EP1275820B1 - Turbine à gaz et sa méthode d'opération - Google Patents

Turbine à gaz et sa méthode d'opération Download PDF

Info

Publication number
EP1275820B1
EP1275820B1 EP02405518A EP02405518A EP1275820B1 EP 1275820 B1 EP1275820 B1 EP 1275820B1 EP 02405518 A EP02405518 A EP 02405518A EP 02405518 A EP02405518 A EP 02405518A EP 1275820 B1 EP1275820 B1 EP 1275820B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
gas turbine
fresh air
feed water
wall arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02405518A
Other languages
German (de)
English (en)
Other versions
EP1275820A1 (fr
Inventor
Klaus DÖBBELING
Hans-Erik Hansson
Dieter Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1275820A1 publication Critical patent/EP1275820A1/fr
Application granted granted Critical
Publication of EP1275820B1 publication Critical patent/EP1275820B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine

Definitions

  • the invention relates to a method for operating a gas turbine plant having the features of the preamble of claim 1.
  • the invention also relates to a gas turbine plant having the features of the preamble of claim 6.
  • the invention further relates to a use of a trickle film or thin film evaporator.
  • a gas turbine plant which comprises a gas turbine with steam injection, a plurality of heat exchangers for heat recovery from the exhaust gas of the gas turbine, an evaporator or humidifier for generating the water vapor and a compressor for generating compressed fresh air. Compressed fresh air is taken from the compressor and fed to the humidifier via several heat exchangers.
  • This moistening device is also supplied with heated feed water, which evaporates and forms a water vapor-air mixture together with the compressed fresh air. This water vapor-air mixture is recycled via one or more heat exchangers and fed upstream of the gas turbine, in particular upstream of the associated combustion chamber.
  • the heating of the feedwater and the overheating of the water vapor-air mixture carried out in heat exchangers, which are acted upon by the exhaust gas of the gas turbine.
  • These heat exchangers form a Device for recovering heat from the exhaust gas.
  • the exhaust gas can also be used for preheating the feedwater in another heat exchanger. The overall efficiency of such a gas turbine plant depends in particular on how much heat energy can be withdrawn from the exhaust gas leaving the gas turbine.
  • a device is known with the aid of which a liquid fuel is treated by means of a purge gas so as to equalize the liquid fuel with respect to the volumetric calorific value of a gaseous fuel.
  • This device contains for this purpose an evaporator tube, which consists of a good heat conducting material and cooperates with a heater.
  • the liquid fuel is introduced into the top of the evaporator tube so that it runs along the inner surface of the evaporator tube and thereby forms a relatively thin film. By heating the evaporator tube of the fuel film can easily evaporate.
  • the purge gas is introduced into the evaporator tube from below, so that it mixes with the fuel vapor; at the same time the fuel is transported away. In this way, the density of the fuel-purge gas mixture is adjusted so as to give the desired volumetric calorific value.
  • Such a device may also be referred to as a "trickle-film or thin-film evaporator”.
  • the invention deals with the problem of specifying for a gas turbine plant and for an associated operating method of the type mentioned an embodiment which allows for the gas turbine plant increased overall efficiency.
  • this problem is solved by a method having the features of claim 1 and by a gas turbine plant having the features of Claim 6 solved.
  • the problem underlying the invention is also achieved by use with the features of claim 14.
  • Advantageous embodiments are given in the dependent claims.
  • the inventive use of a trickle-film or thin-film evaporation during evaporation of the feed water more heat can be removed from the exhaust gas of the gas turbine than in a conventional feed water evaporation. In this way, the overall efficiency of the system can be increased.
  • the intensive cooling effect of falling film or thin film evaporation is based, in particular, on the high heat transfer between the wall and the feed water and on the direct contact of the wall with the feed water running along it.
  • An improvement of the evaporation effect can be achieved in that the fresh air and the exhaust gas act on the wall, where the feed water drains, according to the countercurrent principle.
  • a further improvement of the evaporation performance can be achieved by preheating the feed water before it evaporates.
  • the feed water in a first heat exchanger with the compressed in the compressor and thereby heated fresh air are in heat exchange.
  • the feed water can be in heat-transmitting connection via a second heat exchanger with the exhaust gas, which has already cooled by the trickle film or thin film evaporation.
  • At least one of said heat exchangers can form an integral unit with the falling film or thin film evaporator, whereby line losses can be avoided.
  • FIGURE 1 shows a greatly simplified schematic representation of a gas turbine plant according to the invention.
  • a gas turbine installation 1 has a compressor 2, the inlet 3 of which is supplied with fresh air 4, e.g. B. from the environment is supplied.
  • the compressor 2 compresses the fresh air, so that at an output 5 of the compressor 2 compressed fresh air 6 exits.
  • the majority of the compressed fresh air 6 is supplied to a combustion chamber 7 of the gas turbine plant 1, in which combustion of a conventional fuel 40, in particular natural gas, is carried out in a conventional manner.
  • a gas turbine 10 of the gas turbine plant 1 hot and highly compressed exhaust gases 8, which are fed to an input 9 of a gas turbine 10 of the gas turbine plant 1.
  • these exhaust gases are expanded, so that at an output 11 of the gas turbine 10 relaxed, hot exhaust gases 12 exit.
  • the energy released in the gas turbine 10 is substantially used to drive the compressor 2 and to drive a Consumer, in particular a power generating generator 13, used.
  • the gas turbine plant 1 is also equipped with a trickle film or thin film evaporator 14, which forms an integral unit of an evaporation device and an exhaust heat recovery device.
  • the falling-film or thin-film evaporator 14 has a housing 15 which has a water inlet 16 for feedwater 17, an air inlet 18 for compressed fresh air 6 or 19, an exhaust gas inlet 20 for the hot exhaust gas 12, a steam outlet 21 for superheated steam or superheated steam Water vapor-air mixture 22, an exhaust outlet 23 for cooled exhaust gas 24, an additional input 25 for preheated feed water 26 and an additional output 27 for preheated feedwater 28 has.
  • the housing 15 includes an evaporation line assembly 29, which is formed for example from a plurality of parallel to each other extending tubes 30 and is arranged in a marked by a brace 31 evaporator section of the housing 15.
  • the evaporation line assembly 29 is supplied at the upper end of the individual tubes 30 at 32 via the water inlet 16 with the feed water 17 to be evaporated.
  • the feedwater 17 is guided so that it runs in the interior of the tubes 30 on the wall surfaces and forms a film thereon, which may be in particular thinner than 1 mm.
  • the tubes 30 and the evaporation line arrangement 29 thus contain in the evaporator section 31 a wall 39 which is symbolically marked with a continuous line and along which the feed water 17 to be evaporated runs.
  • the evaporation line assembly 29 is supplied via the air inlet 18 at 33, so below with compressed fresh air 6 and 19, whereby the tubes 30 are acted upon in their interior with the fresh air. Accordingly, the running of said wall 39 feed water is supplied with the fresh air.
  • a partial stream 38 of the fresh air 6 is branched off after the compressor 2. It is also possible to divert the fresh air required for the evaporation at another point of the compressor 2.
  • a first heat exchanger 34 is also provided, which is arranged upstream of the air inlet 18 with respect to the branched, compressed fresh air 38 and upstream of the water inlet 16 with respect to the feed water.
  • This first heat exchanger 34 is thus traversed on the one hand by the feed water and on the other hand by the compressed fresh air 38.
  • the feed water is preheated while the compressed fresh air is cooled; the cooled fresh air is designated 19 here.
  • a second heat exchanger 35 is integrated in the housing 15 of the falling film or thin film evaporator 14, which flows through the feed water on the one hand and on the other hand is acted upon by the exhaust gases of the gas turbine 10.
  • This second heat exchanger 35 is arranged downstream of the falling-film or thin-film evaporator 14 with respect to the exhaust gases and upstream of the first heat exchanger 34 or upstream of the water inlet 16 with respect to the feed water.
  • a third heat exchanger 36 is disposed in the housing 15 of the falling film or thin film evaporator 14, which is traversed on the one hand by a water vapor-air mixture 37, which emerges from the evaporator section 31 of the evaporation line 29.
  • this third heat exchanger 36 is acted upon by the hot exhaust gases 12.
  • this third heat exchanger 36 is thus arranged upstream of the evaporator section 31 of the evaporation line arrangement 29, while it is arranged with respect to the water vapor-air mixture 37 between the evaporator section 31 and the steam-air mixture outlet 21, ie upstream of the gas turbine 10 is.
  • the Vapor line assembly 29 forms with its evaporator section 31 inside an evaporator, while externally forms an exhaust heat recovery device, which can also be supplemented by the second heat exchanger 35 and / or the third heat exchanger 36.
  • the fresh air 19 acts on the feed water 17 running along the evaporator wall 39 formed by the inside of the tubes 30 in the counterflow principle.
  • the tubes 30 act on the fresh air 19 and the hot exhaust gas 12 in the housing 15, the tubes 30 according to the countercurrent principle.
  • the first heat exchanger 34, the second heat exchanger 35 and the third heat exchanger 36 flows through the countercurrent principle.
  • the gas turbine plant 1 is operated as follows:
  • the compressor 2 compresses fresh air 6, of which the fraction denoted by 38 is supplied to the first heat exchanger 34.
  • the compressed and cooled fresh air 19 is supplied via the air inlet 18 of the evaporation line 29, in which it mixes with the feed water evaporating therein, the fresh air 19 also the transport of the designated water vapor-air mixture from the Evaporating line arrangement 29 ensures.
  • the hot exhaust gases 12 enter the housing 15 and initially act on the third heat exchanger 36 and cause it to overheat the water vapor-air mixture 37, whereby the desired superheated steam-air mixture 22 is formed.
  • the still hot exhaust gases flow around the tubes 30 on their outer sides. This means that the above-mentioned evaporator wall 39, at the inside of the feed water flows along, outside is applied to the still hot exhaust gas.
  • the pipes 30 preferably made of a relatively good heat conducting material, for. As steel, are produced, this results in a relatively intense heat transfer, in which on the one hand, the exhaust gases cool relatively strong, while on the other hand, an intensive evaporation of the feed water is achieved.
  • Downstream of this Verfdampferabitess 31 act on the still relatively warm exhaust gases, the second heat exchanger 35 and cause a first preheating of the feedwater.
  • the exhaust outlet 23 then exit the relatively far cooled exhaust gases 24 from the housing 15.
  • feed water 26 is introduced into the housing 15 or into the second heat exchanger 35, in which the already mentioned first preheating of the feedwater takes place.
  • the so far preheated feedwater 28 exits at the additional output 27 again from the housing 15 and enters the first heat exchanger 34.
  • a second preheating of the feedwater takes place before it enters the housing 15 or in the evaporator section 31 of the evaporation line 29 at the water inlet 16 , In this evaporator section 31 then the trickle film or thin film evaporation takes place, with the evaporated feed water mixed with the fresh air introduced at 33.
  • turbochargers or the like which are not described in more detail can be used. It may also be advantageous to introduce the feed water tangentially into the individual tubes 30, for example, to obtain a helical flow.
  • the feedwater fresh air mixture 37 formed in the evaporator section 31 then passes into the third heat exchanger 36, in which the above-described overheating of the water vapor-air mixture takes place.
  • the superheated steam-air mixture 22 can then be recycled upstream of the combustion chamber 7 into the main flow of the compressed fresh air 6.
  • the trickle-film or thin-film evaporation in the evaporator section 31 achieves intensive heat recovery from the turbine exhaust gases, whereby the efficiency of the entire system 1 increases. Furthermore, the integration of the second heat exchanger 35 and the third heat exchanger 36 in the housing 15 of the falling film or thin film evaporator 14 also leads to an increase in the overall efficiency, wherein in addition a particularly compact design is achieved.

Claims (14)

  1. Procédé pour faire fonctionner une installation de turbine à gaz (1)
    - dans lequel de l'air frais comprimé (6, 19, 38) est prélevé après ou depuis un compresseur (2) et est acheminé à un dispositif d'évaporation (14),
    - dans lequel, pour produire un mélange de vapeur d'eau et d'air (22, 37) dans le dispositif d'évaporation (14), de l'eau d'alimentation (17) est évaporée avec apport de chaleur et est mélangée avec l'air frais (6, 19, 38),
    - dans lequel le mélange de vapeur d'eau et d'air (22, 37) est ramené en amont d'une turbine à gaz (10),
    - dans lequel la chaleur nécessaire pour l'évaporation de l'eau d'alimentation (17, 26, 28) est prélevée au moins en partie d'un gaz d'échappement (12) de la turbine à gaz (10),
    caractérisé en ce que
    l'eau d'alimentation (17, 26, 28) s'écoule le long d'une paroi (39) chauffée avec le gaz d'échappement (12) et est sollicitée avec l'air frais (6, 19, 38), l'eau d'alimentation (17, 26, 28) s'évaporant et se mélangeant avec l'air frais (6, 19, 38) et formant un mélange de vapeur d'eau et d'air (22, 37) qui est au moins en partie acheminé à l'installation de turbine à gaz.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    l'air frais (6, 19, 38) et le gaz d'échappement (12) sollicitent la paroi (39) selon le principe du contre-courant.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que
    l'eau d'alimentation (17, 26, 28) est préchauffée en amont de la paroi (39) dans un premier échangeur de chaleur (34), qui est sollicité avec l'air frais (6, 38) avant que celui-ci ne sollicite la paroi (39).
  4. Procédé selon l'une quelconque des revendications 1 à 3,
    caractérisé en ce que
    l'eau d'alimentation (17, 26, 28) est préchauffée en amont de la paroi (39) et en particulier en amont du premier échangeur de chaleur (34), dans un deuxième échangeur de chaleur (35) qui est sollicité avec le gaz d'échappement (12) après que celui-ci a chauffé la paroi (39).
  5. Procédé selon l'une quelconque des revendications 1 à 4,
    caractérisé en ce que
    le mélange de vapeur d'eau et d'air (22, 37) est surchauffé en aval de la paroi (39) dans un troisième échangeur de chaleur (36) qui est sollicité avec le gaz d'échappement (12) avant que celui-ci ne chauffe la paroi (39).
  6. Installation de turbine à gaz, comprenant une turbine à gaz (10) avec une alimentation en vapeur d'eau et en air, un dispositif (29, 35, 36) pour récupérer la chaleur du gaz d'échappement (12) de la turbine à gaz (10), un dispositif d'évaporation (29, 31) pour produire un mélange de vapeur d'eau et d'air (37), un compresseur (2) pour produire de l'air frais comprimé (6, 19, 38), le dispositif d'évaporation (29, 31) étant alimenté en eau d'alimentation (17, 26, 28), en air frais comprimé (6, 18, 38) provenant du compresseur (2) et en chaleur provenant du gaz d'échappement (12),
    caractérisée en ce que
    le dispositif pour la récupération de chaleur et le dispositif d'évaporation forment une unité qui est réalisée sous la forme d'un évaporateur à film coulant ou à film mince (14), qui présente une entrée d'eau (16) pour l'eau d'alimentation (17), une entrée d'air (18) pour l'air frais (19, 38), une entrée de gaz d'échappement (20) pour le gaz d'échappement chaud (12), une sortie de gaz d'échappement (23) pour le gaz d'échappement froid (24), une sortie de mélange vapeur-air (21) pour le mélange de vapeur d'eau et d'air (22, 37) et une paroi d'évaporateur (39), le long de laquelle l'eau d'alimentation (17) s'écoule d'un côté et est sollicitée par l'air frais (19, 38) et qui est sollicitée de l'autre côté par le gaz d'échappement (12).
  7. Installation de turbine à gaz selon la revendication 6,
    caractérisée en ce que
    l'évaporateur à film coulant ou à film mince (14) présente un boîtier (15) dans lequel est monté un agencement de conduite d'évaporation (29) qui présente ou forme la paroi (39) dans une portion de l'évaporateur (31), le gaz d'échappement (12) sollicitant depuis l'extérieur l'agencement de conduite d'évaporation (29) à l'intérieur du boîtier (15), l'eau d'alimentation (17) s'écoulant dans la portion d'évaporateur (31) à l'intérieur de l'agencement de conduite d'évaporation (29) le long de la paroi (39) et étant sollicitée par l'air frais (6).
  8. Installation de turbine à gaz selon la revendication 6 ou 7,
    caractérisée en ce que
    l'entrée d'air (18) et la sortie de vapeur (21) ainsi que l'entrée de gaz d'échappement (20) et la sortie de gaz d'échappement (23) sont disposées de telle sorte que l'évaporateur à film coulant ou à film mince (14) puisse être parcouru par le courant selon le principe du contre-courant.
  9. Installation de turbine à gaz selon l'une quelconque des revendications 6 à 8,
    caractérisée en ce que
    l'on prévoit un premier échangeur de chaleur (34) qui peut être parcouru d'une part par l'eau d'alimentation (26, 28) en amont de la paroi (39) et d'autre part par l'air frais (6, 38) en amont de la paroi (39).
  10. Installation de turbine à gaz selon l'une quelconque des revendications 6 à 9,
    caractérisée en ce que
    l'on prévoit un deuxième échangeur de chaleur (35) qui peut être parcouru d'une part par l'eau d'alimentation (26) en amont de la paroi (39), notamment en amont du premier échangeur de chaleur (34), et d'autre part par le gaz d'échappement (12) en aval de la paroi (39).
  11. Installation de turbine à gaz selon la revendication 10,
    caractérisée en ce que
    le deuxième échangeur de chaleur (35) est intégré dans l'évaporateur à film coulant ou à film mince (14), notamment dans le boîtier (15).
  12. Installation de turbine à gaz selon l'une quelconque des revendications 6 à 11,
    caractérisée en ce que
    l'on prévoit un troisième échangeur de chaleur (36) qui peut être parcouru d'une part par le mélange de vapeur d'eau et d'air (37) en aval de la paroi (39) et d'autre part par le gaz d'échappement (12) en amont de la paroi (39).
  13. Installation de turbine à gaz selon la revendication 12,
    caractérisée en ce que
    le troisième échangeur de chaleur (36) est intégré dans l'évaporateur à film coulant ou à film mince (14), notamment dans le boîtier (15).
  14. Utilisation d'un évaporateur à film coulant ou à film mince (14), dans lequel un milieu fluide (17, 26, 28) s'écoule le long d'une paroi chauffée (39) et est sollicité par un milieu gazeux (6, 19, 38), le milieu fluide (17, 26, 28) s'évaporant, étant mélangé au milieu gazeux (6, 19, 38) et étant évacué, en vue de récupérer la chaleur provenant d'un gaz d'échappement (12) d'une turbine à gaz (10) avec injection de vapeur d'eau, le gaz d'échappement (12) servant à chauffer la paroi (39), le milieu fluide étant constitué par de l'eau d'alimentation (17, 26, 28), le milieu gazeux étant formé par de l'air frais (6, 19, 38) comprimé dans un compresseur (2) et l'eau d'alimentation (17, 26, 28) évaporée et mélangée à l'air frais (6, 19, 38) formant le mélange de vapeur d'eau et d'air (22, 37) pour l'injection.
EP02405518A 2001-07-13 2002-06-24 Turbine à gaz et sa méthode d'opération Expired - Lifetime EP1275820B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH12902001 2001-07-13
CH12902001 2001-07-13

Publications (2)

Publication Number Publication Date
EP1275820A1 EP1275820A1 (fr) 2003-01-15
EP1275820B1 true EP1275820B1 (fr) 2006-04-05

Family

ID=4565342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02405518A Expired - Lifetime EP1275820B1 (fr) 2001-07-13 2002-06-24 Turbine à gaz et sa méthode d'opération

Country Status (3)

Country Link
US (1) US6708497B2 (fr)
EP (1) EP1275820B1 (fr)
DE (1) DE50206291D1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034446A1 (en) * 2003-08-11 2005-02-17 Fielder William Sheridan Dual capture jet turbine and steam generator
JP4275690B2 (ja) * 2006-09-07 2009-06-10 株式会社日立製作所 ガスタービンシステム
US7721543B2 (en) * 2006-10-23 2010-05-25 Southwest Research Institute System and method for cooling a combustion gas charge
EP2071157B1 (fr) * 2007-12-10 2014-01-15 Alstom Technology Ltd Procédé de contrôle d'une turbine à gaz dans une centrale électrique
US8833079B2 (en) * 2008-09-18 2014-09-16 Douglas W. P. Smith Method and apparatus for generating electricity
EP2354651B1 (fr) * 2010-01-18 2014-07-23 Alstom Technology Ltd Système pour la récupération de chaleur et amélioration de la précipitation de poussières comme solution de modification pour centrales thermiques au charbon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513488A (en) * 1994-12-19 1996-05-07 Foster Wheeler Development Corporation Power process utilizing humidified combusted air to gas turbine
ATE218673T1 (de) * 1996-07-10 2002-06-15 Vattenfall Ab Publ Verfahren und vorrichtung zum liefern von mechanischer arbeit und, wenn gewünscht, wärme in einem gasverdampfungsturbinenprozess
DE19647492A1 (de) 1996-11-16 1998-05-20 Abb Research Ltd Verfahren und Vorrichtung zur Speisung einer Gasturbine sowohl mit flüssigen wie auch mit gasförmigen Brennstoffen
JPH11324710A (ja) * 1998-05-20 1999-11-26 Hitachi Ltd ガスタービン発電プラント
US6578354B2 (en) * 2000-01-21 2003-06-17 Hitachi, Ltd. Gas turbine electric power generation equipment and air humidifier

Also Published As

Publication number Publication date
EP1275820A1 (fr) 2003-01-15
US20030014977A1 (en) 2003-01-23
US6708497B2 (en) 2004-03-23
DE50206291D1 (de) 2006-05-18

Similar Documents

Publication Publication Date Title
DE2810191C3 (de) Verfahren und Vorrichtung zum Wärmeentzug aus mindestens einem strömenden Wärmeträgermedium
EP1432889B1 (fr) Procede et dispositif permettant de demarrer des centrales thermiques a gaz exemptes d'emissions
DE19745272C2 (de) Gas- und Dampfturbinenanlage und Verfahren zum Betreiben einer derartigen Anlage
DE10041413B4 (de) Verfahren zum Betrieb einer Kraftwerksanlage
DE60126721T2 (de) Kombiniertes Kreislaufsystem mit Gasturbine
CH666253A5 (de) Einrichtung zur chemischen erzeugung von kohlendioxid.
DE2611890C3 (de) Anordnung zum Umformen von in einem gasförmigen Primärfluid enthaltener Wärme in eine andere Energieart
EP0591163B1 (fr) Installation combinee a turbines a gaz et a vapeur
DE2657733C2 (de) Verfahren zum Teillastbetrieb einer Gasturbinenanlage
DE10330859A1 (de) Verfahren zum Betrieb von emissionsfreien Gasturbinenkraftwerken
WO2000020728A1 (fr) Installation a turbine a gaz et a vapeur
DE4321081A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
DE1526897C3 (de) Gas-Dampfturbinenanlage
DE2630456C3 (de) Brennkraftmaschine
DE10144841C1 (de) Solarthermisches Gas- und Dampfkraftwerk und Verfahren zur Umwandlung von thermischer Energie in elektrische Energie
WO2000011325A1 (fr) Installation de turbine a gaz et a vapeur
EP1275820B1 (fr) Turbine à gaz et sa méthode d'opération
DE60224344T2 (de) Gasturbine, Brennkammer dafür und Verfahren zum Kühlen der Brennkammer
EP0981681B1 (fr) Systeme de turbines a gaz et a vapeur et procede de refroidissement de l'agent refrigerant de la turbine a gaz d'un tel systeme
DE10155508C5 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
EP1590603B1 (fr) Refroidisseur a air pour centrales electriques et application d'un refroidisseur a air de ce type
EP1117913B1 (fr) Prechauffage du combustible dans une turbine a gaz
DE60126810T2 (de) Turbinenanordnung und verfahren zum betrieb einer turbinenanordnung
DE60214665T2 (de) Anlage zur nutzenergieerzeugung
DE3419560A1 (de) Verfahren zum betrieb einer gasturbinenanlage sowie anlage zur durchfuehrung des verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030613

AKX Designation fees paid

Designated state(s): DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50206291

Country of ref document: DE

Date of ref document: 20060518

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060607

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50206291

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50206291

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50206291

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50206291

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50206291

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170627

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170628

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206291

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180624