diese ist in Teilfigur 3a aufgetragen. In Teilfigur 3b ist das Ausgangssignal des Tiefpasses 210 dargestellt. Ab dem Zeitpunkt T1 nähert sich das Signal QKF0 seinem neuen Endwert vorzugsweise gemäß einer Exponential-Funktion an. Nach dem Zeitpunkt T3 geht das Signal QF0 nicht unmittelbar zurück, sondern der Übergang auf seinen ursprünglichen Ausgangswert erfolgt erst nach einer gewissen Verzögerungszeit ab dem Zeitpunkt T4. Diese Verzögerung zwischen dem Zeitpunkt T3 und dem Zeitpunkt T4 wird durch das erste Totzeitglied 200 verursacht.In Figure 3, the temporal behavior of the various signals is exemplified. At time T1 changes the quantity request to an increased amount. At time T3, the quantity request returns to its original value. This is plotted in part 3a. In subfigure 3b, the output signal of the low-pass filter 210 is shown. From time T1, the signal QKF0 approaches its new final value preferably according to an exponential function. After the time T3, the signal QF0 does not go back directly, but the transition to its original output value takes place only after a certain delay time from the time T4. This delay between the time T3 and the time T4 is caused by the first deadtime element 200.

In Teilfigur 3c ist das Ausgangssignal QKF1 des ersten Hochpasses aufgetragen. Vorzugsweise erzeugt dieser Filter zum Zeitpunkt T1 einen positiven Impuls und zum Zeitpunkt T3 einen negativen Impuls. D.h. der erste Hochpass erzeugt beim Übergang zu einem erhöhten Kraftstoffmengen einen positiven und beim Übergang zu niederen Kraftstoffmengen einen negativen Mengenimpuls.In subfigure 3c, the output signal QKF1 of the first high pass is plotted. Preferably, this filter generates a positive pulse at time T1 and a negative pulse at time T3. That the first high-pass generates a positive mass and a negative mass during transition to an increased amount of fuel.

In Teilfigur 3d ist das Ausgangssignal QKF2 des zweiten Hochpasses 270 aufgetragen. Der zweite Hochpass erzeugt beim Übergang zu höheren Mengen einen negativen Mengenimpuls und beim Übergang zu tieferen, kleineren Mengen einen positiven Mengenimpuls. Ferner wird durch das Totzeitglied 250 der jeweilige Mengenimpuls um eine gewisse Verzögerungszeit verzögert. D.h. der negative Impuls tritt nicht zum Zeitpunkt T1, sondern zum Zeitpunkt T2 und der positive Mengenimpuls nicht zum Zeitpunkt T3, sondern zum Zeitpunkt T4 auf.In subfigure 3d, the output signal QKF2 of the second high pass 270 is plotted. The second high pass produces a negative mass impulse when moving to higher amounts and a positive mass impulse when moving to lower, lower levels. Furthermore, the dead time element 250 delays the respective quantity pulse by a certain delay time. That the negative pulse does not occur at time T1 but at time T2 and the positive pulse does not occur at time T3 but at time T4.

Im dem dargestellten Ausführungsbeispiel erzeugt ein erster Hochpass beim Übergang zu höheren bzw. zu niederen Mengen jeweils einen positiven bzw. einen negativen Mengenimpuls. Der zweite Hochpass erzeugt zeitverzögert jeweils einen inversen Mengenimpuls. Der parallel geschaltete Tiefpass gibt den entsprechenden Mengenwunsch mit einem vorgegebenen Verlauf unmittelbar weiter. Durch Addition dieser drei gefilterten Signale ergibt sich das in Teilfigur 3e dargestellte Ausgangssignal QKF des Filtermittels 120.In the exemplary embodiment illustrated, a first high-pass filter generates a positive or negative quantity pulse in each case during the transition to higher or lower quantities. The second high-pass produces a time-delayed one inverse Quantity pulse. The low pass connected in parallel immediately forwards the corresponding quantity request with a given course. By adding these three filtered signals, the output signal QKF of the filter means 120 shown in subfigure 3e results.

Beim Übergang zu einem geänderten Mengenwunsch treten vorzugsweise zwei entsprechende Mengenimpulse auf. D.h. beim Übergang zu einer erhöhten Menge tritt zuerst ein positiver und dann ein negativer Mengenimpuls und beim Übergang zu kleineren Mengen zuerst ein negativer und dann ein positiver Mengenimpuls auf. Dadurch wird gewährleistet, dass kein Last-schlag auftritt.In the transition to a changed quantity request, preferably two corresponding quantity pulses occur. That In the transition to an increased amount, first a positive and then a negative volume pulse occurs, and at the transition to smaller amounts first a negative and then a positive volume pulse. This ensures that no load shock occurs.

Die erfindungsgemäße Vorgehensweise ist nicht auf die beschriebene Ausführungsform beschränkt. Es können auch entsprechende digitale Filter eingesetzt werden, die ein entsprechendes Verhalten aufweisen. Wesentlich ist, dass die Filterung derart erfolgt, dass bei einem Übergang zu einem geänderten Signal das gefilterte Signal wenigstens einen entsprechenden Impuls aufweist. Das bedeutet bei einem Übergang zu einem erhöhten Wert erfolgt ein positiver Impuls, bei einem Übergang zu einem niederen Wert erfolgt ein negativer Impuls.The procedure according to the invention is not limited to the described embodiment. It can also be used corresponding digital filter, which have a corresponding behavior. It is essential that the filtering takes place in such a way that when there is a transition to a changed signal, the filtered signal has at least one corresponding pulse. This means that when there is a transition to an increased value, a positive pulse takes place, and a transition to a lower value results in a negative pulse.

Bisher wurde die erfindungsgemäße Vorgehensweise am Beispiel von Kraftstoffmengen aufgezeigt. Die erfindungsgemäße Vorgehensweise ist aber entsprechend auch auf Momentensignale oder andere der Kraftstoffmenge entsprechende Größen anwendbar.So far, the procedure of the invention has been demonstrated using the example of fuel quantities. However, the procedure according to the invention is also applicable to torque signals or other quantities corresponding to the fuel quantity.

Bevorzugt wird der Mengenwunsch, mit dem das Stellglied beaufschlagt wird, entsprechend gefiltert. Es kann aber auch vorgesehen sein, dass das Ausgangssignal des Sensors 140 oder eine andere dem Fahrerwunsch entsprechende Größe entsprechend gefiltert wird.Preferably, the desired quantity, with which the actuator is acted upon, filtered accordingly. However, it can also be provided that the output signal of the sensor 140 or another size corresponding to the driver's request is filtered accordingly.

Claims (3)

  1. Method for controlling a drive unit of a vehicle, with a control element for influencing the power output, it being possible to set a power-determining signal on the basis of the position of an operating element, and the control element being activated as a function of a filtered power-determining signal, characterized in that the signal is filtered by a filter, which has at least two high-passes and a low-pass, which are connected in parallel.
  2. Method according to Claim 1, characterized in that the signals from the first high-pass, the second high-pass and/or the low-pass are phase-offset in relation to one another.
  3. Device for controlling a drive unit of a vehicle, with a control element for influencing the power output, it being possible to set a power-determining signal on the basis of the position of an operating element, and the control element being activated as a function of a filtered power-determining signal, characterized in that the signal is filtered by a filter, the filter having at least a high-pass and a low-pass, which are connected in parallel.
EP01940148A 2000-04-14 2001-04-10 Method and device for controlling a drive unit of a vehicle Expired - Lifetime EP1276979B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10018551A DE10018551A1 (en) 2000-04-14 2000-04-14 Automobile drive unit control method has setting element controlling delivered power controlled by filtered signal representing required power
DE10018551 2000-04-14
PCT/DE2001/001411 WO2001079674A1 (en) 2000-04-14 2001-04-10 Method and device for controlling a drive unit of a vehicle

Publications (2)

Publication Number Publication Date
EP1276979A1 EP1276979A1 (en) 2003-01-22
EP1276979B1 true EP1276979B1 (en) 2006-08-09

Family

ID=7638760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01940148A Expired - Lifetime EP1276979B1 (en) 2000-04-14 2001-04-10 Method and device for controlling a drive unit of a vehicle

Country Status (10)

Country Link
US (1) US6832136B2 (en)
EP (1) EP1276979B1 (en)
JP (1) JP4478371B2 (en)
KR (1) KR100749594B1 (en)
CN (1) CN1222686C (en)
DE (2) DE10018551A1 (en)
ES (1) ES2267776T3 (en)
HU (1) HU228421B1 (en)
RU (1) RU2268381C2 (en)
WO (1) WO2001079674A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005728B4 (en) * 2004-01-14 2017-04-27 Robert Bosch Gmbh Method and device for controlling an output unit of a vehicle
DE102004033615B3 (en) * 2004-07-12 2006-01-19 Siemens Ag Smoothing sensor signals input to control circuit for internal combustion engine, using high-pass filter connected to function generator connected to low-pass filter in parallel with high-pass filter
JP4583313B2 (en) * 2006-01-31 2010-11-17 株式会社デンソー Vehicle control device
DE102007013253B4 (en) * 2007-03-20 2021-03-25 Robert Bosch Gmbh Method and device for operating a drive unit
US8762029B2 (en) * 2011-02-02 2014-06-24 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine with supercharger
WO2017046846A1 (en) * 2015-09-14 2017-03-23 東芝三菱電機産業システム株式会社 Temperature control device for rolled material
US10458344B2 (en) * 2016-10-21 2019-10-29 Spartan Motors, Inc. Throttle filter system and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337839A (en) 1979-02-23 1982-07-06 The Bendix Corporation Means for improving automobile driveability
US4345558A (en) * 1979-04-28 1982-08-24 Nippon Soken, Inc. Knock detecting apparatus for an internal combustion engine
JP2861225B2 (en) 1990-03-26 1999-02-24 株式会社デンソー Control device for vehicle internal combustion engine system
DE4325296A1 (en) * 1993-07-28 1995-02-02 Zahnradfabrik Friedrichshafen Control system for shifting an automatic transmission
DE19534633A1 (en) * 1995-05-30 1996-12-05 Bosch Gmbh Robert Throttle control for vehicle IC engine
DE19838454C1 (en) * 1998-08-25 2000-03-16 Daimler Chrysler Ag Process for reducing load change shock in motor vehicles

Also Published As

Publication number Publication date
US20020152007A1 (en) 2002-10-17
RU2268381C2 (en) 2006-01-20
WO2001079674A1 (en) 2001-10-25
HUP0201608A2 (en) 2002-10-28
DE50110703D1 (en) 2006-09-21
CN1366577A (en) 2002-08-28
ES2267776T3 (en) 2007-03-16
JP2003531335A (en) 2003-10-21
KR20020032434A (en) 2002-05-03
KR100749594B1 (en) 2007-08-14
EP1276979A1 (en) 2003-01-22
US6832136B2 (en) 2004-12-14
CN1222686C (en) 2005-10-12
HU228421B1 (en) 2013-03-28
JP4478371B2 (en) 2010-06-09
DE10018551A1 (en) 2001-10-18

Similar Documents

Publication Publication Date Title
DE3313036C2 (en) Device for preventing knocking in internal combustion engines
DE19527218B4 (en) Method and device for regulating the smooth running of an internal combustion engine
DE3423065C2 (en)
EP0286644B1 (en) Process for electronic determination of the quantity of fuel of an internal combustion engine
DE19534633A1 (en) Throttle control for vehicle IC engine
EP1028242B1 (en) Method and apparatus for damping vibration type vehicle movements
EP0854980A1 (en) Process and device for reducing load change stresses in a motor vehicle
EP0768455B1 (en) Method and apparatus for controlling an internal combustion engine
EP1613852B1 (en) Method for operating an internal combustion engine comprising torque monitoring
EP1276979B1 (en) Method and device for controlling a drive unit of a vehicle
DE3932763C1 (en)
DE19931823B4 (en) Method and device for controlling an internal combustion engine
EP1078163B1 (en) Ignition control method
EP1005609B1 (en) Method for controlling exhaust gas recirculation in an internal combustion engine
EP1178202B1 (en) Method and apparatus for controlling an internal combustion engine
DE102004005728B4 (en) Method and device for controlling an output unit of a vehicle
DE19949449B4 (en) Method for damping jerky vibrations
EP1281853B1 (en) Method and device for controlling a drive unit of a vehicle
EP1091107B1 (en) Process and device for reducing load change stresses in a motor vehicle
DE10158572B4 (en) Method and device for controlling an internal combustion engine
DE3313610A1 (en) IGNITION TIMING CONTROL FOR AN INTERNAL COMBUSTION ENGINE
DE4443652B4 (en) Method and device for controlling an internal combustion engine
DE19847023C2 (en) Ignition control method
DE102008061056A1 (en) Drive unit e.g. internal-combustion engine, controlling and/or regulating method for motor vehicle, involves selecting approach speed of drive unit based on gradients of angle of depression and/or amount of angle of depression
EP1764496A2 (en) Method and proccess for filtering a signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FEHRMANN, RUEDIGER

Inventor name: WAGNER, HORST

Inventor name: HUBER, ANDREAS

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060809

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50110703

Country of ref document: DE

Date of ref document: 20060921

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061103

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2267776

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120423

Year of fee payment: 12

Ref country code: GB

Payment date: 20120423

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120423

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130410

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130411

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140416

Year of fee payment: 14

Ref country code: IT

Payment date: 20140429

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150624

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150410

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110703

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101