EP1266127B1 - Kühlsystem für eine turbinenschaufel - Google Patents

Kühlsystem für eine turbinenschaufel Download PDF

Info

Publication number
EP1266127B1
EP1266127B1 EP01919384A EP01919384A EP1266127B1 EP 1266127 B1 EP1266127 B1 EP 1266127B1 EP 01919384 A EP01919384 A EP 01919384A EP 01919384 A EP01919384 A EP 01919384A EP 1266127 B1 EP1266127 B1 EP 1266127B1
Authority
EP
European Patent Office
Prior art keywords
blade
insert
wall
horizontal ribs
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01919384A
Other languages
English (en)
French (fr)
Other versions
EP1266127A1 (de
Inventor
Peter Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP01919384A priority Critical patent/EP1266127B1/de
Publication of EP1266127A1 publication Critical patent/EP1266127A1/de
Application granted granted Critical
Publication of EP1266127B1 publication Critical patent/EP1266127B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the invention relates to a blade, in particular a turbine blade, with at least one channel bounded by walls is, wherein in at least one channel with a Cooling fluid acted upon insert is inserted.
  • Such a blade is known from US 5,419,039. Between the insert and the walls of the blade become chambers formed in the direction of a longitudinal axis of the blade run. The cooling fluid exits the insert into these chambers and bounces on the walls of the shovel. Subsequently it flows along the walls and passes through outlet openings in specially shaped chambers on the outside of the Walls and from there to the surroundings. In the known Vane is the effect of convection cooling while flowing the cooling fluid along the walls only slightly, since the flow length is very limited. Next, a mixture occurs the cooling fluid in the chambers along the longitudinal axis of the Shovel on, so that no targeted cooling is possible. See EP-A-0 541 207 for details.
  • Another blade is from the same applicant W098 / 25009 known.
  • This document describes a blade with partially hollow Walls through which a cooling fluid flows. by virtue of the reduction of the wall thickness in the area of the hollow chambers a high cooling efficiency is achieved.
  • Shovels with such hollow walls require Shovels with such hollow walls a complicated casting with high reject rates and are therefore very expensive.
  • Object of the present invention is therefore a blade to provide an improvement in ease of manufacture the cooling effect achieved.
  • the horizontal ribs direct the coolant along the wall the vane and prevent a flow of coolant in Direction of the longitudinal axis of the blade. It will be a good one Convection cooling of the wall reached. Further stiffen the Horizontal ribs the blade, so that the wall thickness decreases can be. The reduction in wall thickness leads to an increased cooling efficiency.
  • the manufacture of the shovel can be done with known methods without complex cross-section. Hollow walls are not required. The reject rate is therefore significantly reduced.
  • the insert touches the horizontal ribs.
  • the insert is supported and in the desired Position aligned.
  • the horizontal ribs, the insert and the wall flowed through by the cooling fluid Chambers.
  • the chambers Through the chambers is a stream of Cooling fluid in the direction of the longitudinal axis of the blade reliably prevented.
  • the cooling effect along the Longitudinal axis of the blade by a different application the chambers are selectively varied with the cooling fluid.
  • the openings of the insert at a first end of the chambers and outlet openings for the cooling fluid in the wall at a second end of the chambers are arranged.
  • the cooling fluid therefore flows along the Whole length of the chamber along the wall to be cooled, so that the convection cooling is further improved.
  • the horizontal ribs may be substantially perpendicular to the Be arranged longitudinal axis of the blade.
  • a Angular position can be provided. In a vertical arrangement with respect to the longitudinal axis, the length of the horizontal ribs and thus minimizes the chambers. The angular position allows an increase in the length of the chambers and thus a further improved convection cooling.
  • the insert is closed at one end.
  • the Cooling fluid is in this case only from the other end of the es supplied. A leakage of the cooling fluid through the end facing away from the feed side is prevented, so that the cooling efficiency is increased.
  • from both ends are supplied with cooling fluid.
  • the turbulators serve to stiffen the wall and go into each other and into the Horizontal ribs over. This will be a significant increase the rigidity achieved without additional material. at the same strength of the blade, the wall thickness can again be reduced. At the same time, a good heat exchange reached between the walls and the cooling fluid. It revealed thus a high cooling efficiency and a high overall efficiency.
  • the stiffening of the wall is not just in the area of one single turbulator. It is rather by the Connecting the turbulators together a large area Stiffening provided.
  • the turbulators are straight.
  • the Use of straight turbulators allows high rigidity with simple production.
  • the turbulators arranged so that they together with the horizontal ribs form adjacent recesses in the form of polygons, especially triangles or diamonds.
  • the inside of the Wall is provided with a honeycomb structure.
  • the single ones Polygons or honeycombs each form a closed, high strong cross-section and support each other. It a substantial increase in rigidity can be achieved.
  • the wall thickness of the wall reduced at least in the area between the turbulators. This reduction in wall thickness is thereby made possible that the turbulators effect a stiffening of the wall. By reducing the wall thickness becomes the cooling efficiency increased again.
  • the turbulators can be advantageous here used in casting the blade as metal feed channels become. The honeycomb structure is therefore easy to produce.
  • the blade according to the invention can be used as a vane or as Blade of a rotary machine can be formed.
  • FIG. 1 shows a longitudinal section through a rotary machine in the form of a turbine 10 with a housing 11 and a rotor 12.
  • the housing 11 is provided with guide vanes 13 and the rotor 12 provided with blades 14.
  • the turbine 10 flows through a fluid according to arrow 15, the on the guide vanes 13 and blades 14 flows along and the rotor 12 is rotated about an axis 16.
  • the temperature of the fluid is in many applications, in particular in the area of the first blade row (in FIG. 1) shown on the left), relatively high. It is therefore a cooling the guide vanes 13 and blades 14 are provided.
  • the Flow of the cooling fluid is schematically indicated by the arrows 17, 18th indicated.
  • Figure 2 shows schematically a broken-away view of a Guide vane 13.
  • the vane 13 has curved outer walls 19, 20 on.
  • the lying between the outer walls 19, 20 Interior is divided into two partitions 21 in total divided into three channels 22.
  • In each of the channels 22 is a Insert 25 used.
  • the middle channel 22 is not drawn.
  • the two outer walls 19, 20 are in each of the channels 22 with a number of horizontal ribs 24 provided.
  • the horizontal ribs 24 extend along the walls 19, 20 and extend down to the dividing walls 21. Between the horizontal ribs 24 turbulators 23 are arranged.
  • the inserts 25 touch the horizontal ribs 24th
  • the cooling fluid in particular cooling air, is an interior space 26 the inserts 25 supplied.
  • the inserts 25 are with a number provided by openings 27 through which the cooling fluid in the space between the outer walls 19, 20 and the insert 25 leaves. Subsequently, the cooling fluid flows along the outer walls 19, 20 to exit openings 28 in the Walls 19, 20. This flow is schematic with the arrow 30 is displayed.
  • the openings 27 of the inserts 25 are here spaced from the outlet openings 28 of the outer walls 19, 20 arranged.
  • the outlet openings 28 form in the illustrated Embodiment essentially straight rows 29th
  • cooling fluid bounces first on the outer walls 19, 20 and leads there to a Impingement cooling. Then it flows along the outer walls 19, 20 up to the outlet openings 28, so that a convection cooling is reached. After emerging from the outlet openings 28, a film of the cooling fluid forms at the Outside of the outer walls 19, 20, so that also a film cooling is made available. It results in a significant improved cooling.
  • the front edge of the vane shown on the left in Figure 2 13 is additionally provided with a direct impingement cooling.
  • the insert 25 has further openings for this impingement cooling 36 on, just behind the front edge of the Guide vane 13 'are arranged.
  • the cooling medium overflows these openings 36 directly from and provides a targeted cooling the leading edge of the vane 13 ready.
  • the associated insert 25 is provided with a further opening 37. Through this opening 37 cooling fluid passes directly into a narrow Gap 38 between the outer walls 19, 20 and causes there a film cooling.
  • Figures 3 to 5 show details of the inside the outer wall 19.
  • the horizontal ribs 24 are substantially perpendicular to a longitudinal axis 31 of the vane 13. They are arranged parallel to each other. Between Horizontal ribs 24 are arranged just turbulators 23, which merge into one another and into the horizontal ribs 24.
  • the leading edge 33 of the horizontal ribs 24 goes in the middle Channel 22 in the partition 21 via.
  • left channel 22 is the leading edge 33 at some distance the foremost discharge openings 28 are arranged.
  • Each two horizontal ribs 24 limit together with the Outer wall 19 and the insert 25, a chamber 32.
  • the cooling fluid enters through the openings 27 of the insert 25 in this chamber 32 on. Then it flows according to arrow 30 to the Outlet openings 28.
  • the openings 27 are in this case on the one end of the chamber 32 and the outlet openings 28 on the arranged at the other end. This will change the route that the Cooling fluid sweeps while flowing along the outer wall 19, maximized. This results in a maximum convection cooling.
  • the effect of convection cooling is provided by the turbulators 23 still reinforced, since these heat exchange between the outer wall 19 and the cooling fluid improve.
  • the chambers 32 can be differently charged with the cooling fluid become. This will be about a variation of the number and / or the size of the openings 27 of the insert 25 In this way, individual chambers 32 targeted stronger or weaker than others are cooled. The cooling can thus targeted along the longitudinal axis 31 of the vane 13 adjusted and adapted to the prevailing conditions become.
  • the turbulators 23 further serve to stiffen the outer wall 19.
  • the straight turbulators 23 are arranged in this case, that they form polygons. In Figure 3 are as an example Triangles and shown in Figure 6 as examples diamonds.
  • the stiffening achieved by the turbulators 23 allows a reduction of the wall thickness d of the outer wall 19 in the area between the turbulators 23. Because of this Reducing the wall thickness d further increases the cooling efficiency at.
  • FIG. 6 shows a plan view of the inside of the outer wall 19 in second embodiment.
  • the turbulators 24 with respect to the longitudinal axis 31 'of Guide vane 13 inclined. Increased due to this inclination the length of the chambers 32 and thus the effect of convection cooling.
  • straight Turbulators 23 are provided, each of which four to one Rhombus are summarized. The reduction of the wall thickness is schematically indicated in these diamonds with visible edges.
  • the horizontal ribs 24 and turbulators 23 may alternatively or additionally provided with a blade 14 become.
  • FIG. 7 and 8 show two embodiments of an insert 25.
  • the Cooling fluid supplied from both ends 34, 35 of the insert and exits through the openings 27.
  • Such an insert 25 can for example be used in the first row of blades become.
  • an insert 25 according to FIG. 8 can be provided, which is closed at the end 34. The cooling fluid is then fed only via the end 35.
  • This insert will be 25 used in the other rows of blades, in each case only one end of the vane 13 or the blade 14th via the housing 11 and the rotor 12 with the Cooling fluid can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Schaufel (13; 14) für eine Turbine (10), mit mindestens einem Kanal (22), der von Wänden (19, 20, 21) begrenzt ist. In mindestens einen Kanal (22) ist ein mit einem Kühlfluid beaufschlagbarer Einsatz (25) eingefügt. Erfindungsgemäß ist wenigstens eine der Wände (19; 20) mit einer Anzahl von Horizontalrippen (24) versehen, die zwischen dem Einsatz (25) und der Wand (19; 20) angeordnet sind. Der Einsatz (25) ist mit Öffnungen (27) versehen, durch die das Kühlfluid aus dem Einsatz (25) zwischen die Horizontalrippen (24) eintreten kann. Das Kühlfluid wird daher entlang der Wand (19, 20) geleitet und von den Horizontalrippen (24) geführt, so daß sich eine verbesserte Konvektionskühlung ergibt.

Description

Die Erfindung betrifft eine Schaufel, insbesondere eine Turbinenschaufel, mit mindestens einem Kanal, der von Wänden begrenzt ist, wobei in mindestens einen Kanal ein mit einem Kühlfluid beaufschlagbarer Einsatz eingefügt ist.
Eine derartige Schaufel ist aus der US 5,419,039 bekannt. Zwischen dem Einsatz und den Wänden der Schaufel werden Kammern gebildet, die in Richtung einer Längsachse der Schaufel verlaufen. Das Kühlfluid tritt aus dem Einsatz in diese Kammern ein und prallt auf die Wände der Schaufel. Anschließend strömt es an den Wände entlang und tritt durch Austrittsöffnungen in speziell geformte Kammern an der Außenseite der Wände und von dort in die Umgebung aus. Bei der bekannten Schaufel ist die Wirkung der Konvektionskühlung beim Strömen des Kühlfluids entlang den Wänden nur gering, da die Strömungslänge stark begrenzt ist. Weiter tritt eine Vermischung des Kühlfluids in den Kammern entlang der Längsachse der Schaufel auf, so daß keine gezielte Kühlung möglich ist. Siehe hierzu durch EP-A-0 541 207.
Eine andere Schaufel ist aus der auf dieselbe Anmelderin zurückgehenden W098/25009 bekannt. Diese Druckschrift beschreibt eine Schaufel mit bereichsweise hohl ausgebildeten Wänden, die von einem Kühlfluid durchströmt werden. Aufgrund der Verringerung der Wandstärke im Bereich der Hohlkammern wird eine hohe Kühleffizienz erreicht. Allerdings erfordern Schaufeln mit derartigen Hohlwänden einen komplizierten Gußvorgang mit hohen Ausschußraten und sind daher sehr teuer.
Aufgabe der vorliegenden Erfindung ist es daher, eine Schaufel bereitzustellen, die bei einfacher Herstellung eine Verbesserung der Kühlwirkung erreicht.
Erfindungsgemäß wird diese Aufgabe bei einer Schaufel der eingangs genannten Art dadurch gelöst, daß wenigstens eine der Wände mit einer Anzahl von Horizontalrippen versehen ist, die zwischen dem Einsatz und der Wand angeordnet sind, und daß der Einsatz mit Öffnungen versehen ist, durch die das Kühlfluid aus dem Einsatz zwischen die Horizontalrippen eintreten kann.
Die Horizontalrippen leiten das Kühlmittel entlang der Wand der Schaufel und verhindern ein Strömen des Kühlmittels in Richtung der Längsachse der Schaufel. Es wird somit eine gute Konvektionskühlung der Wand erreicht. Weiter versteifen die Horizontalrippen die Schaufel, so daß die Wandstärke verringert werden kann. Die Verringerung der Wandstärke führt zu einer erhöhten Kühleffizienz. Die Herstellung der Schaufel kann mit bekannten Verfahren ohne komplexen Querschnitt erfolgen. Hohlwände sind nicht erforderlich. Die Ausschußquote wird daher wesentlich gesenkt.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den abhängigen Ansprüchen hervor.
In vorteilhafter Ausgestaltung berührt der Einsatz die Horizontalrippen. Der Einsatz wird abgestützt und in der gewünschten Position ausgerichtet.
Nach einer vorteilhaften Weiterbildung bilden die Horizontalrippen, der Einsatz und die Wand von dem Kühlfluid durchströmte Kammern. Durch die Kammern wird ein Strömen des Kühlfluids in Richtung der Längsachse der Schaufel zuverlässig verhindert. Weiter kann die Kühlwirkung entlang der Längsachse der Schaufel durch eine unterschiedliche Beaufschlagung der Kammern mit dem Kühlfluid gezielt variiert werden.
In vorteilhafter Ausgestaltung sind die Öffnungen des Einsatzes an einem ersten Ende der Kammern und Austrittsöffnungen für das Kühlfluid in der Wand an einem zweiten Ende der Kammern angeordnet sind. Das Kühlfluid strömt daher entlang der ganze Länge der Kammer an der zu kühlenden Wand entlang, so daß die Konvektionskühlung weiter verbessert wird.
Die Horizontalrippen können im wesentlichen senkrecht zu der Längsachse der Schaufel angeordnet sein. Alternativ kann eine Winkelstellung vorgesehen werden. Bei einer senkrechten Anordnung bezüglich der Längsachse wird die Länge der Horizontalrippen und damit der Kammern minimiert. Die Winkelstellung ermöglicht eine Vergrößerung der Länge der Kammern und damit eine nochmals verbesserte Konvektionskühlung.
Vorteilhaft ist der Einsatz an einem Ende verschlossen. Das Kühlfluid wird in diesem Fall nur von dem anderen Ende des Einsatzes her zugeführt. Ein Austreten des Kühlfluids durch das von der Zuführseite abgewandte Ende wird verhindert, so daß die Kühleffizienz gesteigert wird. Alternativ kann von beiden Enden her Kühlfluid zugeführt werden.
Gemäß einer vorteilhaften Ausgestaltung dienen die Turbulatoren zur Versteifung der Wand und gehen ineinander und in die Horizontalrippen über. Hierdurch wird eine wesentliche Erhöhung der Steifigkeit ohne zusätzliches Material erreicht. Bei gleicher Festigkeit der Schaufel kann die Wandstärke nochmals verringert werden. Gleichzeitig wird ein guter Wärmeaustausch zwischen den Wänden und dem Kühlfluid erreicht. Es ergeben sich somit eine hohe Kühleffizienz und ein hoher Gesamtwirkungsgrad.
Die Versteifung der Wand stellt sich nicht nur im Bereich eines einzelnen Turbulators ein. Es wird vielmehr durch die Verbindung der Turbulatoren miteinander eine großflächige Versteifung bereitgestellt.
Vorteilhaft sind die Turbulatoren gerade ausgebildet. Die Verwendung gerader Turbulatoren ermöglicht eine hohe Steifigkeit bei einfacher Fertigung.
Nach einer vorteilhaften Ausgestaltung sind die Turbulatoren derart angeordnet, daß sie zusammen mit den Horizontalrippen nebeneinanderliegende Ausnehmungen in Form von Vielecken bilden, insbesondere Dreiecke oder Rauten. Die Innenseite der Wand wird mit einer Wabenstruktur versehen. Die einzelnen Vielecke oder Waben bilden jeweils einen geschlossenen, hoch belastbaren Querschnitt und stützen sich gegenseitig ab. Es läßt sich eine wesentliche Erhöhung der Steifigkeit erzielen.
In vorteilhafter Weiterbildung ist die Wandstärke der Wand zumindest im Bereich zwischen den Turbulatoren verringert. Diese Verringerung der Wandstärke wird dadurch ermöglicht, daß die Turbulatoren eine Versteifung der Wand bewirken. Durch die Verringerung der Wandstärke wird die Kühleffizienz nochmals erhöht. Die Turbulatoren können hierbei vorteilhaft beim Gießen der Schaufel als Metalleinspeisungskanäle verwendet werden. Die Wabenstruktur ist daher gut herstellbar.
Die erfindungsgemäße Schaufel kann als Leitschaufel oder als Laufschaufel einer Rotationsmaschine ausgebildet werden.
Nachstehend wird die Erfindung an Hand von Ausführungsbeispielen näher beschrieben, die schematisch in der Zeichnung dargestellt sind. Für gleiche oder funktionsidentische Bauteile werden durchgehend dieselben Bezugszeichen verwendet. Dabei zeigt:
FIG 1
einen Längsschnitt durch eine Rotationsmaschine;
FIG 2
eine perspektivische, aufgebrochene Darstellung einer Schaufel;
FIG 3
eine Draufsicht auf die Innenseite einer Wand der Schaufel;
FIG 4
einen Schnitt längs der Linie IV-IV in Figur 3;
FIG 5
einen Schnitt längs der Linie V-V in Figur 3;
FIG 6
eine Ansicht ähnlich Figur 3 in zweiter Ausgestaltung;
FIG 7
eine schematische Darstellung eines Einsatzes in erster Ausgestaltung; und
FIG 8
eine Ansicht ähnlich Figur 7 in zweiter Ausgestaltung.
Figur 1 zeigt eine Längsschnitt durch eine Rotationsmaschine in Form einer Turbine 10 mit einem Gehäuse 11 und einem Rotor 12. Das Gehäuse 11 ist mit Leitschaufeln 13 und der Rotor 12 mit Laufschaufeln 14 versehen. Im Betrieb wird die Turbine 10 gemäß Pfeilrichtung 15 von einem Fluid durchströmt, das an den Leitschaufeln 13 und Laufschaufeln 14 entlangströmt und den Rotor 12 in Drehung um eine Achse 16 versetzt.
Die Temperatur des Fluids ist in vielen Anwendungsfällen, insbesondere im Bereich der ersten Schaufelreihe (in Figur 1 links dargestellt), relativ hoch. Es ist daher eine Kühlung der Leitschaufeln 13 und Laufschaufeln 14 vorgesehen. Das Strömen des Kühlfluids ist schematisch mit den Pfeilen 17, 18 angedeutet.
Figur 2 zeigt schematisch eine aufgebrochene Darstellung einer Leitschaufel 13. Die Leitschaufel 13 weist gebogene Außenwände 19, 20 auf. Der zwischen den Außenwänden 19, 20 liegende Innenraum wird über zwei Trennwände 21 in insgesamt drei Kanäle 22 unterteilt. In jeden der Kanäle 22 ist ein Einsatz 25 eingesetzt. Zur besseren Darstellung ist der Einsatz des mittleren Kanals 22 nicht gezeichnet.
Die beiden Außenwände 19, 20 sind in jedem der Kanäle 22 mit einer Anzahl von Horizontalrippen 24 versehen. Die Horizontalrippen 24 verlaufen entlang den Wänden 19, 20 und erstrecken sich bis zu den Trennwänden 21. Zwischen den Horizonalrippen 24 sind Turbulatoren 23 angeordnet. Die Einsätze 25 berühren die Horizontalrippen 24.
Das Kühlfluid, insbesondere Kühlluft, wird einem Innenraum 26 der Einsätze 25 zugeführt. Die Einsätze 25 sind mit einer Anzahl von Öffnungen 27 versehen, durch die das Kühlfluid in den Zwischenraum zwischen den Außenwänden 19, 20 und dem Einsatz 25 austritt. Anschließend strömt das Kühlfluid entlang den Außenwänden 19, 20 bis zu Austrittsöffnungen 28 in den Wänden 19, 20. Dieses Strömen ist schematisch mit dem Pfeil 30 angezeigt. Die Öffnungen 27 der Einsätze 25 sind hierbei beabstandet zu den Austrittsöffnungen 28 der Außenwände 19, 20 angeordnet. Die Austrittsöffnungen 28 bilden im dargestellten Ausführungsbeispiel im wesentlichen gerade Reihen 29.
Das aus den Einsätzen 25 austretende Kühlfluid prallt zunächst auf die Außenwände 19, 20 und führt dort zu einer Prallkühlung. Anschließend strömt es entlang der Außenwände 19, 20 bis zu den Austrittsöffnungen 28, so daß eine Konvektionskühlung erreicht wird. Nach dem Austreten aus den Austrittsöffnungen 28 bildet sich ein Film des Kühlfluids an der Außenseite der Außenwände 19, 20, so daß ebenfalls eine Filmkühlung zur Verfügung gestellt wird. Es ergibt sich eine wesentlich verbesserte Kühlung.
Die in Figur 2 links dargestellte Vorderkante der Leitschaufel 13 ist zusätzlich mit einer direkten Prallkühlung versehen. Der Einsatz 25 weist für diese Prallkühlung weitere Öffnungen 36 auf, die unmittelbar hinter der Vorderkante der Leitschaufel 13 'angeordnet sind. Das Kühlmedium tritt über diese Öffnungen 36 direkt aus und stellt eine gezielte Kühlung der Vorderkante der Leitschaufel 13 bereit.
Auch im Bereich der Hinterkante der Leitschaufel 13 ist der zugehörige Einsatz 25 mit einer weiteren Öffnung 37 versehen. Durch diese Öffnung 37 tritt Kühlfluid direkt in einen schmalen Spalt 38 zwischen den Außenwänden 19, 20 aus und bewirkt dort eine Filmkühlung.
Die Figuren 3 bis 5 zeigen nähere Einzelheiten der Innenseite der Außenwand 19. Die Horizontalrippen 24 verlaufen im wesentlichen rechtwinklig zu einer Längsachse 31 der Leitschaufel 13. Sie sind parallel zueinander angeordnet. Zwischen den Horizontalrippen 24 sind gerade Turbulatoren 23 angeordnet, die ineinander und in die Horizonalrippen 24 übergehen.
Die Vorderkante 33 der Horizontalrippen 24 geht bei dem mittleren Kanal 22 in die Trennwand 21 über. Bei dem in Figur 2 linken Kanal 22 ist die Vorderkante 33 mit einigem Abstand zu den vordersten Ausströmöffnungen 28 angeordnet.
Jeweils zwei Horizontalrippen 24 begrenzen zusammen mit der Außenwand 19 und dem Einsatz 25 eine Kammer 32. Das Kühlfluid tritt durch die Öffnungen 27 des Einsatzes 25 in diese Kammer 32 ein. Anschließend strömt es gemäß Pfeilrichtung 30 zu den Austrittsöffnungen 28. Die Öffnungen 27 sind hierbei an dem einen Ende der Kammer 32 und die Austrittsöffnungen 28 an dem anderen Ende angeordnet. Hierdurch wird die Strecke, die das Kühlfluid beim Strömen entlang der Außenwand 19 überstreicht, maximiert. Es ergibt sich somit eine maximale Konvektionskühlung. Der Effekt der Konvektionskühlung wird durch die Turbulatoren 23 noch verstärkt, da diese den Wärmeaustausch zwischen der Außenwand 19 und dem Kühlfluid verbessern.
Die Kammern 32 können unterschiedlich mit dem Kühlfluid beaufschlagt werden. Dies wird über eine Variation der Anzahl und/oder der Größe der Öffnungen 27 des Einsatzes 25 erreicht Auf diese Weise können einzelne Kammern 32 gezielt stärker oder schwächer als andere gekühlt werden. Die Kühlung kann somit entlang der Längsachse 31 der Leitschaufel 13 gezielt eingestellt und an die herrschenden Randbedingungen angepaßt werden.
Die Turbulatoren 23 dienen weiter zur Versteifung der Außenwand 19. Die geraden Turbulatoren 23 sind hierbei derart angeordnet, daß sie Vielecke bilden. In Figur 3 sind als Beispiel Dreiecke und in Figur 6 als Beispiele Rauten dargestellt. Die durch die Turbulatoren 23 erzielte Versteifung ermöglicht eine Verringerung der Wandstärke d der Außenwand 19 im Bereich zwischen den Turbulatoren 23. Aufgrund dieser Verringerung der Wandstärke d steigt die Kühleffizienz weiter an.
Figur 6 zeigt eine Draufsicht auf die Innenseite der Außenwand 19 in zweiter Ausgestaltung. Bei dieser Ausgestaltung sind die Turbulatoren 24 gegenüber der Längsachse 31' der Leitschaufel 13 geneigt. Auf Grund dieser Neigung vergrößert sich die Länge der Kammern 32 und damit die Wirkung der Konvektionskühlung. Auch bei dieser Ausgestaltung sind gerade Turbulatoren 23 vorgesehen, von denen jeweils vier zu einer Raute zusammengefaßt sind. Die Verringerung der Wandstärke ist schematisch in diesen Rauten mit Sichtkanten angedeutet.
Selbstverständlich ist auch die zweite Außenwand 20 mit entsprechenden Turbulatoren 23 und Horizontalrippen 24 versehen. Die Horizontalrippen 24 und Turbulatoren 23 können alternativ oder zusätzlich auch bei einer Laufschaufel 14 vorgesehen werden.
Die Figuren 7 und 8 zeigen zwei Ausgestaltungen eines Einsatzes 25. Bei der Ausgestaltung gemäß Figur 7 wird das Kühlfluid von beiden Enden 34, 35 des Einsatzes zugeführt und tritt durch die Öffnungen 27 aus. Ein derartiger Einsatz 25 kann beispielsweise in der ersten Schaufelreihe verwendet werden.
Alternativ kann ein Einsatz 25 gemäß Figur 8 vorgesehen werden, der an dem Ende 34 verschlossen ist. Das Kühlfluid wird dann nur über das Ende 35 zugeführt. Dieser Einsatz 25 wird in den weiteren Schaufelreihen verwendet, in denen jeweils nur ein Ende der Leitschaufel 13 oder der Laufschaufel 14 über das Gehäuse 11 beziehungsweise den Rotor 12 mit dem Kühlfluid beaufschlagt werden kann.
Aufgrund der erfindungsgemäß vorgesehenen Horizontalrippen 24 ergibt sich eine gerichtete Strömung des Kühlfluids entlang der Außenwände 19, 20. Die Kühlwirkung wird daher wesentlich verbessert. Gleichzeitig ist eine einfache Herstellung möglich, da auf Schaufeln mit Hohlwänden verzichtet werden kann.

Claims (8)

  1. Turbinenschaufel (13; 14), mit mindestens einem Kanal (22), der von Wänden (19, 20, 21) begrenzt ist, wobei mindestens eine Wand (19; 20) eine Anzahl von Horizontalrippen (24) und Austrittsöffnungen (28) aufweist, wobei in mindestens einem Kanal (22) ein mit einem Kühlfluid beaufschlagbarer, mit Öffnungen (27) versehener Einsatz (25) eingefügt ist, der durch die Horizontalrippen (24) von den Wänden (19; 20) beabstandet ist, und diese berührt, wobei das Kühlfluid durch die Öffnungen (27) aus dem Einsatz (25) in eine von diesem durchströmbare Kammer (32) eintreten kann, die aus den Horizontalrippen (24), dem Einsatz (25) und der Wand (19; 20) gebildet wird,
    dadurch gekennzeichnet, dass die Öffnungen (27) des Einsatzes (25) an einem ersten Ende der Kammern (32) und die Austrittsöffnungen (28) für das Kühlfluid in der Wand (19; 20) an einem zweiten Ende der Kammern (32) angeordnet sind, und dass zwischen den Horizontalrippen (24) Turbulatoren (23) zur Verbesserung des Wärmeaustausches zwischen der Wand (19; 20) und dem Kühlfluid vorgesehen sind.
  2. Schaufel nach Anspruch 1,
    dadurch gekennzeichnet, dass die Horizontalrippen (24) im wesentlichen senkrecht zu einer Längsachse (25) der Schaufel (13; 14) angeordnet sind.
  3. Schaufel nach einem der Ansprüche 1 bis 2,
    dadurch gekennzeichnet, dass der Einsatz (25) an einem Ende (34) verschlossen ist.
  4. Schaufel nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass die Turbulatoren (23) zur Versteifung der Wand (19; 20) dienen und ineinander und in die Horizontalrippen (24) übergehen.
  5. Schaufel nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass die Turbulatoren (23) im wesentlichen gerade ausgebildet sind.
  6. Schaufel nach Anspruch 4 oder 5,
    dadurch gekennzeichnet, dass Turbulatoren (23) derart angeordnet sind, dass sie zusammen mit den Horizontalrippen (24) nebeneinanderliegende Ausnehmungen in Form von Vielecken, insbesondere Dreiecken oder Rauten, bilden.
  7. Schaufel nach Anspruch 5 oder 6,
    dadurch gekennzeichnet, dass die Wandstärke (d) der Wand (19; 20) zumindest im Bereich zwischen den Turbulatoren (23) verringert ist.
  8. Schaufel nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass die Schaufel als Leitschaufel (13) oder als Laufschaufel (14) einer Rotationsmaschine (10) ausgebildet ist.
EP01919384A 2000-03-22 2001-03-12 Kühlsystem für eine turbinenschaufel Expired - Lifetime EP1266127B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01919384A EP1266127B1 (de) 2000-03-22 2001-03-12 Kühlsystem für eine turbinenschaufel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00106245A EP1136651A1 (de) 2000-03-22 2000-03-22 Kühlsystem für eine Turbinenschaufel
EP00106245 2000-03-22
PCT/EP2001/002755 WO2001071163A1 (de) 2000-03-22 2001-03-12 Kühlsystem für eine turbinenschaufel
EP01919384A EP1266127B1 (de) 2000-03-22 2001-03-12 Kühlsystem für eine turbinenschaufel

Publications (2)

Publication Number Publication Date
EP1266127A1 EP1266127A1 (de) 2002-12-18
EP1266127B1 true EP1266127B1 (de) 2005-01-12

Family

ID=8168201

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00106245A Withdrawn EP1136651A1 (de) 2000-03-22 2000-03-22 Kühlsystem für eine Turbinenschaufel
EP01919384A Expired - Lifetime EP1266127B1 (de) 2000-03-22 2001-03-12 Kühlsystem für eine turbinenschaufel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00106245A Withdrawn EP1136651A1 (de) 2000-03-22 2000-03-22 Kühlsystem für eine Turbinenschaufel

Country Status (6)

Country Link
US (1) US6769875B2 (de)
EP (2) EP1136651A1 (de)
JP (1) JP4637437B2 (de)
CN (1) CN1293285C (de)
DE (1) DE50105062D1 (de)
WO (1) WO2001071163A1 (de)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902372B2 (en) * 2003-09-04 2005-06-07 Siemens Westinghouse Power Corporation Cooling system for a turbine blade
JP4191578B2 (ja) * 2003-11-21 2008-12-03 三菱重工業株式会社 ガスタービンエンジンのタービン冷却翼
US6929451B2 (en) 2003-12-19 2005-08-16 United Technologies Corporation Cooled rotor blade with vibration damping device
US7125225B2 (en) 2004-02-04 2006-10-24 United Technologies Corporation Cooled rotor blade with vibration damping device
US7217095B2 (en) * 2004-11-09 2007-05-15 United Technologies Corporation Heat transferring cooling features for an airfoil
US7513745B2 (en) 2006-03-24 2009-04-07 United Technologies Corporation Advanced turbulator arrangements for microcircuits
US20070258814A1 (en) * 2006-05-02 2007-11-08 Siemens Power Generation, Inc. Turbine airfoil with integral chordal support ribs
US7544044B1 (en) * 2006-08-11 2009-06-09 Florida Turbine Technologies, Inc. Turbine airfoil with pedestal and turbulators cooling
US7497655B1 (en) 2006-08-21 2009-03-03 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall impingement and vortex cooling
JP4957131B2 (ja) * 2006-09-06 2012-06-20 株式会社Ihi 冷却構造
US7857588B2 (en) * 2007-07-06 2010-12-28 United Technologies Corporation Reinforced airfoils
US8257035B2 (en) * 2007-12-05 2012-09-04 Siemens Energy, Inc. Turbine vane for a gas turbine engine
US8348612B2 (en) * 2008-01-10 2013-01-08 General Electric Company Turbine blade tip shroud
US7946817B2 (en) * 2008-01-10 2011-05-24 General Electric Company Turbine blade tip shroud
US8393867B2 (en) * 2008-03-31 2013-03-12 United Technologies Corporation Chambered airfoil cooling
WO2009122474A1 (ja) * 2008-03-31 2009-10-08 川崎重工業株式会社 ガスタービン燃焼器の冷却構造
US8342797B2 (en) * 2009-08-31 2013-01-01 Rolls-Royce North American Technologies Inc. Cooled gas turbine engine airflow member
US9347324B2 (en) 2010-09-20 2016-05-24 Siemens Aktiengesellschaft Turbine airfoil vane with an impingement insert having a plurality of impingement nozzles
US8777569B1 (en) * 2011-03-16 2014-07-15 Florida Turbine Technologies, Inc. Turbine vane with impingement cooling insert
US20120304654A1 (en) * 2011-06-06 2012-12-06 Melton Patrick Benedict Combustion liner having turbulators
CN102425459B (zh) * 2011-11-21 2014-12-10 西安交通大学 一种重型燃机高温涡轮双工质冷却叶片
CN103946483A (zh) * 2011-11-25 2014-07-23 西门子公司 具有冷却通路的翼
RU2634986C2 (ru) * 2012-03-22 2017-11-08 Ансалдо Энерджиа Свитзерлэнд Аг Охлаждаемая стенка
US9719372B2 (en) 2012-05-01 2017-08-01 General Electric Company Gas turbomachine including a counter-flow cooling system and method
JP2015527530A (ja) 2012-08-20 2015-09-17 アルストム テクノロジー リミテッドALSTOM Technology Ltd 回転機械用の内部冷却される翼
US9759072B2 (en) 2012-08-30 2017-09-12 United Technologies Corporation Gas turbine engine airfoil cooling circuit arrangement
EP2754856A1 (de) * 2013-01-09 2014-07-16 Siemens Aktiengesellschaft Schaufel für eine Turbomaschine
CN103967531A (zh) * 2013-02-01 2014-08-06 西门子公司 用于流体机械的、薄膜冷却的涡轮叶片
CN103277145A (zh) * 2013-06-09 2013-09-04 哈尔滨工业大学 一种燃气涡轮冷却叶片
JP6245740B2 (ja) * 2013-11-20 2017-12-13 三菱日立パワーシステムズ株式会社 ガスタービン翼
EP3105437A4 (de) 2014-02-13 2017-03-15 United Technologies Corporation Lufthäckslereinsatz
KR101501444B1 (ko) * 2014-04-30 2015-03-12 연세대학교 산학협력단 냉각 성능 향상을 위한 내부유로 구조를 포함하는 가스터빈 블레이드
CN106471212A (zh) * 2014-06-17 2017-03-01 西门子能源公司 具有前缘冲击冷却系统和近壁冲击系统的涡轮机翼型件冷却系统
GB201417476D0 (en) 2014-10-03 2014-11-19 Rolls Royce Plc Internal cooling of engine components
EP3048262A1 (de) * 2015-01-20 2016-07-27 Alstom Technology Ltd Wand für einen Heißgaskanal in einer Gasturbine
US9850763B2 (en) * 2015-07-29 2017-12-26 General Electric Company Article, airfoil component and method for forming article
US10280841B2 (en) 2015-12-07 2019-05-07 United Technologies Corporation Baffle insert for a gas turbine engine component and method of cooling
US10577947B2 (en) * 2015-12-07 2020-03-03 United Technologies Corporation Baffle insert for a gas turbine engine component
US10422233B2 (en) * 2015-12-07 2019-09-24 United Technologies Corporation Baffle insert for a gas turbine engine component and component with baffle insert
US10337334B2 (en) 2015-12-07 2019-07-02 United Technologies Corporation Gas turbine engine component with a baffle insert
PL232314B1 (pl) 2016-05-06 2019-06-28 Gen Electric Maszyna przepływowa zawierająca system regulacji luzu
US10309246B2 (en) 2016-06-07 2019-06-04 General Electric Company Passive clearance control system for gas turbomachine
US10392944B2 (en) 2016-07-12 2019-08-27 General Electric Company Turbomachine component having impingement heat transfer feature, related turbomachine and storage medium
US10605093B2 (en) 2016-07-12 2020-03-31 General Electric Company Heat transfer device and related turbine airfoil
US10895158B2 (en) 2016-07-28 2021-01-19 Siemens Aktiengesellschaft Turbine airfoil with independent cooling circuit for mid-body temperature control
US10465526B2 (en) 2016-11-15 2019-11-05 Rolls-Royce Corporation Dual-wall airfoil with leading edge cooling slot
US10648341B2 (en) 2016-11-15 2020-05-12 Rolls-Royce Corporation Airfoil leading edge impingement cooling
US10767487B2 (en) * 2016-11-17 2020-09-08 Raytheon Technologies Corporation Airfoil with panel having flow guide
US10844724B2 (en) * 2017-06-26 2020-11-24 General Electric Company Additively manufactured hollow body component with interior curved supports
US10450873B2 (en) 2017-07-31 2019-10-22 Rolls-Royce Corporation Airfoil edge cooling channels
EP3460190A1 (de) * 2017-09-21 2019-03-27 Siemens Aktiengesellschaft Wärmeübertragungsverbesserungsstrukturen an inline-rippen eines tragflügelhohlraums einer gasturbine
US10787913B2 (en) * 2018-11-01 2020-09-29 United Technologies Corporation Airfoil cooling circuit
US10822963B2 (en) 2018-12-05 2020-11-03 Raytheon Technologies Corporation Axial flow cooling scheme with castable structural rib for a gas turbine engine
US10934857B2 (en) * 2018-12-05 2021-03-02 Raytheon Technologies Corporation Shell and spar airfoil
US20200182068A1 (en) * 2018-12-05 2020-06-11 United Technologies Corporation Axial flow cooling scheme with structural rib for a gas turbine engine
US11396819B2 (en) * 2019-04-18 2022-07-26 Raytheon Technologies Corporation Components for gas turbine engines
US11371360B2 (en) * 2019-06-05 2022-06-28 Raytheon Technologies Corporation Components for gas turbine engines
DE102020106135B4 (de) * 2020-03-06 2023-08-17 Doosan Enerbility Co., Ltd. Strömungsmaschinenkomponente für eine gasturbine, strömungsmaschinenanordnung und gasturbine mit derselben
CN114109515B (zh) * 2021-11-12 2024-01-30 中国航发沈阳发动机研究所 一种涡轮叶片吸力面冷却结构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US429677A (en) 1890-06-10 Whip-socket and rein-holder
US3574481A (en) * 1968-05-09 1971-04-13 James A Pyne Jr Variable area cooled airfoil construction for gas turbines
BE755567A (fr) * 1969-12-01 1971-02-15 Gen Electric Structure d'aube fixe, pour moteur a turbines a gaz et arrangement de reglage de temperature associe
US4118146A (en) * 1976-08-11 1978-10-03 United Technologies Corporation Coolable wall
US4296779A (en) * 1979-10-09 1981-10-27 Smick Ronald H Turbulator with ganged strips
JPS60182304A (ja) * 1984-02-29 1985-09-17 Toshiba Corp ガスタ−ビンの冷却翼
US5232343A (en) * 1984-05-24 1993-08-03 General Electric Company Turbine blade
JPS61187501A (ja) * 1985-02-15 1986-08-21 Hitachi Ltd 流体冷却構造
US5405242A (en) 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
JPH04259603A (ja) * 1991-02-14 1992-09-16 Toshiba Corp タービン静翼
EP0541207A1 (de) * 1991-11-04 1993-05-12 General Electric Company Prallgekühltes Schaufelblatt mit einem die Blatthälften verbundendem Einsatz
US5695321A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having variable configuration turbulators
US5468125A (en) * 1994-12-20 1995-11-21 Alliedsignal Inc. Turbine blade with improved heat transfer surface
DE19634238A1 (de) * 1996-08-23 1998-02-26 Asea Brown Boveri Kühlbare Schaufel
DE59706345D1 (de) 1996-12-02 2002-03-21 Siemens Ag Turbinenschaufel sowie verwendung in einer gasturbinenanlage
EP0905353B1 (de) * 1997-09-30 2003-01-15 ALSTOM (Switzerland) Ltd Prallanordnung für ein konvektives Kühl- oder Heizverfahren
SE512384C2 (sv) * 1998-05-25 2000-03-06 Abb Ab Komponent för en gasturbin

Also Published As

Publication number Publication date
US20030049127A1 (en) 2003-03-13
DE50105062D1 (de) 2005-02-17
EP1136651A1 (de) 2001-09-26
WO2001071163A1 (de) 2001-09-27
CN1418284A (zh) 2003-05-14
JP2003528246A (ja) 2003-09-24
JP4637437B2 (ja) 2011-02-23
US6769875B2 (en) 2004-08-03
EP1266127A1 (de) 2002-12-18
CN1293285C (zh) 2007-01-03

Similar Documents

Publication Publication Date Title
EP1266127B1 (de) Kühlsystem für eine turbinenschaufel
EP1113145B1 (de) Schaufel für Gasturbinen mit Drosselquerschnitt an Hinterkante
EP1267039B1 (de) Kühlkonstruktion für Schaufelblatthinterkante
EP1223308B1 (de) Komponente einer Strömungsmaschine
EP0889201B1 (de) Prallanordnung für ein konvektives Kühl-oder Heizverfahren
DE69823236T2 (de) Einrichtung zur kühlung von gasturbinenschaufeln und methode zu deren herstellung
DE602005000449T2 (de) Kühlung mit Mikrokanälen für eine Turbinenschaufel
DE10001109B4 (de) Gekühlte Schaufel für eine Gasturbine
DE2343673C2 (de) Kühleinrichtung
DE2358521C2 (de) Gasturbinenschaufel mit gewelltem Austrittskantenbereich
EP2304185B1 (de) Turbinenschaufel für eine gasturbine und gusskern zum herstellen in einer solchen
DE1601561C3 (de) Gekühlte Schaufel mit Tragflächenprofil für eine Axialströmungsmaschine
DE2241192A1 (de) Hohle gasturbinenschaufel
DE2241194A1 (de) Stroemungsmaschinenschaufel mit tragfluegelfoermigem querschnittsprofil und mit einer vielzahl von in schaufellaengsrichtung verlaufenden kuehlkanaelen
CH697919A2 (de) Turbinenblatt mit konkavem Kühlkanal und darin angeordneten, entgegengesetzte Drallströme bewirkende Turbulatoren.
DE2906365A1 (de) Turbinenschaufel
DE3231689A1 (de) Mehrfach prallgekuehltes gebilde, insbesondere ummantelung eines gasstroemungsweges
DE3508976C2 (de) Gekühlte Turbinenleitschaufel
DE69820572T2 (de) Konfiguration der kühlkanäle für die hinterkante einer gasturbinenleitschaufel
EP1668236B1 (de) Brennkammer mit kühleinrichtung und verfahren zur herstellung der brennkammer
DE3518314A1 (de) Turbinenschaufel
EP1292760B1 (de) Konfiguration einer kühlbaren turbinenschaufel
EP1192333B1 (de) Heissgasbeaufschlagbares bauteil, insbesondere turbinenschaufel
EP1113144B1 (de) Gekühlte Strömungsumlenkvorrichtung für eine bei hohen Temperaturen arbeitende Strömungsmaschine
EP1266128B1 (de) Versteifungs- und kühlstruktur einer turbinenschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050112

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50105062

Country of ref document: DE

Date of ref document: 20050217

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051013

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150513

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160310

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160329

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50105062

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001