EP0286644B1 - Process for electronic determination of the quantity of fuel of an internal combustion engine - Google Patents

Process for electronic determination of the quantity of fuel of an internal combustion engine Download PDF

Info

Publication number
EP0286644B1
EP0286644B1 EP19870903269 EP87903269A EP0286644B1 EP 0286644 B1 EP0286644 B1 EP 0286644B1 EP 19870903269 EP19870903269 EP 19870903269 EP 87903269 A EP87903269 A EP 87903269A EP 0286644 B1 EP0286644 B1 EP 0286644B1
Authority
EP
European Patent Office
Prior art keywords
signal
filter
internal combustion
combustion engine
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870903269
Other languages
German (de)
French (fr)
Other versions
EP0286644A1 (en
Inventor
Helmut Denz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6311465&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0286644(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0286644A1 publication Critical patent/EP0286644A1/en
Application granted granted Critical
Publication of EP0286644B1 publication Critical patent/EP0286644B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • US-A-4. 436 072 discloses a so-called gear-dependent smoothness control.
  • the quotient speed to driving speed is formed and stipulated that only a certain speed variation (Ni - Ni -1) is permitted for each gear stage.
  • the control intervention takes place in a corresponding fuel metering or ignition with the aim of preventing torque fluctuations which are disturbing for the driver in the form of jerking of the vehicle.
  • the teaching of US Pat. No. 4,436,072 is limited to an evaluation of the speed signal.
  • FR-A-21 63 241 (corresponds to DE-A-22 43 037) is concerned with an acceleration enrichment based on a change signal of the intake air quantity. Depending on the size of the air volume, a different RC element is activated with the result of an acceleration enrichment dependent on the air flow rate.
  • EP-A-106 366 A further acceleration enrichment is shown in EP-A-106 366. There, depending on the size of a change in the throttle valve and, inter alia, the water temperature, an additional amount of fuel is determined, which is then metered in the sense of an acceleration enrichment.
  • EP-A-54 112 shows an "electronically controlled fuel metering system for an internal combustion engine" which includes devices for damping bucking.
  • various mean values are formed in advance on the basis of a current basic metering signal and the desired metering signal is then determined as a function of the operating parameters. For example, depending on the speed-load range, averaging or progressive approximation to the current load value can occur.
  • the object of the invention is to provide a method with which this disruptive effect of filter devices can be reduced, if not completely eliminated. This problem is solved by the method with the features of the main claim.
  • the method with the features of the main claim has the advantage over the known prior art that a filter with variable characteristics is used. In addition, it is not the input signals of the control device that are filtered, but rather the output signals calculated from these. Another advantage can be seen in the fact that in stationary or quasi-stationary operation of the internal combustion engine, the filter characteristic is taken from an at least two-dimensional map, as a result of which the filter effect can be matched to the operating range of the engine.
  • FIG. 1 shows the system representation of an electronic control unit with input and output signals
  • FIG. 2 shows the dependency of the filter characteristic on the first derivative da oK / dt of the throttle valve position sensor signal
  • FIG. 3 shows a two-dimensional map, divided into areas with different filter characteristics
  • 4 shows a block diagram of a device with the properties according to FIG. 2
  • FIG. 5 shows an example of an insensitivity range around an output signal
  • FIG. 6 shows a flow diagram for determining the filter characteristic from a characteristic diagram
  • FIG. 7 shows a flow diagram for determining the filter characteristic from da ok / dt .
  • 10 denotes an electronic control device to which a series of input variables are fed.
  • 11 is the signal of a throttle valve position sensor
  • 12 the signal of an air mass sensor (in the following air mass and air quantity are used interchangeably, since it is known to the person skilled in the art to calculate the air mass from the air quantity), which is a hot wire air mass sensor, a sensor working according to the damper principle or can be a pressure sensor.
  • a speed signal n is supplied via input 13, and 14 is used to denote further signals, such as, for example, engine temperature, fuel temperature, knock signal and lambda sensor signal.
  • a signal VFZ proportional to the speed of the vehicle reaches the control unit via 15.
  • control unit 10 a multiplicity of output signals are calculated and generated from the input signals.
  • 16 denotes an output for control signals from fuel injection valves
  • 17 denotes an output for ignition pulses
  • 18 denotes the outputs for further signals.
  • the throttle valve position transmitter signal In the event of slight fluctuations in the throttle valve position, such as occur, for example, in full load operation, the throttle valve position transmitter signal remains within the insensitivity range 21.
  • the fuel metering signal is filtered by a strongly damping filter. In most cases, the fuel metering signal corresponds to an injection time, which is then also filtered accordingly.
  • the disruptive suction stroke effects are eliminated by the filtering. If the throttle valve suddenly opens (positive since ok / dt), damping of the fuel metering signal is no longer desirable, since this would inevitably lead to damping of the acceleration. In this case, therefore, a filter characteristic 23 which is dependent on da oK / dt is selected.
  • a filter characteristic 24 becomes smaller in its value than the value at 22 and greater than that selected at 23.
  • the characteristics described at the beginning can be compensated for by such a characteristic.
  • the double arrows marked with 25 indicate that the filter characteristics can also depend on operating parameters of the internal combustion engine, such as the engine temperature.
  • the time t is plotted on the abscissa, and a basic injection duration t L is plotted on the ordinate to represent the amount of fuel to be injected.
  • the solid line marked with 40 represents the time course of the basic injection signal t L
  • the dashed lines 41 indicate a range of insensitivity around 40.
  • the course of the filtered signal corresponding to curve 40 is designated by 42.
  • this curve follows curve 40 with continuously increasing deviation due to the damping effect of the filter, and intersects upper curve 41, which characterizes the insensitivity range.
  • FIG. 5 shows a block diagram of the method in which all three previously mentioned methods for adapting the filter characteristic to the operating state of the internal combustion engine are contained.
  • 51 is a differentiating device, to which the signal from the throttle valve position sensor is fed.
  • 51 is connected to a device 53, the output signal of which is connected to the switch 54.
  • connection 59 causes the switch 58 to be in a position which connects the output of 55 with reinforcing means which are not identified in any more detail. If it is determined in 56 that the filtered signal leaves the dead band, the switch 58 is connected to the output of a filter 57.
  • Filter 57 takes effect at the point in time belonging to point 43. In the steady state, the filtering takes place in accordance with the map 50, in the dynamic state in accordance with the blocks 51 and 53. However, the blocks 55, 56 and 57 are effective both in the dynamic and in the stationary case.
  • FIG. 6 shows a flow chart for determining the filter characteristic from certain parameters of the internal combustion engine.
  • the speed parameter is entered in 60, the load parameter in 61, and the filter characteristic corresponding to this parameter is determined in 62.
  • the flow diagram according to FIG. 7 is based on the arrangement according to FIG. 5.
  • the first time derivative a ok / dt is formed from the throttle valve position transmitter signal .
  • a query is made as to whether the value of the differential quotient is greater or less than zero. If the differential quotient is greater than zero, the program branches to block 72, if it is less than zero it branches to block 73.
  • decision block 72 it is checked whether the differential quotient is greater than a positive constant. If it is greater than a positive constant, a filter characteristic is selected in 74 depending on the size of the differential quotient. If it is smaller than the positive constant, a filter constant C2 is selected in 75 in such a way that it is larger than the filter constant C1. If the differential quotient was less than or equal to zero in decision block 71, a check is made in decision block 73 as to whether the differential quotient is less than a certain lower bound. If it is smaller than a certain lower bound, a filter characteristic greater than C1 is determined in 76 depending on the size of the differential quotient. In the differential quotient larger than the lower bound, a filter characteristic of size C2 is determined in 77.
  • a filtered injection time t LF is determined in 78 as a function of the basic injection time t L and the filter characteristic determined in the course of the method.
  • decision block 79 it is checked whether the injection time calculated in 78 falls downwards or upwards from the insensitivity zone around the basic injection time t L. If the insensitivity range is left, a changed filter characteristic is determined in block 80 from the filter characteristic that was previously valid. This filter characteristic generally results in a filter with less attenuation.
  • a new injection time t LF is formed from this filter characteristic in 81. If the time t LF did not fall out of the insensitivity zone, the last determined value of this injection time is retained in 82 and fed to the amplifier means. The program jumps to the end of this program section from blocks 81 and 82.

Abstract

Process for obtaining filtered output signals of an electronic control device in an internal combustion engine. The basic output signals obtained from various operating parameters are fed to filter systems, the filter characteristics of which can be varied as a function of the operating parameters of the internal combustion engine. The dynamic processes are taken into account by the fact that the filtering characteristics of the filters used can be varied as a function of the first differential functions of the signal from the position indicator of the throttle. Another possibility is to provide, for the choice of filtering characteristics, a multi-dimensional characteristic diagram which is a function of the operating parameters. It is also planned to form around the basic signals calculated an insensitivity region which the filtered signal should not go beyond. If it does, the filtering characteristic is modified in such a way that the filtered signal again returns to the insensitivity region.

Description

Stand der TechnikState of the art

Infolge gestiegender gesetzliche Anforderungen an den höchstzulässigen Schadstoffgehalt des Abgases von Brennkraftmaschinen, aber auch unter dem Aspekt der Verbesserung des Fahrkomforts von Kraftfahrzeugen werden elektronische Steuergeräte zur Steuerung der verschiedenen Maschinenparameter immer häufiger eingesetzt. Bekannt ist beispielsweise, den Kraftstoffbedarf elektronisch aus angesaugter Luftmenge oder Luftmasse oder dem Druck im Ansaugrohr und der Drehzahl zu errechnen, und dann eine Einspritzvorrichtung mit einem entsprechenden Ansteuersignal anzusteuern. Im Vollastbetrieb entstehen durch die Saughübe der Maschine jedoch teilsweise derart große Pulsationen des Luftmengen-Massensignals und damit des Lastsignals, welches in Form einer Einspritzzeit oder einer Kraftstoffmenge vorliegen kann, daß sich daraus störende und zu vermehrtem Schadstoffausstoß Anlaß gebende Schwankungen der Gemischzusammensetzung ergeben. Im Leerlaufbetrieb der Brennkraftmaschine und insbesondere bei Schiebebetrieb im Leerlauf-Drehzahlbereich macht sich die Phasenverschiebung zwischen Luftmengen- bzw. Drehzahlerfassung, Einspritzzeitpunkt und abgegabenem Drehmoment ebenfalls oft störend bemerkbar. Es entstehen Instabilitäten im Leerlaufbetrieb der Brennkraftmaschine und Ruckelerscheinungen im Schiebebetrieb.As a result of increasing legal requirements for the maximum permissible pollutant content of the exhaust gas of internal combustion engines, but also with a view to improving the driving comfort of motor vehicles, electronic control devices for controlling the various machine parameters are being used with increasing frequency. It is known, for example, to calculate the fuel requirement electronically from the intake air quantity or air mass or the pressure in the intake pipe and the rotational speed, and then to control an injection device with a corresponding control signal. In full-load operation, however, the suction strokes of the machine sometimes cause such large pulsations in the air quantity mass signal and thus in the load signal, which may be in the form of an injection time or a quantity of fuel, that this results in disturbing fluctuations in the mixture composition which lead to increased pollutant emissions. When the internal combustion engine is idling and especially when the engine is running at idle speed, the phase shift between air quantity or speed detection, injection timing and delivered torque is also often noticeable. There are instabilities in the idle mode of the internal combustion engine and jerky phenomena in the push mode.

Aus der DE-OS-24 55 482 ist eine Anordnung zur Gewinnung von Signalen bekannt, aus denen in einem elektronischen Steuergerät Ansteuersignale für die Kraftstoffzumessung erzeugt werden. Die dem Steuergerät als Eingangssignale dienenden Signale der Maschinendrehzahl und der angesaugten Luftmasse werden einer Glättungseinrichtung mit Tiefpaß-Charakter zugeführt, um eventuell vorhandene Wechselspannungsanteile, die infolge bedienungsfremder Einflüsse entstehen können, zu dämpfen. Da die Charakteristik der Glättungseinrichtung fest bleibt, d.h. sich ändernden Zuständen der Maschine nicht angepaßt wird, arbeitet die Anordnung nicht immer ganz zufriedenstellend. Vor allem treten bei plötzlichen Lastwechseln filterbedingte Verzögerungen in der Kraftstoffzumessung auf.From DE-OS-24 55 482 an arrangement for obtaining signals is known, from which control signals for the fuel metering are generated in an electronic control unit. The signals of the engine speed and the sucked-in air mass which serve as input signals to the control device are fed to a smoothing device with a low-pass character in order to dampen any AC voltage components which may arise as a result of unintended influences. Since the characteristic of the smoothing device remains fixed, i.e. the changing conditions of the machine is not adapted, the arrangement does not always work quite satisfactorily. Above all, sudden load changes result in filter-related delays in fuel metering.

Die US-A-4. 436 072 offenbart eine sogenannte gangabhängige Laufruheregelung. Dazu wird der Quotient Drehzahl zu Fahrgeschwindigkeit gebildet und festgelegt, daß für jede Gangstufe lediglich eine bestimmte Drehzahlvariation (Ni - Ni -1) zugelassen wird. Der Steuereingriff erfolgt in eine entsprechende Kraftstoffzumessung bzw. Zündung mit dem Ziel, für den Fahrer störende Drehmomentschwankungen in Form eines Ruckelns des Fahrzeugs zu verhindern. Dabei beschränkt sich die Lehre des US-Patents 4 436 072 auf eine Auswertung des Drehzahlsignals.US-A-4. 436 072 discloses a so-called gear-dependent smoothness control. For this purpose, the quotient speed to driving speed is formed and stipulated that only a certain speed variation (Ni - Ni -1) is permitted for each gear stage. The control intervention takes place in a corresponding fuel metering or ignition with the aim of preventing torque fluctuations which are disturbing for the driver in the form of jerking of the vehicle. The teaching of US Pat. No. 4,436,072 is limited to an evaluation of the speed signal.

Die FR-A-21 63 241 (entspricht DE-A-22 43 037) befaßt sich mit einer Beschleunigungsanreicherung ausgehend von einem Änderungssignal der angesaugten Luftmenge. Je nach Größe der Luftmenge wird dort ein unterschiedliches RC-Glied zur Wirkung gebracht mit dem Ergebnis einer luftdurchsatzabhängigen Beschleunigungsanreicherung.FR-A-21 63 241 (corresponds to DE-A-22 43 037) is concerned with an acceleration enrichment based on a change signal of the intake air quantity. Depending on the size of the air volume, a different RC element is activated with the result of an acceleration enrichment dependent on the air flow rate.

Eine weitere Beschleunigungsanreicherung zeigt die EP-A-106 366. Dort wird abhängig von der Größe einer Drosselklappenänderung und unter anderem abhängig von der Wassertemperatur eine zusätzliche Kraftstoffmenge bestimmt, die im Sinne einer Beschleunigungsanreicherung dann zugemessen wird.A further acceleration enrichment is shown in EP-A-106 366. There, depending on the size of a change in the throttle valve and, inter alia, the water temperature, an additional amount of fuel is determined, which is then metered in the sense of an acceleration enrichment.

Schließlich zeigt die EP-A-54 112 ein "Elektronisch gesteuertes Kraftstoffzumeßsystem für eine Brennkraftmaschine", das Einrichtungen zur Ruckeldämpfung umfaßt. Dazu werden im Vorfeld verschiedene Mittelwerte ausgehend von einem aktuellen Grundzumeßsignal gebildet und betriebskenngrößenabhängig dann das gewünschte Zumeßsignal festgelegt. So kann beispielsweise je nach Drehzahl-Last-Bereich eine Mittelwertbildung oder eine progressive Annähenung an den jeweils aktuellen Lastwert enfolgen.Finally, EP-A-54 112 shows an "electronically controlled fuel metering system for an internal combustion engine" which includes devices for damping bucking. For this purpose, various mean values are formed in advance on the basis of a current basic metering signal and the desired metering signal is then determined as a function of the operating parameters. For example, depending on the speed-load range, averaging or progressive approximation to the current load value can occur.

Es hat sich nun gezeigt, daß die bekannten Systeme kein optimales Ergebnis zu liefern vemögen. Aufgabe der Erfindung ist es deshalb, ein Verfahren anzugeben, das möglichst umfassend die Anforderungen an eine moderne Brennkraftmaschinensteuerung erfüllt.It has now been shown that the known systems are unable to deliver an optimal result. It is therefore the object of the invention to provide a method which fulfills the requirements of a modern internal combustion engine control as comprehensively as possible.

Aufgabe der Erfindung ist es, ein Verfahren anzugeben, mit dem dieser störende Effekt von Filtereinrichtungen vermindert, wenn nicht sogar vollständig aufgehoben werden kann. Gelöst wird diese Aufgabe durch das Verfahren mit den Merkmalen des Hauptanspruches.The object of the invention is to provide a method with which this disruptive effect of filter devices can be reduced, if not completely eliminated. This problem is solved by the method with the features of the main claim.

Vorteile der ErfindungAdvantages of the invention

Das Verfahren mit den Merkmalen des Hauptanspruches hat gegenüber dem bekannten Stand der Technik den Vorteil, daß ein Filter mit variabier Charakteristik verwendet wird. Hinzu kommt, daß nicht die Eingangssignale des Steuergerätes, sondern die aus diesen berechneten Ausgangssignale gefiltert werden. Ein weiterer Vorteil ist darin zu sehen, daß im stationären oder quasistationären Betrieb der Brennkraftmaschine die Filtercharakteristik einem wenigstens zweidimensionalen Kennfeld entnommen wird, wodurch die Filterwirkung auf den Betriebsbereich des Motors abgestimmt werden kann.The method with the features of the main claim has the advantage over the known prior art that a filter with variable characteristics is used. In addition, it is not the input signals of the control device that are filtered, but rather the output signals calculated from these. Another advantage can be seen in the fact that in stationary or quasi-stationary operation of the internal combustion engine, the filter characteristic is taken from an at least two-dimensional map, as a result of which the filter effect can be matched to the operating range of the engine.

Weitere Vorteile der Erfindung ergeben sich aus den in den Unteransprüchen angegebenen Maßnahmen und aus der nachfolgenden Beschreibung.Further advantages of the invention result from the measures specified in the subclaims and from the description below.

Zeichnungdrawing

Figur 1 zeigt die Systemdarstellung eines elektronischen Steuergerätes mit Eingangs- und Ausgangssignalen, Figur 2 die Abhängigkeit der Filtercharakteristik von der ersten Ableitung d aoK/dt des Drosselklappenstellunggebersignales, Figur 3 ein zweidimensionales Kennfeld, eingeteilt in Bereiche unterschiedlicher Filtercharakteristik, Figur 4 ein Blockschaltbild einer Einrichtung mit den Eigenschaften nach Figur 2, Figur 5 ein Beispiel für einen um ein Ausgangssignal liegenden Unempfindlichkeitsbereich, Figur 6 ein Flußdiagramm zur Bestimmung der Filtercharakteristik aus einem Kennfeld und Figur 7 ein Flußdiagramm zur Bestimmung der Filtercharakteristik aus daoK/dt.1 shows the system representation of an electronic control unit with input and output signals, FIG. 2 shows the dependency of the filter characteristic on the first derivative da oK / dt of the throttle valve position sensor signal , FIG. 3 shows a two-dimensional map, divided into areas with different filter characteristics, 4 shows a block diagram of a device with the properties according to FIG. 2, FIG. 5 shows an example of an insensitivity range around an output signal, FIG. 6 shows a flow diagram for determining the filter characteristic from a characteristic diagram and FIG. 7 shows a flow diagram for determining the filter characteristic from da ok / dt .

Beschreibung der AusführungsbeispieleDescription of the embodiments

In Figur 1 is mit 10 ein elektronisches Steuergerät bezeichnet, dem eine Reihe von Eingangsgrößen zugführt werden. Mit 11 ist das Signal eines Drosselklappenstellungsgebers, mit 12 das Signal eines Luftmassensensors (im folgenden werden Luftmasse und Luftmenge synonym benutzt, da es dem Fachmann bekannt ist, aus der Luftmenge die Luftmasse zu berechnen), der ein Hitzdrahtluftmassensensor, ein nach dem Stauklappenprinzip arbeitender Sensor oder ein Drucksensor sein kann. Über den Eingang 13 wird ein Drehzahlsignal n zugeführt, mit 14 sind weitere Signale gekennzeichnet, wie z.B. Maschinentemperatur, Kraftstofftemperatur, Klopfsignal und Lambdasondensignal. Über 15 gelangt ein zur Geschwindigkeit des Fahrzeuges proportionales Signal VFZ zum Steuergerät.In FIG. 1, 10 denotes an electronic control device to which a series of input variables are fed. With 11 is the signal of a throttle valve position sensor, with 12 the signal of an air mass sensor (in the following air mass and air quantity are used interchangeably, since it is known to the person skilled in the art to calculate the air mass from the air quantity), which is a hot wire air mass sensor, a sensor working according to the damper principle or can be a pressure sensor. A speed signal n is supplied via input 13, and 14 is used to denote further signals, such as, for example, engine temperature, fuel temperature, knock signal and lambda sensor signal. A signal VFZ proportional to the speed of the vehicle reaches the control unit via 15.

Im Steuergerät 10 werden aus den Eigangssignalen eine Vielzahl von Ausgangssignalen berechnet und erzeugt. Mit 16 ist ein Ausgang für Ansteuersignale von Kraftstoff-Einspritzventilen gekennzeichnet, mit 17 ein Ausgang für Zündimpulse, mit 18 sind die Ausgänge für weitere Signale gekennzeichnet.In control unit 10, a multiplicity of output signals are calculated and generated from the input signals. 16 denotes an output for control signals from fuel injection valves, 17 denotes an output for ignition pulses, and 18 denotes the outputs for further signals.

Im Diagramm nach Figur 2 sind auf der Abszisse die zeitliche Ableitung des Drosselklappenstellungsgebersignales d aDr/dt und auf der Ordinate die Filtercharakteristik aufgetragen. um den Nullpunkt 20 liegt ein Unempfindlichkeitsbereich 21, dem eine Filtercharakteristik 22 zugeordnet ist. An diesen Bereich schließt sich für positive Werte von d aOK/dt eine veränderliche Filtercharakteristik 23 an, für negative Werte von aOK/dt eine konstante Filtercharakteristik 24. Für den Betrieb der Brennkraftmaschine ergibt sich aus Figur 2 folgendes:In the diagram according to FIG. 2, the time derivative of the throttle valve position sensor signal da Dr / dt is plotted on the abscissa and the filter characteristic is plotted on the ordinate. Around the zero point 20 there is an insensitivity region 21, to which a filter characteristic 22 is assigned. This range is followed by a variable filter characteristic 23 for positive values of da OK / dt, and a constant filter characteristic 24 for negative values of a OK / dt. The following results from FIG. 2 for the operation of the internal combustion engine:

Bei geringen Schwankungen der Drosselklappenstellung, wie sie z.B. im Vollastbetrieb vorkommen, bleibt das Drosselklappenstellungsgebersignal innerhalb des Unempfindlichkeitsbereiches 21. Das Kraftstoffzumeßsignal wird dabei durch ein stark dämpfendes Filter gefiltert. In den meisten Fällen entspricht das Kraftstoffzumeßsignal einer Einspritzzeit, die dann ebenfalls entsprechend gefiltert wird. Durch die Filterung werden die störenden Saughubeffekte eleminiert. Bei plötzlichem Öffnen der Drosselklappe (positives d aoK/dt) ist keine Dämpfung des Kraftstoffzumeßsignales mehr erwünscht, da dies zwangsläufig zu einer Dämpfung der Beschleunigung führen würde. Daher wird in diesem Fall eine von d aoK/dt abhängige Filtercharakteristik 23 gewählt. Die Figur 2 zeigt mit 23 eine stückweise lineare Abhängigkeit der Filtercharakteristik von d aDK/dt, jedoch kann hier jede beliebige Abhängigkeit realisiert werden. Optimale Lösungen sind von Fall zu Fall experimentell zu ermitteln. Für plötzliches Schließen de Drosselklappe, einem negativen Wert von d aoK/dt entsprechend, wird eine Filtercharakteristik 24, in ihrem Wert kleiner als der Wert bei 22 und größer als der bei 23 gewählte. Durch eine solche Charakteristik lassen sich die eingangs geschilderten Probleme kompensieren. Die mit 25 gekennzeichneten Doppelpfeile deuten an, daß die Filtercharakteristiken auch noch von Betriebsparametern der Brennkraftmaschine, wie z.B. der Maschinentemperatur, abhängen können.In the event of slight fluctuations in the throttle valve position, such as occur, for example, in full load operation, the throttle valve position transmitter signal remains within the insensitivity range 21. The fuel metering signal is filtered by a strongly damping filter. In most cases, the fuel metering signal corresponds to an injection time, which is then also filtered accordingly. The disruptive suction stroke effects are eliminated by the filtering. If the throttle valve suddenly opens (positive since ok / dt), damping of the fuel metering signal is no longer desirable, since this would inevitably lead to damping of the acceleration. In this case, therefore, a filter characteristic 23 which is dependent on da oK / dt is selected. FIG. 2 shows at 23 a piece-wise linear dependency of the filter characteristic on da DK / dt, however any dependency can be realized here. Optimal solutions have to be determined experimentally from case to case. For sudden closing of the throttle valve, corresponding to a negative value of da oK / dt, a filter characteristic 24 becomes smaller in its value than the value at 22 and greater than that selected at 23. The characteristics described at the beginning can be compensated for by such a characteristic. The double arrows marked with 25 indicate that the filter characteristics can also depend on operating parameters of the internal combustion engine, such as the engine temperature.

Figur 3 zeigt eine Realisation für den Fall, daß kein - eines Vergleichsbeispiels Drosselklappenstellungsgeber vorhanden ist. Auf der Abszisse ist die Maschinendrehzahl n, auf der Ordinate ein Lastsignal (wie z.B. Grundeinspritzdauer, Druck im Ansaugrohr, angesaugter Luftmassenfluß bezogen auf Drehzahl, Kraftstoffmenge) aufgetragen. Weitere Parameter sind denkbar. Teil man jede der Achsen in fünf Bereiche ein, erbigt sich schon ein hinreichend feines Netz für die Auswahl betriebszustandsabhängiger Filtercharakteristiken. 30 entspricht dabei der Vollast, 32 einer Teillast und 31 dem Leerlauf. Das Verfahren arbeitet dann wie folgt:

  • Je nach Betreibszustand wird aus dem Kennfeld die für diesen Zustand günstigste Filtereinwirkung ermittelt, mit der das Lastsignal, das die Grundeinspritzzeit darstellt, gefiltert wird.
FIG. 3 shows an implementation in the event that there is no - a comparative example throttle position transmitter. The engine speed n is plotted on the abscissa, and a load signal (such as, for example, basic injection duration, pressure in the intake manifold, intake air mass flow in relation to speed, fuel quantity) is plotted on the ordinate. Other parameters are conceivable. If you divide each of the axes into five areas, a sufficiently fine network is inherited for the selection of operating mode-dependent filter characteristics. 30 corresponds to full load, 32 to partial load and 31 to idling. The process then works as follows:
  • Depending on the operating state, the most favorable filter effect for this state is determined from the characteristic diagram, with which the load signal, which represents the basic injection time, is filtered.

Aus Figur 4 ergibt sich eine weitere Möglichkeit zur Ausführung des Verfahrens. Auf der Abszisse ist die Zeitt, auf der Ordinate stellvertretend für die einzuspritzende Kraftstoffmenge eine Grundeinspritzdauer tL aufgetragen. Die mit 40 gekennzeichnete, durchgezogene Linie stellt den zeitlichen Verlauf des Grundeinspritzsignales tL dar, die gestrichelten Linien 41 kennzeichnen einen um 40 liegenden Unempfindlichkeitsbereich. Zum Zeitpunkt 43 erfolgt ein plötzlicher Lastwechsel, der einen stark abknickenden Verlauf der Kurve 40 zur Folge hat. Mit 42 ist der Verlauf des gefilterten Signales entsprechend Kurve 40 bezeichnet. Zum Zeitpunkt 43 folgt dieser Verlauf infolge der dämpfenden Wirkung des Filters der Kurve 40 mit sich ständig vergrößernder Abweichung, und schneidet die den Unempfindlichkeitsbereich kennzeichnende obere Kurve 41. Das Verlassen des Unempfindlichkeitsbereiches führt zum Umschalten der Filtercharakteristik, worauf hin sich ein Signalverlauf entsprechend der mit 44 gekennzeichneten Kurve ergibt. Wenn die Kurve 44 im Punkt 45 die Begrenzung des Unempfindlichkeitsbereiches unterschneidet, wird wieder auf ein stärker dämpfendes Filter umgeschaltet, aus dem sich der mit 46 gekennzeichnete Verlauf ergibt.Another possibility for executing the method results from FIG. The time t is plotted on the abscissa, and a basic injection duration t L is plotted on the ordinate to represent the amount of fuel to be injected. The solid line marked with 40 represents the time course of the basic injection signal t L , the dashed lines 41 indicate a range of insensitivity around 40. At time 43, there is a sudden load change, which results in a strongly kinking curve 40. The course of the filtered signal corresponding to curve 40 is designated by 42. At time 43, this curve follows curve 40 with continuously increasing deviation due to the damping effect of the filter, and intersects upper curve 41, which characterizes the insensitivity range. Leaving the insensitivity range leads to the switching of the filter characteristic, whereupon a signal curve corresponding to that with 44 marked curve results. If curve 44 undercuts the limitation of the insensitivity range at point 45, the system switches back to a more damping filter, from which the course identified by 46 results.

Figur 5 zeigt ein Blockschaltbild des Verfahrens, in dem alle drei bisher erwähnten Methoden zur Anpassung der Filtercharakteristik an den Betreibszustand der Brennkraftmaschine enthalten sind. Mit 51 ist eine Differenziereinrichtung gekennzeichnet, der das Signal des Drosselklappenstellungsgebers zugeführt wird. 51 ist mit einer Einrichtung 53 verbunden, deren Ausgangssignal mit dem Schalter 54 verbunden ist.FIG. 5 shows a block diagram of the method in which all three previously mentioned methods for adapting the filter characteristic to the operating state of the internal combustion engine are contained. 51 is a differentiating device, to which the signal from the throttle valve position sensor is fed. 51 is connected to a device 53, the output signal of which is connected to the switch 54.

Gleichzeitig ist der Ausgang von 51 mit einer Schwellwertstufe 52 verbunden, die die Stellungen des Schalters 54 beeinflußt. Der Schalter 54 verbindet entweder den Ausgang der Einrichtung 53 oder den Ausgang des Kennfeldes 50 mit einer ersten Filtereinrichtung 55. Dem Kennfeld 50 werden die Signale Drehzahl, Grundeinspritzzeit, Fahrzeuggeschwindigkeit und Leerlaufindikator zugeführt. Die Grundeinspritzzeit wird gleichzeitig auch noch der ersten Filtereinrichtung 55, einem Fensterkomparator 56 und einer zeiten Filtereinrichtung 57 zugeführt. Der Fensterkomparator steuert abhängig von den Ausgangssignalen der ersten Filtereinrichtung 55 und der zweiten Filtereinrichtung 57 die Stellung des Schalters 58, mit dem er über die Wirkverbindung 59 verbunden ist. Der Schalter 58 verbindet entweder den Ausgang von 55 oder den Ausgang von 57 mit nicht näher gekennzeichneten Verstärkungseinrichtungen, die dann die Signale zur Ansteuerung von Stelleinrichtungen abgeben. Die Anordnung gemäß Figur 5 arbeitet wie folgt:

  • Im dynamischen Betrieb, bei dem das Signal daDK/dt eine bestimmte Schwelle überschreitet, bewirkt die Einrichtung 52 eine Schalterstellung des Schalters 54 so, daß der Ausgang der Einrichtung 53 mit der Filtereinrichtung 55 verbunden wird. Die Charakteristik von 55 wird dann entsprechend dem Signal von 53 eingestellt. Wird die in 52 vorgebbare Schwelle nicht überschritten, verbindet der Schalter 54 das Kennfeld 50 mit der Filtereinrichtung 55. In diesem stationären oder quasistationären Betrieb wird im Filter 55 eine Charakteristik nach Maßgabe des Kennfeldes eingestellt. Dem Filter 55 wird ein Kraftstoffmengengrundsignal, im Fall des Ausführungsbeispieles eine Grundeinspritzzeit tL zugeführt. Am Ausgang des Filters steht dann das gefilterte Signal zur Verfügung. Im Fensterkomparator 56 wird geprüft, ob das gefilterte Ausgangssignal innerhalb oder außerhalb des um das Grundsignal liegenden Unempfindlichkeitsbereiches liegt.
At the same time, the output of 51 is connected to a threshold stage 52, which influences the positions of the switch 54. The switch 54 connects either the output of the device 53 or the output of the characteristic map 50 to a first filter device 55. The signals speed, basic injection time, vehicle speed and idling indicator are fed to the characteristic map 50. The basic injection time is also simultaneously fed to the first filter device 55, a window comparator 56 and a second filter device 57. Depending on the output signals of the first filter device 55 and the second filter device 57, the window comparator controls the position of the switch 58 to which it is connected via the operative connection 59. The switch 58 connects either the output of 55 or the output of 57 to amplification devices (not identified in any more detail), which then emit the signals for actuating control devices. The arrangement according to FIG. 5 works as follows:
  • In dynamic operation, in which the signal da DK / dt exceeds a certain threshold, the device 52 effects a switch position of the switch 54 so that the output of the device 53 is connected to the filter device 55. The characteristic of 55 is then adjusted according to the signal of 53. If the threshold which can be predetermined in 52 is not exceeded, the switch 54 connects the characteristic diagram 50 to the filter device 55. In this stationary or quasi-stationary operation, a characteristic is set in the filter 55 in accordance with the characteristic diagram. A basic fuel quantity signal, in the case of the exemplary embodiment a basic injection time t L, is fed to the filter 55. The filtered signal is then available at the output of the filter. It is checked in the window comparator 56 whether the filtered output signal lies within or outside the insensitivity range around the basic signal.

Liegt es innerhalb des Unempfindlichkeitsbereiches, bewirkt die Verbindung 59 eine Stellung des Schalters 58, die den Ausgang von 55 mit nicht näher gekennzeichneten Verstärkungsmitteln verbindet. Wird in 56 festgestellt, daß das gefilterte Signal den Unempfindlichkeitsbereich verläßt, wird der Schalter 58 mit dem Ausgang eines Filters 57 verbunden. Ein solcher Fall tritt bei großen lastwechseln auf. Wirksam wird Filter 57, wie man Figur 4 entnimmt, in dem zum Punkt 43 gehörenden Zeitpunkt. Im stationären Zustand erfolgt die Filterung also nach Maßgabe des Kennfeldes 50, im dynamischen Zustand nach Maßgabe der Blöcke 51 und 53. Sowohl im dynamischen als auch im stationären Fall sind jedoch die Blöcke 55, 56 und 57 wirksam.If it lies within the insensitivity range, the connection 59 causes the switch 58 to be in a position which connects the output of 55 with reinforcing means which are not identified in any more detail. If it is determined in 56 that the filtered signal leaves the dead band, the switch 58 is connected to the output of a filter 57. Such a case occurs with large load changes. Filter 57, as can be seen in FIG. 4, takes effect at the point in time belonging to point 43. In the steady state, the filtering takes place in accordance with the map 50, in the dynamic state in accordance with the blocks 51 and 53. However, the blocks 55, 56 and 57 are effective both in the dynamic and in the stationary case.

Figur 6 zeigt ein Flußdiagramm zur Bestimmung der Filtercharakteristik aus bestimmten Parametern der Brennkraftmaschine. In 60 wird der Parameter Drehzahl eingegeben, in 61 der Parameter Last, in 62 wird die diesen Parameter entsprechende Filtercharakteristik bestimmt. Neben den Parametern Drehzahl und Last sind auch andere Maschinenparameter als Eingangsgrößen denkbar. Das Flußdiagramm nach Figur 7 orientiert sich an der Anordnung nach Figur 5. Im Block 70 wird aus dem Drosselklappenstellungsgebersignal die erste zeitliche Ableitung aoK/dt gebildet. In Block 71 wird abgefragt, ob der Wert des Differentialquotienten größer oder kleiner als Null ist. Ist der Differentialquotient größer als Null, verzweigt das Programm zum Block 72, ist er kleiner als Null verzweigt es zum Block73. Im Entscheidungsblock 72 wird überprüft, ob der Differentialquotient größer als eine positive Konstante ist. Ist er größer als eine positive Konstante, wird in 74 eine Filtercharakteristik abhängig von der Größe des Differentialquotienten gewählt. Ist er kleiner als die positive Konstante, wird in 75 eine Filterkonstante C2 so gewählt, daß sie größer als die Filterkonstante C1 ist. War im Entscheidungsblock 71 der Differentialquotient kleiner oder gleich Null, so wird im Entscheidungsblock 73 geprüft, ob der Differentialquotient kleiner als eine bestimmte untere Schranke ist. Ist er kleiner als eine bestimmte untere Schranke, so wird in 76 eine Filtercharakteristik größer C1 abhängig von der Größe des Differentialquotienten bestimmt. In der Differentialquotient größer als die untere Schranke, so wird in 77 eine Filtercharakteristik der Größe C2 bestimmt. Den Blöcken 74,75,76 und 77 aus gelangt das Programm zum gleichen Punkt und wird in 78 fortgesetzt. In 78 wird abhängig von der Grundeinspritzzeit tL und der im Verlauf des Verfahrens ermittelten Filtercharakteristik eine gefilterte Einspritzzeit tLF ermittelt. Im Entscheidungsblock 79 wird geprüft, die in 78 berechnete Einspritzzeit nach unten oder nach oben aus den um die Grundeinspritzzeit tL gelegte Unempfindlichkeitszone herausfällt. Wird der Unempfindlichkeitsbereich verlassen, so wird im Block 80 aus der bisher geltenden Filtercharakteristik eine geänderte Filtercharakteristik ermittelt. Diese Filtercharakteristik führt im allgemeinen zu einem Filter mit geringerer Dämpfung. Aus dieser Filtercharakteristik wird in 81 eine neue Einspritzzeit tLF gebildet. Fiel die Zeit tLF nicht aus der Unempfindlichkeitszone heraus, so wird in 82 der zuletzt ermittelte Wert dieser Einspritzzeit beibehalten und den Verstärkermitteln zugefuhrt. Von den Blöcken 81 und 82 aus springt das Programm zum Ende dieses Programmabschnittes.FIG. 6 shows a flow chart for determining the filter characteristic from certain parameters of the internal combustion engine. The speed parameter is entered in 60, the load parameter in 61, and the filter characteristic corresponding to this parameter is determined in 62. In addition to the parameters speed and load, other machine parameters are also conceivable as input variables. The flow diagram according to FIG. 7 is based on the arrangement according to FIG. 5. In block 70, the first time derivative a ok / dt is formed from the throttle valve position transmitter signal . In block 71, a query is made as to whether the value of the differential quotient is greater or less than zero. If the differential quotient is greater than zero, the program branches to block 72, if it is less than zero it branches to block 73. In decision block 72 it is checked whether the differential quotient is greater than a positive constant. If it is greater than a positive constant, a filter characteristic is selected in 74 depending on the size of the differential quotient. If it is smaller than the positive constant, a filter constant C2 is selected in 75 in such a way that it is larger than the filter constant C1. If the differential quotient was less than or equal to zero in decision block 71, a check is made in decision block 73 as to whether the differential quotient is less than a certain lower bound. If it is smaller than a certain lower bound, a filter characteristic greater than C1 is determined in 76 depending on the size of the differential quotient. In the differential quotient larger than the lower bound, a filter characteristic of size C2 is determined in 77. From blocks 74, 75, 76 and 77 the program reaches the same point and is continued in 78. A filtered injection time t LF is determined in 78 as a function of the basic injection time t L and the filter characteristic determined in the course of the method. In decision block 79 it is checked whether the injection time calculated in 78 falls downwards or upwards from the insensitivity zone around the basic injection time t L. If the insensitivity range is left, a changed filter characteristic is determined in block 80 from the filter characteristic that was previously valid. This filter characteristic generally results in a filter with less attenuation. A new injection time t LF is formed from this filter characteristic in 81. If the time t LF did not fall out of the insensitivity zone, the last determined value of this injection time is retained in 82 and fed to the amplifier means. The program jumps to the end of this program section from blocks 81 and 82.

Die gegenständliche Realisierung des beschriebenen Verfahrens kann entweder in analoger oder digitaler Weise erfolgen. Sowohl das Blockschaltbild nach Figur 4 wie auch die Flußdiagramme lassen sich in analoger Schaltungstechnik, wie auch als digitales Programm aufbauen. Welche Realisierungsmöglichkeit der auf dem Gebiet tätige Fachmann benutzt, hängt von den ihrm zur Verfügung stehenden Mitteln ab. Im Flle analogen Schaltungsaufbaus sind analoge Filter einzusetzen, im Falle mikroprozessorgesteuerter Anlagen sind digitale Filteralgorithmen vorzusehen. Eine genauere Beschreibung der einen oder anderen Realisierung übersteigt den Rahmen dieser Bechreibung und kann als allgemein bekannt vorausgesetzt werden.The implementation of the method described can be carried out either in an analog or digital manner. Both the block diagram according to FIG. 4 and the flow diagrams can be set up using analog circuit technology as well as a digital program. Which implementation option the expert working in the field uses depends on the means available to him. In the case of analog circuitry, analog filters must be used; in the case of microprocessor-controlled systems, digital filter algorithms must be provided. A more precise description of one or the other implementation is beyond the scope of this description and can be assumed to be generally known.

Claims (5)

1. Process for acquiring filtered output signals, which are dependent on the operating parameters of an internal combustion engine, in an electronic control device for controlling the quantity of fuel to be fed to an internal combustion engine, a basic mixing signal being generated in dependence on engine speed and load, said basic mixing signal being subjected to a filtering with controllable filtering characteristic, and the filter characteristic being dependent on one of the variables
load change as the signal of the first chronological derivation of a throttle valve transmitter signal aoK, a damping which is greater in relation to relatively large positive changes being provided in the region of the zero point of the change signal daoK/dt between a negative and positive threshold,
driving speed signal
duration of the idling mode
the filtered signal leaves an insensitivity region.
2. Process according to Claim 1, characterized in that, with change signals derived from the throttle valve position which are smaller than a threshold, a filter with constant damping is used.
3. Process according to Claim 1, characterized in that, with change signals derived from the throttle valve position, the filter effect is reduced with increasing positive load change signal.
4. Process according to Claim 3, characterized in that the filter effect is reduced linearly.
5. Process according to Claim 1, characterized in that, with a filter characteristic which is dependent on the driving speed, the smallest damping is provided at driving speed zero.
EP19870903269 1986-10-10 1987-06-06 Process for electronic determination of the quantity of fuel of an internal combustion engine Expired - Lifetime EP0286644B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3634551 1986-10-10
DE19863634551 DE3634551A1 (en) 1986-10-10 1986-10-10 METHOD FOR ELECTRONICALLY DETERMINING THE FUEL AMOUNT OF AN INTERNAL COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
EP0286644A1 EP0286644A1 (en) 1988-10-19
EP0286644B1 true EP0286644B1 (en) 1990-09-19

Family

ID=6311465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870903269 Expired - Lifetime EP0286644B1 (en) 1986-10-10 1987-06-06 Process for electronic determination of the quantity of fuel of an internal combustion engine

Country Status (5)

Country Link
US (1) US4924835A (en)
EP (1) EP0286644B1 (en)
JP (1) JP2795644B2 (en)
DE (2) DE3634551A1 (en)
WO (1) WO1988002811A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315642A (en) * 1988-06-15 1989-12-20 Mitsubishi Electric Corp Fuel controller of engine
DE3905736A1 (en) * 1989-02-24 1990-08-30 Pierburg Gmbh Measuring device for determining air mass flow
US5255655A (en) * 1989-06-15 1993-10-26 Robert Bosch Gmbh Fuel injection system for an internal combustion engine
JPH04500255A (en) * 1989-06-15 1992-01-16 ローベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Internal combustion engine fuel injection system
DE3932763C1 (en) * 1989-09-30 1990-08-02 Robert Bosch Gmbh, 7000 Stuttgart, De
JPH07116966B2 (en) * 1990-01-17 1995-12-18 三菱自動車工業株式会社 Fuel control device for internal combustion engine
WO1992005352A1 (en) * 1990-09-18 1992-04-02 Siemens Aktiengesellschaft Process for determining the quantity of fuel injected
JP2693884B2 (en) * 1991-07-31 1997-12-24 株式会社日立製作所 Internal combustion engine control device
US5477827A (en) * 1994-05-16 1995-12-26 Detroit Diesel Corporation Method and system for engine control
DE19712843C2 (en) * 1997-03-26 2001-02-01 Siemens Ag Method and device for controlling an internal combustion engine
DE19722253A1 (en) * 1997-05-28 1998-11-05 Daimler Benz Ag Electronic bucking device for internal combustion engines
CA2308565A1 (en) * 1997-11-05 1999-05-14 Baylor College Of Medicine Sequences for targeting metastatic cells
DE10159069A1 (en) * 2001-12-01 2003-06-12 Daimler Chrysler Ag Method for operating an electronic control unit of a motor vehicle
DE102004058621B4 (en) * 2004-12-04 2008-08-07 Audi Ag Method for determining quantities in an engine control unit
CN101290241B (en) * 2007-04-19 2011-02-02 上海德科电子仪表有限公司 Abnormal instance fuel meter signal processing method
DE102013000061B4 (en) * 2013-01-02 2018-10-11 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0054112A2 (en) * 1980-12-12 1982-06-23 Robert Bosch Gmbh Control method and electronically controlled metering system for an internal-combustion motor
EP0106366A2 (en) * 1982-10-20 1984-04-25 Hitachi, Ltd. Control Method for internal combustion engines

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2243037C3 (en) * 1972-09-01 1981-04-30 Robert Bosch Gmbh, 7000 Stuttgart Electrically controlled fuel injection device for internal combustion engines with an air flow meter arranged in or on the intake manifold
DE2455482A1 (en) * 1974-11-23 1976-05-26 Volkswagenwerk Ag IC engine electronic fuel injection system - air intake and engine speed analogous signals have smoothing circuits
US4051818A (en) * 1974-11-23 1977-10-04 Volkswagenwerk Aktiengesellschaft Device for obtaining signals for the control unit of an electronic fuel injection system
DE3039436C3 (en) * 1980-10-18 1997-12-04 Bosch Gmbh Robert Control device for a fuel metering system of an internal combustion engine
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine
JPS57175217A (en) * 1981-04-22 1982-10-28 Nissan Motor Co Ltd Measuring device for inhaled air quantity of internal combustion engine
JPS5825531A (en) * 1981-08-10 1983-02-15 Nippon Denso Co Ltd Electronically controlled fuel injection device
JPS58167836A (en) * 1982-03-29 1983-10-04 Toyota Motor Corp Control method of fuel injection in internal-combustion engine
DE3216983A1 (en) * 1982-05-06 1983-11-10 Robert Bosch Gmbh, 7000 Stuttgart CONTROL DEVICE FOR A FUEL METERING SYSTEM OF AN INTERNAL COMBUSTION ENGINE
IT1179959B (en) * 1984-02-08 1987-09-23 Fiat Auto Spa METHOD AND DEVICE FOR THE AUTOMATIC CORRECTION OF THE FUEL RATIO IN AN ALTERNATIVE ENDOTHERMAL ENGINE
JPS61116049A (en) * 1984-11-12 1986-06-03 Nippon Carbureter Co Ltd Engine controlling method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0054112A2 (en) * 1980-12-12 1982-06-23 Robert Bosch Gmbh Control method and electronically controlled metering system for an internal-combustion motor
EP0106366A2 (en) * 1982-10-20 1984-04-25 Hitachi, Ltd. Control Method for internal combustion engines

Also Published As

Publication number Publication date
DE3634551A1 (en) 1988-04-21
EP0286644A1 (en) 1988-10-19
DE3765114D1 (en) 1990-10-25
JPH01501077A (en) 1989-04-13
JP2795644B2 (en) 1998-09-10
US4924835A (en) 1990-05-15
WO1988002811A1 (en) 1988-04-21

Similar Documents

Publication Publication Date Title
EP0286644B1 (en) Process for electronic determination of the quantity of fuel of an internal combustion engine
DE3812289C2 (en) Idle speed control device for an internal combustion engine
DE2633617C2 (en) Method and device for determining setting variables in an internal combustion engine, in particular the duration of fuel injection pulses, the ignition angle, the exhaust gas recirculation rate
DE3313038C2 (en)
DE3020131C2 (en)
DE3032381C2 (en) Electronic control device for an internal combustion engine with compression ignition
EP0337987B1 (en) Device for the electronic control of the fuel flow in an internal combustion engine
DE3408223A1 (en) CONTROL AND REGULATING METHOD FOR THE OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
DE3105334A1 (en) System for controlling the ignition timing in an internal combustion engine
EP1250525B1 (en) Method and device for controlling an internal combustion engine
DE4234982C2 (en) Method and device for controlling the supply of auxiliary air to an internal combustion engine
EP0347446B1 (en) Process and device for regulating the air feed in an internal combustion engine, in particular during idling and coasting
EP1028242B1 (en) Method and apparatus for damping vibration type vehicle movements
DE3330071A1 (en) METHOD FOR CONTROLLING THE FUEL SUPPLY TO AN INTERNAL COMBUSTION ENGINE AFTER THE END OF A FUEL SHUT-OFF
DE602004003074T2 (en) Device for controlling the fuel injection quantity
EP0591139B1 (en) Process and device for controlling the air supply to an internal combustion engine
DE4300406A1 (en) Method for adaptive knock control of an internal combustion engine
DE3437324C2 (en)
WO2003008789A1 (en) Method and device for operating a drive engine of a vehicle
EP1232337B1 (en) Method and device for the operation of a drive unit on a vehicle
EP1005609B1 (en) Method for controlling exhaust gas recirculation in an internal combustion engine
DE19945396B4 (en) Internal combustion engine control device with interpolation control device
DE3248745A1 (en) Control system for an internal combustion engine
WO2010043494A1 (en) Method and device for operating a drive unit
DE10015320A1 (en) Controling vehicle drive unit involves operating speed governor in at least one operating state, deactivating governor in this state(s) depending on at least engine revolution rate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19890321

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3765114

Country of ref document: DE

Date of ref document: 19901025

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19910619

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19921123

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030528

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030619

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030725

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST