EP1275820B1 - Gas turbine plant and method of operation therefor - Google Patents

Gas turbine plant and method of operation therefor Download PDF

Info

Publication number
EP1275820B1
EP1275820B1 EP02405518A EP02405518A EP1275820B1 EP 1275820 B1 EP1275820 B1 EP 1275820B1 EP 02405518 A EP02405518 A EP 02405518A EP 02405518 A EP02405518 A EP 02405518A EP 1275820 B1 EP1275820 B1 EP 1275820B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
gas turbine
fresh air
feed water
wall arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02405518A
Other languages
German (de)
French (fr)
Other versions
EP1275820A1 (en
Inventor
Klaus DÖBBELING
Hans-Erik Hansson
Dieter Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1275820A1 publication Critical patent/EP1275820A1/en
Application granted granted Critical
Publication of EP1275820B1 publication Critical patent/EP1275820B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine

Definitions

  • the invention relates to a method for operating a gas turbine plant having the features of the preamble of claim 1.
  • the invention also relates to a gas turbine plant having the features of the preamble of claim 6.
  • the invention further relates to a use of a trickle film or thin film evaporator.
  • a gas turbine plant which comprises a gas turbine with steam injection, a plurality of heat exchangers for heat recovery from the exhaust gas of the gas turbine, an evaporator or humidifier for generating the water vapor and a compressor for generating compressed fresh air. Compressed fresh air is taken from the compressor and fed to the humidifier via several heat exchangers.
  • This moistening device is also supplied with heated feed water, which evaporates and forms a water vapor-air mixture together with the compressed fresh air. This water vapor-air mixture is recycled via one or more heat exchangers and fed upstream of the gas turbine, in particular upstream of the associated combustion chamber.
  • the heating of the feedwater and the overheating of the water vapor-air mixture carried out in heat exchangers, which are acted upon by the exhaust gas of the gas turbine.
  • These heat exchangers form a Device for recovering heat from the exhaust gas.
  • the exhaust gas can also be used for preheating the feedwater in another heat exchanger. The overall efficiency of such a gas turbine plant depends in particular on how much heat energy can be withdrawn from the exhaust gas leaving the gas turbine.
  • a device is known with the aid of which a liquid fuel is treated by means of a purge gas so as to equalize the liquid fuel with respect to the volumetric calorific value of a gaseous fuel.
  • This device contains for this purpose an evaporator tube, which consists of a good heat conducting material and cooperates with a heater.
  • the liquid fuel is introduced into the top of the evaporator tube so that it runs along the inner surface of the evaporator tube and thereby forms a relatively thin film. By heating the evaporator tube of the fuel film can easily evaporate.
  • the purge gas is introduced into the evaporator tube from below, so that it mixes with the fuel vapor; at the same time the fuel is transported away. In this way, the density of the fuel-purge gas mixture is adjusted so as to give the desired volumetric calorific value.
  • Such a device may also be referred to as a "trickle-film or thin-film evaporator”.
  • the invention deals with the problem of specifying for a gas turbine plant and for an associated operating method of the type mentioned an embodiment which allows for the gas turbine plant increased overall efficiency.
  • this problem is solved by a method having the features of claim 1 and by a gas turbine plant having the features of Claim 6 solved.
  • the problem underlying the invention is also achieved by use with the features of claim 14.
  • Advantageous embodiments are given in the dependent claims.
  • the inventive use of a trickle-film or thin-film evaporation during evaporation of the feed water more heat can be removed from the exhaust gas of the gas turbine than in a conventional feed water evaporation. In this way, the overall efficiency of the system can be increased.
  • the intensive cooling effect of falling film or thin film evaporation is based, in particular, on the high heat transfer between the wall and the feed water and on the direct contact of the wall with the feed water running along it.
  • An improvement of the evaporation effect can be achieved in that the fresh air and the exhaust gas act on the wall, where the feed water drains, according to the countercurrent principle.
  • a further improvement of the evaporation performance can be achieved by preheating the feed water before it evaporates.
  • the feed water in a first heat exchanger with the compressed in the compressor and thereby heated fresh air are in heat exchange.
  • the feed water can be in heat-transmitting connection via a second heat exchanger with the exhaust gas, which has already cooled by the trickle film or thin film evaporation.
  • At least one of said heat exchangers can form an integral unit with the falling film or thin film evaporator, whereby line losses can be avoided.
  • FIGURE 1 shows a greatly simplified schematic representation of a gas turbine plant according to the invention.
  • a gas turbine installation 1 has a compressor 2, the inlet 3 of which is supplied with fresh air 4, e.g. B. from the environment is supplied.
  • the compressor 2 compresses the fresh air, so that at an output 5 of the compressor 2 compressed fresh air 6 exits.
  • the majority of the compressed fresh air 6 is supplied to a combustion chamber 7 of the gas turbine plant 1, in which combustion of a conventional fuel 40, in particular natural gas, is carried out in a conventional manner.
  • a gas turbine 10 of the gas turbine plant 1 hot and highly compressed exhaust gases 8, which are fed to an input 9 of a gas turbine 10 of the gas turbine plant 1.
  • these exhaust gases are expanded, so that at an output 11 of the gas turbine 10 relaxed, hot exhaust gases 12 exit.
  • the energy released in the gas turbine 10 is substantially used to drive the compressor 2 and to drive a Consumer, in particular a power generating generator 13, used.
  • the gas turbine plant 1 is also equipped with a trickle film or thin film evaporator 14, which forms an integral unit of an evaporation device and an exhaust heat recovery device.
  • the falling-film or thin-film evaporator 14 has a housing 15 which has a water inlet 16 for feedwater 17, an air inlet 18 for compressed fresh air 6 or 19, an exhaust gas inlet 20 for the hot exhaust gas 12, a steam outlet 21 for superheated steam or superheated steam Water vapor-air mixture 22, an exhaust outlet 23 for cooled exhaust gas 24, an additional input 25 for preheated feed water 26 and an additional output 27 for preheated feedwater 28 has.
  • the housing 15 includes an evaporation line assembly 29, which is formed for example from a plurality of parallel to each other extending tubes 30 and is arranged in a marked by a brace 31 evaporator section of the housing 15.
  • the evaporation line assembly 29 is supplied at the upper end of the individual tubes 30 at 32 via the water inlet 16 with the feed water 17 to be evaporated.
  • the feedwater 17 is guided so that it runs in the interior of the tubes 30 on the wall surfaces and forms a film thereon, which may be in particular thinner than 1 mm.
  • the tubes 30 and the evaporation line arrangement 29 thus contain in the evaporator section 31 a wall 39 which is symbolically marked with a continuous line and along which the feed water 17 to be evaporated runs.
  • the evaporation line assembly 29 is supplied via the air inlet 18 at 33, so below with compressed fresh air 6 and 19, whereby the tubes 30 are acted upon in their interior with the fresh air. Accordingly, the running of said wall 39 feed water is supplied with the fresh air.
  • a partial stream 38 of the fresh air 6 is branched off after the compressor 2. It is also possible to divert the fresh air required for the evaporation at another point of the compressor 2.
  • a first heat exchanger 34 is also provided, which is arranged upstream of the air inlet 18 with respect to the branched, compressed fresh air 38 and upstream of the water inlet 16 with respect to the feed water.
  • This first heat exchanger 34 is thus traversed on the one hand by the feed water and on the other hand by the compressed fresh air 38.
  • the feed water is preheated while the compressed fresh air is cooled; the cooled fresh air is designated 19 here.
  • a second heat exchanger 35 is integrated in the housing 15 of the falling film or thin film evaporator 14, which flows through the feed water on the one hand and on the other hand is acted upon by the exhaust gases of the gas turbine 10.
  • This second heat exchanger 35 is arranged downstream of the falling-film or thin-film evaporator 14 with respect to the exhaust gases and upstream of the first heat exchanger 34 or upstream of the water inlet 16 with respect to the feed water.
  • a third heat exchanger 36 is disposed in the housing 15 of the falling film or thin film evaporator 14, which is traversed on the one hand by a water vapor-air mixture 37, which emerges from the evaporator section 31 of the evaporation line 29.
  • this third heat exchanger 36 is acted upon by the hot exhaust gases 12.
  • this third heat exchanger 36 is thus arranged upstream of the evaporator section 31 of the evaporation line arrangement 29, while it is arranged with respect to the water vapor-air mixture 37 between the evaporator section 31 and the steam-air mixture outlet 21, ie upstream of the gas turbine 10 is.
  • the Vapor line assembly 29 forms with its evaporator section 31 inside an evaporator, while externally forms an exhaust heat recovery device, which can also be supplemented by the second heat exchanger 35 and / or the third heat exchanger 36.
  • the fresh air 19 acts on the feed water 17 running along the evaporator wall 39 formed by the inside of the tubes 30 in the counterflow principle.
  • the tubes 30 act on the fresh air 19 and the hot exhaust gas 12 in the housing 15, the tubes 30 according to the countercurrent principle.
  • the first heat exchanger 34, the second heat exchanger 35 and the third heat exchanger 36 flows through the countercurrent principle.
  • the gas turbine plant 1 is operated as follows:
  • the compressor 2 compresses fresh air 6, of which the fraction denoted by 38 is supplied to the first heat exchanger 34.
  • the compressed and cooled fresh air 19 is supplied via the air inlet 18 of the evaporation line 29, in which it mixes with the feed water evaporating therein, the fresh air 19 also the transport of the designated water vapor-air mixture from the Evaporating line arrangement 29 ensures.
  • the hot exhaust gases 12 enter the housing 15 and initially act on the third heat exchanger 36 and cause it to overheat the water vapor-air mixture 37, whereby the desired superheated steam-air mixture 22 is formed.
  • the still hot exhaust gases flow around the tubes 30 on their outer sides. This means that the above-mentioned evaporator wall 39, at the inside of the feed water flows along, outside is applied to the still hot exhaust gas.
  • the pipes 30 preferably made of a relatively good heat conducting material, for. As steel, are produced, this results in a relatively intense heat transfer, in which on the one hand, the exhaust gases cool relatively strong, while on the other hand, an intensive evaporation of the feed water is achieved.
  • Downstream of this Verfdampferabitess 31 act on the still relatively warm exhaust gases, the second heat exchanger 35 and cause a first preheating of the feedwater.
  • the exhaust outlet 23 then exit the relatively far cooled exhaust gases 24 from the housing 15.
  • feed water 26 is introduced into the housing 15 or into the second heat exchanger 35, in which the already mentioned first preheating of the feedwater takes place.
  • the so far preheated feedwater 28 exits at the additional output 27 again from the housing 15 and enters the first heat exchanger 34.
  • a second preheating of the feedwater takes place before it enters the housing 15 or in the evaporator section 31 of the evaporation line 29 at the water inlet 16 , In this evaporator section 31 then the trickle film or thin film evaporation takes place, with the evaporated feed water mixed with the fresh air introduced at 33.
  • turbochargers or the like which are not described in more detail can be used. It may also be advantageous to introduce the feed water tangentially into the individual tubes 30, for example, to obtain a helical flow.
  • the feedwater fresh air mixture 37 formed in the evaporator section 31 then passes into the third heat exchanger 36, in which the above-described overheating of the water vapor-air mixture takes place.
  • the superheated steam-air mixture 22 can then be recycled upstream of the combustion chamber 7 into the main flow of the compressed fresh air 6.
  • the trickle-film or thin-film evaporation in the evaporator section 31 achieves intensive heat recovery from the turbine exhaust gases, whereby the efficiency of the entire system 1 increases. Furthermore, the integration of the second heat exchanger 35 and the third heat exchanger 36 in the housing 15 of the falling film or thin film evaporator 14 also leads to an increase in the overall efficiency, wherein in addition a particularly compact design is achieved.

Description

Die Erfindung betrifft ein Verfahren zum Betrieb einer Gasturbinenanlage mit den Merkmalen des Oberbegriffs des Anspruchs 1. Die Erfindung betrifft außerdem eine Gasturbinenanlage mit den Merkmalen des Oberbegriffs des Anspruchs 6. Die Erfindung betrifft des weiteren eine Verwendung eines Rieselfilm- oder Dünnfilmverdampfers.The invention relates to a method for operating a gas turbine plant having the features of the preamble of claim 1. The invention also relates to a gas turbine plant having the features of the preamble of claim 6. The invention further relates to a use of a trickle film or thin film evaporator.

Stand der TechnikState of the art

Aus der WO 98/01658 ist eine Gasturbinenanlage bekannt, die eine Gasturbine mit Wasserdampfeinspeisung, mehrere Wärmetauscher zum Wärmerückgewinn aus dem Abgas der Gasturbine, eine Verdampfer- bzw. Befeuchtungseinrichtung zur Erzeugung des Wasserdampfes sowie einen Verdichter zur Erzeugung komprimierter Frischluft aufweist. Dem Verdichter wird komprimierte Frischluft entnommen und über mehrere Wärmetauscher der Befeuchtungseinrichtung zugeführt. Dieser Befeuchtungseinrichtung wird außerdem erhitztes Speisewasser zugeführt, das verdampft und zusammen mit der komprimierten Frischluft ein Wasserdampf-Luft-Gemisch bildet. Dieses Wasserdampf-Luft-Gemisch wird über einen oder mehrere Wärmetauscher rückgeführt und stromauf der Gasturbine, insbesondere stromauf der zugehörigen Brennkammer, eingespeist. Die Erhitzung des Speisewassers sowie die Überhitzung des Wasserdampf-Luft-Gemischs erfolgen dabei in Wärmetauschern, die vom Abgas der Gasturbine beaufschlagt werden. Diese Wärmetauscher bilden dabei eine Einrichtung zum Wärmerückgewinn aus dem Abgas. Darüber hinaus kann das Abgas außerdem zur Vorerwärmung des Speisewassers in einem weiteren Wärmetauscher verwendet werden. Der Gesamtwirkungsgrad einer solchen Gasturbinenanlage hängt insbesondere davon ab, wieviel Wärmeenergie dem aus der Gasturbine austretenden Abgas entzogen werden kann.From WO 98/01658 a gas turbine plant is known which comprises a gas turbine with steam injection, a plurality of heat exchangers for heat recovery from the exhaust gas of the gas turbine, an evaporator or humidifier for generating the water vapor and a compressor for generating compressed fresh air. Compressed fresh air is taken from the compressor and fed to the humidifier via several heat exchangers. This moistening device is also supplied with heated feed water, which evaporates and forms a water vapor-air mixture together with the compressed fresh air. This water vapor-air mixture is recycled via one or more heat exchangers and fed upstream of the gas turbine, in particular upstream of the associated combustion chamber. The heating of the feedwater and the overheating of the water vapor-air mixture carried out in heat exchangers, which are acted upon by the exhaust gas of the gas turbine. These heat exchangers form a Device for recovering heat from the exhaust gas. In addition, the exhaust gas can also be used for preheating the feedwater in another heat exchanger. The overall efficiency of such a gas turbine plant depends in particular on how much heat energy can be withdrawn from the exhaust gas leaving the gas turbine.

Aus der EP 0 843 083 ist eine Vorrichtung bekannt, mit deren Hilfe ein flüssiger Brennstoff mittels eines Spülgases aufbereitet wird, um so den flüssigen Brennstoff hinsichtlich des volumetrischen Heizwertes an einen gasförmigen Brennstoff anzugleichen. Diese Vorrichtung enthält zu diesem Zweck ein Verdampferrohr, das aus einem gut wärmeleitenden Material besteht und mit einer Heizeinrichtung zusammenwirkt. Der flüssige Brennstoff wird dabei so in das Verdampferrohr oben eingeleitet, das er entlang der Innenfläche des Verdampferrohres abläuft und dabei einen relativ dünnen Film bildet. Durch die Beheizung des Verdampferrohres kann der Brennstofffilm leicht verdampfen. Gleichzeitig wird von unten das Spülgas in das Verdampferrohr eingeleitet, so dass sich dieses mit dem Brennstoffdampf vermischt; gleichzeitig wird dadurch der Brennstoff abtransportiert. Auf diese Weise wird die Dichte des Brennstoff-Spülgasgemisches so eingestellt, dass sich der gewünschte volumetrische Heizwert ergibt. Eine derartige Vorrichtung kann auch als "Rieselfilm- oder Dünnfilmverdampfer" bezeichnet werden.From EP 0 843 083 a device is known with the aid of which a liquid fuel is treated by means of a purge gas so as to equalize the liquid fuel with respect to the volumetric calorific value of a gaseous fuel. This device contains for this purpose an evaporator tube, which consists of a good heat conducting material and cooperates with a heater. The liquid fuel is introduced into the top of the evaporator tube so that it runs along the inner surface of the evaporator tube and thereby forms a relatively thin film. By heating the evaporator tube of the fuel film can easily evaporate. At the same time, the purge gas is introduced into the evaporator tube from below, so that it mixes with the fuel vapor; at the same time the fuel is transported away. In this way, the density of the fuel-purge gas mixture is adjusted so as to give the desired volumetric calorific value. Such a device may also be referred to as a "trickle-film or thin-film evaporator".

Darstellung der ErfindungPresentation of the invention

Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für eine Gasturbinenanlage sowie für ein zugehöriges Betriebsverfahren der eingangs genannten Art eine Ausführungsform anzugeben, die für die Gasturbinenanlage einen erhöhten Gesamtwirkungsgrad ermöglicht.The invention, as characterized in the claims, deals with the problem of specifying for a gas turbine plant and for an associated operating method of the type mentioned an embodiment which allows for the gas turbine plant increased overall efficiency.

Erfindungsgemäß wird dieses Problem durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie durch eine Gasturbinenanlage mit den Merkmalen des Anspruchs 6 gelöst. Das der Erfindung zugrundeliegende Problem wird außerdem durch eine Verwendung mit den Merkmalen des Anspruchs 14 gelöst. Vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen wiedergegeben.According to the invention, this problem is solved by a method having the features of claim 1 and by a gas turbine plant having the features of Claim 6 solved. The problem underlying the invention is also achieved by use with the features of claim 14. Advantageous embodiments are given in the dependent claims.

Durch die erfindungsgemäße Anwendung einer Rieselfilm- oder Dünnfilmverdampfung beim Verdampfen des Speisewassers kann dem Abgas der Gasturbine mehr Wärme entzogen werden als bei einer herkömmlichen Speisewasserverdampfung. Auf diese Weise kann der Gesamtwirkungsgrad der Anlage erhöht werden. Die intensive Kühlwirkung der Rieselfilm- oder Dünnfilmverdampfung beruht insbesondere auf der hohen Wärmeübertragung zwischen der Wandung und dem Speisewasser und auf dem direkten Kontakt der Wandung mit dem daran entlang ablaufenden Speisewasser.The inventive use of a trickle-film or thin-film evaporation during evaporation of the feed water, more heat can be removed from the exhaust gas of the gas turbine than in a conventional feed water evaporation. In this way, the overall efficiency of the system can be increased. The intensive cooling effect of falling film or thin film evaporation is based, in particular, on the high heat transfer between the wall and the feed water and on the direct contact of the wall with the feed water running along it.

Eine Verbesserung der Verdampfungswirkung kann dadurch erreicht werden, dass die Frischluft und das Abgas die Wandung, an der das Speisewasser abläuft, nach dem Gegenstromprinzip beaufschlagen.An improvement of the evaporation effect can be achieved in that the fresh air and the exhaust gas act on the wall, where the feed water drains, according to the countercurrent principle.

Eine weitere Verbesserung der Verdampfungsleistung kann dadurch erzielt werden, dass das Speisewasser vor seiner Verdampfung vorgewärmt wird. Hierzu kann einerseits das Speisewasser in einem ersten Wärmetauscher mit der im Verdichter komprimierten und dadurch erhitzten Frischluft im Wärmeaustausch stehen. Alternativ oder zusätzlich kann das Speisewasser über einen zweiten Wärmetauscher mit dem Abgas in wärmeübertragender Verbindung stehen, das bereits durch die Rieselfilm- oder Dünnfilmverdampfung abgekühlt ist.A further improvement of the evaporation performance can be achieved by preheating the feed water before it evaporates. For this purpose, on the one hand, the feed water in a first heat exchanger with the compressed in the compressor and thereby heated fresh air are in heat exchange. Alternatively or additionally, the feed water can be in heat-transmitting connection via a second heat exchanger with the exhaust gas, which has already cooled by the trickle film or thin film evaporation.

Des weiteren ist es sinnvoll, die Überhitzung des Wasserdampf-Luft-Gemischs ebenfalls mit Hilfe der im Abgas enthaltenden Wärme durchzuführen, was mittels eines dritten Wärmetauschers realisierbar ist, der einerseits im Dampfpfad stromab der Rieselfilm- oder Dünnfilmverdampfung und andererseits im Abgaspfad stromauf der Rieselfilm- oder Dünnfilmverdampfung angeordnet ist.Furthermore, it makes sense to also perform the overheating of the water vapor-air mixture with the help of the heat contained in the exhaust gas, which can be realized by means of a third heat exchanger, on the one hand in the vapor path downstream of Rieselfilm- or thin film evaporation and on the other hand in the exhaust path upstream of the Rieselfilm- or thin film evaporation is arranged.

Bei einer besonders vorteilhaften Ausführungsform kann wenigstens einer der genannten Wärmetauscher eine integrale Einheit mit dem Rieselfilm- oder Dünnfilmverdampfer bilden, wodurch Leitungsverluste vermieden werden können.In a particularly advantageous embodiment, at least one of said heat exchangers can form an integral unit with the falling film or thin film evaporator, whereby line losses can be avoided.

Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen.Other important features and advantages of the invention will become apparent from the dependent claims.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Ein bevorzugtes Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Die einzige Figur 1 zeigt eine stark vereinfachte Prinzipdarstellung einer Gasturbinenanlage nach der Erfindung.A preferred embodiment of the invention is illustrated in the drawing and will be explained in more detail in the following description. The sole FIGURE 1 shows a greatly simplified schematic representation of a gas turbine plant according to the invention.

Wege zur Ausführung der ErfindungWays to carry out the invention

Entsprechend Figur 1 weist eine erfindungsgemäße Gasturbinenanlage 1 einen Verdichter 2 auf, dessen Eingang 3 mit Frischluft 4, z. B. aus der Umgebung, versorgt wird. Im Betrieb der Gasturbinenanlage 1 komprimiert der Verdichter 2 die Frischluft, so dass an einem Ausgang 5 des Verdichters 2 komprimierte Frischluft 6 austritt. Die Hauptmenge der komprimierten Frischluft 6 wird einer Brennkammer 7 der Gasturbinenanlage 1 zugeführt, in der in herkömmlicher Weise eine Verbrennung eines üblichen Brennstoffs 40, insbesondere Erdgas, durchgeführt wird. Dementsprechend treten aus der Brennkammer 7 heiße und hoch komprimierte Abgase 8 aus, die einem Eingang 9 einer Gasturbine 10 der Gasturbinenanlage 1 zugeführt werden. In der Gasturbine 10 werden diese Abgase entspannt, so dass bei einem Ausgang 11 der Gasturbine 10 entspannte, heiße Abgase 12 austreten. Die in der Gasturbine 10 dabei freigesetzte Energie wird im wesentlichen zum Antrieb des Verdichters 2 sowie zum Antrieb eines Verbrauchers, insbesondere eines zur Stromerzeugung dienenden Generators 13, verwendet.According to FIG. 1, a gas turbine installation 1 according to the invention has a compressor 2, the inlet 3 of which is supplied with fresh air 4, e.g. B. from the environment is supplied. During operation of the gas turbine plant 1, the compressor 2 compresses the fresh air, so that at an output 5 of the compressor 2 compressed fresh air 6 exits. The majority of the compressed fresh air 6 is supplied to a combustion chamber 7 of the gas turbine plant 1, in which combustion of a conventional fuel 40, in particular natural gas, is carried out in a conventional manner. Accordingly, out of the combustion chamber 7 hot and highly compressed exhaust gases 8, which are fed to an input 9 of a gas turbine 10 of the gas turbine plant 1. In the gas turbine 10, these exhaust gases are expanded, so that at an output 11 of the gas turbine 10 relaxed, hot exhaust gases 12 exit. The energy released in the gas turbine 10 is substantially used to drive the compressor 2 and to drive a Consumer, in particular a power generating generator 13, used.

Die erfindungsgemäße Gasturbinenanlage 1 ist außerdem mit einem Rieselfilm- oder Dünnfilmverdampfer 14 ausgestattet, der eine integrale Einheit aus einer Verdampfungseinrichtung und einer Abgaswärmerückgewinnungseinrichtung bildet. Der Rieselfilm- oder Dünnfilmverdampfer 14 weist ein Gehäuse 15 auf, das einen Wassereingang 16 für Speisewasser 17, einen Lufteingang 18 für komprimierte Frischluft 6 bzw. 19, einen Abgaseingang 20 für das heiße Abgas 12, einen Dampfausgang 21 für überhitzten Wasserdampf bzw. für überhitztes Wasserdampf-Luft-Gemisch 22, einen Abgasausgang 23 für abgekühltes Abgas 24, einen Zusatzeingang 25 für vorzuwärmendes Speisewasser 26 sowie einen Zusatzausgang 27 für vorgewärmtes Speisewasser 28 aufweist. Desweiteren enthält das Gehäuse 15 eine Verdampfungsleitungsanordnung 29, die beispielsweise aus einer Vielzahl parallel zu einander verlaufender Rohre 30 gebildet ist und in einem durch eine geschweifte Klammer 31 gekennzeichneten Verdampferabschnitt des Gehäuses 15 angeordnet ist. Die Verdampfungsleitungsanordnung 29 wird am oberen Ende der einzelnen Rohre 30 bei 32 über den Wassereingang 16 mit dem zu verdampfenden Speisewasser 17 versorgt. Das Speisewasser 17 wird dabei so geführt, dass es im Inneren der Rohre 30 an deren Wandflächen abläuft und daran einen Film bildet, der insbesondere dünner als 1 mm sein kann. Die Rohre 30 bzw. die Verdampfungsleitungsanordnung 29 enthalten somit im Verdampferabschnitt 31 eine mit ununterbrochener Linie symbolisch gekennzeichnete Wandung 39, entlang der das zu verdampfende Speisewasser 17 abläuft.The gas turbine plant 1 according to the invention is also equipped with a trickle film or thin film evaporator 14, which forms an integral unit of an evaporation device and an exhaust heat recovery device. The falling-film or thin-film evaporator 14 has a housing 15 which has a water inlet 16 for feedwater 17, an air inlet 18 for compressed fresh air 6 or 19, an exhaust gas inlet 20 for the hot exhaust gas 12, a steam outlet 21 for superheated steam or superheated steam Water vapor-air mixture 22, an exhaust outlet 23 for cooled exhaust gas 24, an additional input 25 for preheated feed water 26 and an additional output 27 for preheated feedwater 28 has. Furthermore, the housing 15 includes an evaporation line assembly 29, which is formed for example from a plurality of parallel to each other extending tubes 30 and is arranged in a marked by a brace 31 evaporator section of the housing 15. The evaporation line assembly 29 is supplied at the upper end of the individual tubes 30 at 32 via the water inlet 16 with the feed water 17 to be evaporated. The feedwater 17 is guided so that it runs in the interior of the tubes 30 on the wall surfaces and forms a film thereon, which may be in particular thinner than 1 mm. The tubes 30 and the evaporation line arrangement 29 thus contain in the evaporator section 31 a wall 39 which is symbolically marked with a continuous line and along which the feed water 17 to be evaporated runs.

Die Verdampfungsleitungsanordnung 29 wird über den Lufteingang 18 bei 33, also unten mit komprimierter Frischluft 6 bzw. 19 versorgt, wodurch die Rohre 30 in ihrem Inneren mit der Frischluft beaufschlagt werden. Dementsprechend ist auch das an der genannten Wandung 39 ablaufende Speisewasser mit der Frischluft beaufschlagt.The evaporation line assembly 29 is supplied via the air inlet 18 at 33, so below with compressed fresh air 6 and 19, whereby the tubes 30 are acted upon in their interior with the fresh air. Accordingly, the running of said wall 39 feed water is supplied with the fresh air.

Zur Versorgung des Rieselfilm- oder Dünnfilmverdampfers 14 mit komprimierter Frischluft 6 wird ein Teilstrom 38 der Frischluft 6 nach dem Verdichter 2 abgezweigt. Ebenso ist es möglich, die für die Verdampfung benötigte Frischluft an einer anderen Stelle des Verdichters 2 abzuzweigen.To supply the trickle-film or thin-film evaporator 14 with compressed fresh air 6, a partial stream 38 of the fresh air 6 is branched off after the compressor 2. It is also possible to divert the fresh air required for the evaporation at another point of the compressor 2.

In der hier gezeigten Ausführungsform ist außerdem ein erster Wärmetauscher 34 vorgesehen, der bezüglich der abgezweigten, komprimierten Frischluft 38 stromauf des Lufteingangs 18 und bezüglich des Speisewassers stromauf des Wassereingangs 16 angeordnet ist. Dieser erste Wärmetauscher 34 wird somit einerseits vom Speisewasser und andererseits von der komprimierten Frischluft 38 durchströmt. Hierdurch wird das Speisewasser vorgewärmt, während die komprimierte Frischluft abgekühlt wird; die abgekühlte Frischluft ist hier mit 19 bezeichnet.In the embodiment shown here, a first heat exchanger 34 is also provided, which is arranged upstream of the air inlet 18 with respect to the branched, compressed fresh air 38 and upstream of the water inlet 16 with respect to the feed water. This first heat exchanger 34 is thus traversed on the one hand by the feed water and on the other hand by the compressed fresh air 38. As a result, the feed water is preheated while the compressed fresh air is cooled; the cooled fresh air is designated 19 here.

Entsprechend der hier gezeigten speziellen Ausführungsform ist in das Gehäuse 15 des Rieselfilm- oder Dünnfilmverdampfers 14 ein zweiter Wärmetauscher 35 integriert, der einerseits vom Speisewasser durchströmt und andererseits mit den Abgasen der Gasturbine 10 beaufschlagt ist. Dieser zweiter Wärmetauscher 35 ist dabei bezüglich der Abgase stromab des Rieselfilm- oder Dünnfilmverdampfers 14 und bezüglich des Speisewassers stromauf des ersten Wärmetauschers 34 bzw. stromauf des Wassereingangs 16 angeordnet.According to the specific embodiment shown here, a second heat exchanger 35 is integrated in the housing 15 of the falling film or thin film evaporator 14, which flows through the feed water on the one hand and on the other hand is acted upon by the exhaust gases of the gas turbine 10. This second heat exchanger 35 is arranged downstream of the falling-film or thin-film evaporator 14 with respect to the exhaust gases and upstream of the first heat exchanger 34 or upstream of the water inlet 16 with respect to the feed water.

Darüber hinaus ist im Gehäuse 15 des Rieselfilm- oder Dünnfilmverdampfers 14 ein dritter Wärmetauscher 36 angeordnet, der einerseits von einem Wasserdampf-Luft-Gemisch 37 durchströmt wird, das aus dem Verdampferabschnitt 31 der Verdampfungsleitungsanordnung 29 austritt. Andererseits ist dieser dritte Wärmetauscher 36 mit den heißen Abgasen 12 beaufschlagt. Hinsichtlich der Abgase ist dieser dritte Wärmetauscher 36 somit stromauf des Verdampferabschnitts 31 der Verdampfungsleitungsanordnung 29 angeordnet, während er hinsichtlich des Wasserdampf-Luft-Gemischs 37 zwischen dem Verdampferabschnitt 31 und dem Dampf-Luft-Gemisch-Ausgang 21, also stromauf der Gasturbine 10, angeordnet ist. Die Verdampfungsleitungsanordnung 29 bildet mit ihrem Verdampferabschnitt 31 innen eine Verdampfungseinrichtung, während sie außen eine AbgaswärmeRückgewinnungseinrichtung bildet, die außerdem durch den zweiten Wärmetauscher 35 und/oder den dritten Wärmetauscher 36 ergänzt sein kann.In addition, a third heat exchanger 36 is disposed in the housing 15 of the falling film or thin film evaporator 14, which is traversed on the one hand by a water vapor-air mixture 37, which emerges from the evaporator section 31 of the evaporation line 29. On the other hand, this third heat exchanger 36 is acted upon by the hot exhaust gases 12. With regard to the exhaust gases, this third heat exchanger 36 is thus arranged upstream of the evaporator section 31 of the evaporation line arrangement 29, while it is arranged with respect to the water vapor-air mixture 37 between the evaporator section 31 and the steam-air mixture outlet 21, ie upstream of the gas turbine 10 is. The Vapor line assembly 29 forms with its evaporator section 31 inside an evaporator, while externally forms an exhaust heat recovery device, which can also be supplemented by the second heat exchanger 35 and / or the third heat exchanger 36.

Durch die gewählte Anordnung beaufschlagt die Frischluft 19 das entlang der durch die Innenseite der Rohre 30 gebildete Verdampferwandung 39 ablaufende Speisewasser 17 nach dem Gegenstromprinzip. In entsprechender Weise beaufschlagen die Frischluft 19 und das heiße Abgas 12 im Gehäuse 15 die Rohre 30 nach dem Gegenstromprinzip. Ebenso werden der erste Wärmetauscher 34, der zweite Wärmetauscher 35 und der dritte Wärmetauscher 36 nach dem Gegenstromprinzip durchströmt.By virtue of the selected arrangement, the fresh air 19 acts on the feed water 17 running along the evaporator wall 39 formed by the inside of the tubes 30 in the counterflow principle. In a corresponding manner act on the fresh air 19 and the hot exhaust gas 12 in the housing 15, the tubes 30 according to the countercurrent principle. Likewise, the first heat exchanger 34, the second heat exchanger 35 and the third heat exchanger 36 flows through the countercurrent principle.

Erfindungsgemäß wird die Gasturbinenanlage 1 wie folgt betrieben:According to the invention, the gas turbine plant 1 is operated as follows:

Im Betrieb der Gasturbinenanlage 1 komprimiert der Verdichter 2 Frischluft 6, von welcher der mit 38 bezeichnete Anteil dem ersten Wärmetauscher 34 zugeführt wird. Nach dem ersten Wärmetauscher 34 wird die komprimierte und abgekühlte Frischluft 19 über den Lufteingang 18 der Verdampfungsleitungsanordnung 29 zugeführt, in der sie sich mit dem darin verdampfenden Speisewasser vermischt, wobei die Frischluft 19 außerdem den Transport des mit 37 bezeichneten Wasserdampf-Luft-Gemischs aus der Verdampfungsleitungsanordnung 29 gewährleistet.During operation of the gas turbine plant 1, the compressor 2 compresses fresh air 6, of which the fraction denoted by 38 is supplied to the first heat exchanger 34. After the first heat exchanger 34, the compressed and cooled fresh air 19 is supplied via the air inlet 18 of the evaporation line 29, in which it mixes with the feed water evaporating therein, the fresh air 19 also the transport of the designated water vapor-air mixture from the Evaporating line arrangement 29 ensures.

Am Abgaseingang 20 treten die heißen Abgase 12 in das Gehäuse 15 ein und beaufschlagen zunächst den dritten Wärmetauscher 36 und bewirken darin eine Überhitzung des Wasserdampf-Luft-Gemischs 37, wodurch das gewünschte überhitzte Wasserdampf-Luft-Gemisch 22 entsteht. Nach dem dritten Wärmetauscher 36 umströmen die noch immer heißen Abgase die Rohre 30 an deren Außenseiten. Das bedeutet, dass die vorstehend genannte Verdampferwandung 39, an der innen das Speisewasser entlang abfließt, außen mit dem noch immer heißen Abgas beaufschlagt wird. Da die Rohre 30 vorzugsweise aus einem relativ gut wärmeleitenden Material, z. B. Stahl, hergestellt sind, ergibt sich dabei ein relativ intensiver Wärmeübergang, bei dem sich einerseits die Abgase relativ stark abkühlen, während andererseits eine intensive Verdampfung des Speisewassers erreicht wird. Stromab dieses Verfdampferabschnitts 31 beaufschlagen die noch immer relativ warmen Abgase den zweiten Wärmetauscher 35 und bewirken darin eine erste Vorwärmung des Speisewassers. Am Abgasausgang 23 treten dann die relativ weit abgekühlten Abgase 24 aus dem Gehäuse 15 aus.At the exhaust inlet 20, the hot exhaust gases 12 enter the housing 15 and initially act on the third heat exchanger 36 and cause it to overheat the water vapor-air mixture 37, whereby the desired superheated steam-air mixture 22 is formed. After the third heat exchanger 36, the still hot exhaust gases flow around the tubes 30 on their outer sides. This means that the above-mentioned evaporator wall 39, at the inside of the feed water flows along, outside is applied to the still hot exhaust gas. Since the pipes 30 preferably made of a relatively good heat conducting material, for. As steel, are produced, this results in a relatively intense heat transfer, in which on the one hand, the exhaust gases cool relatively strong, while on the other hand, an intensive evaporation of the feed water is achieved. Downstream of this Verfdampferabschnitts 31 act on the still relatively warm exhaust gases, the second heat exchanger 35 and cause a first preheating of the feedwater. At the exhaust outlet 23 then exit the relatively far cooled exhaust gases 24 from the housing 15.

Am Zusatzeingang 25 wird relativ kühles Speisewasser 26 in das Gehäuse 15 bzw. in den zweiten Wärmetauscher 35 eingeleitet, in dem die bereits oben genannte erste Vorwärmung des Speisewassers stattfindet. Das insoweit vorgewärmte Speisewasser 28 tritt am Zusatzausgang 27 wieder aus dem Gehäuse 15 aus und gelangt in den ersten Wärmetauscher 34. Dort erfolgt eine zweite Vorwärmung des Speisewassers, bevor es am Wassereingang 16 in das Gehäuse 15 bzw. in den Verdampferabschnitt 31 der Verdampfungsleitungsanordnung 29 eintritt. In diesem Verdampferabschnitt 31 findet dann die Rieselfilm- oder Dünnfilmverdampfung statt, wobei sich das verdampfte Speisewasser mit der bei 33 eingeleiteten Frischluft vermischt. Um eine intensive Durchmischung zu erhalten, können nicht näher beschriebene Turbolatoren oder dergleichen eingesetzt werden. Ebenso kann es vorteilhaft sein, das Speisewasser tangential in die einzelnen Rohre 30 einzuleiten, um beispielsweise eine schraubenförmige Strömung zu erhalten.At the additional input 25, relatively cool feed water 26 is introduced into the housing 15 or into the second heat exchanger 35, in which the already mentioned first preheating of the feedwater takes place. The so far preheated feedwater 28 exits at the additional output 27 again from the housing 15 and enters the first heat exchanger 34. There, a second preheating of the feedwater takes place before it enters the housing 15 or in the evaporator section 31 of the evaporation line 29 at the water inlet 16 , In this evaporator section 31 then the trickle film or thin film evaporation takes place, with the evaporated feed water mixed with the fresh air introduced at 33. In order to obtain an intensive mixing, turbochargers or the like which are not described in more detail can be used. It may also be advantageous to introduce the feed water tangentially into the individual tubes 30, for example, to obtain a helical flow.

Das im Verdampferabschnitt 31 gebildete Speisewasserdampf-FrischluftGemisch 37 gelangt dann in den dritten Wärmetauscher 36, in dem die oben geschilderte Überhitzung des Wasserdampf-Luft-Gemischs erfolgt. Das überhitzte Wasserdampf-Luft-Gemisch 22 kann dann stromauf der Brennkammer 7 in den Hauptstrom der komprimierten Frischluft 6 rückgeführt werden.The feedwater fresh air mixture 37 formed in the evaporator section 31 then passes into the third heat exchanger 36, in which the above-described overheating of the water vapor-air mixture takes place. The superheated steam-air mixture 22 can then be recycled upstream of the combustion chamber 7 into the main flow of the compressed fresh air 6.

Durch die Rieselfilm- oder Dünnfilmverdampfung im Verdampferabschnitt 31 wird eine intensive Wärmerückgewinnung aus den Turbinenabgasen erreicht, wodurch sich der Wirkungsgrad der Gesamtanlage 1 erhöht. Desweiteren führt auch die Integration des zweiten Wärmetauschers 35 und des dritten Wärmetauschers 36 in das Gehäuse 15 des Rieselfilm- oder Dünnfilmverdampfers 14 zu einer Erhöhung des Gesamtwirkungsgrads, wobei außerdem eine besonders kompakte Bauweise erreicht wird.The trickle-film or thin-film evaporation in the evaporator section 31 achieves intensive heat recovery from the turbine exhaust gases, whereby the efficiency of the entire system 1 increases. Furthermore, the integration of the second heat exchanger 35 and the third heat exchanger 36 in the housing 15 of the falling film or thin film evaporator 14 also leads to an increase in the overall efficiency, wherein in addition a particularly compact design is achieved.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
GasturbinenanlageGas turbine plant
22
Verdichtercompressor
33
Eingang von 2Entrance of 2
44
unkomprimierte Frischluftuncompressed fresh air
55
Ausgang von 2Output of 2
66
komprimierte Frischluftcompressed fresh air
77
Brennkammercombustion chamber
88th
komprimiertes, heißes Abgascompressed, hot exhaust gas
99
Eingang von 10Entrance of 10
1010
Gasturbinegas turbine
1111
Ausgang von 10Output of 10
1212
entspanntes, heißes Abgasrelaxed, hot exhaust
1313
Generatorgenerator
1414
Rieselfilm- oder DünnfilmverdampferTrickle film or thin film evaporator
1515
Gehäuse von 14Case of 14
1616
Wassereingang von 15Water entrance from 15
1717
Speisewasser, zweifach vorgewärmtFeedwater, twice preheated
1818
Lufteingang von 15Air intake of 15
1919
gekühlte komprimierte Frischluftcooled compressed fresh air
2020
Abgaseingang von 15Exhaust gas inlet of 15
2121
Dampf-Luft-Gemisch-Ausgang von 15Steam-air mixture output of 15
2222
überhitztes Wasserdampf-Luft-Gemischoverheated water vapor-air mixture
2323
Abgasausgang von 15Exhaust outlet of 15
2424
gekühltes Abgascooled exhaust gas
2525
Zusatzeingang von 15Additional entrance from 15
2626
ungewärmtes SpeisewasserUnheated feed water
2727
Zusatzausgang von 15Additional output of 15
2828
Speisewasser, einfach vorgewärmtFeedwater, simply preheated
2929
VerdampfungsleitungsanordnungEvaporation line arrangement
3030
Rohrpipe
3131
Verdampferabschnittevaporator section
3232
Eingang von 29 für 17Entrance from 29 for 17
3333
Eingang von 29 für 19Entrance from 29 for 19
3434
erster Wärmetauscherfirst heat exchanger
3535
zweiter Wärmetauschersecond heat exchanger
3636
dritter Wärmertauscherthird heat exchanger
3737
Wasserdampf-Luft-GemischWater vapor-air mixture
3838
abgezweigte, komprimierte Frischluftbranched, compressed fresh air
3939
VerdampferwandungVerdampferwandung
4040
Brennstoffzuführungfuel supply

Claims (14)

  1. Method of operating a gas turbine plant (1),
    - in which compressed fresh air (6, 19, 38) is branched off after or from a compressor (2) and supplied to an evaporator device (14),
    - in which, in the evaporator device (14), feed water (17) is evaporated, while heat is supplied, and is mixed with the fresh air (6, 19, 38) in order to generate a steam/air mixture (22, 37),
    - in which the steam/air mixture (22, 37) is fed back upstream of a gas turbine (10),
    - in which the heat required for the evaporation of the feed water (17, 26, 28) is at least partially extracted from an exhaust gas (12) of the gas turbine (10),
    characterized in that the feed water (17, 26, 28) runs down a wall arrangement (39) heated by the exhaust gas (12) and is subjected to the fresh air (6, 19, 38), the feed water (17, 26, 28) evaporating and mixing with the fresh air (6, 19, 38) and forming a steam/air mixture (22, 37), part at least of which is supplied to the gas turbine plant.
  2. Method according to Claim 1, characterized in that the wall arrangement (39) is subjected to the fresh air (6, 19, 38) and the exhaust gas (12) according to the counterflow principle.
  3. Method according to Claim 1 or 2, characterized in that the feed water (17, 26, 28) is preheated upstream of the wall arrangement (39) in a first heat exchanger (34), which is subjected to the fresh air (6, 38) before the wall arrangement (39) is subjected to the fresh air (6, 38).
  4. Method according to one of Claims 1 to 3, characterized in that the feed water (17, 26, 28) is preheated upstream of the wall arrangement (39) and, in particular, upstream of the first heat exchanger (34) in a second heat exchanger (35), which is subjected to the exhaust gas (12) after the latter has heated the wall arrangement (39).
  5. Method according to one of Claims 1 to 4, characterized in that the steam/air mixture (22, 37) is superheated upstream of the wall arrangement (39) in a third heat exchanger (36), which is subjected to the exhaust gas (12) before the latter heats the wall arrangement (39).
  6. Gas turbine plant, comprising a gas turbine (10) with steam/air injection, a device (29, 35, 36) for recovering the heat from the exhaust gas (12) of the gas turbine (10), an evaporator device (29, 31) for generating a steam/air mixture (37), a compressor (2) for generating compressed fresh air (6, 19, 38), the evaporator device (29, 31) being supplied with feed water (17, 26, 28), compressed fresh air (6, 19, 38) from the compressor (2) and heat from the exhaust gas (12), characterized in that the device for recovering the heat and the evaporator device form a unit which is configured as a trickling film or thin film evaporator (14), which has a water inlet (16) for the feed water (17), an air inlet (18) for the fresh air (19, 38), an exhaust gas inlet (20) for the hot exhaust gas (12), an exhaust gas outlet (23) for the cold exhaust gas (24), a steam/air mixture outlet (21) for the hot steam/air mixture (22, 37) and an evaporator wall arrangement (39), along which the feed water (17) runs down and is subjected to the fresh air (19, 38), on one side, and which is subjected to the exhaust gas (12), on the other side.
  7. Gas turbine plant according to Claim 6, characterized in that the trickling film or thin film evaporator (14) has a casing (15) in which is accommodated an evaporator line arrangement (29), which has or forms the wall arrangement (39) in an evaporator section (31), the evaporation line arrangement (29) being subjected from the outside by the exhaust gas (12) within the casing (15), the feed water (17) running down the wall arrangement (39) and being subjected to the fresh air (6) in the evaporator section (31) within the evaporation line arrangement (29).
  8. Gas turbine plant according to Claim 6 or 7, characterized in that the air inlet (18) and steam outlet (21) and the exhaust gas inlet (20) and exhaust gas outlet (23) are arranged in such a way that flow can take place through the trickling film or thin film evaporator (14) according to the counterflow principle.
  9. Gas turbine plant according to one of Claims 6 to 8, characterized in that a first heat exchanger (34) is provided through which feed water (26, 28) can flow upstream of the wall arrangement (39), on one side, and fresh air (6, 38) can flow upstream of the wall arrangement (39), on the other side.
  10. Gas turbine arrangement according to one of Claims 6 to 9, characterized in that a second heat exchanger (35) is provided through which feed water (26) can flow upstream of the wall arrangement (39), in particular upstream of the first heat exchanger (34), on one side, and exhaust gas (12) can flow upstream of the wall arrangement (39), on the other side.
  11. Gas turbine arrangement according to Claim 10, characterized in that the second heat exchanger (35) is integrated into the trickling film or thin film evaporator (14), in particular into the casing (15).
  12. Gas turbine plant according to one of Claims 6 to 11, characterized in that a third heat exchanger (36) is provided through which steam/air mixture (37) can flow downstream of the wall arrangement (39), on one side, and exhaust gas (12) can flow upstream of the wall arrangement (39), on the other side.
  13. Gas turbine plant according to Claim 12, characterized in that the third heat exchanger (36) is integrated into the trickling film or thin film evaporator (14), in particular into the casing (15).
  14. Use of a trickling film or thin film evaporator (14), in which a liquid medium (17, 26, 28) runs down a heated wall arrangement (39) and is subjected to a gaseous medium (6, 19, 38), the liquid medium (17, 26, 28) being evaporated, mixed and led away with the gaseous medium (6, 19, 38) for the recovery of heat from an exhaust gas (12) of a gas turbine (10) with steam injection, the exhaust gas (12) being used for heating the wall arrangement (39), the liquid medium being formed by feed water (17, 26, 28), the gaseous medium being formed by fresh air (6, 19, 38) compressed in a compressor (2) and the evaporated feed water (17, 26, 28), mixed with the fresh air (6, 19, 38), forming the steam/air mixture (22, 37) for the injection.
EP02405518A 2001-07-13 2002-06-24 Gas turbine plant and method of operation therefor Expired - Lifetime EP1275820B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH12902001 2001-07-13
CH12902001 2001-07-13

Publications (2)

Publication Number Publication Date
EP1275820A1 EP1275820A1 (en) 2003-01-15
EP1275820B1 true EP1275820B1 (en) 2006-04-05

Family

ID=4565342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02405518A Expired - Lifetime EP1275820B1 (en) 2001-07-13 2002-06-24 Gas turbine plant and method of operation therefor

Country Status (3)

Country Link
US (1) US6708497B2 (en)
EP (1) EP1275820B1 (en)
DE (1) DE50206291D1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034446A1 (en) * 2003-08-11 2005-02-17 Fielder William Sheridan Dual capture jet turbine and steam generator
JP4275690B2 (en) * 2006-09-07 2009-06-10 株式会社日立製作所 Gas turbine system
US7721543B2 (en) * 2006-10-23 2010-05-25 Southwest Research Institute System and method for cooling a combustion gas charge
EP2071157B1 (en) * 2007-12-10 2014-01-15 Alstom Technology Ltd Method for controlling a gas turbine in a power plant
US8833079B2 (en) * 2008-09-18 2014-09-16 Douglas W. P. Smith Method and apparatus for generating electricity
EP2354651B1 (en) * 2010-01-18 2014-07-23 Alstom Technology Ltd System for combined flue heat recovery and dust precipitation improvement as retrofit solution for existing coal-fired power stations

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513488A (en) * 1994-12-19 1996-05-07 Foster Wheeler Development Corporation Power process utilizing humidified combusted air to gas turbine
ATE218673T1 (en) * 1996-07-10 2002-06-15 Vattenfall Ab Publ METHOD AND APPARATUS FOR PROVIDING MECHANICAL WORK AND, IF DESIRED, HEAT IN A GAS EVAPORATION TURBINE PROCESS
DE19647492A1 (en) 1996-11-16 1998-05-20 Abb Research Ltd Method and device for feeding a gas turbine with both liquid and gaseous fuels
JPH11324710A (en) * 1998-05-20 1999-11-26 Hitachi Ltd Gas turbine power plant
US6578354B2 (en) * 2000-01-21 2003-06-17 Hitachi, Ltd. Gas turbine electric power generation equipment and air humidifier

Also Published As

Publication number Publication date
EP1275820A1 (en) 2003-01-15
US20030014977A1 (en) 2003-01-23
US6708497B2 (en) 2004-03-23
DE50206291D1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
DE2810191C3 (en) Method and device for extracting heat from at least one flowing heat transfer medium
EP1432889B1 (en) Method and device for the starting of emission-free gas turbine power stations
DE19745272C2 (en) Gas and steam turbine plant and method for operating such a plant
DE10041413B4 (en) Method for operating a power plant
DE60126721T2 (en) Combined circulation system with gas turbine
CH666253A5 (en) DEVICE FOR CHEMICAL PRODUCTION OF CARBON DIOXIDE.
DE2611890C3 (en) Arrangement for converting heat contained in a gaseous primary fluid into another type of energy
EP0591163B1 (en) Combined gas and steam turbine plant
DE2657733C2 (en) Process for partial load operation of a gas turbine plant
DE10330859A1 (en) Operating emission-free gas turbine power plant involves feeding some compressed circulated gas directly to combustion chamber, cooling/humidifying some gas before feeding to combustion chamber
WO2000020728A1 (en) Gas and steam turbine installation
DE4321081A1 (en) Process for operating a gas and steam turbine plant and a combined cycle gas plant
DE1526897C3 (en) Gas-steam turbine plant
DE2630456C3 (en) Internal combustion engine
DE10144841C1 (en) Solar energy steam and gas turbine power plant for electricity generation has steam turbine coupled to steam generator utilizing gas turbine exhaust gas and solar-heated steam generator
WO2000011325A1 (en) Gas and steam turbine unit
EP1275820B1 (en) Gas turbine plant and method of operation therefor
DE60224344T2 (en) Gas turbine, combustion chamber therefor and method for cooling the combustion chamber
EP0981681B1 (en) Gas and steam turbine system, and refrigeration of the coolant intended for the gas turbine in such a system
DE10155508C5 (en) Method and device for generating electrical energy
EP1590603B1 (en) Air cooler for power station plant and use of such an air cooler
EP1117913B1 (en) Fuel preheating in a gas turbine
DE60126810T2 (en) TURBINE ARRANGEMENT AND METHOD FOR OPERATING A TURBINE ARRANGEMENT
DE60214665T2 (en) APPENDIX TO GENERATE BENEFIT
DE3419560A1 (en) Method for the operation of a gas turbine plant and plant for the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030613

AKX Designation fees paid

Designated state(s): DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50206291

Country of ref document: DE

Date of ref document: 20060518

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060607

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50206291

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50206291

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50206291

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50206291

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50206291

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170627

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170628

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206291

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180624