EP1269590A1 - Zündkerze für eine brennkraftmaschine - Google Patents

Zündkerze für eine brennkraftmaschine

Info

Publication number
EP1269590A1
EP1269590A1 EP01911425A EP01911425A EP1269590A1 EP 1269590 A1 EP1269590 A1 EP 1269590A1 EP 01911425 A EP01911425 A EP 01911425A EP 01911425 A EP01911425 A EP 01911425A EP 1269590 A1 EP1269590 A1 EP 1269590A1
Authority
EP
European Patent Office
Prior art keywords
electrode
erosion
spark plug
resistant area
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01911425A
Other languages
English (en)
French (fr)
Inventor
Lars Menken
Bernd Reinsch
Klaus Hrastnik
Dietrich Trachte
Klaus Czerwinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1269590A1 publication Critical patent/EP1269590A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes

Definitions

  • a spark plug for an internal combustion engine is already known (EP 0 785 604 B1), which has a central electrode, the central electrode consisting of a central electrode base body and a noble metal plate as a highly erosion-resistant area.
  • the precious metal plate is attached to the end face of the central electrode body facing the combustion chamber. It is also known from EP 0 785 604 B1 that precious metal plates can be applied to the end face of the central electrode base body facing the combustion chamber by laser welding or resistance welding.
  • the precious metal plate consists of a platinum, iridium or platinum-based alloy and the central electrode base body made of a nickel alloy.
  • a spark plug center electrode is known, which is produced by extrusion.
  • Such a center electrode has an area made of highly erosion-resistant material at the combustion chamber end.
  • Such a high erosion-resistant area of The center electrode consists, for example, of platinum or an alloy of platinum metals.
  • the spark plug according to the invention with the features of the independent claim has the advantage that different coefficients of thermal expansion between the electrode base body and the area which is highly resistant to erosion and consists of noble metal alloys are adapted. This results in a reduction in thermomechanical stresses in the transition between the highly erosion-resistant area, which consists of precious metals, and the electrode body. This can improve the durability of the welded joint and thus extend the life of the spark plug.
  • the use of nickel reduces the material costs.
  • the materials of the electrode base and the high-erosion-resistant area have a greater similarity in physical properties due to the addition of nickel, e.g. in melting point, which leads to a better connection of the materials during welding.
  • Oxidation resistance on as iridium-nickel alloys It is furthermore advantageous that the high-erosion-resistant area protrudes in the direction of the spark gap beyond the end face of the electrode base body on the spark-gap side, since the spark emerges from the area of the high-erosion-resistant material. It is furthermore advantageous that the area which is resistant to high erosion has a height of between 1 mm and 0.2 mm, or a diameter of up to 2 mm. The area that is highly resistant to burning thus has the right size to provide enough space for the spark to escape and not to extract too much heat from the volume in which the spark is generated.
  • FIG. 1 shows a view from the side of an end of a combustion chamber in accordance with the invention
  • Central electrode of a spark plug according to the invention schematically in a view from above
  • 7 shows the end of a ground electrode of a spark plug according to the invention pointing in the direction of the spark gap schematically in a view from the side and
  • Figure 8 shows the view of the combustion chamber end of a center electrode and a ground electrode of a spark plug according to the invention schematically from the side.
  • FIG. 1 the end of a spark plug on the combustion chamber side is shown schematically in one view
  • the spark plug has a metallic tubular housing 3 which is radially symmetrical, an insulator 6 is arranged in a central bore along the axis of symmetry of the metallic housing, which runs coaxially, in a central one which runs along the longitudinal axis of the insulator
  • a central electrode 11 is arranged at the end of the combustion chamber, which projects out of the bore at the end of the insulator at the end of the combustion chamber in this exemplary embodiment
  • the end of the central electrode is arranged in the bore of the insulator 6, not shown, an electrically conductive glass melt which connects the central electrode to the connecting bolt, not shown, which is also arranged in the central bore of the insulator.
  • One or more ground electrodes 9 are also arranged at the combustion chamber end of the metallic housing.
  • the one over the connecting bolt, the electrically conductive one Glass melt and the electrical energy reaching the end of the spark plug on the combustion chamber side now causes a spark to flash over between the central electrode and one or more ground electrodes, which ignites the fuel-air mixture in the combustion chamber.
  • the path 13 with the shortest distance, which is formed between a point on the surface of the center electrode 11 and a point on the surface of the ground electrode, is called the spark gap 13.
  • the central electrode has a central electrode base body 113, a region 115 which is highly resistant to burning being arranged on the central electrode base body 113 at the end on the combustion chamber side.
  • the high-erosion-resistant area 115 of the central electrode forms one end of the spark gap 13, so that the spark flashes directly in the area of the high-erosion-resistant area 115 of the central electrode.
  • the highly erosion-resistant area 115 of the center electrode is characterized by a high resistance to spark erosion and corrosion, so that a long service life of the spark plug is ensured.
  • This highly erosion-resistant area 115 of the center electrode has an end face 117 facing the spark gap.
  • the highly erosion-resistant area 115 of the center electrode ensures that corrosion or oxidation of the center electrode 11 at the end on the combustion chamber side is minimized.
  • the central electrode base body 113 consists of nickel or a nickel alloy, mostly with a copper core.
  • the high erosion-resistant area 115 of the center electrode consists of an alloy with the components iridium and nickel, the nickel content preferably being greater than 10 atom%, ie Ir] _oo- ⁇ Ni ⁇ r, preferably 10 atom% ⁇ x.
  • the element platinum is additionally selected as an alloy component of the highly erosion-resistant area 115 of the central electrode, the composition preferably being chosen as follows: IryNi x Pt] _o ⁇ -yx 'where 10 atom% ⁇ x ⁇ 30 atom% and
  • the high-erosion-resistant area 115 of the center electrode consists of an iridium-nickel-rhodium alloy with the following composition: IryNi x Rh_oo-yx 'where 10 atom% ⁇ x ⁇ 30 atom% and 50 atom% ⁇ y ⁇ 80 atomic%.
  • the preferably high nickel content between 10 atomic% and 30 atomic% ensures that the coefficient of thermal expansion of the highly erosion-resistant area 115 of the central electrode and the
  • Center electrode base body 113 are adjusted to one another in such a way that low mechanical stresses occur during high thermal loads and the service life of the center electrode is thus increased. Because of the high nickel content, the area 115 of the center electrode that is highly erosion-resistant is also more cost-effective than a region that is resistant to high erosion and consists only of precious metals. Furthermore, iridium-nickel-platinum alloys and iridium-nickel-rhodium alloys have better oxidation resistance than iridium-nickel alloys.
  • a further exemplary embodiment of the end of a central electrode on the combustion chamber side is shown schematically in cross section in FIG. A region 115 of the central electrode which is resistant to high erosion is again arranged at the end of a central electrode base body 113 on the combustion chamber side.
  • the composition of the highly erosion-resistant area 115 of the central electrode or of the central electrode base body 113 is selected analogously to the compositions described with reference to FIG. 2.
  • FIG. 5 which also represents a further exemplary embodiment of the center electrode of a spark plug according to the invention, the area 115 of the center electrode that is subject to high erosion protrudes so far into the base body 113 of the central electrode that the end face 117 of the region 115 of the center electrode that is subject to high erosion faces the area facing the spark gap Forms end face 119 of the central electrode body 113.
  • a further exemplary embodiment of a center electrode 11 is shown schematically in cross section in FIG. 6a.
  • the high-erosion-resistant area 115 is arranged here in such a way that it has a cylindrical shape, the central electrode base body 113 being continued in an axial, cylindrical volume up to the end of the central electrode 11 on the combustion chamber side.
  • the high-erosion-resistant area 115 accordingly forms an area on the circumference of the central electrode 11 at the end of the central electrode 11 on the combustion chamber side. In the view of the central electrode 11 from above in FIG forms a circular ring around the center circle.
  • Such an arrangement of the erosion-resistant area is particularly advantageous when the spark overlaps in the radial direction at the center electrode 11, that is, when the spark gap 13 extends in such a way that the point on the surface of the center electrode 11 leads to the shortest connecting path between a point belongs on the surface of the center electrode 11 and a point on the surface of the ground electrode 9, is located on the combustion chamber side peripheral surface of the center electrode.
  • Such a course of the spark gap 13 is given, for example, when the ground electrode 9, as shown, for example, in FIG. 8, is positioned laterally on the center electrode 11.
  • the center electrode is placed laterally on the insulator 6, so that the spark slides over the combustion chamber end face of the insulator to the center electrode 11.
  • the high-erosion-resistant area 115 is arranged analogously to the embodiment shown in FIG. 6a in such a way that it is not located directly at the end of the central electrode 11 on the combustion chamber side, but in a specific, fixed position predetermined distance from the combustion chamber end of the center electrode 11.
  • the central electrodes 11 shown in FIGS. 4, 5 and 6 have the same composition in their highly erosion-resistant area 115 and in their central electrode base body 113 as is described in FIG. 2.
  • the center electrodes shown in FIGS. 2 to 6 are produced in such a way that the area 115 of the center electrode which is resistant to high erosion is applied to the end surface of the center electrode base body 113 on the combustion chamber side by means of laser or resistance welding. Even if the high-erosion-resistant area 115 of the center electrode protrudes into the center electrode via the spark gap-side end face 119 of the center-electrode base body 113, the high-erosion-resistant area 115 of the center electrode is applied by means of welding, by providing a recess in the center-electrode base body 113 into which the area that is subject to high-erosion 115 of the center electrode is inserted before it is welded. Analogous to the production of the center electrode by means of welding, in a further exemplary embodiment the center electrode is produced in such a way that the area 115 which is resistant to high erosion points onto the
  • the center electrode 11 is produced by means of extrusion, the end of the center electrode produced by means of extrusion optionally also, for example, using a cutting tool
  • Processing method is processed so that at least part of the end face of the combustion chamber end of Center electrode is formed by the highly erosion-resistant area 115.
  • the center electrodes described with reference to FIGS. 2 to 6 can also be designed in such a way that the end of the center electrode base body 113 and / or of the highly erosion-resistant area 115 of the center electrode on the combustion chamber side tapers.
  • FIG. 7 schematically shows a view from the side of a ground electrode 9 at the end pointing in the direction of the spark gap.
  • the ground electrode has a ground electrode body 93, on which a highly erosion-resistant area 95 of the ground electrode is arranged in the direction of the spark gap.
  • the high-erosion-resistant area 95 of the ground electrode analogous to the high-erosion-resistant area 115 of the center electrode, forms the area on which the spark flashes over.
  • the highly erosion-resistant area 93 of the ground electrode must also have a high resistance to spark erosion and corrosion.
  • the end face 97 of the high-erosion-resistant area 95 of the ground electrode pointing in the direction of the spark gap has the largest surface area in comparison to the other surfaces of the high-erosion-resistant area 95 of the ground electrode.
  • the composition of the ground electrode base body 93 corresponds to the composition of the
  • Center electrode base body 113 The composition of the high-erosion-resistant area 95 of the ground electrode corresponds to one of the compositions of the high-erosion-resistant area 115 of the center electrode, which were explained with reference to FIG. 2.
  • FIG. 8 shows a further exemplary embodiment for a ground electrode of a spark plug according to the invention in one View from the side. Furthermore, a view from the side of a combustion-chamber end of a central electrode 11 and an insulator 6 can also be seen schematically Center electrode to each other, the end face 99 of the ground electrode base body 93 pointing in the direction of the spark gap results on another surface.
  • the composition of the high-erosion-resistant area 95 of the ground electrode also corresponds in this exemplary embodiment to one of the compositions of the high-erosion-resistant area 115 of the center electrode explained with reference to FIG.
  • the high-erosion-resistant area 115 of the center electrode is produced or the high-erosion-resistant area 95 is produced on the ground electrode 9.
  • the high-erosion-resistant area 95 of the ground electrode is placed on the flat surface 99 of the ground electrode applied or introduced into a recess on the end face lying in the direction of the spark gap.
  • the ground electrode 9 is produced analogously to the central electrode by means of laser or resistance welding, by means of solders or by means of extrusion.
  • the ground electrode 9 can also have a tapered, highly erosion-resistant area 95 of the ground electrode and / or ground electrode base body 93.
  • a highly erosion-resistant area can either be arranged on at least one ground electrode 9 or the center electrode 11 or both on at least one ground electrode 9 and the center electrode 11.

Landscapes

  • Spark Plugs (AREA)

Abstract

Es wird eine Zündkerze für eine Brennkraftmaschine mit mindestens zwei Elektroden (9, 11) vorgeschlagen, wobei eine dieser mindestens zwei Elektroden mindestens eine Mittelelektrode (11) und eine andere Elektrode der mindestens zwei Elektroden mindestens eine Masseelektrode (9) darstellt, wobei zwischen der mindestens eine Masseelektrode (9) und der mindestens einen Mittelektrode (11) eine Funkenstrecke (13) gebildet wird. Jede der mindestens zwei Elektroden (9, 11) weist einen Elektrodengrundkörper (93, 113) auf. Mindestens eine Elektrode weist einen hochabbrandbeständigen Bereich (95, 115) auf, der mindestens einen Teil der der Funkenstrecke zugewandten Stirnfläche der Elektrode (97, 117) bildet. Der hochabbrandbeständige Bereich (95, 115) besteht dabei auf einer Legierung, die mindestens die Elemente Iridium und Nickel aufweist.

Description

Zündkerze für eine Brennkraftmaschine
Stand der Technik
Die Erfindung geht aus von einer Zündkerze für eine Brennkraftmaschine nach Gattung des unabhängigen Anspruchs. Es ist bereits eine Zündkerze für eine Brennkraftmaschine bekannt (EP 0 785 604 Bl), die eine Mittelelektrode aufweist, wobei die Mittelelektrode aus einem Mittelelektrodengrundkorper und einem Edelmetallplattchen als hochabbrandbestandigem Bereich besteht. Das Edelmetallplattchen ist auf der brennraumzugewandten Stirnflache des Mittelelektrodengrundkorpers befestigt. Aus der EP 0 785 604 Bl ist weiterhin bekannt, dass Edelmetallplattchen durch Laserschweißen oder Widerstandsschweißen auf die brennraumzugewandte Stirnflache des Mittelelektrodengrundkorpers aufgebracht werden können. Das Edelmetallplattchen besteht dabei aus einer Platin-, Iridium- oder Platinbasis-Legierung und dem Mittelelektrodengrundkorper aus einer Nickellegierung.
Aus der EP-OS 50 53 68 ist eine Zundkerzen-Mittelelektrode bekannt, die durch Fließpressen hergestellt wird. Eine derartige Mittelelektrode weist am brennraumseitigen Ende einen Bereich aus hochabbrandbestandigem Material auf. Ein derartiger hochabbrandbestandiger Bereich der Mittelelektrode besteht beispielsweise aus Platin oder einer Legierung von Platinmetallen.
Vorteile der Erfindung
Die erfindungsgemäße Zündkerze mit den Merkmalen des unabhängigen Anspruchs hat demgegenüber den Vorteil, dass unterschiedliche Wärmeausdehnungskoeffizienten zwischen dem Elektrodengrundkorper und dem Bereich, der hochabbrandbestandig ist und aus Edelmetalllegierungen besteht, angepasst werden. Dadurch wird eine Verringerung von thermomechanischen Spannungen im Übergang zwischen dem hochabbrandbestandigen Bereich, der aus Edelmetallen besteht, und dem Elektrodengrundkorper erreicht. Somit kann die Haltbarkeit der Schweißverbindung verbessert und damit die Lebensdauer der Zündkerze verlängert werden. Weiterhin werden durch Verwendung von Nickel die Materialkosten verringert. Außerdem weisen die Materialien von Elektrodengrundkorper und hochabbrandbestandigem Bereich durch Zusatz von Nickel eine größere Ähnlichkeit in physikalischen Eigenschaften auf, z.B. im Schmelzpunkt, was zu einer besseren Verbindung der Materialien beim Schweißen fuhrt.
Durch die in den Unteranspruchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Zündkerze möglich. Besonders vorteilhaft ist, die Zusammensetzung des hochabbrandbestandigen Bereichs derart zu wählen, dass der Nickelgehalt mehr als 10 Atom-% betragt, da nur ein signifikanter Nickelanteil den Wärmeausdehnungskoeffizient spürbar verandern kann. Ebenso ist es vorteilhaft, Iridium- Rhodium-Nickel-Legierungen als Material für den hochabbrandbestandigen Bereich zu verwenden, da der Zusatz von Nickel den Schmelzpunkt erniedrigt und die Duktilitat erhöht, so dass das Material besser verarbeitbar ist. Iridium-Nickel-Platin-Legierungen bzw. Iridium-Nickel- Rhodium-Legierungen weisen eine bessere
Oxidationsbestandigkeit auf als Iridium-Nickel-Legierungen. Es ist weiterhin vorteilhaft, dass der hochabbrandbestandige Bereich in Richtung der Funkenstrecke über die funkenstreckenseitige Stirnflache des Elektrodengrundkorpers übersteht, da der Funken aus dem Bereich des hochabbrandbestandigen Materials austritt. Es ist weiterhin vorteilhaft, dass der hochabbrandbestandige Bereich eine Hohe zwischen 1 mm und 0,2 mm aufweist, bzw. einen Durchmesser von bis zu 2 mm. Der hochabbrandbestandige Bereich hat somit die richtige Große, um für den Funkenaustritt genügend Flache zu bieten und dem Volumen, in dem der Funken erzeugt wird, nicht zuviel Warme zu entziehen.
Zeichnungen
Ausfuhrungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung naher erläutert. Es zeigen Figur 1 eine Ansicht von der Seite eines brennraumseitigen Endes einer erfindungsgemaßen
Zündkerze,
Figuren 2 bis 5 jeweils das brennraumseitige Ende einer
Mittelelektrode einer erfindungsgemaßen Zündkerze schematisch im Querschnitt,
Figur 6a und 6c das brennraumseitige Ende einer
Mittelelektrode einer erfindungsgemaßen Zündkerze schematisch im Querschnitt,
Figur 6b das brennraumseitige Ende der in Figur 6a gezeigten
Mittelelektrode einer erfindungsgemaßen Zündkerze schematisch in der Ansicht von oben, Figur 7 das in Richtung Funkenstrecke zeigende Ende einer Masseelektrode einer erfindungsgemaßen Zündkerze schematisch in einer Ansicht von der Seite und
Figur 8 die Ansicht des brennraumseitigen Endes einer Mittelelektrode und einer Masseelektrode einer erfindungsgemäßen Zündkerze schematisch von der Seite.
Beschreibung der Ausfuhrungsbeispiele
Der prinzipielle Aufbau und die Funktionsweise einer Zündkerze ist aus dem Stand der Technik hinreichend bekannt und kann z.B. aus der „Bosch-Technischen Unterrichtung - Zündkerzen", Robert Bosch GmbH 1985 entnommen werden. In Figur 1 ist das brennraumseitige Ende einer Zündkerze schematisch in einer Ansicht von der Seite dargestellt. Die Zündkerze weist ein metallisches rohrfor iges Gehäuse 3 auf, das radialsymmetrisch ist. In einer mittigen Bohrung entlang der Symmetrieachse des metallischen Gehäuses ist ein Isolator 6 angeordnet, der koaxial verlauft. In einer mittigen, entlang der Langsachse des Isolators verlaufenden Bohrung ist am brennraumseitigen Ende eine Mittelelektrode 11 angeordnet, die in diesem Ausfuhrungsbeispiel am brennraumseitigen Ende des Isolators aus der Bohrung hinausragt. In einem anderen, nicht dargestellten Ausfuhrungsbeispiel kann die Mittelelektrode 11 auch derart angeordnet sein, dass sich nicht aus der Bohrung des Isolators 6 hinausragt. Am brennraumfernen Ende der Mittelelektrode ist in der Bohrung des Isolators 6, nicht dargestellt, eine elektrisch leitende Glasschmelze angeordnet, die die Mittelelektrode mit dem nicht dargestellten Anschlußbolzen, der ebenfalls in der mittigen Bohrung des Isolators angeordnet ist, verbindet. Am brennraumseitigen Ende des metallischen Gehäuses sind weiterhin eine oder mehrere Masseelektroden 9 angeordnet. Die über den Anschlußbolzen, die elektrisch leitende Glasschmelze und die Mittelelektrode zum brennraumseitigen Ende der Zündkerze gelangende elektrische Energie fuhrt nun dazu, dass ein Funken zwischen der Mittelelektrode und einer oder mehrerer Masseelektroden überschlagt, der das im Brennraum befindliche Kraftstoff-Luft-Gemisch entzündet.
Die Strecke 13 mit dem kürzesten Abstand, der zwischen einem Punkt auf der Oberflache der Mittelelektrode 11 und einem Punkt auf der Oberflache der Masseelektrode gebildet wird, wird Funkenstrecke 13 genannt.
In Figur 2 ist das brennraumseitige Ende einer Mittelelektrode schematisch im Querschnitt dargestellt. Die Mittelelektrode weist einen Mittelelektrodengrundkorper 113 auf, wobei an dem Mittelelektrodengrundkorper 113 am brennraumseitigen Ende ein hochabbrandbestandiger Bereich 115 angeordnet ist. Der hochabbrandbestandige Bereich 115 der Mittelelektrode bildet dabei ein Ende der Funkenstrecke 13, so dass der Funke direkt im Bereich des hochabbrandbestandigen Bereichs 115 der Mittelelektrode überschlagt. Der hochabbrandbestandige Bereich 115 der Mittelelektrode zeichnet sich durch eine hohe Resistenz gegenüber Funkenerosion und Korrosion aus, so dass eine lange Funktionsdauer der Zündkerze gewahrleistet ist. Dieser hochabbrandbestandige Bereich 115 der Mittelelektrode weist eine der Funkenstrecke zugewandte Stirnflache 117 auf. Der hochabbrandbestandige Bereich 115 der Mittelelektrode stellt sicher, dass eine Korrosion bzw. Oxidation der Mittelelektrode 11 am brennraumseitigen Ende minimiert wird. Der Mittelelektrodengrundkorper 113 besteht aus Nickel bzw. einer Nickel-Legierung zumeist mit einem Kupferkern.
Der hochabbrandbestandige Bereich 115 der Mittelelektrode besteht aus einer Legierung mit den Bestandteilen Iridium und Nickel, wobei der Nickelanteil vorzugsweise großer als 10 Atom-% ist, d.h. Ir]_oo-χNiχr wobei vorzugsweise 10 Atom-% < x.
In einem weiteren bevorzugten Ausfuhrungsbeispiel wird zusatzlich das Element Platin als Legierungsbestandteil des hochabbrandbestandigen Bereichs 115 der Mittelelektrode gewählt, wobei die Zusammensetzung vorzugsweise folgendermaßen gewählt wird: IryNixPt]_oθ-y-x' wobei 10 Atom-% < x < 30 Atom-% und
10 Atom-% < y < 30 Atom-%. In einem weiteren bevorzugten Ausfuhrungsbeispiel besteht der hochabbrandbestandige Bereich 115 der Mittelelektrode aus einer Iridium-Nickel- Rhodium Legierung mit vorzugsweise folgender Zusammensetzung: IryNixRh_oo-y-x' wobei 10 Atom-% < x < 30 Atom-% und 50 Atom-% < y < 80 Atom-% .
Durch den vorzugsweise hohen Nickelgehalt zwischen 10 Atom-% und 30 Atom-% ist gewahrleistet, dass der Wärmeausdehnungskoeffizient des hochabbrandbestandigen Bereichs 115 der Mittelelektrode und des
Mittelelektrodengrundkorpers 113 so aneinander angeglichen sind, dass wahrend hoher Warmebelastung geringe mechanische Spannungen auftreten und so die Lebensdauer der Mittelelektrode erhöht wird. Durch den hohen Nickelanteil ist außerdem der hochabbrandbestandige Bereich 115 der Mittelelektrode kostengünstiger gegenüber einem hochabbrandbestandigen Bereich, der nur aus Edelmetallen besteht. Des weiteren weisen Iridium-Nickel-Platin- Legierungen und Iridium-Nickel-Rhodium-Legierungen eine bessere Oxidationsbestandigkeit auf als Iridium-Nickel- Legierungen. In Figur 3 ist ein weiteres Ausfuhrungsbeispiel für das brennraumseitige Ende einer Mittelelektrode schematisch im Querschnitt dargestellt. Es ist wiederum ein hochabbrandbestandiger Bereich 115 der Mittelelektrode am brennraumseitigen Ende eines Mittelelektrodengrundkorpers 113 angeordnet. Beim Übergang vom
Mittelelektrodengrundkorper 113 zum hochabbrandbestandigen Bereich 115 der Mittelelektrode ist jedoch ein Absatz vorhanden, da der Durchmesser der funkenstreckenseitigen Stirnflache 119 des Mittelelektrodengrundkorpers 113 großer ist als der Durchmesser des hochabbrandbestandigen Bereichs 115 der Mittelelektrode. Die Zusammensetzung des hochabbrandbestandigen Bereichs 115 der Mittelelektrode bzw. des Mittelelektrodengrundkorpers 113 wird analog zu den anhand von Figur 2 beschriebenen Zusammensetzungen gewählt.
In Figur 4 ist ein weiteres Ausfuhrungsbeispiel einer Mittelelektrode für eine erfindungsgemaße Zündkerze schematisch im Querschnitt dargestellt. Gegenüber der in Figur 3 dargestellten Mittelelektrode ragt nun der hochabbrandbestandige Bereich 115 der Mittelelektrode über die funkenstreckenseitige Stirnflache 119 des Mittelelektrodengrundkorpers 113 hinaus und m den Mittelelektrodengrundkorper 113 hinein. In Figur 5, die ebenfalls ein weiteres Ausfuhrungsbeispiel für die Mittelelektrode einer erfindungsgemaßen Zündkerze darstellt, ragt der hochabbrandbestandige Bereich 115 der Mittelelektrode so weit in den Mittelelektrodengrundkorper 113 hinein, dass die der Funkenstrecke zugewandte Stirnflache 117 des hochabbrandbestandigen Bereichs 115 der Mittelelektrode eine Flache mit der funkenstreckenseitigen Stirnflache 119 des Mittelelektrodengrundkorpers 113 bildet.
In Figur 6a ist ein weiteres Ausfuhrungsbeispiel einer Mittelelektrode 11 schematisch im Querschnitt dargestellt. Der hochabbrandbestandige Bereich 115 ist hier derart angeordnet, dass er eine zylindrische Form aufweist, wobei in einem axialen, zylindrischen Volumen der Mittelelektrodengrundkorper 113 bis zum brennraumseitigen Ende der Mittelelektrode 11 fortgesetzt ist. Der hochabbrandbestandige Bereich 115 bildet demnach einen Bereich am Umfang der Mittelelektrode 11 am brennraumseitigen Ende der Mittelelektrode 11. In der in Figur 6b dargestellten Ansicht der Mittelelektrode 11 von oben bildet somit der Mittelelektrodengrundkorper 113 den in mittigen Kreis, wahrend der hochabbrandbestandige Bereich 115 den um den mittigen Kreis herum verlaufenden Kreisring bildet. Eine derartige Anordnung des abbrandbestandigen Bereichs ist vor allem dann vorteilhaft, wenn der Funken in radialer Richtung an der Mittelelektrode 11 überschlagt, d.h. wenn die Funkenstrecke 13 derart verlauft, das der Punkt auf der Oberfläche der Mittelelektrode 11, der zu der kürzesten Verbindungsstrecke zwischen einem Punkt auf der Oberfläche der Mittelelektrode 11 und einem Punkt auf der Oberfläche der Masseelektrode 9 gehört, sich auf der brennraumseitigen Umfangsfläche der Mittelelektrode befindet. Ein derartiger Verlauf der Funkenstrecke 13 ist beispielsweise dann gegeben, wenn die Masseelektrode 9, wie z.B. in Figur 8 gezeigt, seitlich an die Mittelelektrode 11 angestellt ist. In einem anderen Ausfuhrungsbeispiel ist die Mittelelektrode seitlich an den Isolator 6 angestellt, so dass der Funken über die brennraumseitige Stirnfläche des Isolators zur Mittelelektrode 11 gleitet. In einem weiteren Ausfuhrungsbeispiel ist, wie in Figur 6c im Querschnitt schematisch dargestellt, der hochabbrandbestandige Bereich 115 analog zu der in Figur 6a gezeigten Ausfuhrungsform derart angeordnet:, dass er sich nicht direkt am brennraumseitigen Ende der Mittelelektrode 11 befindet, sondern in einem bestimmten, fest vorgegebenen Abstand vom brennraumseitigen Ende der Mittelelektrode 11. Die in den Figuren 4, 5 und 6 dargestellten Mittelelektroden 11 weisen in ihrem hochabbrandbestandigen Bereich 115 und in ihrem Mittelelektrodengrundkorper 113 die gleiche Zusammensetzung, wie sie in Figur 2 beschrieben ist, auf.
Die in den Figuren 2 bis 6 dargestellten Mittelelektroden werden in einem bevorzugten Ausfuhrungsbeispiel derart hergestellt, dass der hochabbrandbestandige Bereich 115 der Mittelelektrode auf die brennraumseitige Stirnfläche des Mittelelektrodengrundkorpers 113 mittels Laser- oder Widerstandsschweißen aufgebracht wird. Auch dann, wenn der hochabbrandbestandige Bereich 115 der Mittelelektrode über die funkenstreckenseitige Stirnfläche 119 des Mittelelektrodengrundkorpers 113 in die Mittelelektrode hineinragt, wird der hochabbrandbestandige Bereich 115 der Mittelelektrode mittels Schweißen aufgebracht, indem eine Vertiefung in dem Mittelelektrodengrundkorper 113 vorgesehen ist, in die der hochabbrandbest ndige Bereich 115 der Mittelelektrode eingelegt wird, bevor er geschweißt wird. Analog zu der Herstellung der Mittelelektrode mittels Schweißen wird in einem weiteren Ausfuhrungsbeispiel die Mittelelektrode derart hergestellt, dass der hochabbrandbestandige Bereich 115 auf den
Mittelelektrodengrundkorper 113 mittels Loten aufgebracht wird.
In einem weiteren bevorzugten Ausführungsbeispiel wird die Mittelelektrode 11 mittels Fließpressen hergestellt, wobei gegebenenfalls das brennraumseitige Ende der mittels Fließpressen hergestellten Mittelelektrode noch beispielsweise mittels eines spanenden
Bearbeitungsverfahrens bearbeitet wird, so dass mindestens ein Teil der Stirnfläche des brennraumseitigen Endes der Mittelelektrode durch den hochabbrandbestandigen Bereich 115 gebildet wird.
Die anhand von Figur 2 bis 6 beschriebenen Mittelelektroden können auch derart beschaffen sein, dass das brennraumseitige Ende des Mittelelektrodengrundkorpers 113 und/oder des hochabbrandbestandigen Bereichs 115 der Mittelelektrode konisch zulauft.
In Figur 7 ist eine Ansicht von der Seite einer Masseelektrode 9 am in Richtung Funkenstrecke zeigenden Ende schematisch dargestellt. Die Masseelektrode weist einen Masseelektrodengrundkorper 93 auf, auf den in Richtung Funkenstrecke ein hochabbrandbestandiger Bereich 95 der Masseelektrode angeordnet ist. Der hochabbrandbestandige Bereich 95 der Masseelektrode bildet analog zu dem hochabbrandbestandigen Bereich 115 der Mittelelektrode die Flache, an der der Funken überschlagt. Dazu muss der hochabbrandbestandige Bereich 93 der Masseelektrode ebenfalls eine hohe Resistenz gegenüber Funkenerosion und Korrosion aufweisen. Die in Richtung Funkenstrecke zeigende Stirnflache 97 des hochabbrandbestandigen Bereichs 95 der Masseelektrode besitzt die größte Oberflache im Vergleich zu den anderen Oberflachen des hochabbrandbestandigen Bereichs 95 der Masseelektrode. Die Zusammensetzung des Masseelektrodengrundkorpers 93 entspricht der anhand von Figur 2 erläuterten Zusammensetzung des
Mittelelektrodengrundkorpers 113. Die Zusammensetzung des hochabbrandbestandigen Bereichs 95 der Masseelektrode entspricht einer der Zusammensetzungen des hochabbrandbestandigen Bereichs 115 der Mittelelektrode, die anhand von Figur 2 erläutert wurden.
In Figur 8 ist ein weiteres Ausfuhrungsbeispiel für eine Masseelektrode einer erfindungsgemaßen Zündkerze in einer Ansicht von der Seite dargestellt. Weiterhin zu erkennen ist außerdem schematisch eine Ansicht von der Seite eines brennraumseitigen Endes einer Mittelelektrode 11 und eines Isolators 6. In diesem Ausfuhrungsbeispiel ist der hochabbrandbestandige Bereich 95 der Masseelektrode auf einer anderen Stirnflache der Masseelektrode angeordnet, da sich, aufgrund der Anordnung der Masselelektrode und der Mittelelektrode zueinander, die in Richtung Funkenstrecke zeigende Stirnflache 99 des Masseelektrodengrundkorpers 93 auf einer anderen Flache ergibt. Die Zusammensetzung des hochabbrandbestandigen Bereichs 95 der Masseelektrode entspricht auch in diesem Ausfuhrungsbeispiel einer der anhand von Figur 2 erläuterten Zusammensetzungen des hochabbrandbestandigen Bereichs 115 der Mittelelektrode.
Analog zu den anhand von Figur 2 bis 6 erläuterten Möglichkeiten, den hochabbrandbestandigen Bereich 115 der Mittelelektrode auszubilden, erfolgt die Herstellung bzw. das Anbringen des hochabbrandbestandigen Bereichs 95 an der Masseelektrode 9. Der hochabbrandbestandige Bereich 95 der Masseelektrode wird auf die plane Oberflache 99 der Masseelektrode aufgebracht bzw. in eine Vertiefung auf der in Richtung Funkenstrecke liegenden Stirnseite eingebracht. Die Herstellung der Masseelektrode 9 erfolgt in einem weiteren Ausfuhrungsbeispiel analog zur Mittelelektrode mittels Laser- oder Widerstandsschweißen, mittels Loten oder mittels Fließpressen. Auch die Masseelektrode 9 kann einen konisch zulaufenden hochabbrandbestandigen Bereich 95 der Masseelektrode und/oder Masseelektrodengrundkorper 93 aufweisen.
Ein hochabbrandbestandiger Bereich kann entweder an mindestens einer Masseelektrode 9 oder der Mittelelektrode 11 angeordnet sein oder sowohl an mindestens einer Masseelektrode 9 und der Mittelelektrode 11.

Claims

Ansprüche
1. Zündkerze für eine Brennkraftmaschine mit mindestens zwei Elektroden (9,11), wobei eine dieser mindestens zwei Elektroden mindestens eine Mittelelektrode (11) und eine andere Elektrode der mindestens zwei Elektroden mindestens eine Masseelektrode (9) darstellt, wobei zwischen der mindestens einen Masseelektrode (9) und der mindestens einen Mittelelektrode (11) eine Funkenstrecke (13) gebildet wird, wobei jede der mindestens zwei Elektroden (9,11) einen Elektrodengrundkorper (93,113) aufweist, wobei mindestens eine Elektrode einen hochabbrandbestandigen Bereich (95,115) aufweist, der mindestens einen Teil der der Funkenstrecke zugewandten Stirnflache der Elektrode (97,117) bildet, dadurch gekennzeichnet, dass der hochabbrandbestandige Bereich (95,115) aus einer Legierung besteht, die mindestens die Elemente Iridium und Nickel aufweist.
2. Zündkerze nach Anspruch 1 dadurch gekennzeichnet, dass der Nickelanteil der Legierung, die die Elemente Iridium und Nickel aufweist, großer als 10 Atom-% ist.
3. Zündkerze nach Anspruch 1 dadurch gekennzeichnet, dass die Legierung des hochabbrandbestandigen Bereichs
(95,115) eine Iridium-Nickel-Platin-Legierung darstellt, die eine Zusammensetzung aufweist, wobei
10 Atom-% < x < 30 Atom-% und 10 Atom-% < y < 30 Atom-%.
4. Zündkerze nach Anspruch 1 dadurch gekennzeichnet, dass die Legierung des hochabbrandbestandigen Bereichs
(95,115) eine Iridium-Nickel-Rhodium-Legierung darstellt, die eine Zusammensetzung IryNixRh]_oo-y-χ aufweist, wobei 10 Atom-% < x < 30 Atom-% und 50 Atom-% < y < 80 Atom-% .
5. Zündkerze nach Anspruch 1 dadurch gekennzeichnet, dass mindestens ein Teil des hochabbrandbestandigen Bereichs
(95,115) in Richtung der Funkenstrecke über die funkenstreckenseitige Stirnflache des Elektrodengrundkorpers (99,119) übersteht.
6. Zündkerze nach Anspruch 1 dadurch gekennzeichnet, dass der hochabbrandbestandige Bereich (95,115) eine Hohe zwischen 1 Millimeter und 0,2 Millimeter aufweist.
7. Zündkerze nach Anspruch 1 dadurch gekennzeichnet, dass der hochabbrandbestandige Bereich (95,115) einen Durchmesser von bis zu 2 Millimetern aufweist.
EP01911425A 2000-03-29 2001-02-06 Zündkerze für eine brennkraftmaschine Withdrawn EP1269590A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10015642A DE10015642A1 (de) 2000-03-29 2000-03-29 Zündkerze für eine Brennkraftmaschine
DE10015642 2000-03-29
PCT/DE2001/000452 WO2001073907A1 (de) 2000-03-29 2001-02-06 Zündkerze für eine brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP1269590A1 true EP1269590A1 (de) 2003-01-02

Family

ID=7636854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01911425A Withdrawn EP1269590A1 (de) 2000-03-29 2001-02-06 Zündkerze für eine brennkraftmaschine

Country Status (5)

Country Link
US (1) US6971937B2 (de)
EP (1) EP1269590A1 (de)
JP (1) JP2003529198A (de)
DE (1) DE10015642A1 (de)
WO (1) WO2001073907A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1517419B1 (de) * 2003-03-25 2011-05-11 NGK Spark Plug Co., Ltd. Zündkerze
WO2004107517A1 (ja) * 2003-05-28 2004-12-09 Ngk Spark Plug Co., Ltd. スパークプラグ
DE10348778B3 (de) * 2003-10-21 2005-07-07 Robert Bosch Gmbh Elektrode für eine Zündkerze und Verfahren zum Herstellen einer Elektrode
EP1787367B1 (de) * 2004-08-03 2012-02-01 Federal-Mogul Corporation Zündeinrichtung mit einer reflowed-zündspitze und herstellungsverfahren
DE102005018674A1 (de) * 2005-04-21 2006-10-26 Robert Bosch Gmbh Elektrode für eine Zündkerze
EP1961080B1 (de) * 2005-11-18 2013-02-27 Federal-Mogul Corporation Zündkerze mit einer mehrschichtigen zündungsspitze
JP2009531813A (ja) * 2006-03-24 2009-09-03 フェデラル−モーグル コーポレイション 点火プラグ
KR100853292B1 (ko) 2007-01-31 2008-08-21 주식회사 유라테크 점화플러그
US7795790B2 (en) * 2007-02-02 2010-09-14 Federal-Mogul Worldwide, Inc. Spark plug electrode and process for making

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19623795A1 (de) 1995-06-15 1996-12-19 Nippon Denso Co Zündkerze für eine Brennkraftmaschine mit innerer Verbrennung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947436B2 (ja) * 1982-01-14 1984-11-19 株式会社デンソー 内燃機関用スパ−クプラグ
US4540910A (en) * 1982-11-22 1985-09-10 Nippondenso Co., Ltd. Spark plug for internal-combustion engine
JPS62226592A (ja) * 1986-03-28 1987-10-05 日本特殊陶業株式会社 点火プラグ
JPH03101086A (ja) * 1989-09-14 1991-04-25 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
DE3941649A1 (de) 1989-12-16 1991-06-20 Bosch Gmbh Robert Verfahren zur herstellung von elektroden fuer zuendkerzen sowie zuendkerzen-elektroden
DE69202954T2 (de) * 1991-10-11 1995-11-02 Ngk Spark Plug Co Zündkerze.
EP0549368B1 (de) * 1991-12-27 1998-05-27 Ngk Spark Plug Co., Ltd Zündkerzenelektrode und Herstellungsverfahren
GB2276207B (en) * 1993-03-18 1996-09-04 Nippon Denso Co A spark plug and a method of producing the same
JP3633019B2 (ja) 1995-02-10 2005-03-30 株式会社デンソー 内燃機関用スパークプラグ
JPH08222351A (ja) 1995-02-14 1996-08-30 Nippondenso Co Ltd 内燃機関用スパークプラグ及びその製造方法
US6262522B1 (en) * 1995-06-15 2001-07-17 Denso Corporation Spark plug for internal combustion engine
JPH09219274A (ja) * 1995-12-06 1997-08-19 Denso Corp スパークプラグ
US5866972A (en) 1996-01-19 1999-02-02 Ngk Spark Plug Co., Ltd. Spark plug in use for an internal combustion engine
US6337533B1 (en) 1998-06-05 2002-01-08 Denso Corporation Spark plug for internal combustion engine and method for manufacturing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19623795A1 (de) 1995-06-15 1996-12-19 Nippon Denso Co Zündkerze für eine Brennkraftmaschine mit innerer Verbrennung

Also Published As

Publication number Publication date
US6971937B2 (en) 2005-12-06
US20030122461A1 (en) 2003-07-03
WO2001073907A1 (de) 2001-10-04
JP2003529198A (ja) 2003-09-30
DE10015642A1 (de) 2001-10-18

Similar Documents

Publication Publication Date Title
DE10131391B4 (de) Zündkerze für Kogenerationssystem
DE10252736B4 (de) Zündkerze
DE10201697B4 (de) Zündkerzenaufbau mit hohem Wärmewiderstand und hoher Haltbarkeit
DE69400185T2 (de) Zündkerzenelektrode zur Anwendung in einem Verbrennungsmotor
DE102004044152B4 (de) Zündkerze
DE102015121862B4 (de) Zündkerze
DE2421585A1 (de) Zuendkerze
DE202011110412U1 (de) Zündvorrichtung mit einer Korona verbessernden Elekrodenspitze
EP1230720A1 (de) Elektrode, verfahren zu deren herstellung und zündkerze mit einer derartigen elektrode
DE102010014325A1 (de) Verfahren zum Herstellen einer Zündkerze und dadurch hergestellte Zündkerze
DE112017007278T5 (de) Zündkerze
EP1269590A1 (de) Zündkerze für eine brennkraftmaschine
DE3036223C2 (de)
DE102018123302B4 (de) Zündkerze für eine Maschine mit interner Verbrennung
DE102015113175A1 (de) Zündkerze
DE102013219520A1 (de) Zündkerze für brennkraftmaschine
DE102013102854B4 (de) Zündkerze und Verfahren zur Herstellung derselben
EP1338065B1 (de) Zündkerze für eine brennkraftmaschine und verfahren zur herstellung einer mittelektrode für eine zündkerze einer brennkraftmaschine
DE102018105941B4 (de) Zündkerzen-Zündspitze, Zündkerzenanordnung und Verfahren zum Herstellen einer Zündkerzen-Zündspitze
EP1881573B1 (de) Zündeinrichtung, insbesondere Zündkerze für eine Verbrennungsmaschine und Verfahren zur Positionierung von wenigstens einer Masseelektrode in der Zündeinrichtung.
WO1998026481A1 (de) Zündkerze
DE102004060866A1 (de) Zündkerze mit verbesserter Verbindungsfestigkeit zwischen Edelmetallelement und Masseelektrode
DE112016005813T5 (de) Zündkerze
DE112012003972B4 (de) Zündkerze und Masseelektroden-Herstellungsverfahren
WO2008055483A1 (de) Zündeinrichtung, insbesondere zündkerze für eine verbrennungskraftmaschine und verfahren zur herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030312

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050504