EP1268211B1 - Procede d'impression et machine d'impression associee - Google Patents

Procede d'impression et machine d'impression associee Download PDF

Info

Publication number
EP1268211B1
EP1268211B1 EP01940100A EP01940100A EP1268211B1 EP 1268211 B1 EP1268211 B1 EP 1268211B1 EP 01940100 A EP01940100 A EP 01940100A EP 01940100 A EP01940100 A EP 01940100A EP 1268211 B1 EP1268211 B1 EP 1268211B1
Authority
EP
European Patent Office
Prior art keywords
printing
ink carrier
machine according
printing machine
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01940100A
Other languages
German (de)
English (en)
Other versions
EP1268211A1 (fr
Inventor
Udo Lehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aurentum Innovationstechnologien GmbH
Original Assignee
Aurentum Innovationstechnologien GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10051850A external-priority patent/DE10051850A1/de
Application filed by Aurentum Innovationstechnologien GmbH filed Critical Aurentum Innovationstechnologien GmbH
Publication of EP1268211A1 publication Critical patent/EP1268211A1/fr
Application granted granted Critical
Publication of EP1268211B1 publication Critical patent/EP1268211B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/0057Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material where an intermediate transfer member receives the ink before transferring it on the printing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38207Contact thermal transfer or sublimation processes characterised by aspects not provided for in groups B41M5/385 - B41M5/395
    • B41M5/38221Apparatus features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/08Ablative thermal transfer, i.e. the exposed transfer medium is propelled from the donor to a receptor by generation of a gas

Definitions

  • the present invention relates to a printing method for transferring printing substance from a color carrier to a printing material according to the preamble of claim 1, and to a printing machine according to the preamble of claim 13.
  • a printing process is primarily a method for arbitrarily frequent duplication of text and / or image templates by means of a printing form, which is repainted after each reprint understood.
  • the high-pressure method is known, in which the printing elements of the printing form are raised, while the non-printing parts are recessed. These include, for example, the book printing and the so-called flexo or anil impression.
  • planographic printing processes are known in which the printing elements and the non-printing parts of the printing form lie substantially in one plane. These include the offset printing but also more known in the art field methods such. B. the lithography.
  • the inked drawing on the printing plate is not printed directly on the printing substrate, but is first transferred to a blanket cylinder or blanket and then the substrate is first printed on it.
  • a blanket cylinder or blanket If in the following of printing material is mentioned, but both the actual substrate, i. the material to be printed, as well as any transfer means, e.g. a rubber cylinder, to be understood.
  • a third method is the so-called gravure printing process, in which the printing elements of the printing form are recessed. These include a number of manual techniques, such as: B. the copper engraving and the etching. An industrially applied gravure printing process is the gravure printing.
  • a through-printing method which is sometimes also referred to as a screen printing method, is known in which the ink is transferred to the printing material at the printing sites through sieve-like openings of the printing form.
  • printers are already used, which are generally connected to an electronic data processing system. These generally use digitally controllable printing systems that are capable of printing individual pressure dots as needed. Such printing systems use different methods with different printing substances on different substrates. Some examples of digitally controllable printing systems are: laser printers, thermal printers and inkjet printers. Digital printing processes are characterized by the fact that they do not require printing forms.
  • a laser beam On the side facing away from the film of the ink carrier for printing a laser beam is directed, which penetrates the ink carrier to an absorption layer on the ink-facing side of the ink carrier.
  • the laser beam triggers an acoustic pulse on this absorption layer which causes a transfer of an ink droplet from the ink carrier to the printing material.
  • a cylindrical body which preferably rotates about its own axis.
  • the substrate z.
  • paper plastic film, metal foil, but also rigid materials such as glass or metal, moved past with a transport speed which corresponds approximately to the peripheral speed of the cylindrical body.
  • the peripheral speed of the cylindrical body can also be greater than the feed speed of the printing material.
  • the energy is first transferred from the energy-emitting device into a mediating material and subsequently from the mediating material to the printing substance.
  • the mediating material is preferably a light-absorbing material, which is advantageously arranged in the form of a layer on the ink carrier.
  • the energy transfer from the switching material to the printing substance can be done for example by transfer of heat energy. D. h. That is first heated by the energy-emitting device at the relevant desired location, the switching material, which in turn emits heat energy to the printing substance.
  • the energy transfer takes place by a momentum transfer. Ie.
  • a position and / or volume change of the material is induced within the mediating material, so that a pulse is transmitted to the printing substance by the movement or expansion of the mediating material.
  • the energy absorbing layer is optimally adapted to the absorption of the energy beam, so that the energy to be used for the transmission of a pressure point can be further lowered.
  • the inventive method is not necessarily a printing forme in the classical sense necessary.
  • the cylindrical ink carrier with depressions forming a printing plate, the so-called wells, which are applied substantially on the outer surface of the ink carrier, but having a connection with each other, so that the printing substance, which is located in adjacent recesses who has a connection.
  • the replacement does not have to be done solely because of the induced energy, but it is sufficient if the printing material is sufficiently close to the printing substance approached, completely, if the induced energy position change of the printing substance, so that by the local collection of the printing substance This touches the substrate and it comes thereby to the detachment.
  • the "printing form” is formed due to the inertia of the remaining printing substance quasi of the surrounding printing substance.
  • the thickness of the pressure point can be adjusted here preferably via the variation of the laser energy and / or via the variation of the pulse length.
  • the diameter of the pressure point may be set via the variation of the laser energy and / or via the variation of the pulse length.
  • the resolution of the printing process can therefore be set almost arbitrarily.
  • the positioning of the pressure point can be freely selected.
  • the known method according to DE 197 46 174 only defined positions, namely the positions of the wells, are available. Even if, with a good resolution, the number of wells on the color carrier can well be more than 100 million, the dot pattern and the size of the points are predetermined by such a color carrier.
  • a distance between ink carrier and printing material or printing substance on the ink carrier and printing substrate is maintained, which is preferably at least 10 microns, more preferably about 50 microns.
  • the printing material does not touch the "printing form" or the ink carrier. This has the advantage that expensive squeegee devices are not needed.
  • the pulse length of the laser pulse used is less than 1 ⁇ s, preferably less than 500 ns, more preferably between 100 to 200 ns. Due to the very short pulse length (with sufficient total energy), the laser energy is very well localized and thus achieves a clean printing of pressure points, without the capillary forces of a continuous film-forming printing substance have a negative impact.
  • laser pulses with a pulse duration of a few femtoseconds have already been used.
  • a laser beam is focused on the color carrier or in the printing substance. If the laser light is absorbed, heat is generated in the printing substance, which causes the solvent to evaporate almost abruptly and some of the printing substance is thrown off the ink carrier. In order for the process to function optimally, care must be taken that the energy from the laser beam into the printing substance is fast and efficient is transmitted precisely. This energy transfer can be achieved either by using printing inks that are not absorbing for the laser beam, z. As pigmented paints, done because the laser light is absorbed directly on the pigment surface of the printing substance, or it must be provided an absorption layer, which initially absorbs the laser light and then transfers the energy to the printing substance.
  • the Lichstraht is not directed at the printing machine according to claim 13 through the ink carrier, but directed by the printing substance-prone side of the ink carrier on the absorption layer.
  • the light beam is initially directed through the (non-absorbing) printing substance and then impinges on the absorption layer. It has surprisingly been found that in such an arrangement, the risk of detachment of the absorption layer of the ink carrier is significantly reduced.
  • the direction of movement of the energy-absorbing ink droplet only very weakly depends on the angle at which the light beam impinges on the surface of the printing substance. It is therefore not absolutely necessary, as in the above-described embodiment, the case that the color carrier opposite a translucent transfer means is arranged, through which the light beam is passed, so that it impinges approximately perpendicular to the surface of the printing substance.
  • the laser beam may be inclined, i. with the normal on the printing substance surface an angle greater than 0 ° and preferably less than 75 °, more preferably less than 60 °.
  • the distance between the focal point of the light beam and the location of the printing dot to be set on the printing substrate or transfer medium is less than 2 mm, preferably less than 1 mm, particularly preferably less than 0, 5 mm selected.
  • the claim 13 relates to a printing machine for printing a printing substrate with a color carrier and an energy-emitting device which is arranged and designed so that energy can be selectively transferred to certain areas of the color carrier, wherein the color carrier is provided for printing substance substantially a homogeneous or to make continuous film.
  • the Ink carrier advantageously designed as a cylindrical body, which is preferably designed as a hollow cylinder with a substantially smooth surface.
  • the ink carrier is a flat plate.
  • both the design as a cylinder and a flat plate are possible, wherein in the case of the hollow cylinder, the refilling of the printing substance is easily possible, while in the case of the flat plate, the supply of the printing material is easily feasible.
  • the ink carrier has, in an expedient embodiment, a thickness between 1 mm and 20 mm, preferably between 2 mm and 10 mm and particularly preferably about 5 mm.
  • the color carrier designed as a cylinder can have a maximum deviation from the ideal cylindrical shape below 200 ⁇ m, preferably below 100 ⁇ m, in particular below 80 ⁇ m.
  • the cylindrical color carrier has an outer storage.
  • the distance between the substrate and ink carrier can be set exactly.
  • a generally existing ovality of the cylindrical color carrier is absorbed by the outer storage.
  • the outer storage may for example consist of at least one, preferably two, more preferably 3 rollers or rollers on which the cylindrical ink carrier rests.
  • the outer storage is carried out so precisely that the distance between the ink carrier and substrate during rotation of the ink carrier by less than 50 microns, preferably less than 20 microns and more preferably varies by less than 10 microns.
  • an absorption layer is arranged on the ink carrier, which preferably has a thickness of less than 10 .mu.m, preferably less than 5 .mu.m, more preferably less than 1 .mu.m or even better less than 0.5 .mu.m is.
  • color carrier surfaces are still considered to be "substantially smooth" in the sense of the present invention, in contrast to surfaces specifically provided with macroscopic depressions (cups or grooves) or elevations.
  • 'print' a plurality of color layers in succession. Characterized in that the surface of the ink carrier is not completely smooth, the ink carrier is able to absorb an increased amount of printing substance. The 'printing' of a point then has the consequence that at the same place enough printing substance remains on the ink carrier to print more pressure points.
  • the printing form may be in the form of a net, so that so-called meshes are provided instead of cells or grooves.
  • the net shape has the advantage that the connection of the individual meshes with each other automatically results without corresponding connection channels must be provided.
  • the printing substance forms a substantially continuous film along the ink carrier.
  • the energy-emitting device preferably consists of at least one laser source. Under certain circumstances, arrangements of laser diodes can also be used as laser sources, but at present "classic" lasers are still preferred, with a power of the order of 50-100 W or even more.
  • An expedient embodiment also provides a focusing device that focuses the laser beam to a predetermined point on the color carrier. This focusing device may be, for example, an f-theta optic. Of course, however, all other appropriately focusing devices can be used.
  • the arrangement of a deflection device can be of great advantage, with the aid of which the laser beams emitted by the energy-emitting device are diverted to the printing substance.
  • the deflection device can be, for example, a deflection mirror, wherein preferably the solder on the reflective surface and the solder on the substrate level at the time of Bedrukkens an angle of about 45 °.
  • This arrangement has the advantage that the laser beam can be aligned substantially parallel to the axis of rotation of the ink carrier and thus the energy-emitting device can be arranged next to the ink carrier.
  • a separate from the energy-emitting device addressing is additionally provided, which is controlled to image the laser beam to the corresponding point on the print carrier.
  • This addressing device may, for example, have a polygon mirror which can be rotated about its axis. This has the advantage that the energy-emitting device for addressing the individual pressure points does not have to be moved.
  • a polygon mirror with, for example, eight evenly (at 45 °) angled facets in principle allows the deflection of a laser beam between a minimum and a maximum angle, which includes a range of 90 °.
  • the laser beam used must be considerably expanded and the polygon mirror, of course, has a finite size, and the laser energy can only be fully utilized if the expanded beam completely impinges on the currently active facet of the polygon mirror.
  • the laser beam which is basically available in continuous operation (even if it may be a pulsed laser with ultrashort pulses and correspondingly short pulse intervals), can not or at least not be used with its full power as long as the expanded beam extends to the corner region between two impinges on neighboring facets.
  • the laser beam can not be used, ie there is a brief printing pause.
  • the laser beam is split in a type of "time division multiplexing" or directed over two different paths, wherein the one beam part is directed so that it is then from a correspondingly selected and preferably 20 ° to 80 ° offset direction fully impinges on the relevant polygon facet, while the other branch of the beam would impinge on a corner region at the transition between two facets.
  • the switching between the two beam branches, which preferably impinge on the polygonal mirror at an angle offset by 45 ° relative to one another, can be effected, for example, by a mirrored shutter disk which alternately has through openings and mirror surfaces and which is suitable with the rotation of the polygon mirror Synchronized so that the beam is either passed through or deflected by a mirror of the shutter disk so that it runs over a different path than the beam which passes through the corresponding gaps of the shutter disk and impinges on a first path on the shutter mirror.
  • the use of a polarized laser beam in conjunction with an electro-optical modulator would be possible.
  • the electro-optical modulator rotates the polarization direction of the laser light, which is then subsequently reflected by a polarization filter either by 90 ° or, if the polarization direction of the laser is suitable, is completely passed through the filter.
  • a polarization filter either by 90 ° or, if the polarization direction of the laser is suitable, is completely passed through the filter.
  • an alternate guidance or redirection of the beam along two different paths can be realized, which in turn is synchronized by appropriate electronic control of the electro-optical modulator with the rotation of the polygon mirror, so that at any time one of the two beams fully on a facet surface of the polygon mirror, while the beam on the other path otherwise on would hit a transition area between two polygon facets.
  • one can increase the duty cycle of the laser beam which is otherwise only about 0.5 due to the practical limitations, to the maximum value of 1.
  • the absorption layer is preferably made of crystalline material, wherein the size of the individual crystals should be as small as possible.
  • absorption layer is advantageously nanocrystalline material, eg. As carbon or so-called "gas black" have been used, wherein the size of the individual crystals was approximately between 10 and 1000 nm.
  • the size of the individual crystals is advantageously chosen smaller than the wavelength of the laser light used.
  • the absorption layer is preferably attached to the print carrier with polysilicate.
  • the absorption layer must on the one hand be active enough to absorb the light and at the same time be able to give as much as possible of this energy as directly as possible to the printing substance. On the other hand, the absorption layer must be such that it is not detached from the light beam by the color carrier.
  • the transmitted from the laser beam to the absorption layer momentum transfer presses the absorption layer on the ink carrier and does not dissolve the absorption layer of the ink carrier.
  • the light beam does not necessarily have to impinge perpendicularly on the absorption layer or the ink carrier.
  • the volume and / or position change induced by the light beam usually proceeds essentially in the direction of the normal on the surface of the color carrier.
  • FIGS. 1 a) and b) and FIGS. 2 a) d) show various comparative examples, not claimed, of a color carrier with and without a printing form.
  • Figures 1 a) and b) of the ink carrier 2 is covered by a printing plate 1, which has on the side facing the ink carrier so-called pre-chambers 5, which are filled with an absorbent material 10.
  • the antechambers 5 are separated from the wells 6, which are filled with pressure substance 8, by an elastic membrane 4.
  • the cups 6 are here separated by so-called webs 3 on the side facing the substrate not shown.
  • the section shown in Figure 1 b) differs from the section 1 a) characterized in that the printing plate 1 no separate from the wells 6 have prechambers 5, but in this case the absorbent material 10 is anchored in the printing plate 1 at the bottom of the wells 6, so that the energy beam 7 is first converted into heat by an absorption material 10.
  • the absorption material need not necessarily be arranged in separate chambers, but may for example be formed as a continuous layer.
  • an energy-emitting device here in the form of a laser arrangement, which is capable of responding by means of at least one jet of each well 6.
  • the laser light is controllable so that over the width of the ink carrier 2 in the region of the printing gap, d. H. in the region in which the printing material is approximated to the ink carrier or the printing form, the printing substance 8 located on the surface of the printing form 1 is selectively controllable.
  • FIGS. 2 a) to d) show further comparative examples.
  • the printing substance 8 is applied to the ink carrier.
  • Figure 2 a) is the energy-inducing process, d. H. the printing process, shown.
  • the wells 6 are filled with printing substance 8, wherein here absorption material 10 was introduced as a dispersion in the printing substance 8.
  • absorption material 10 was introduced as a dispersion in the printing substance 8.
  • the absorbent material 10 is not necessarily required if appropriately suitable printing substances are used. Only in the event that the printing substance is unable to absorb the introduced energy is the use of an absorbent, e.g. B. as a continuous layer or by adding the absorbent material into the printing substance, necessary.
  • the energy beam 7 is focused into the well 6 in FIG. 2 a).
  • the absorption bodies 10 located in the printing substance 8 receive the energy of the energy beam 7 and convert it into heat, so that the solvent present in the printing substance 8 evaporates. By this sudden evaporation of the solvent, the printing substance 8 is thrown out of the well 6.
  • the transfer of energy does not necessarily take place by heat transfer. Rather, it is also possible that the absorbent heated by the laser beam expands and the printing substance transmits a pulse via the membrane 5, which ensures that the printing substance 8 rises above the outer contour of the ink carrier or the printing plate.
  • FIG. 2 c) shows a comparative example without a separate printing form.
  • the printing substance 8 as a homogeneous film on the ink carrier 2.
  • a laser pulse 7 leads to a movement of the printing substance 8 on the outer contour of the ink carrier addition.
  • the printing of dots can also be carried out completely without printing form 1, which leads to a kind of portioning of the printing substance 8.
  • the control of the pressure point quantity and its expansion then takes place by the control of the pulse energy and the pulse length.
  • FIG. 2 d shows a comparative example with specially shaped wells 6. It can be clearly seen that the wells consist essentially of a channel which widens on both sides. Characterized in that, as shown in the middle figure of Figure 2 d), the laser beam is focused in the extended region of the channel, which faces the ink carrier 2, the relatively weak gas bubble formation in the printing substance 8 is enhanced and due to the nozzle-like shape aligned in the direction of the substrate. Through this nozzle-like shape of the channel or the cells, the energy required for printing can be reduced.
  • FIG 3 a an embodiment is shown with printing form, in which the connection of the individual wells can be seen.
  • the printing plate 1 has on the side facing the ink carrier 2 a roughened side 16, so that between ink carrier 2 and printing plate 1, a gap 13 forms a homogeneous distribution of the ink 8 of the wells 9 by occurring capillary forces between the printing plate 1, color carrier and printing substance 8 guaranteed.
  • air pockets are prevented and a homogeneous and defined filling of the wells with printing substance is possible.
  • a printing plate 1 is likewise arranged on the ink carrier 2.
  • the printing form 1 is here designed as a net 18 and therefore has so-called mesh 15 instead of the wells.
  • the network also allows a homogeneous distribution of the printing substance 8 through the forming gap 13.
  • the cylindrical ink carrier 2 is shown as a whole, wherein the printing form 1, the cylindrical printing cylinder or the ink carrier 2 encloses seamlessly.
  • the laser arrangement 7 is located in the interior of the printing cylinder 2.
  • the printing form 1 can also circulate the cylindrical printing cylinder or the color carrier 2 as a band, as shown in FIG. 4 b). Again, the laser assembly 7 is located inside the printing cylinder. 2
  • the ink carrier 2 need not necessarily be formed as a rotating cylinder.
  • the printing plate 1 runs as a tape past a firmly anchored printhead 16.
  • a laser assembly 17 is arranged, which can be constructed on the basis of the limited space on semiconductor technology.
  • the ink carrier 2 is cylindrically shaped. With the ink carrier 2 no printing plate 1 is connected, but on the ink carrier 2, the printing substance 8 is applied as a homogeneous film.
  • a printing plate 1 which is arranged separately from the ink carrier 2 and which here has the shape of a diaphragm.
  • the supply of the printing substance is secured by means of a standardized color system.
  • the distance of the diaphragm-like printing form 1 from the ink carrier 2 corresponds approximately to the layer thickness of the printing substance film.
  • FIG. 6 shows a bypass optics, which is advantageously used together with a printing press. It is understood that this bypass optics can be used for all printing processes in which a laser beam is to be mapped specifically to a specific point of a color carrier.
  • the ink carrier 2 which is designed as a cylinder.
  • a deflecting mirror 21 which encloses here with the central axis of the cylinder 2 at an angle of 45 °.
  • the laser beam 7 is first directed to a first deflection mirror 24, which does not necessarily have to be present, on the addressing unit 23, which is designed here as a polygonal mirror.
  • the addressing unit 23 is controllable, so that the deflection of the laser beam 7 can be determined with the aid of the polygonal mirror 23.
  • each point a line which runs on the surface of the ink carrier 2 parallel to the axis of rotation of the ink carrier 2, are driven. More specifically, during the rotation of the polygon mirror, the focal point of the laser traverses each point of that line, and it can be turned on or off at each point (or pixels corresponding to the possible resolution).
  • FIG. 7 shows a laser source 32 which generates a laser beam which is split into two different laser beams 7 and 7 '.
  • this splitting does not take place with a conventional beam splitter, which would produce continuous beams 7 or 7 'of half power, but from a mirrored disc containing alternately gaps for passing a laser beam 7 and mirrored surfaces for deflecting the laser beam 7'. having.
  • the gaps and mirrored surfaces preferably each occupy equal length angular sectors and alternate each other.
  • the interrupter disk 28 also has eight ports and eight mirrored surfaces uniformly distributed about the circumference of the interrupter disk 28.
  • the drive 29 for the interrupter disc 28 is synchronized via a synchronizer 33 in a suitable manner with the rotation of the polygon mirror 23, wherein the exact type of synchronization will be described below.
  • the one partial beam 7 passes through a gap of the interrupter disc 28 and the beam widening 31 passes, strikes a mirror 27 and is reflected from there at a fixed angle (corresponding to the position of the mirror 27) on the polygon mirror 23, which is perpendicular to his paper axis extending, central axis rotates.
  • the beam 7 ' is first deflected upwards by the mirrored segments of the interrupter disk 28, passes through the beam widening 30, then strikes a mirror 25 and from there onto a mirror 26, which in turn directs the beam onto the polygon mirror 23.
  • the mirrors are shown here only schematically and in any case the mirror 26 is aligned so that the beam is incident on the polygon mirror 23 falls.
  • the laser beams 7, 7 ' are always reproduced into individual packets, which corresponds to the alternate interruption of the two beams, but realistically, the individual "packets" are much longer and with correspondingly larger gaps would have to be displayed.
  • the interrupted beam representation in Figure 7 therefore corresponds more to the individual pressure point pulses which are directed in a scanning line on the print carrier.
  • FIG. 7 shows a state in which the laser beam 7 still passes through a gap in the interrupter disk 28 and impinges on one of the facet surfaces via the mirror 27.
  • the length of the gap or interruption in the interrupter disk 28 is dimensioned so that the relevant facet of the polygon mirror almost completely passes through the region on which the beam 7 impinges. That is, the beam 7 strikes the relevant facet of the polygon mirror for the first time when the preceding corner between adjacent facets has just passed that area.
  • the relative orientation of the polygon facet to the laser beam 7 changes, causing the laser beam 7 reflected by the polygon mirror to sweep over an angular range that is approximately from a horizontal to a 45 ° angle in the instantaneous view of Figure 7 this 45 ° angle is almost reached.
  • the beam 7 Shortly before the laser beam 7 hits the next corner at the transition to the next facet, the beam 7 is interrupted by the interrupter disc 28, so that now the beam 7 'is directed to the relevant facet, and thus immediately behind the corner to the preceding facet impinges on the same facet, which was previously painted by the beam 7.
  • the beams 7, 7 ' are relatively strongly expanded in relation to the effective length of the individual facets and are not usable, as long as they do not play with their full beam cross-section on one of the facets.
  • the service life (duty cycle) of the laser is therefore only about 50% or 0.5.
  • a duty cycle of 1 (duty cycle 1), ie during which one beam must be inactive because it passes the area of a corner at the transition between two facets .
  • the interruption of the beam by means of the interrupter disc is independent of the other addressing interruption, with which the individual point of a printed image are driven.
  • a polarizing filter can also be used when the laser is operating with polarized light, wherein an electro-optical modulator which is capable of rotating the plane of polarization by 90 ° is connected in front of a corresponding polarizing filter.
  • the polarization filter can pass through the laser radiation unhindered or reflected by appropriate arrangement by 90 °, so that you can get exactly the same division into the beams 7, 7 ', as described with reference to the interrupter disc ,
  • FIG. 8 shows that this is not necessary. Rather, the laser beam from the other side, i. from the printing substance-afflicted side of the ink carrier, focused in the printing substance or the absorption layer.
  • the laser beam 7 is focused through the transparent glass cylinder, which here merely serves as transfer means, through the printing ink 8 onto the absorption layer 10 applied to the ink carrier 2 at the point 9.
  • the absorption layer 10 absorbs at least part of the energy from the laser beam 7 and forwards it into the printing substance 8. This leads to a sudden local heating of the printing ink and an ink droplet 11 is explosively dissolved out of the ink layer 8. This ink drop 11 reaches the glass cylinder 12. In this way, a glass cylinder could be printed. In general, however, should be printed on non-transparent substrates 34, so that the placed on the glass cylinder 12 pressure point must be transferred to the substrate 34.
  • FIG. 9 schematically shows the structure of a printing press using the arrangement just described.
  • a laser beam 7 is focused through the glass cylinder 12 onto the optionally provided with an absorption layer 10 ink carrier 2, which is formed here in roll form.
  • the ink carrier 2 equipped with a printing plate 1 so can Touch glass cylinder 12 and ink carrier 2.
  • the ink carrier does not have a specially designed printing form 1, but is merely wetted by the printing substance 8, then, as described above, glass cylinders 12 and ink carrier 2 should be spaced apart from one another.
  • the ink carrier 2 is integrated in an inking unit 20 which, in addition to the ink carrier 2, also has a dipping roller 19 and a printing substance bath 8.
  • the fountain roller 19 dives with its outer contour in the printing substance 8 a. If the fountain roller 19 is rotated, this ensures that the surface of the fountain roller 19 is afflicted with printing substance.
  • the fountain roller is at least so far approximated to the ink carrier 2, that a transfer of the printing substance 8 from the fountain roller 19 takes place on the print substrate 2.
  • the inking unit 20 is thus ensured that at any time printing substance 8 is located on the surface of the ink carrier 2. If the laser beam now drifts onto the surface of the ink carrier 2, a change in volume and / or position of the printing substance 8 is induced locally, either directly or via an absorption layer 8, so that a drop of printing substance 8 is transferred from the ink carrier 2 to the glass cylinder 12
  • the glass cylinder is rotated in the arrangement shown in Figure 9 in a clockwise direction, so that the surface portion of the glass cylinder 12 was transferred to the pressure drops, at some point with the running between the support cylinder 35 and glass cylinder 12 printing material 34 comes into contact. Similar to the offset printing, therefore, the ink is first positioned on the glass cylinder 12 and positioned on the actual substrate 34 in a subsequent step.
  • a cleaning roller 14 is advantageously used with which the glass cylinder 12 is cleaned.
  • the laser beam 7 encloses an angle ⁇ with the normal on the color carrier surface. It has surprisingly been found that the angle ⁇ between the ink carrier surface and the direction of the dissolved from the printing ink ink dot is almost independent of the angle ⁇ .
  • the printing substrate 34 approximates the ink carrier 2, the laser beam 7 being laterally concentrated between the printing substrate 34 and the ink carrier 2 on the focal point 9 in the absorption layer 10 or the printing substance 8 in order to print a printing dot.
  • a drop 11 of the printing substance 8 undergoes a change in volume and / or position due to the evolution of heat in the printing substance 8, so that it leaves the printing substance film 8 almost perpendicular to the ink carrier surface.
  • FIGS. 11 a) and 11 b an example of a printing machine is shown which implements the laser arrangement just described.
  • a ink fountain roller 2 is integrated in an inking unit, which in addition to the ink fountain roller 2, the transfer roller 36 and the storage bath with ink 8 comprises. With the help of the inking unit ensures that the ink fountain roller 2 is always wetted on its surface with printing substance 8.
  • the laser beam 7 is directed directly onto the printing substance or the absorption layer on the ink fountain roller 2. In contrast to the previously described arrangements, the laser beam 7 is not initially guided through a transparent body, so that it impinges perpendicular to the surface of the printing substance on this or the underlying absorption layer.
  • the laser beam 7 impinges on the absorption layer of the ink carrier roller 2, which is inked continuously with an ink which is transparent to the laser beam.
  • the focus of the laser beam 7 is projected at a certain angle on the surface of the ink roller. This angle is advantageously chosen so that the distance between the focus point and substrate is optimal.
  • the laser beam is guided line by line in the manner described above the inking roller and transmitted by switching on and off the laser, the information or the pressure points.
  • the laser is on, the laser light is absorbed in the absorption layer, the solvent evaporates in the ink, and it is locally induced a change in volume and / or position of the printing substance, so that the resulting ink droplets sets the desired pressure point.
  • the web support roller guides the substrate so that the distance between the substrate and the focal point is as small as possible, but the substrate neither interrupts the laser beam nor touches the ink roller.
  • the ink carrier roller 2 has a smaller diameter than the web support roller 35.
  • a digital printing method is provided which permits printing or printing of virtually all imaginable printing substances or substrates.
  • conductive coatings or corrosive substances can be applied to printed circuit boards.
  • Another application is rapid prototyping.
  • the ink rollers can be made of almost all materials, preferably metal or ceramic. Furthermore, they may be porous or have rough surfaces.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Methods (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Electronic Switches (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Sewing Machines And Sewing (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Claims (42)

  1. Procédé d'impression destiné à transférer une substance d'impression (8) d'un support de couleur (2) sur une matière d'impression ou un moyen de transfert, dans lequel la substance d'impression (8) subit une variation de volume et/ou de position par un processus induit par un dispositif générateur d'énergie de sorte qu'il est effectué un transfert d'un point d'impression sur la matière d'impression ou le moyen de transfert, la substance d'impression (8) étant appliquée sur le support de couleur (2) sensiblement sous forme d'un film continu, caractérisé en ce que l'énergie est transférée tout d'abord du dispositif générateur d'énergie à un matériau intermédiaire puis du matériau intermédiaire à la substance d'impression (8), le dispositif générateur d'énergie délivrant de l'énergie sous forme de lumière au matériau intermédiaire à travers la substance d'impression de façon à induire une variation de volume et/ou de position à la substance d'impression (8).
  2. Procédé d'impression selon la revendication 1, caractérisé en ce que l'on utilise comme support de couleur (2) un corps cylindrique qui tourne avantageusement autour de son propre axe.
  3. Procédé d'impression selon la revendication 2, caractérisé en ce que le matériau d'impression est déplacé devant le support de couleur (2) à une vitesse de défilement qui est adaptée à la vitesse périphérique du corps cylindrique.
  4. Procédé d'impression selon l'une des revendications 1 à 3, caractérisé en ce que l'on utilise comme dispositif générateur d'énergie un dispositif émettant un faisceau laser (7), le faisceau laser (7) étant dirigé et avantageusement focalisé sur des points sélectionnés à imprimer sur le support de couleur (2).
  5. Procédé d'impression selon l'une des revendications 1 à 4, caractérisé en ce que l'énergie est transférée du dispositif générateur d'énergie directement à la substance d'impression (8).
  6. Procédé d'impression selon l'une des revendications 1 à 5, caractérisé en ce que l'on utilise comme matériau intermédiaire un matériau absorbant la lumière qui est placé avantageusement sous la forme d'une couche sur le support de couleur (2).
  7. Procédé d'impression selon l'une des revendications 1 à 6, caractérisé en ce que l'énergie est délivrée par émission d'une impulsion laser.
  8. Procédé d'impression selon la revendication 7, caractérisé en ce que l'épaisseur des points d'impression est réglée par variation de l'énergie du laser et/ou de la longueur d'impulsion.
  9. Procédé d'impression selon la revendication 7 ou 8, caractérisé en ce que le diamètre du point d'impression est réglé par variation de l'énergie du laser et/ou de la longueur d'impulsion.
  10. Procédé d'impression selon l'une des revendications 1 à 9, caractérisé en ce que l'on maintient entre le support de couleur (2) et le matériau d'impression une distance qui est avantageusement d'au moins 10 µm, de façon particulièrement préférée d'environ 50 µm.
  11. Procédé d'impression selon l'une des revendications 1 à 10, caractérisé en ce que, pour transférer l'énergie, on utilise une impulsion laser ayant une longueur d'impulsion de moins de 1 µs, avantageusement de moins de 500 ns, de façon particulièrement préférée de moins de 200 ns.
  12. Procédé d'impression selon l'une des revendications 1 à 10, caractérisé en ce que le faisceau laser est dévié vers le miroir polygonal sur de courtes périodes alternativement en empruntant deux chemins différents, en provenance de directions différentes et en direction de points décalés d'au moins la largeur du faisceau à environ la moitié d'une longueur de facette, les plages angulaires des faisceaux partiels déviés par le miroir polygonal étant contiguës.
  13. Machine d'impression destinée à imprimer un matériau d'impression au moyen d'un support de couleur (2) et d'un dispositif générateur d'énergie, laquelle machine d'impression est disposée de sorte que l'énergie peut être transférée de façon ciblée vers des régions déterminées du support de couleur (2), le support de couleur (2) étant destiné à absorber la substance d'impression (8) sensiblement en formant un film continu, caractérisée en ce qu'une couche d'absorption (10) est disposé sur le support de couleur (2), et en ce que le dispositif générateur d'énergie est disposé de sorte que l'énergie est dirigée du côté du support de couleur, doté de la substance d'impression, sur la couche d'absorption.
  14. Machine d'impression selon la revendication 13, caractérisée en ce que le support de couleur (2) est un corps cylindrique qui est avantageusement conformé en cylindre creux ou qui est une plaque plane.
  15. Machine d'impression selon l'une des revendications 13 à 14, caractérisée en ce que le support de couleur (2) est en un matériau transparent, avantageusement en verre.
  16. Machine d'impression selon la revendication 15, caractérisée en ce que le support de couleur (2) a une épaisseur comprise entre 1 mm et 20 mm, avantageusement entre 2 mm et 10 mm, de façon particulièrement préférée d'environ 5 mm.
  17. Machine d'impression selon l'une des revendications 13 à 16, caractérisée en ce que la couche d'absorption (10) a avantageusement une épaisseur qui est inférieure à 10 µm, avantageusement inférieure à 5 µm, de façon particulièrement préférée inférieure à 1 µm.
  18. Machine d'impression selon l'une des revendications 13 à 16, caractérisée en ce que la surface de la portion du support de couleur (2) qui reçoit la substance d'impression (8) a une rugosité moyenne arithmétique d'au moins 0,1 µm, avantageusement comprise entre 0,5 µm et 5 µm, de façon particulièrement préférée comprise à peu près entre 1 µm et 2 µm.
  19. Machine d'impression selon l'une des revendications 13 à 17, caractérisée en ce que l'écart de tolérance sur une grande étendue entre la surface du support de couleur et une surface idéale plane ou cylindrique est de 20 µm maximum, avantageusement de 5 µm maximum.
  20. Machine d'impression selon l'une des revendications 13 à 19, caractérisée en ce que la machine d'impression comporte un bloc d'impression (1).
  21. Machine d'impression selon la revendication 20, caractérisée en ce que le bloc d'impression (1) comporte un grand nombre de godets et/ou de rainures qui sont destinés à recevoir la substance d'impression (8).
  22. Machine d'impression selon la revendication 20 ou 21, caractérisée en ce que le bloc d'impression (1) a sensiblement la forme d'un réseau.
  23. Machine d'impression selon l'une des revendications 20 à 22, caractérisée en ce que plusieurs cavités dans le bloc d'impression (1), qui servent à recevoir la substance d'impression (8), sont reliées.
  24. Machine d'impression selon l'une des revendications 20 à 23, caractérisée en ce que le bloc d'impression (1) est disposé en étant fixé au support de couleur (2).
  25. Machine d'impression selon la revendication 24, caractérisée en ce que le bloc d'impression (1) et le support de couleur (2) sont conformés d'une seule pièce.
  26. Machine d'impression selon la revendication 24, caractérisée en ce que le bloc d'impression (1) peut être fixé de façon amovible au support de couleur (2).
  27. machine d'impression selon l'une des revendications 20 à 24 ou 26, caractérisée en ce que le bloc d'impression (1) est réalisé sous la forme d'une bande, avantageusement d'une bande sans fin.
  28. Machine d'impression selon la revendication 20, caractérisée en ce que le bloc d'impression (1) a la forme d'un obturateur qui est placé entre le support de couleur (2) et le matériau d'impression en étant séparé du support de couleur (2).
  29. Machine d'impression selon l'une des revendications 13 à 19, caractérisée en ce qu'il n'est prévu aucun bloc d'impression (1).
  30. Machine d'impression selon l'une des revendications 13 à 19, caractérisée en ce que le dispositif générateur d'énergie est constitué d'au moins une source laser.
  31. Machine impression selon la revendication 30, caractérisée en ce qu'il est prévu un dispositif de focalisation (22) qui focalise le faisceau laser (7) sur un point prédéterminé du support de couleur (2).
  32. Machine d'impression selon la revendication 31, caractérisée en ce que le dispositif de focalisation est une optique f-thêta (22).
  33. Machine d'impression selon l'une des revendications 30 à 32, caractérisée en ce qu'il est prévu un dispositif de déviation (21).
  34. Machine d'impression selon la revendication 33, caractérisée en ce que le dispositif de déviation (21) est un miroir de déviation (21), la perpendiculaire à la surface réfléchissante et la perpendiculaire au plan d'impression formant avantageusement au moment de l'impression un angle d'environ 45°.
  35. Machine d'impression selon l'une des revendications 30 à 34, caractérisée en ce qu'il est prévu un dispositif d'adressage.
  36. Machine d'impression selon la revendication 35, caractérisée en ce que le dispositif d'adressage comporte un miroir polygonal pouvant tourner autour de son axe.
  37. Machine d'impression selon la revendication 36, caractérisée en ce qu'il est prévu un dispositif de déviation permettant de guider le faisceau laser pendant de courtes périodes en lui faisant emprunter alternativement deux chemins différents et de l'orienter vers le miroir polygonal au moyen de miroirs de déviation alternativement depuis deux directions différentes et dans la direction périphérique du miroir polygonal vers des points décalés d'au moins la largeur du faisceau et par exemple d'au moins la moitié d'une longueur de facette.
  38. Machine d'impression selon la revendication 37, caractérisée en ce que le dispositif de déviation est un disque obturateur qui peut être synchronisé avec le miroir polygonal et qui présente alternativement des surfaces réfléchissantes et des ouvertures de passage.
  39. Machine d'impression selon la revendication 37, caractérisée en ce que le laser est un laser polarisé et en ce que le dispositif de déviation est constitué d'un modulateur électrooptique en combinaison avec un ou plusieurs filtres de polarisation.
  40. Machine d'impression selon l'une des revendications 13 à 39, caractérisée en ce que le support de couleur conformé en cylindre est monté sur un côté extérieur, et comporte avantageusement des éléments de support dans la plage angulaire dans laquelle la matière d'impression se trouve à ia plus petite distance de la surface du support de couleur.
  41. Machine d'impression selon l'une des revendications 13 à 40, caractérisée en ce qu'il est prévu un moyen de transfert (12) qui est avantageusement en matériau transparent.
  42. Machine d'impression selon l'une des revendications 13 à 41, caractérisée en ce que le dispositif générateur d'énergie est disposé de façon à pouvoir délivrer un faisceau lumineux qui fait par rapport à la normale à la surface de la substance d'impression un angle α supérieur à 0° et avantageusement inférieur à 75°.
EP01940100A 2000-03-30 2001-03-28 Procede d'impression et machine d'impression associee Expired - Lifetime EP1268211B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10015786 2000-03-30
DE10015786 2000-03-30
DE10051850A DE10051850A1 (de) 2000-03-30 2000-10-19 Druckverfahren und Druckmaschine hierfür
DE10051850 2000-10-19
PCT/DE2001/001201 WO2001072518A1 (fr) 2000-03-30 2001-03-28 Procede d'impression et machine d'impression associee

Publications (2)

Publication Number Publication Date
EP1268211A1 EP1268211A1 (fr) 2003-01-02
EP1268211B1 true EP1268211B1 (fr) 2007-01-03

Family

ID=26005099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01940100A Expired - Lifetime EP1268211B1 (fr) 2000-03-30 2001-03-28 Procede d'impression et machine d'impression associee

Country Status (8)

Country Link
US (1) US7137697B2 (fr)
EP (1) EP1268211B1 (fr)
JP (1) JP4353452B2 (fr)
AT (1) ATE350220T1 (fr)
AU (1) AU2001273816A1 (fr)
CA (1) CA2404328C (fr)
DE (2) DE10191123D2 (fr)
WO (1) WO2001072518A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019154826A1 (fr) 2018-02-09 2019-08-15 Merck Patent Gmbh Procédé de transfert vers l'avant induit par laser à l'aide de particules d'absorbeur à base d'oxyde métallique
WO2019154980A1 (fr) 2018-02-09 2019-08-15 Merck Patent Gmbh Procédé de transfert vers l'avant induit par laser utilisant des pigments à effet
EP3660085A1 (fr) 2018-11-29 2020-06-03 Ivoclar Vivadent AG Matériau support pour l'impression par transfert induit par impulsion énergétique
EP3660087A1 (fr) 2018-11-29 2020-06-03 Ivoclar Vivadent AG Procédé et matériau destinés à la fabrication d'objets tridimensionnels par impression par transfert induit par impulsion énergétique
EP3659728A1 (fr) 2018-11-29 2020-06-03 Ivoclar Vivadent AG Procédé de fabrication additive par couche d'un corps moulé
EP3659989A1 (fr) 2018-11-29 2020-06-03 Ivoclar Vivadent AG Barbotine et procédé de fabrication de structures tridimensionnelles céramiques et vitrocéramiques
WO2022122945A1 (fr) 2020-12-10 2022-06-16 Pritidenta Gmbh Mélange céramique pour produire des corps moulés, son procédé de production et utilisation correspondante
US11613803B2 (en) 2018-05-09 2023-03-28 Lpkf Laser & Electronics Ag Use of a component in a composition, composition for laser transfer printing, and laser transfer printing method

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210146A1 (de) * 2002-03-07 2003-09-25 Aurentum Innovationstechnologi Qualitätsdruckverfahren und Druckmaschine sowie Drucksbustanz hierfür
DE10244458B4 (de) 2002-09-24 2007-11-15 OCé PRINTING SYSTEMS GMBH Druckwerk und Verfahren zum Übertragen von Tinte auf einen Aufzeichnungsträger unter Anwendung von Funkenentladung
ATE358583T1 (de) 2002-12-06 2007-04-15 Koenig & Bauer Ag Druckmaschinen mit mindestens einem farbträger
EP1580015A1 (fr) * 2004-03-24 2005-09-28 Kba-Giori S.A. Procédé et appareil permettant d'effectuer un marquage d'identité sur documents de sécurité
DE102004022230A1 (de) * 2004-05-04 2005-12-08 Koenig & Bauer Ag Druckmaschinen mit einem eine Drucksubstanz tragenden Farbträger
US7707937B2 (en) * 2005-12-15 2010-05-04 Palo Alto Research Center Incorporated Digital impression printing system
US7546803B2 (en) * 2006-01-30 2009-06-16 Toppan Printing Co., Ltd. Letterpress printing machine
EP2687347B1 (fr) 2006-02-21 2018-01-03 System Spa Décoration à base de matériau en poudre
EP2050321A1 (fr) * 2006-08-03 2009-04-22 Basf Se Procédé de réalisation de surfaces structurées conductrices de l'électricité
EP2126190B1 (fr) * 2007-02-20 2010-07-14 Basf Se Procédé de production de surfaces textiles métallisées au moyen d'articles générateurs de courant ou consommateurs de courant
EP2163146A2 (fr) * 2007-05-24 2010-03-17 Basf Se Procédé de réalisation de feuilles de métal à revêtement polymère et leur utilisation
US20080302262A1 (en) * 2007-06-07 2008-12-11 Pinto Yariv Y Direct printing device
DE102007026883A1 (de) * 2007-06-11 2008-12-24 Aurentum Innovationstechnologien Gmbh Druckmaschine und Druckverfahren hierfür
DE102008007228B4 (de) 2008-02-01 2012-02-02 OCé PRINTING SYSTEMS GMBH Verfahren und Vorrichtung zum Erzeugen mindestens eines Druckbildes auf einem Bildträger
WO2009112573A2 (fr) * 2008-03-13 2009-09-17 Basf Se Procédé et dispersion pour l'application d'une couche métallique sur un substrat, et matière thermoplastique pour moulage métallisable
TWI470041B (zh) * 2008-06-09 2015-01-21 Basf Se 用於施加金屬層之分散液
JP2011524646A (ja) * 2008-06-18 2011-09-01 ビーエーエスエフ ソシエタス・ヨーロピア 太陽電池セル用電極の製造方法
US8487970B2 (en) 2008-10-03 2013-07-16 Palo Alto Research Center Incorporated Digital imaging of marking materials by thermally induced pattern-wise transfer
WO2010049342A1 (fr) * 2008-10-31 2010-05-06 Oce-Technologies B.V. Moteur d’impression à jet d’encre comportant une pluralité d’unités de balayage laser
US8040364B2 (en) 2009-07-14 2011-10-18 Palo Alto Research Center Incorporated Latent resistive image layer for high speed thermal printing applications
ES2360778B1 (es) * 2009-07-22 2012-05-03 Universidad De Barcelona Aparato y método para la impresión directa con l�?ser.
EP2474210B1 (fr) * 2009-09-04 2013-06-12 Basf Se Procédé de fabrication de surfaces électro-conductrices
US8355035B2 (en) * 2010-01-29 2013-01-15 Palo Alto Research Center Incorporated Digital gravure printing with a pixilated photoconductor
CH707947A1 (de) 2013-04-24 2014-10-31 Timbatec Holzbauingenieure Schweiz Ag Bauteil, Verfahren zur Verbindung von Holzelementen, Computerprogramm.
EP2955981A1 (fr) 2014-06-13 2015-12-16 Irepa Laser Méthode de réalisation d'un dépôt de surface sélectif mettant en oeuvre une radiation pulsée
US9378714B1 (en) 2015-02-10 2016-06-28 Kevin L. Baldwin, Sr. Electronic drum
KR102239833B1 (ko) * 2016-12-21 2021-04-13 엔씨씨 나노, 엘엘씨 기능성 재료를 기판 상에 증착시키기 위한 방법
JP7249559B2 (ja) 2019-03-29 2023-03-31 パナソニックIpマネジメント株式会社 エッジ検出センサ
JP7234812B2 (ja) 2019-06-10 2023-03-08 コニカミノルタ株式会社 画像検査装置、及び、画像形成システム
EP3800033B1 (fr) * 2019-09-30 2024-08-21 Ricoh Company, Ltd. Appareil de vol à cible d'irradiation, appareil de modélisation tridimensionnelle et procédé de vol à cible d'irradiation
CN112247361B (zh) * 2020-11-20 2021-11-19 华中科技大学 一种基于激光表面处理的选择性粘附转印方法
EP4340552A1 (fr) * 2022-09-13 2024-03-20 Mycronic Ab Procédé et dispositif de transfert vers l'avant induit par laser
WO2024146750A1 (fr) 2023-01-05 2024-07-11 Heliosonic Gmbh Dispositif d'impression

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980018A (en) * 1970-07-03 1976-09-14 Director General, Printing Bureau, Ministry Of Finance Special intaglio printing process for preventing forgery of securities
CA1127227A (fr) 1977-10-03 1982-07-06 Ichiro Endo Procede d'enregistrement a jet liquide et appareil d'enregistrement
US4369451A (en) * 1979-10-30 1983-01-18 Oki Electric Industry Co., Ltd. Thermal printing device
DE3702643A1 (de) * 1986-02-10 1987-08-13 Toshiba Kawasaki Kk Tintenstrahlschreiber sowie schreibkopf und schreibkopfkassette dafuer
US5020904A (en) * 1989-09-06 1991-06-04 Mcmahan Jr Robert K Dynamic laser speckle profilometer and method
US5475207A (en) * 1992-07-14 1995-12-12 Spectra-Physics Scanning Systems, Inc. Multiple plane scanning system for data reading applications
EP0671239A4 (fr) 1992-11-25 1996-08-28 Komatsu Mfg Co Ltd Appareil et procede de marquage par laser.
DE69314304T2 (de) 1992-12-28 1998-04-23 Eastman Kodak Co Reversierbelichtung anwendende laser-induzierte thermische Farbstoffübertragung
KR0144427B1 (ko) * 1994-11-30 1998-10-01 이형도 광 주사장치
RU2096183C1 (ru) * 1995-10-27 1997-11-20 Сергей Николаевич Максимовский Способ струйной печати и струйная печатающая головка для его осуществления
DE19544099A1 (de) 1995-11-27 1997-05-28 Heidelberger Druckmasch Ag Thermografische Druckeinrichtung
RU2088411C1 (ru) * 1996-02-19 1997-08-27 Сергей Николаевич Максимовский Способ печати и печатающее устройство для его осуществления
US5800960A (en) * 1996-10-24 1998-09-01 Eastman Kodak Company Uniform background for color transfer
DE19653911C2 (de) * 1996-12-21 2003-03-27 Roland Man Druckmasch Druckmaschinenwalze mit einer farbfreundlichen Beschichtung der Ballenfläche des Walzenkerns, insbesondere Farbwalze
US5854175A (en) * 1997-04-09 1998-12-29 Eastman Kodak Company Embossed compact disc surfaces for laser thermal labeling
DE19746174C1 (de) 1997-10-18 1999-07-08 Udo Dr Lehmann Druckverfahren und Einrichtung zu dessen Durchführung
JPH11138773A (ja) * 1997-11-10 1999-05-25 Fuji Xerox Co Ltd 画像形成方法および画像形成装置
RU2160186C2 (ru) 1998-08-27 2000-12-10 Максимовский Сергей Николаевич Способ печати и печатающее устройство для его осуществления

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019154826A1 (fr) 2018-02-09 2019-08-15 Merck Patent Gmbh Procédé de transfert vers l'avant induit par laser à l'aide de particules d'absorbeur à base d'oxyde métallique
WO2019154980A1 (fr) 2018-02-09 2019-08-15 Merck Patent Gmbh Procédé de transfert vers l'avant induit par laser utilisant des pigments à effet
US11613803B2 (en) 2018-05-09 2023-03-28 Lpkf Laser & Electronics Ag Use of a component in a composition, composition for laser transfer printing, and laser transfer printing method
EP3660085A1 (fr) 2018-11-29 2020-06-03 Ivoclar Vivadent AG Matériau support pour l'impression par transfert induit par impulsion énergétique
EP3660087A1 (fr) 2018-11-29 2020-06-03 Ivoclar Vivadent AG Procédé et matériau destinés à la fabrication d'objets tridimensionnels par impression par transfert induit par impulsion énergétique
EP3659728A1 (fr) 2018-11-29 2020-06-03 Ivoclar Vivadent AG Procédé de fabrication additive par couche d'un corps moulé
EP3659989A1 (fr) 2018-11-29 2020-06-03 Ivoclar Vivadent AG Barbotine et procédé de fabrication de structures tridimensionnelles céramiques et vitrocéramiques
WO2022122945A1 (fr) 2020-12-10 2022-06-16 Pritidenta Gmbh Mélange céramique pour produire des corps moulés, son procédé de production et utilisation correspondante

Also Published As

Publication number Publication date
US20030156178A1 (en) 2003-08-21
US7137697B2 (en) 2006-11-21
AU2001273816A1 (en) 2001-10-08
EP1268211A1 (fr) 2003-01-02
DE10191123D2 (de) 2003-06-05
WO2001072518A1 (fr) 2001-10-04
JP4353452B2 (ja) 2009-10-28
ATE350220T1 (de) 2007-01-15
DE50111796D1 (de) 2007-02-15
CA2404328A1 (fr) 2002-09-30
CA2404328C (fr) 2010-02-16
JP2003528751A (ja) 2003-09-30

Similar Documents

Publication Publication Date Title
EP1268211B1 (fr) Procede d'impression et machine d'impression associee
EP1485255B1 (fr) Procede d'impression de qualite et machine d'impression
DE69320327T2 (de) Maskenmuster für die Herstellung von konische Tintenstrahldüsen
EP2379335B1 (fr) Procédé et machine d'impression pour l'impression d'un substrat
DE2034679C3 (de) Druckeinrichtung mit Lichtstrahl
EP1473154A2 (fr) Méthode d'impression et machine d'impression
DE3702643A1 (de) Tintenstrahlschreiber sowie schreibkopf und schreibkopfkassette dafuer
DE10338015B4 (de) Verfahren zum Drucken eines Bildes auf einen Bedruckstoff, Vorrichtung zur Eintragung von Energie auf einen Druckfarbenträger und Druckmaschine mit Vorrichtung zur Eintragung von Energie auf einen Druckfarbenträger
DE19746174C1 (de) Druckverfahren und Einrichtung zu dessen Durchführung
EP0730953A2 (fr) Procédé et appareil pour l'héliogravure
DE3139160C2 (fr)
DE10051850A1 (de) Druckverfahren und Druckmaschine hierfür
EP1476303B1 (fr) Procede et equipement d'impression utilisant des valves de rayonnement commandees pour produire une structuration,
DE60127642T2 (de) Vorrichtung zum Bilden einer Düse in einem Element eines Tintenstrahldruckkopfes, Düsenelement, mit solchem Düsenelement versehener Tintenstrahldruckkopf und mit solchem Druckkopf versehener Tintenstrahldrucker
EP1957272A1 (fr) Procede et dispositif de gravure d'images sur une forme en creux effaçable et reutilisable
DE60018593T2 (de) Digitale druckmedien-schneidvorrichtung
EP1593513B1 (fr) Dispositif à imprimer avec au moins deux feuilles colorées et porteuses de substance d'impression
DE19602307A1 (de) Druckmaschine
DE19718906A1 (de) Laser-Tiefdruckverfahren
EP1567344B1 (fr) Machines a imprimer presentant au moins un support d'encre
DE102008045059B4 (de) Verfahren zum Belichten eines fotosensitiven Substrats
EP0485487A1 (fr) Dispositif d'impression par transfert thermique
DE20022520U1 (de) Vorrichtung zur Befeuchtung einer Druckplatte
DE3712418A1 (de) Thermotransferdruckverfahren und -vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030402

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B41J 2/005 20060101AFI20060808BHEP

Ipc: B41M 5/382 20060101ALI20060808BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50111796

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070604

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071005

BERE Be: lapsed

Owner name: AURENTUM INNOVATIONSTECHNOLOGIEN G.M.B.H.

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110314

Year of fee payment: 11

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120313

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 350220

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130328

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: LPKF LASER AND ELECTRONICS AG, DE

Free format text: FORMER OWNER: AURENTUM INNOVATIONSTECHNOLOGIEN GMBH, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150723 AND 20150729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50111796

Country of ref document: DE

Representative=s name: PATENTANWALTSKANZLEI SCHEFFLER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50111796

Country of ref document: DE

Owner name: LPKF LASER & ELECTRONICS AG, DE

Free format text: FORMER OWNER: AURENTUM INNOVATIONSTECHNOLOGIEN GMBH, 55129 MAINZ, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: LPKF LASER & ELECTRONICS AG, DE

Effective date: 20150925

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170327

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200325

Year of fee payment: 20

Ref country code: IT

Payment date: 20200325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200331

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50111796

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210327