EP1275757B1 - Tubes avec diamètres intérieurs à l'échelle nanométrique - Google Patents

Tubes avec diamètres intérieurs à l'échelle nanométrique Download PDF

Info

Publication number
EP1275757B1
EP1275757B1 EP02015426A EP02015426A EP1275757B1 EP 1275757 B1 EP1275757 B1 EP 1275757B1 EP 02015426 A EP02015426 A EP 02015426A EP 02015426 A EP02015426 A EP 02015426A EP 1275757 B1 EP1275757 B1 EP 1275757B1
Authority
EP
European Patent Office
Prior art keywords
hollow fibres
hollow fibers
hollow
fibres according
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02015426A
Other languages
German (de)
English (en)
Other versions
EP1275757A2 (fr
EP1275757A3 (fr
Inventor
Haoqing Dr. Hou
Jun Zeng
Andreas Prof.Dr. Greiner
Joachim H. Prof. Dr. Wendorff
Johannes Dr. Averdung
Dierk Dr. Landwehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transmit Gesellschaft fuer Technologietransfer mbH
Original Assignee
Transmit Gesellschaft fuer Technologietransfer mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transmit Gesellschaft fuer Technologietransfer mbH filed Critical Transmit Gesellschaft fuer Technologietransfer mbH
Publication of EP1275757A2 publication Critical patent/EP1275757A2/fr
Publication of EP1275757A3 publication Critical patent/EP1275757A3/fr
Application granted granted Critical
Publication of EP1275757B1 publication Critical patent/EP1275757B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]

Definitions

  • the invention relates to nanotubes, d. H. Tubes or hollow fibers with an inner diameter in the nanometer range, a process for their preparation and the use of these tubes or hollow fibers.
  • Hollow fibers, meso- or nanotubes are generally called tubes with an inner diameter of less than 0.1 mm.
  • Tubes or hollow fibers with a small inner diameter are known and are used in particular for separation purposes z.
  • the fiber material usually consists of polymers, which moreover can have pores, ie properties of semipermeable membranes.
  • the hollow fibers used for separation purposes usually have a surface area of 100 cm 2 per cm 3 volume with an inner diameter of 75 .mu.m to 1 mm.
  • hollow fibers Another application of hollow fibers is microelectronics.
  • superconducting about 60 microns in diameter fibers are made of superconducting material by hollow fibers of polymers are filled with a mass which has superconducting properties after thermal degradation of the polymer ( JCW Cien, H. Rinsdorf et al., Adv. Mater., 2 (1990) p. 305 ).
  • Small inside diameter tubes are typically made by extrusion spinning techniques; a number of extrusion spinning processes are in Kirk-Othmer, Encyclopedia of Chemical Technology, 4th Ed. Vol. 13, pp. 317-322 described.
  • hollow fibers with an inner diameter of up to 2 ⁇ m can be produced.
  • the production of hollow fibers with smaller inner diameters is not possible with these methods.
  • the electrospinning technique (Electrostatic Spinning) can be used.
  • Polymer melts or polymer solutions are extruded in an electric field through cannulas under a low pressure.
  • Basics of this technique can z.
  • US 5 024 789 or WO 91/01695 be looked up.
  • massive fibers with a diameter of 10-3000 nm can be produced;
  • the production of hollow fibers is not possible with this technique.
  • Hollow fibers with a very small inner diameter have hitherto been possible only by electrochemical synthesis, as described in LA Chernozantonskii, Chem. Phys. Lett. 297, 257, (1998), by the methods of supramolecular chemistry (S.Demoustier-Champagne et al., Europ. Polym. J. 34, 1767, (1998) or with self-organizing membranes as templates ( E. Evans et al. Science, Vol. 273, 1996, pp. 933-995 ) accessible.
  • Carbon hollow fibers based on fullerene chemistry carbon nanotubes with single and multi-walled structures consisting of a single coiled graphite layer (layer of carbon rings condensed on all sides) or concentrically arranged graphite cylinders are known, for example, in US Pat. Fullerenes and related Structures ", Ed. A. Hirsch, Springer Verlag 1999, pp. 189-234 or N. Grobert, Nachr. Chem. Tech. Lab., 47, (1999) , 768-776.
  • Hollow fibers with inside diameters in the micron range are known. So reveal WO 97/26225 .
  • EP 0 195 353 and US 5 094 906 Hollow fibers of ceramic materials having an inner diameter of at least 1 ⁇ m; Hollow fibers of metals with an inner diameter of 1-1000 microns are in FR 12 11 581 and DE 28 23 521 described.
  • WO 01/09414 revealed, as well as the WO 02/34986 A, meso- and nanotubes with inner diameters in the range 10 nm to 50 microns, which are preferably produced by electrospinning.
  • the electrospinning process disclosed herein does not allow the production of smaller fibers, as at larger dilutions of the to be spun Materials form irregular threads with thickening.
  • hollow fibers with very small outer and / or inner diameters of different, tailored to the particular field of use materials.
  • the materials should be thermally, mechanically and chemically resilient, if appropriate have a porous structure, optionally be electrical conductors or insulators and consist of polymers, inorganics or metals.
  • the object of the present invention was therefore to provide hollow fibers of technically usable materials with an inner diameter in the nm range.
  • hollow fibers having an inner diameter in the desired dimensions can be produced precisely and from a wide variety of materials, such as polymers, inorganics or even metals.
  • the hollow fibers according to the invention preferably have inner diameters of 1 nm to 10 nm, particularly preferably 1 nm to 9 nm, very particularly preferably 1 nm to 5 nm.
  • the length of the hollow fibers is determined by the intended use and is usually 50 microns to several mm or cm.
  • the wall thickness ie the thickness of the outer walls of the hollow fibers is variable and is generally 1 to 500 nm, preferably 1 to 100 nm, particularly preferably 10 to 25 nm.
  • Hollow fibers according to the present invention have, in addition to the very small inner diameters, a number of properties that make them suitable for use in the fields of medicine, electronics, catalysis, chemical analysis, gas separation, osmosis or optics.
  • the outer walls of the hollow fibers according to the invention can be constructed of a wide variety of materials, such as, for example, polymers, metals or metal-containing inorganic compounds.
  • the outer walls may comprise a layer of these materials, ie consist entirely of them or have multiple layers of the same or different materials.
  • the very small inner diameter ensures a very high surface area to volume ratio of the hollow fibers; this may be between 500 and 2,000,000 cm 2 / cm 3 , preferably 5,000 to 1,000,000 cm 2 / cm 3 , particularly preferably 5,000 to 500,000 cm 2 / cm 3 .
  • the metal-containing, inorganic compounds of the hollow fibers according to the invention are, for example, metal oxides, metal oxide oxides, spinels, metal nitrides, metal sulfides, metal carbides, metal aluminates or titanates.
  • Boron compounds and metal-doped carbon nanotubes with single-walled and multi-walled structures consisting of a single rolled-up graphite layer (layer of carbon six-membered rings condensed on all sides) or concentrically arranged graphite cylinders are not metal-containing compounds in the sense of the present invention.
  • no metal-containing compounds in the sense of the present invention are materials similar to carbon nanotubes, with concentrically arranged polyhedral or cylindrical layer structures, such as, for example, WS 2 , MoS 2 and VS 2 .
  • Polymers in the context of the present invention are polycondensates, polyaddition compounds or polymers, but not graphite-like compounds of pure or doped carbon.
  • the process for producing the hollow fibers according to the invention can be carried out by obtaining a fiber of a first, degradable material at least one coating of at least one further material and then degrading the first material with the proviso that the hollow fiber thus obtained has an inner diameter of 1 nm to 100 nm, wherein the first degradable material contains 10 to 60 wt .-% noble metal salts and / or additionally contains a basic compound.
  • 0.1-10% by weight of a basic compound such as pyridine can be added to the first degradable material.
  • a basic compound such as pyridine
  • the degradable material is added 10-60 wt .-%, preferably 25-50 wt .-% of a noble metal salt.
  • a noble metal salt Preference is given to using platinum, nickel, cobalt, rhodium and palladium salts of organic acids such as acetate or formate.
  • This variant allows the production of nanotubes, which have small precious metal crystals on the inner wall. These nanotubes are particularly suitable as catalysts. It is possible to apply both variants at the same time.
  • first a fiber ( Fig. 1b, I ) is coated from a first, degradable material ( 1b, II ).
  • This fiber may consist of a thermally, chemically, radiation-chemically, physically, biologically, by plasma, ultrasound or by extraction with a solvent degradable material.
  • the electrospinning technique can be used.
  • the diameter of the degradable fibers should be of the same order of magnitude as the later desired inner diameter of the hollow fibers.
  • the later cavity of the hollow fibers is approximately the same size as the diameter of the degradable fibers, or coatings. The exact dimensioning depends on the materials used or their changes during the degradation process and can be determined by orientation experiments. easily determined.
  • degradable fiber materials it is possible to use organic or inorganic materials, in particular polymers such as polyesters, polyethers, polyolefins, polycarbonates, polyurethanes, natural polymers, polylactides, polyglycosides, poly- ⁇ -methylstyrene and / or polyacrylonitriles.
  • the electrospinning technique also allows the production of multicomponent fibers, i. H. Fibers with different materials in different layers or fibers with certain surface topography, d. H. with smooth or porous surfaces.
  • the surface finish of the fiber or layer of the degradable material also determines the surface topography of the following coatings. If z. B. a rough or microstructured inside of the hollow fiber desired, this can be achieved by a correspondingly rough fiber of a degradable material. Rough or microstructured fibers can be obtained by the electrospinning technique by processing a polymer solution with a readily volatilizable solvent. Furthermore, additives such as salts, eg. For example, sodium sulfate, metallic nanopowders, conductive polymers such as polypyrroles or graphite significantly increase the conductivity of the spun material.
  • salts eg. For example, sodium sulfate, metallic nanopowders, conductive polymers such as polypyrroles or graphite significantly increase the conductivity of the spun material.
  • the coating with the at least one further non-degradable material can be carried out by vapor deposition, plasma polymerization or by applying the material in a melt or in solution.
  • the coating can be done in different layers and with different materials and forms the outer wall of the hollow fiber.
  • This coating ie the structure of the outer wall may, for.
  • polymers such as poly (p-xylylene), polyacrylamide, polyimides, polyesters, polyolefins, polycarbonates, polyamides, polyethers, polyphenylene, polysilanes, polysiloxanes, polybenzimidazoles, Polybenzothiazoles, polyoxazoles, polysulphides, polyesteramides, polyarylenevinylenes, polylactides, polyetherketones, polyurethanes, polysulphones, ormocers, polyacrylates, silicones, wholly aromatic copolyesters, poly-N-vinylpyrrolidone, polyhydroxyethylmethacrylate, polymethylmethacrylate, polyethylene terephthalate, polybutyleneterephthalate, polymethacrylonitrile, polyacrylonitrile, Polyethylene terephthalate, polybutylene
  • the degradable layers or fibers can be coated with a further material which is obtained by polymerization, polycondensation or polyaddition of one or more monomers.
  • Suitable monomers for the mono- or copolymerization, addition or condensation are, for.
  • HDI 1,6-hexamethylene diisocyanate
  • HMDI 4,4'-methylenebiscyclohexyl diisocyanate
  • MDI 4,4'-methylenebis (benzyl diisocyanate)
  • 1,4-butanediol 1,4-butanediol, ethylenediamine, ethylene, styren
  • the coating, d. H. the structure of the outer wall of the hollow fibers may consist of metals of groups Ia, Ib, IIa, IIb, IIIa, IIIb, IVa, IVb, Vb, VIb, VIIb and / or VIIIb of the Periodic Table each as pure metal or alloy.
  • suitable metals are gold, palladium, aluminum, platinum, silver, titanium, cobalt, ruthenium, rhodium, sodium, potassium, calcium, lithium, vanadium, nickel, tungsten, chromium, manganese and / or silicon.
  • the coating can be carried out by vapor deposition with the metals or by decomposition of suitable organometallic compounds by CVD processes.
  • the functional groups may be attached to the inside and / or outside of the hollow fibers and improve the surface properties of the hollow fibers in separation or osmosis processes.
  • the functional groups can also be subsequently changed chemically by polymer-analogous reactions (for example, saponification of esters).
  • active substances such as antibiotics, anesthetics, proteins such as insulin, antifouling agents, agrochemicals such as herbicides or fungicides can be reversibly fixed in the hollow fibers and / or released slowly (controlled or slow-release) at a constant concentration.
  • the degradable material can be degraded thermally, chemically, radiation-induced, biologically, photochemically, by plasma, ultrasound, hydrolysis or by extraction with a solvent.
  • thermal degradation has proven.
  • the decomposition conditions are depending on the material at 100-500 ° C and 0.001 mbar to 1 bar, more preferably 0.001 to 0.1 mbar.
  • hollow fibers having different inner and outer walls and the outer walls of the hollow fibers can be composed of several layers.
  • the different layers can fulfill different functions; so the inner layer can have special release properties for z.
  • As chromatographic purposes and the outer layer have a high mechanical stability.
  • Hollow fibers according to the invention can be used in particular as a separation or storage medium for gases, liquids or particle suspensions and for the filtration or purification of mixtures of substances.
  • a membrane for gases in particular H 2 or liquids, for particle filtration, in chromatography, for oil / water separation, as an ion exchanger in dialysis, for size separation of cells, bacteria or viruses, as part of an artificial lung, to Desalination for drainage or irrigation or as a filter for drainage of fuels.
  • hollow fibers according to the invention in the sensor technology for solvent, gas, Moisture or biosensors, in capillary electrophoresis, in catalytic systems, in scanning probe microscopy or as materials in the super lightweight construction, as mechanical reinforcement analogous to glass fibers, as sound or vibration protection as a composite material or filler, as controlled release or drug delivery System, in medical separation techniques, in dialysis, as an artificial lung, protein stores or in tissue engineering.
  • the hollow fibers of the present invention may be used as a thermal insulator in clothing or sleeping bags, in photochromic or thermochromic apparel by embedding dyes within the tube interior, or as markers within the interior of the tube.
  • hollow fibers according to the invention are used in electronics, optics or power generation.
  • hollow fibers can be used to produce wires, cables or capacitors, micromachines (for example for piezoelectric deformation, nanoperistic pumps or for the deformation of photoaddressable polymers) or interlayer dielectrics.
  • micromachines for example for piezoelectric deformation, nanoperistic pumps or for the deformation of photoaddressable polymers
  • interlayer dielectrics interlayer dielectrics.
  • microreactors z For catalytic reactions, templating reactions and bioreactors, heat generation by conversion of sunlight (solar ⁇ systems), in chip technology as flexible devices or microscopy as a sensor component (eg as tips or probes for scanning probe microscopes or SNOM devices) ,
  • the hollow fibers according to the invention have a very low dielectric constant and can therefore also be used as a dielectric, in particular as an interlayer dielectric in electronic components, for. B. be used in chip production. In the production of new chip generations with even smaller dimensions or higher storage densities, interlayer dielectrics with a low dielectric constant are important. Due to the high proportion of enclosed air per volume, the hollow fibers according to the invention have a DK value of less than 4, preferably less than 3, very particularly preferably less than 2, and ideally less than 1.5.
  • the hollow fibers are preferably used as a dielectric or fleece for use as a dielectric. Due to the large surface area of the hollow fibers according to the invention, they can also be used in fuel cells, batteries or in electrochemical reactions. Advantageously, the outer wall of the hollow fibers for such uses of oxygen ion conductors such. B. perovskites. In oxidation reactions, the hollow fibers can be lapped by the educt (eg, an olefin) while passing oxygen through the voids of the fibers. The oxidation product is formed on the outside of the hollow fibers and removed.
  • the educt eg, an olefin
  • hollow fibers of the invention can be used as a catalytic system.
  • hollow fibers of noble metals such as platinum or palladium can be used as denitrification catalysts in motor vehicles.
  • Hollow fibers of the invention from cell-compatible materials or with correspondingly modified surfaces can be incorporated or introduced into cell membranes and used for the separation and recovery or removal of metabolic metabolites, enzymes and other components of the cytoplasm within cells or cytoplasmic components and thus used for the production of biopharmaceuticals ,
  • Polylactide template fibers prepared by electrospinning according to Example 1 were placed in a vapor deposition apparatus. Subsequently, 37 mg of analytically pure [2.2] paracyclophane were evaporated at 220 ° C./0.1 mbar and pyrolyzed at 800 ° C., whereby poly (p-xylylene) (PPX) formed in the sample chamber at about 20 ° C.
  • the poly (p-xylylene) / polylactide composite tissue was extracted with chloroform for 12 hours.
  • the formation of poly (pxylylene) hollow fibers with an inner diameter of about 6 to 20 nm could be confirmed by scanning electron microscopy ( Fig. 5 . 6 ).
  • Polylamide template fibers prepared by electrospinning according to Example 2 were placed in a vapor deposition apparatus. Subsequently, 37 mg of analytically pure [2.2] paracyclophane were evaporated at 220 ° C./0.1 mbar and pyrolyzed at 800 ° C., whereby poly (p-xylylene) (PPX) formed in the sample chamber at about 20 ° C.
  • PPX poly (p-xylylene)
  • the poly (-xylylene) / polyamide composite was extracted with formic acid for 24 hours.
  • the formation of the hollow fibers with an inner diameter of 45 nm can the TEM uptake in Fig. 7 be removed.
  • Polylactide template fibers prepared by electrospinning according to Example 1 were placed in a vapor deposition apparatus. Subsequently, 40 mg of analytically pure [2.2] paracyclophane were evaporated at 220 ° C./0.1 mbar and pyrolyzed at 700 ° C., whereby poly (p-xylylene) was formed in the sample chamber at about 20 ° C.
  • the poly (p-xylylene) / polylactide composite fabric was thermally treated in a vacuum oven at 285 ° C / 0.01 mbar for 8 hours.
  • the formation of poly (p-xylylene) / hollow fibers with a mean inner diameter of about 17 nm could be confirmed by scanning electron microscopy ( Fig. 8 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Catalysts (AREA)
  • Materials For Medical Uses (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Claims (24)

  1. Fibres creuses avec un diamètre intérieur de 1 nm à 100 nm et une paroi extérieure, révisée à partir de composés anorganiques contenant du métal, de polymères et/ou de métaux, caractérisées en ce que les fibres creuses sont produites selon un procédé comportant les étapes suivantes
    • production d'une fibre à partir d'un premier matériau dégradable, contenant de 10 à 60% en poids des sels de métaux précieux et/ou de plus un composé basique,
    • revêtement de la première fibre d'au moins un matériau supplémentaire,
    • dégradation du premier matériau.
  2. Fibres creuses selon la revendication 1,
    caractérisées en ce que
    le diamètre intérieur est de 1 nm à 10 nm.
  3. Fibres creuses selon la revendication 1 ou 2,
    caractérisées en ce que
    la paroi extérieure des fibres creuses est réalisée à partir de poly(p-xylylène), de polyocrylamide, de polyimides, de polyesters, de polyoléfine, de polycarbonates, de polyamides, de polyéthers, de polyphénylène, de polysilanes, de polysiloxanes, de polybenzimidazoles, de polybenzothiazoles, de polyoxazoles, de polysulfides, de polyesteramides, de polyarylène-vinylènes, de polylactides, de polyéthercétones, de polyuréthanes, de polysulfones, d'ormocers, de polyacrylates, de silicones, de copolyesters entièrement aromatiques, de poly-N-vinyle-pyrrolidone, de polyhydroxyéthylméthacrylate, de polyméthylméthacrylate, de polyéthylène téréphthalate, de polybutylène téréphthalate, de polyméthacrylonitrile, de polyacrylonitrile, de polyvinylacétate, de néoprène, de Buna N, de polybutadiène, de polytétrafluoroéthène, de cellulose (modifiée ou non modifiée), d'alginates ou de collagène, de leurs homopolymérisats ou leurs copolymérisats et/ou de leurs mélanges.
  4. Fibres creuses selon la revendication 1 ou 2,
    caractérisées en ce que
    la paroi extérieure des fibres creuses est composée à partir de métaux des groupes Ia, Ib, IIa, IIb, IIIa, IIIb, IVa, IVb, Vb, VIb, VIIb et/ou VIIIb du tableau périodique, respectivement comme métal pur ou alliage.
  5. Fibres creuses selon la revendication 1 ou 2,
    caractérisées en ce que
    la paroi extérieure des fibres creuses est réalisée à partir de verre, de vitrocéramiques, de SiOx, de pérowskite, de céramiques, d'oxydes d'aluminium ou d'oxydes de zirconium.
  6. Fibres creuses selon une des revendications 1 à 5,
    caractérisées en ce que
    la paroi extérieure des fibres creuses est composée de plusieurs couches.
  7. Fibres creuses selon une des revendications 1 à 6, caractérisées par une constante diélectrique inférieure à 4.
  8. Procédé de production des fibres creuses dans lequel une fibre composée d'un premier matériau dégradable reçoit au moins un revêtement d'au moins un matériau supplémentaire et qu'ensuite ce premier matériau est dégradé de telle sorte que la fibre creuse ainsi obtenue présente un diamètre intérieur de 1 nm à 100 nm, caractérisé en ce que le premier matériau dégradable contient de 10 à 60% en poids des sels de métaux précieux et/ou de plus un composé basique.
  9. Procédé selon la revendication 8,
    caractérisé en ce que
    le matériau supplémentaire est réalisé à partir de composés inorganiques, de polymères et/ou de métaux.
  10. Procédé selon une des revendications 8 ou 9,
    caractérisé en ce que
    le matériau supplémentaire est réalise à partir de poly(p-xylyléne), de polyacrylamide, de polyimides, de polyesters, de polyoléfine, de polycarbonates, de polyamides, de polyéthers, de polyphénylène, de polysilanes, de polysiloxanes, de polybenzimidazoles, de polybenzothiazoles, de polyoxazoles, de polysulfides, de polyesteramides, de polyarylène-vinylènes, de polylactides, de polyéthercétones, de polyuréthanes, de polysulfones, d'ormocers, de polyacrylates, de silicones, de copolyesters entièrement aromatiques, de poly-N-vinyle-pyrrolidone, de polyhydroxyéthylméthacrylate, de polyméthylméthacrylate, de polyéthylène téréphthalate, de polybutylène téréphthalate, de polyméthacrylonitrile, de polyacrylonitrile, de polyvinylacétate, de néoprène, de Buna N, de polybutadiène, de polytétrafluoroéthène, de cellulose (modifiée ou non modifiée), d'alginates ou de collagène, de leurs homopolymérisats ou de leurs copolymérisats et/ou de leurs mélanges.
  11. Procédé selon une des revendications 8 ou 10,
    caractérisé en ce que
    le matériau supplémentaire est composé à partir de métaux des groupes Ia, Ib, IIa, IIb, IIIa, IIIb, IVa, IVb, Vb, Vlb, VIIb et/ou VIIIb du tableau périodique, respectivement comme métal pur ou alliage.
  12. Procédé selon une des revendications 8 à 10,
    caractérisé en ce que
    le matériau supplémentaire est composé à partir d'oxydes métalliques, de verre, de vitrocéramiques, de SiOx, de pérowskite, de céramiques, d'oxydes d'aluminium, de carbure de silicium, de nitrure de bore, de carbone ou d'oxydes de zirconium,
  13. Procédé selon une des revendications 8 à 10,
    caractérisé en ce que
    le matériau supplémentaire est obtenu par polymérisation, polycondensation ou polyaddition d'un ou plusieurs monomères.
  14. Procédé selon la revendication 13,
    caractérisé en ce que
    le matériau supplémentaire est obtenu par homo- ou copolymérisation, par homo- ou copolyaddition ou par homo- ou copolycondensation de méthacrylate, de styrène, de sulfonate de styrène, de 1,6-hexaméthylène diisocyanate (HDI), de 4,4'-méthylène biscyclohexyle diisocyanate (HMDI), de 4,4'-méthyléne-bis-(benzyl diisocyanate) (MDI), de 1,4-butandiole, d'éthylènediamine, d'éthylène, de styrène, de butadiène, de butène-1, de butène-2, de vinylalcool, d'acrylonitrile, de méthylméthacrylate, de chlorure de vinyle, d'éthylènes fluorés et/ou de téréphthalate.
  15. Procédé selon une des revendications 8 à 14,
    caractérisé en ce que
    la dégradation du matériau dégradable se fait suivant un procédé thermique, chimique, biologique, induit par rayons, photochimique, par plasma, ultrason ou extraction avec un solvant.
  16. Utilisation des fibres creuses selon une des revendications 1 à 7 comme milieu de séparation ou milieu d'accumulation pour les gaz, les liquides ou les particules en suspension.
  17. Utilisation des fibres creuses selon une des revendications 1 à 7 dans la dialyse, comme poumon artificiel, comme réservoir de protéines, comme système d'apport ou de libération contrôlée (controlled release) ou drug delivery system des médicaments ou dans des techniques médicales de séparation.
  18. Utilisation des fibres creuses selon une des revendications 1 à 7 dans la technologie cellulaire pour le prélèvement de produits métaboliques, d'enzymes et d'autres composantes du cytoplasme en vue de leur séparation et/ou de l'obtention de produits pharmaceutiques biologiques.
  19. Utilisation des fibres creuses selon une des revendications 1 à 7 comme composant de capteur, comme microréacteur ou dans la microélectronique comme fil, câble ou capacité.
  20. Utilisation des fibres creuses selon une des revendications 1 à 7 dans la technique de construction superlégère, comme matériau composite, comme matière de remplissage, comme renforcement mécanique, comme isolateur de chaleur ou dans l'industrie du vêtement.
  21. Utilisation des fibres creuses selon une des revendications 1 à 7 dans des cellules de combustible, dans des piles ou dans des réactions électrochimiques.
  22. Utilisation des fibres creuses selon une des revendications 1 à 7 dans l'électrophorèse capillaire, dans la microscopie à champ proche ou dans des systèmes catalyliques.
  23. Utilisation des fibres creuses selon une des revendications 1 à 7 comme diélectrique.
  24. Utilisation des fibres creuses selon une des revendications 1 à 7 comme diélectrique inter-couche dans la fabrication de puces.
EP02015426A 2001-07-13 2002-07-11 Tubes avec diamètres intérieurs à l'échelle nanométrique Expired - Lifetime EP1275757B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10133393 2001-07-13
DE10133393A DE10133393B4 (de) 2001-07-13 2001-07-13 Röhrchen mit Innendurchmessern im Nanometerbereich

Publications (3)

Publication Number Publication Date
EP1275757A2 EP1275757A2 (fr) 2003-01-15
EP1275757A3 EP1275757A3 (fr) 2003-05-28
EP1275757B1 true EP1275757B1 (fr) 2010-05-05

Family

ID=7691219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02015426A Expired - Lifetime EP1275757B1 (fr) 2001-07-13 2002-07-11 Tubes avec diamètres intérieurs à l'échelle nanométrique

Country Status (4)

Country Link
US (1) US20030026985A1 (fr)
EP (1) EP1275757B1 (fr)
AT (1) ATE466977T1 (fr)
DE (2) DE10133393B4 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI704256B (zh) * 2020-01-30 2020-09-11 萬核應用材料有限公司 蓄光線材之抽線製程

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764628B2 (en) * 2002-03-04 2004-07-20 Honeywell International Inc. Composite material comprising oriented carbon nanotubes in a carbon matrix and process for preparing same
ATE474658T1 (de) * 2003-03-07 2010-08-15 Seldon Technologies Llc Reinigung von flüssigkeiten mit nanomaterialien
US6921670B2 (en) * 2003-06-24 2005-07-26 Hewlett-Packard Development Company, Lp. Nanostructure fabrication using microbial mandrel
US7147834B2 (en) * 2003-08-11 2006-12-12 The Research Foundation Of State University Of New York Hydrothermal synthesis of perovskite nanotubes
DE10352338A1 (de) * 2003-11-06 2005-06-16 Daimlerchrysler Ag Fahrzeugteil mit Aktuator
FI20045260A (fi) * 2003-11-18 2005-05-19 Teknillinen Korkeakoulu Menetelmä kuiturakenteen valmistamiseksi
DE102004053373A1 (de) * 2004-11-02 2006-05-04 Justus-Liebig-Universität Giessen Erfindung betreffend anisometrische Partikel in Form von Nano-/Meso-Fasern -Röhren, -Kabeln -Bändern und deren gekrümmte oder verzweigte Abwandlungen
US7390760B1 (en) 2004-11-02 2008-06-24 Kimberly-Clark Worldwide, Inc. Composite nanofiber materials and methods for making same
US20060094320A1 (en) * 2004-11-02 2006-05-04 Kimberly-Clark Worldwide, Inc. Gradient nanofiber materials and methods for making same
DE102005008926A1 (de) 2005-02-24 2006-11-16 Philipps-Universität Marburg Verfahren zur Herstellung von Nano- und Mesofasern durch Elektrospinning von kolloidalen Dispersionen
DE102005008927A1 (de) * 2005-02-24 2006-08-31 Philipps-Universität Marburg Hydrophobe fluorierte Polymeroberflächen
CN100362079C (zh) * 2006-01-13 2008-01-16 四川世纪双虹显示器件有限公司 一种球状结构荧光体的制备方法
CN101410076A (zh) * 2006-02-03 2009-04-15 阿克伦大学 吸收性非织造纤维垫及其制备方法
ITBO20060416A1 (it) 2006-05-26 2007-11-27 Alma Mater Studiorum Uni Di Bologna Procedimento ed impianto per realizzare materiali compositi.
WO2008022993A2 (fr) * 2006-08-21 2008-02-28 Basf Se procédé de fabrication de nanofibres et de mésofibres par électrofilage de dispersions colloïdales
CN101595251B (zh) * 2006-10-05 2014-06-11 技术研究及发展基金有限公司 微管及其制备方法
DE102006049666A1 (de) 2006-10-18 2008-04-30 Carl Freudenberg Kg Verwendung eines Verfahrens zur Herstellung von Reinigungsprodukten, Hygieneprodukten oder medizinischen Produkten
GB0704934D0 (en) * 2007-03-14 2007-04-25 Univ Bath Regenarable adsorption unit
US20100221519A1 (en) * 2007-07-18 2010-09-02 Basf Se Process for producing nano- and mesofibers by electrospinning colloidal dispersions comprising at least one essentially water-insoluble polymer
EP2222902A2 (fr) 2007-12-11 2010-09-01 Basf Se Procédé de fabrication de nano et de mésofibres par électrofilage de dispersions colloïdales contenant au moins un polymère essentiellement insoluble dans l'eau
CZ2008425A3 (cs) * 2008-07-08 2010-01-20 Elmarco S.R.O. Zpusob výroby nanovláken z platiny, nanovlákna z platiny a nanovlákenná struktura
WO2010015419A2 (fr) * 2008-08-08 2010-02-11 Basf Se Structures planes fibreuses à base de biopolymères qui contiennent un principe actif, leurs applications et leurs procédés de production
EP2323635A2 (fr) 2008-08-08 2011-05-25 Basf Se Structures planes fibreuses contenant un principe actif et à libération réglable du principe actif, leurs applications et leurs procédés de production
DE102008063824A1 (de) 2008-12-19 2010-06-24 Philipps-Universität Marburg Mittel zur Separation von Mikroorgansimen auf Basis elektrogesponnener Fasern
WO2010072665A1 (fr) 2008-12-23 2010-07-01 Basf Se Modification de nanofibres ou de mésofibres ou de produits textiles plats produits par électrofilage à l'aide de protéines amphiphiles
KR101328353B1 (ko) * 2009-02-17 2013-11-11 (주)엘지하우시스 탄소나노튜브 발열시트
US20100215960A1 (en) * 2009-02-24 2010-08-26 Toyota Motor Engineering & Manufacturing North America, Inc. Hollow carbon spheres
SG10201605780QA (en) 2009-03-19 2016-09-29 Emd Millipore Corp Removal of microorganisms from fluid samples using nanofiber filtration media
DE102009019370A1 (de) * 2009-04-29 2011-01-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Verkapseln von flüssigen oder pastösen Substanzen in einem vernetzten Verkapselungsmaterial
US20120145632A1 (en) * 2009-07-15 2012-06-14 Konraad Albert Louise Hector Dullaert Electrospinning of polyamide nanofibers
US8354052B1 (en) * 2010-01-26 2013-01-15 The United States Of America As Represented By The Secretary Of The Navy Process for manufacturing microconduit networks formed by electrospinning techniques
US9623352B2 (en) 2010-08-10 2017-04-18 Emd Millipore Corporation Method for retrovirus removal
US10501317B2 (en) * 2011-03-24 2019-12-10 Council Of Scientific & Industrial Research High aspect ratio nanoscale multifunctional materials
WO2012135679A2 (fr) 2011-04-01 2012-10-04 Emd Millipore Corporation Nanofibre contenant des structures composites
TW201500104A (zh) * 2013-03-13 2015-01-01 Dow Corning 利用包括可熔性或可昇華性組成物之核心製造空心纖維之方法
WO2015126506A1 (fr) * 2014-02-19 2015-08-27 Dow Corning Corporation Procédé de fabrication d'une fibre creuse
DE102014013354A1 (de) 2014-09-08 2016-03-10 Rainer Busch Die Erfindung betrifft eine Vorrichtung und Verfahren zur Herstellung von mikroverkapselten Paraffinpartikel durch ein elektrostatisches Rotationsdüsen-Absprühverfahren sowie die Verwendung dieses Verfahren. Die so verkapselten Paraffinpartikel können für
SG11201706726TA (en) 2015-04-17 2017-09-28 Emd Millipore Corp Method of purifying a biological materia of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode
US20160319466A1 (en) * 2015-04-29 2016-11-03 Zeeshan Khatri Porous cellulose nanofibers method of preparation
CN105401234B (zh) * 2015-12-29 2019-07-12 重庆市大通茂纺织科技有限公司 一种复合纤维的螺杆挤压方法
CN107884447A (zh) * 2017-11-07 2018-04-06 上海纳米技术及应用国家工程研究中心有限公司 钙钛矿丙酮传感材料的制备方法及其产品和应用
CN109853135B (zh) * 2018-11-02 2021-02-19 北京化工大学常州先进材料研究院 一种聚苯并咪唑包覆聚酰亚胺纳米纤维的核壳结构纳米纤维膜及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL230456A (fr) 1957-08-22
EP0005035B1 (fr) 1978-04-19 1981-09-23 Imperial Chemical Industries Plc Méthode de préparation d'un produit tubulaire par filage électrostatique
DE2823521A1 (de) 1978-05-30 1979-12-06 Deutsche Automobilgesellsch Wasserstoffpermeationszelle und verfahren zu ihrer herstellung
GB2120946B (en) 1982-06-02 1985-11-06 Ethicon Inc Improvements in synthetic vascular grafts
EP0195353A3 (fr) * 1985-03-20 1988-12-14 American Cyanamid Company Fibres céramiques creuses
US5094906A (en) 1988-08-15 1992-03-10 Exxon Research And Engineering Company Ceramic microtubular materials and method of making same
US5024789A (en) 1988-10-13 1991-06-18 Ethicon, Inc. Method and apparatus for manufacturing electrostatically spun structure
US5352512A (en) * 1989-03-15 1994-10-04 The United States Of America As Represented By The Secretary Of The Air Force Microscopic tube material and its method of manufacture
GB8917916D0 (en) 1989-08-04 1989-09-20 Ethicon Inc Improvements in synthetic vascular grafts and their methods of manufacture
US6194066B1 (en) * 1991-04-24 2001-02-27 The United States Of America As Represented By The Secretary Of The Air Force Microscopic tube devices and method of manufacture
CA2243520A1 (fr) * 1996-01-21 1997-07-24 Klaus Rennebeck Microfibre creuse en materiau ceramique, son procede de production et d'utilisation
DE10023456A1 (de) * 1999-07-29 2001-02-01 Creavis Tech & Innovation Gmbh Meso- und Nanoröhren
DE10053263A1 (de) * 2000-10-26 2002-05-08 Creavis Tech & Innovation Gmbh Orientierte Meso- und Nanoröhrenvliese

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI704256B (zh) * 2020-01-30 2020-09-11 萬核應用材料有限公司 蓄光線材之抽線製程

Also Published As

Publication number Publication date
DE50214408D1 (de) 2010-06-17
DE10133393B4 (de) 2007-08-30
EP1275757A2 (fr) 2003-01-15
US20030026985A1 (en) 2003-02-06
ATE466977T1 (de) 2010-05-15
DE10133393A1 (de) 2003-01-30
EP1275757A3 (fr) 2003-05-28

Similar Documents

Publication Publication Date Title
EP1275757B1 (fr) Tubes avec diamètres intérieurs à l'échelle nanométrique
EP1200653B1 (fr) Mesotubes et nanotubes
EP1335999B1 (fr) Non-tisses constitues de mesotubes et de nanotubes orientes
DE10116232A1 (de) Verfahren zur Herstellung von Formkörpern mit innenbeschichteten Hohlräumen
Stojanovska et al. A review on non-electro nanofibre spinning techniques
Nadaf et al. Recent update on electrospinning and electrospun nanofibers: current trends and their applications
Lu et al. Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process
DE60121199T2 (de) Spinnverfahren und verarbeitung von filamenten, bändern und garnen aus kohlenstoffnanoröhren
Reneker et al. Polymeric nanofibers: introduction
Nguyen et al. Coaxial electrospun poly (lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity
EP2414575A1 (fr) Procédé de formation d'un modèle de nanofibres à l'aide d'un gabarit (template) selon le procédé d'électro-filage et applications
WO2002016680A1 (fr) Fabrication de fibres polymeres a morphologies nanometriques
WO2003076702A1 (fr) Procede de production de fibres creuses
WO2008077372A2 (fr) Fibres nanométriques et mésométriques à particules modifiées
Gao et al. Electrospun fiber-based flexible electronics: Fiber fabrication, device platform, functionality integration and applications
Srivastava Electrospinning of patterned and 3D nanofibers
Mishra et al. Electrospun nanofibers
US20050048274A1 (en) Production of nanowebs by an electrostatic spinning apparatus and method
Purabgola et al. Physical characterization of electrospun fibers
Naik et al. Synthesis of green polymeric nanocomposites using electrospinning
DE102005009212A1 (de) Erfindung betreffend die Dimensionierung von Meso- und Nanostrukturen
Mats et al. 8.1. 1 DESCRIPTION OF THE ELECTROSPINNING PROCESS
Kilic et al. Nonelectro nanofiber spinning techniques
BUDWAN CARBON BASED CONDUCTIVE FIBERS FOR FUEL CELL APPLICATION
Khalf Production of hollow fibers by co-electrospinning of cellulose acetate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020711

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20080328

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50214408

Country of ref document: DE

Date of ref document: 20100617

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100806

BERE Be: lapsed

Owner name: TRANSMIT G.- FUR TECHNOLOGIETRANSFER MBH

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100906

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

26N No opposition filed

Effective date: 20110208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50214408

Country of ref document: DE

Effective date: 20110207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110729

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110722

Year of fee payment: 10

Ref country code: GB

Payment date: 20110721

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120711

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120711

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214408

Country of ref document: DE

Effective date: 20130201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100805