EP1264424B1 - Procede et appareil de modulation de bande laterale optique unique entrelacee - Google Patents

Procede et appareil de modulation de bande laterale optique unique entrelacee Download PDF

Info

Publication number
EP1264424B1
EP1264424B1 EP01913311A EP01913311A EP1264424B1 EP 1264424 B1 EP1264424 B1 EP 1264424B1 EP 01913311 A EP01913311 A EP 01913311A EP 01913311 A EP01913311 A EP 01913311A EP 1264424 B1 EP1264424 B1 EP 1264424B1
Authority
EP
European Patent Office
Prior art keywords
optical
signal
channel
modulation control
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01913311A
Other languages
German (de)
English (en)
Other versions
EP1264424A2 (fr
Inventor
Winston I Way
Ming Chia Wu
Ming-Bing Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OpVista Inc
Original Assignee
OpVista Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OpVista Inc filed Critical OpVista Inc
Publication of EP1264424A2 publication Critical patent/EP1264424A2/fr
Application granted granted Critical
Publication of EP1264424B1 publication Critical patent/EP1264424B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation

Definitions

  • the present invention relates generally to a method and apparatus for modulation of broadband optical signals. More particularly, the present invention relates to an interleaved single sideband modulation technique.
  • optical fiber transmission systems such as optical fiber community access television (“CATV'') transmission systems can carry multiple channels on a single optical fiber communication line.
  • the channels are transmitted modulated on a wideband signal made up of a plurality of frequency division multiplexed carriers.
  • a wideband optical detector or photoreceiver receives the wideband signal.
  • Each individual channel can be recovered by a heterodyne tuner along with an appropriate microwave filter.
  • An optical fiber transmission system using this type of modulation technique can transmit analog or digital signals and is known as a sub-carrier multiplexed (“SCM”) optical transmission system.
  • SCM sub-carrier multiplexed
  • Figure 1 shows a schematic diagram of a typical SCM system which is described in detail in W. I. Way, Subcarrier Multiplexed Lightwave Systems for Subscriber Loop Applications, Journal of Lightwave Technology, 1988, pp. 1806-1818.
  • High spectral efficiency digital modems may be used to greatly increase the spectral efficiency of conventional SCM techniques.
  • an optical transmitter with a 1GHz bandwidth can transmit 166 sub-carrier 6MHz 64-QAM (quadrature amplitude modulation) channels. Since each channel can carry 30 Mb/s of data, 4.98 Gb/s of data may be transmitted, which gives a spectral efficiency of approximately 5 bits/sec/Hz.
  • the same transmitter can transmit only 1.4 Gb/s of on-off keying data for a spectral efficiency of only about 1.4 bits/sec/Hz.
  • OSSB-DWDM optical single side band, dense wavelength division multiplexing
  • D-OSSB double OSSB
  • the required number of carriers is only half of that required by the OSSB modulation shown in Figure 2C.
  • the carrier signal When amplifying the transmitted signal in a conventional multiplexing method, the carrier signal is likewise amplified. Amplification of the carrier signal represents a waste of amplifier gain, since gain is used to amplify a signal that carries no information. Moreover, as power density in the transmission fiber is increased, signal losses due to nonlinear effects are also increased. Elimination of the carrier signal can significantly decrease the total signal power, thereby reducing the total power density and nonlinear effects.
  • Jopson U.S. Pat. No. 5,745,273
  • Jopson makes use of a dual path modulator arranged in an optical loop. The light is divided by a coupler which provides a portion of the signal to an optical fiber traveling in each direction around the loop. The signal in one direction is modulated to create a carrier and sidebands while the other is solely the carrier. Upon recombining the two optical signals in a combiner, a signal is produced in which the two carrier signals cancel each other and leave only the modulated signal
  • One drawback of the Jopson arrangement is the requirement of extremely strict tolerances with respect to the lengths of the paths of the loop so that the two signals will arrive at the combiner having the carrier signals exactly out of phase. This requirement makes the Jopson device difficult to implement in practice.
  • dispersion causes self- and external phase modulations which tend to produce distortions in signals transmitted over long distances at 1550nm, due to beating among the several optical channels. This last problem may be reduced by the use of dispersion reduction techniques such as use of a chirped fiber grating or dispersion compensating fibers.
  • Optical side band modulation has other applications. It is used, for example, in a control system for a phased-array antenna described in US 5,333,000.
  • An incoming optical signal is split into a reference signal and a modulated signal, where the modulated signal is obtained by passing part of the optical signal through a Mach-Zehnder modulator to achieve a frequency shift by side band modulation.
  • the reference signal and the modulated signal are each split into N parts, each part of the reference signal is given a unique phase shift, and the parts are then directed in reference signal/modulated signal pairs along optical fibres to receivers at N elements in an antenna array. Each signal pair is then heterodyned to obtain a RF control signal used to control the antenna element.
  • the frequency shift is achieved using a four arm Mach Zehnder modulator in which each of the four arms has an electrode phase shifting element for applying an RF drive voltage to modulate light passing along the arms.
  • a modulation signal of equal frequency but different phase and strength is applied to each electrode to modulate a carrier signal propagating in the modulator, by using appropriate phases and strengths and controlling the optical phase in each arm, the carrier and all but the first sideband in the modulated signal can be suppressed and/or cancelled out when the modulator paths are recombined, thus giving a single frequency output that is shifted from the carrier frequency.
  • a first aspect of the present invention is directed to an interleaved optical single sideband communication system, comprising at least one optical transmitter which comprises: an electrical modulation control unit to produce a first modulation control- signal comprising a plurality of first channel signals at different channel frequencies and a second modulation control signal comprising a plurality of second channel signals that are respectively at the different channel frequencies of the first channel signals and respectively carry the same channel information as the first channel signals, wherein two adjacent channel signals in each of the first and the second modulation control signals have a relative phase shift of 90 degrees, and wherein each channel signal in the first modulation control signal has a relative phase shift of 90 degrees with respect to a corresponding channel signal at the same channel frequency in the second modulation control signal; and a Mach-Zehnder optical modulator comprising an input port to receive an optical carrier ( ⁇ IN ) at an optical carrier frequency, a first optical path and a second optical path which receive a first portion of the optical carrier as a first optical carrier ( ⁇ 1 ) and a second portion of the optical carrier
  • a second aspect of the invention is directed to a method for modulating a plurality of channels at different channel frequencies onto an optical carrier ( ⁇ IN ) at an optical carrier frequency by interleaved optical single sideband modulation, comprising: electronically producing a first modulation control signal which comprises a plurality of first channel signals at different channel frequencies and a second modulation control signal which comprises a plurality of second channel signals that are respectively at the different channel frequencies of the first channel signals and respectively carry the same channel information as the first channel signals, wherein two adjacent channel signals in each of the first and the second modulation control signals have a relative phase shift of 90 degrees, and wherein each channel signal in the first modulation control signal has a relative phase shift of 90 degrees with respect to a corresponding channel signal at the same channel frequency in the second modulation control signal; applying the first modulation control signal to a first optical path of a Mach-Zehnder optical modulator to modulate a first portion of the optical carrier ( ⁇ 1 ) in the first optical path to carry the first channel signals on both sides of the optical carrier
  • An embodiment of the present invention addresses the needs identified above by providing an interleaved optical single sideband communications system including a modulator, constructed and arranged to accept an incoming optical carrier.
  • the modulator includes a splitter which splits the incoming optical signal into a first optical carrier and a second optical carrier.
  • the modulator also includes a first AC phase modulator to apply a first electrical signal carrying a plurality of first channels to modulate the first optical signal and a second AC phase modulator to apply a second electrical signal carrying a plurality of second channels to modulate the second optical signal, each first channel corresponding to one of the second channels, and each first channel being phase shifted 90° relative to each corresponding second channel.
  • the modulator includes a first DC phase modulator to modulate the first optical signal and a second DC phase modulator to modulate the second optical signal.
  • the first and second DC phase modulators are constructed and arranged to modulate an optical carrier component of the first optical signal to be phase shifted 90° relative to a corresponding optical carrier component of the second optical signal.
  • the modulator also includes a combiner which combines the modulated first and second optical signals to form a combined optical signal having an optical carrier component, such that alternate channels of the combined optical signal are substantially cancelled to produce an interleaved, optical single-sideband signal which reduces both adjacent channel interference and residual image problems as discussed above in relation to conventional techniques.
  • An example of a spectrum for an I-OSSB transmission is illustrated in FIG. 3C.
  • a conventional subcarrier multiplexing transmitter and receiver pair are shown.
  • Each channel is frequency division multiplexed by using local oscillators 10, 12, 14, 16 of different radio frequencies, known as subcarriers.
  • the signal for each channel is processed by a band pass filter (not shown) to attenuate components of the signal which are outside of the channel (e.g. harmonics).
  • the several channels are amplified by an amplifier 26 and combined, and the combined signal is amplified once more and used to drive a light emitting device which is conventionally a directly or externally modulated laser diode acting as part of an optical transmitter 36.
  • the light emitting device has a fast response time and can produce a narrow linewidth with good coherence.
  • the combined signal is transmitted through an optical fiber 38 to a broadband optical receiver 40.
  • the optical fiber 38 is preferably single mode fiber to reduce modal dispersion and other modal noise problems. It may alternately be a conventional single mode fiber having zero dispersion at 1310nm or any other single mode fiber. For wavelength division multiplexing applications, or other broadband applications, the dispersion slope is also preferably small.
  • the signal proceeds to a heterodyne tuner which typically includes a tunable local oscillator 46 which is used to selectively tune to one of the channels which may then be demodulated with an appropriate analog or digital demodulator.
  • a band pass filter (not shown) may be included in the receiver to better select the desired channel and exclude noise from neighboring channels.
  • FIG. 4A shows a multiple channel transmission system consistent with an aspect of the present invention.
  • Baseband signals are modulated by a plurality of modulators 52, 54, 56.
  • the modulators may be, for example, a simple modulator such as an amplitude shifted keying (ASK) modulator, a frequency shifted keying (FSK) modulator, a differential phase shift keying (DPSK) modulator, a differential quadrature phase shift keying (DQPSK) modulator, or a duobinary modulator.
  • ASK amplitude shifted keying
  • FSK frequency shifted keying
  • DPSK differential phase shift keying
  • DQPSK differential quadrature phase shift keying
  • the modulated signals are each passed through an intermediate frequency band pass filter 58, 60, 62, then modulated using a plurality of upconverters including local oscillators 64, 66, 68.
  • the channels are combined, amplified and passed through an amplifier 70 to an optical transmitter 72 which may be optical transmitter 36 described above with respect to FIG. 1.
  • the transmitter 72 may include an erbium-doped fiber amplifier (EDFA, not shown) to increase the signal strength.
  • the combined optical signal passes through a length of optical fiber 74, which is preferably single mode optical fiber. It is optionally pre-amplified with an optical amplifier 76, which is preferably an EDFA.
  • a tunable channel optical filter 78 selects a particular channel which is then received by a baseband optical receiver 80.
  • the optical filter 78 also helps to reduce spontaneous emission noise produced by the EDFA pre-amplification process.
  • the baseband optical receiver 80 produces an electrical signal which is demodulated by a demodulator 82.
  • FIG. 4B A second embodiment of a transmission system is shown in FIG. 4B.
  • the system shown in Figure 4B is similar to the system of Figure 4A.
  • the single tunable optical filter 78 is replaced by a plurality of optical filters 84, 86, 88 each of which is preferably a fixed filter, although each may also be tuneable filters adapted to pass only a single selected channel.
  • Each channel signal proceeds to a baseband optical receiver 90, 92, 94 which in turn, passes the resulting electrical signal to a demodulator 82.
  • tuneable filters preferably include a feedback circuit to ensure that the filter passband always locks on to the center of the desired channel, despite any wavelength drift of the laser diode. This provides an advantage over conventional DWDM systems in which all optical transmitters require a stringent wavelength locker.
  • one of the channels carries a plurality of low bit-rate channels 96, 98, 100.
  • the plurality of low bit-rate subcarrier channels 96, 98, 100 are multiplexed onto a single band having a bandwidth which is preferably of a similar size to each of the high bit-rate channels, though this is not necessary.
  • Other components of the device are similar to those shown in FIGS. 4A and 4B, with the exception of the receivers.
  • the baseband optical receiver 90 is replaced with a broadband optical receiver 102.
  • the broadband optical receiver 102 provides the sub-channel signals to demodulators (not shown) which are then used to extract each of the individual sub-channels.
  • the plurality of low bit-rate channels shown in FIG. 4C can preferably use spectrally efficient modems (96, 98, 100) such as M-ary quadrature amplitude modulated (QAM) modems, quadrature phase shifted keying (QPSK) modems, orthogonal frequency division multiplexing (OFDM) modems or M-ary vestigial sideband (VSB) modems.
  • spectrally efficient modems such as M-ary quadrature amplitude modulated (QAM) modems, quadrature phase shifted keying (QPSK) modems, orthogonal frequency division multiplexing (OFDM) modems or M-ary vestigial sideband (VSB) modems.
  • QAM quadrature amplitude modulated
  • QPSK quadrature phase shifted keying
  • OFDM orthogonal frequency division multiplexing
  • VSB vestigial sideband
  • OSSB and D-OSSB transmission In an OSSB system carrying one channel, the channel is modulated onto the optical carrier signal with a modulator shown in detail in FIGS. 5A and 5B.
  • An incoming light signal ⁇ IN is split into a first optical signal ⁇ 1 and a second optical signal ⁇ 2 .
  • An RF alternating current electrode 106 modulates the two optical signals with the channel signal to be transmitted (i.e. f 1 ), however, f 1 is applied to the carrier such that the signal applied to the upper arm of the modulator is phase-shifted 90° with respect to the signal applied to the lower arm.
  • a DC electrode 108 further modulates the carriers such that the two arms are also shifted 90° with respect to each other. That is, the carriers of the two arms are in quadrature with each other.
  • the two signals are then combined to produce an output signal ⁇ OUT in which only the carrier and the lower side band are present. This process may be easily modified so that the lower side band is cancelled and the upper side band is transmitted.
  • ⁇ IN includes only the carrier.
  • ⁇ 1 has an upper and a lower side band, the upper side band at 90° and the lower side band at -90°, along with the carrier at 0°.
  • the lower arm signal ⁇ 2 has a carrier at -90°, an upper side band at -90° and a lower side band at -90°.
  • FIGS. 5C and 5D illustrate D-OSSB transmission.
  • a dual-electrode Mach-Zehnder modulator 104 is used.
  • An incoming light signal ⁇ IN is split into a first optical signal ⁇ 1 and a second optical signal ⁇ 2 .
  • An RF alternating current electrode 106 is used to modulate the two optical signals with a first channel m1, to be transmitted, however, the signal is applied to the carrier in such a way that the m1 component of the first and second optical signals are phase-shifted 90° with respect to each other.
  • the RF alternating current modulates the two optical signals with a second signal m2, with the m2 component of the first and second optical signals phase-shifted 90° with respect to each other.
  • m1 is phase-shifted 90° with respect to m2.
  • a DC electrode 209 further modulates the carriers such that the two arms are also shifted 90° with respect to each other, that is the carriers of the two arms are in quadrature with each other.
  • the two signals are then combined to produce an output signal ⁇ OUT in which contains the carrier, m2 as the upper side band and m1 as the lower side band.
  • ⁇ IN includes only the carrier.
  • ⁇ 1 can be represented by the sum of the two spectra shown.
  • a first spectrum of ⁇ 1 has an upper and a lower side band each carrying m1, the upper side band at 90° and the lower side band at -90°, along with the carrier at 0°.
  • a second, carrying m2 has an upper side band at 0° and a lower side band also at 0°.
  • the lower arm signal ⁇ 2 can be represented by the sum of two spectra.
  • a first ⁇ 2 spectrum carrying m1 has a carrier at -90°, an upper side band at -90° and a lower side band at -90°.
  • a second, carrying m2 has a carrier at -90°, an upper side band at 0° and a lower side band at -180°.
  • ODSB transmission has the drawback that an optical filter will have a spectrum 109 which tends to overlap multiple channels, introducing noise into the decoded signal, as shown in FIG. 3A.
  • ODSB requires allocating one-half of the bandwidth to images of the primary information since each side band carries the same information.
  • the OSSB technique shown in FIGS. 5A-B fail to completely solve these problems.
  • the lower side band is available for additional channels as in D-OSSB, the problem with the filter overlap remains, and a second problem is introduced. Since it is difficult to produce perfect quadrature in the multiplexer, cancellation of the unwanted side band will often be incomplete, resulting in residual images 110.
  • These residual images 110 produce additional noise, which when added to the noise resulting from the filter's slow roll off, can seriously interfere with reception of the transmitted data.
  • the filter can properly capture a single channel without also picking up portions of the neighboring ones. Since there are only two residual images 110 on each side band (in this example using four channels), the filter will pick up a smaller amount of noise from the images. Note how in FIG. 3C, only tails of each residual image are within the filter range 109. In contrast, in FIG. 3B, nearly two entire residual images are within the filter range 109.
  • FIGS. 6A-E A modulator consistent with the present invention for interleaving channels to produce I-OSSB modulation is illustrated in FIGS. 6A-E.
  • An input optical signal ⁇ IN includes only the carrier as shown in FIG. 6B.
  • the AC electrode 106 of a Mach-Zehnder multiplexer 104 applies an electric field to the carrier signal in the upper arm, ⁇ 1 containing the channels to be transmitted.
  • the output can be represented by the spectrum shown in FIG. 6C.
  • Four separate signals f 1 , f 2 , f 3 , and f 4 are multiplexed onto the carrier, each producing both an upper side band and a lower side band. Adjacent channels are 90° out of phase with each other.
  • the lower arm has four separate signals f 1 , f 2 , f 3 , and f 4 multiplexed onto the carrier, as shown in FIG. 6D.
  • Each of the signals, f 1 , f 2 , f 3 , and f 4 is applied to the lower arm in quadrature with the corresponding signal f 1 , f 2 , f 3 , and f 4 in the upper arm and each is 90° out of phase with its adjacent channel.
  • Each arm is then placed in quadrature with the other by the DC electrode 108.
  • ⁇ OUT contains the carrier and the two side bands, the lower side band carrying f 1 and f 3 and the upper side band carrying f 2 and f 4 .
  • the system can be easily modified to reverse the order such that the lower side band will carry f 2 and f 4 and the upper will carry f 1 and f 3 .
  • this result corresponds to the spectrum shown in FIG. 3C and each channel has no directly adjacent channels, that is, every other channel has been cancelled.
  • the I-OSSB modulator of FIGS. 6A-E may be used in a transmission system as illustrated in FIG. 7.
  • a continuous wave light source 112 such as a laser diode, produces a light signal.
  • the light signal passes through a polarization controller 114 and a polarization maintaining optical fiber 115 which maintains a particular polarization of the light.
  • the light signal is processed by an I-OSSB optical modulator 116 as described above, producing, in the example as shown, four multiplexed channels.
  • a notch filter 118 is disposed downstream from the modulator 116.
  • the notch filter 118 is a bandreject filter which is selected to eliminate the carrier without interfering with the signals of the channels.
  • an EDFA amplifier 120 may follow the notch filter 118 to boost the signal strength.
  • the system includes a dispersion compensating device 122 which helps to reduce the signal loss due to dispersion and intermodulation (i.e. four wave mixing).
  • This dispersion compensating device 122 may be, for example, a chirped fiber Bragg grating (CFBG), as shown in the FIG., in which the period of the grating varies linearly with position. As a result, the grating reflects different wavelengths at different points along its length which produces a wavelength dependent delay in the signal. In a wide band application, it may be necessary to employ multiple CFBGs in order to produce sufficient delay across a broad frequency range.
  • CFBG fiber Bragg grating
  • a dispersion compensating fiber may be used, however, dispersion compensating fibers generally have the drawback that attenuation is very high.
  • the signal After passing through the dispersion compensating component 122, the signal may be amplified again by an amplifier 120, then it is transmitted through the optical fiber 123, which is preferably single mode fiber.
  • FIG. 8 shows-additional detail of the electrical portion of a transmitter according to the present invention.
  • a plurality of modulators (for purposes of illustration, four) 124, 126, 128, 130 produce a signal for each of a plurality of channels.
  • Each channel signal is preferably filtered with a low pass filter 132, 134, 136, 138 prior to upconversion by a local oscillator 140, 142, 144, 146.
  • the signals are preferably filtered again with a band pass filter 148, 150, 152,154 prior to (optional) amplification by an amplifier 156.
  • a hybrid coupler 164 is used to split each channel into two signals at 90° to each other.
  • Two of the 90° signals are passed to a first summer 166 and two to a second summer 168.
  • two of the 0° are passed to each summer 166, 168.
  • the 90° of channels 1 and 3 are passed along with the 0° of channels 2 and 4 to the first summer 166
  • the 90° of channels 2 and 4 are passed along with the 0° of channels 1 and 3 to the second summer 168.
  • the summed signals may then be used to modulate a light signal from light emitting device 168 at the carrier frequency in a dual-arm Mach-Zehnder modulator 170 as shown in FIGS. 6A-E.
  • the summers may also be replaced by wideband microwave/millimeter wave directional couplers to increase the number of combined channels.
  • a plurality of light emitting devices 172, 174, 176, 178 supply carrier signals for a plurality of I-OSSB modulators 180, 182, 184, 186, each transmitting multiple channels.
  • the multiplexed signals are preferably passed through a dispersion compensating device 188 before or preferably after entering a multiplexer 190, which may be of conventional design.
  • the multiplexer 190 can also be replaced by a wideband optical coupler whenever applicable.
  • the multiplexed signal is transmitted over a single mode fiber 192 and treated, as appropriate, with an amplifier.
  • a demultiplexer 196 which may be of conventional design, separates the carrier signals, which are then filtered by an optical filter 198 and received with a receiver 200 according to the present invention, such as is shown in FIG. 4B or 4C. In place of a conventional demultiplexer 196, the demultiplexer 196 may be custom designed to accommodate various wavelength windows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Liquid Crystal (AREA)
  • Optical Integrated Circuits (AREA)

Claims (8)

  1. Système de communication à bande latérale unique optique entrelacé, comprenant au moins un émetteur optique (116; 180, 182, 184, 186) qui comprend :
    une unité de commande de modulation électrique pour produire un premier signal de commande de modulation comprenant une multiplicité de premiers signaux de canal (f1, f2, f3, f4) à différentes fréquences de canal, et un second signal de commande de modulation comprenant une multiplicité de seconds signaux de canal (f1, f2, f3, f4) qui sont respectivement aux différentes fréquences de canal des premiers signaux de canal et transportent respectivement la même information de canal que les premiers signaux de canal, deux signaux de canal adjacents dans chacun des premier et second signaux de commande de modulation ayant un déphasage relatif de 90 degrés, et chaque signal de canal dans le premier signal de commande de modulation ayant un déphasage relatif de 90 degrés par rapport à un signal de canal correspondant, à la même fréquence de canal, dans le second signal de commande de modulation; et
    un modulateur optique de Mach-Zehnder (104; 170) comprenant un port d'entrée pour recevoir un porteur optique (λIN) à une fréquence de porteur optique, un premier chemin optique et un second chemin optique qui reçoivent une première partie du porteur optique sous la forme d'un premier porteur optique (λ1) et une seconde partie du porteur optique sous la forme d'un second porteur optique (λ2), respectivement, et un port de sortie pour combiner la lumière provenant des premier et second chemins optiques pour produire un signal de sortie optique (λOUT) qui transporte des signaux de canal de sortie ayant la même information de canal que les premier et second signaux de canal,
    dans lequel le premier chemin optique reçoit le premier signal de commande de modulation et réagit à celui-ci en modulant le premier porteur optique pour transporter les premiers signaux de canal sur les deux côtés de la fréquence de porteur optique, et le second chemin optique reçoit le second signal de commande de modulation et réagit à celui-ci en modulant le second porteur optique pour transporter les seconds signaux de canal sur les deux côtés de la fréquence de porteur optique, et pour produire un déphasage de 90 degrés dans la lumière dans le second chemin optique, par rapport à la lumière dans le premier chemin optique, grâce à quoi, lorsque les porteurs optiques modulés sont combinés au niveau du port de sortie du modulateur optique de Mach-Zehnder, chaque second signal de canal du premier et du second porteur optique modulé est sensiblement annulé, et
    dans lequel le modulateur optique de Mach-Zehnder comprend une première électrode (106) le long du premier chemin optique pour recevoir le premier signal de commande de modulation et une seconde électrode (106) le long du second chemin optique pour recevoir le second signal de commande de modulation, et
    une première électrode à courant continu (108) le long du premier chemin optique pour polariser le premier chemin optique, et une seconde électrode à courant continu (108) le long du second chemin optique pour polariser le second chemin optique de façon à produire le déphasage de 90 degrés dans la lumière dans le second chemin optique par rapport à la lumière dans le premier chemin optique.
  2. Système selon la revendication 1 , dans lequel l'unité de commande de modulation électrique dans l'émetteur optique comprend :
    une multiplicité de chemins de signaux électriques correspondant respectivement à un nombre de signaux de canal dans chacun des premiers et seconds signaux de canal, pour produire une multiplicité de canaux de signal aux différentes fréquences de canal, respectivement, chaque chemin de signal électrique comprenant un mélangeur de signal pour mélanger un canal de données avec un signal d'oscillateur local (140, 142, 144, 146) à une des différentes fréquences de canal pour produire un signal de canal, et un moyen (164) pour diviser le signal de canal en un premier signal de canal et un second signal de canal qui est déphasé de 90 degrés par rapport au premier signal de canal;
    un premier moyen de sommation (166) pour combiner des premiers signaux de canal provenant de la multiplicité de chemins de signaux électriques pour produire le premier signal de commande de modulation; et
    un second moyen de sommation (168) pour combiner des seconds signaux de canal provenant de la multiplicité de chemins de signaux électriques pour produire le second signal de commande de modulation.
  3. Système selon la revendication 2, dans lequel chaque chemin de signal électrique comprend un filtre de signal passe-bas (132, 134, 136, 138) pour filtrer le canal de données avant l'entrée dans le mélangeur de signal, et un filtre passe-bande (148, 150, 152, 154) couplé entre le mélangeur et le moyen de division pour filtrer le signal de canal.
  4. Système selon la revendication 1 , comprenant en outre :
    un second émetteur optique construit de façon similaire à l'émetteur optique et configuré pour produire un second signal de sortie optique qui transporte une multiplicité de signaux de canal sur un second porteur optique à une seconde fréquence de porteur optique différente de la fréquence de porteur optique; et
    un dispositif optique (190) pour recevoir et combiner le signal de sortie optique provenant de l'émetteur optique et le second signal de sortie optique provenant du second émetteur optique, pour donner un signal optique multiplexé en longueur d'onde.
  5. Système selon la revendication 4, comprenant en outre :
    un premier dispositif de compensation de dispersion (188) couplé entre l'émetteur optique et le dispositif optique; et
    un second dispositif de compensation de dispersion (188) couplé entre le second émetteur optique et le dispositif optique.
  6. Système selon la revendication 1 , dans lequel l'émetteur optique comprend en outre une diode laser (112; 172, 174, 176, 178) pour produire le porteur optique à la fréquence de porteur optique reçue par le port d'entrée du modulateur optique de Mach-Zehnder.
  7. Procédé pour moduler une multiplicité de canaux à différentes fréquences de canal sur un porteur optique (λIN) à une fréquence de porteur optique, par modulation à bande latérale unique optique entrelacée, comprenant les étapes consistant à :
    produire de façon électronique un premier signal de commande de modulation qui comprend une multiplicité de premiers signaux de canal (f1, f2, f3, f4) à différentes fréquences de canal, et un second signal de commande de modulation qui comprend une multiplicité de seconds signaux de canal (f1, f2, f3, f4) qui sont respectivement aux différentes fréquences de canal des premiers signaux de canal et transportent respectivement la même information de canal que les premiers signaux de canal, deux signaux de canal adjacents dans chacun des premier et second signaux de commande de modulation ayant un déphasage relatif de 90 degrés, et chaque signal de canal dans le premier signal de commande de modulation ayant un déphasage relatif de 90 degrés par rapport à un signal de canal correspondant, à la même fréquence de canal, dans le second signal de commande de modulation;
    appliquer le premier signal de commande de modulation à un premier chemin optique d'un modulateur optique de Mach-Zehnder (104; 170) pour moduler une première partie du porteur optique (λ1) dans le premier chemin optique pour transporter les premiers signaux de canal sur les deux côtés de la fréquence de porteur optique;
    appliquer le second signal de commande de modulation à un second chemin optique du modulateur optique de Mach-Zehnder pour moduler une seconde partie du porteur optique (λ2) dans le second chemin optique, pour transporter les seconds signaux de canal sur les deux côtés de la fréquence de porteur optique;
    régler une phase relative entre les premier et second chemins optiques pour produire un déphasage de 90 degrés dans la lumière dans le second chemin optique, par rapport à la lumière dans le premier chemin optique; et
    combiner la lumière provenant des premier et second chemins optiques pour produire un signal de sortie optique (λOUT) qui transporte des signaux de canal de sortie ayant la même information de canal des premier et second signaux de canal, grâce à quoi, lorsque les porteurs optiques modulés sont combinés, chaque second signal de canal du premier et du second porteur optique modulé est sensiblement annulé.
  8. Procédé selon la revendication 7 , dans lequel l'étape consistant à produire de façon électronique comprend les étapes consistant à :
    mélanger un canal de données avec un signal d'oscillateur local (140, 142, 144, 146) pour produire un signal de canal pour chaque canal,
    diviser le signal de canal pour donner le premier signal de canal et le second signal de canal qui est déphasé de 90 degrés par rapport au premier signal de canal;
    combiner des premiers signaux de canal pour produire le premier signal de commande de modulation; et
    combiner des seconds signaux de canal pour produire le second signal de commande de modulation.
EP01913311A 2000-03-07 2001-03-05 Procede et appareil de modulation de bande laterale optique unique entrelacee Expired - Lifetime EP1264424B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US18738300P 2000-03-07 2000-03-07
US187383P 2000-03-07
US575811 2000-05-22
US09/575,811 US6525857B1 (en) 2000-03-07 2000-05-22 Method and apparatus for interleaved optical single sideband modulation
PCT/US2001/007014 WO2001067648A2 (fr) 2000-03-07 2001-03-05 Procede et appareil de modulation de bande laterale optique unique entrelacee

Publications (2)

Publication Number Publication Date
EP1264424A2 EP1264424A2 (fr) 2002-12-11
EP1264424B1 true EP1264424B1 (fr) 2006-12-27

Family

ID=26882975

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01913311A Expired - Lifetime EP1264424B1 (fr) 2000-03-07 2001-03-05 Procede et appareil de modulation de bande laterale optique unique entrelacee

Country Status (6)

Country Link
US (3) US6525857B1 (fr)
EP (1) EP1264424B1 (fr)
AT (1) ATE349820T1 (fr)
AU (2) AU2001241810A1 (fr)
DE (1) DE60125517T2 (fr)
WO (2) WO2001067647A2 (fr)

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559994B1 (en) * 1999-08-18 2003-05-06 New Elite Technologies, Inc. Optical fiber transmitter for long distance subcarrier multiplexed lightwave systems
US6525857B1 (en) * 2000-03-07 2003-02-25 Opvista, Inc. Method and apparatus for interleaved optical single sideband modulation
US7499647B2 (en) * 2000-05-22 2009-03-03 Opvista Incorporated Fully protected broadcast and select all optical network
US7120359B2 (en) * 2000-05-22 2006-10-10 Opvista Incorporated Broadcast and select all optical network
US20020012495A1 (en) * 2000-06-29 2002-01-31 Hiroyuki Sasai Optical transmission system for radio access and high frequency optical transmitter
US6788899B2 (en) 2000-09-11 2004-09-07 Winston I. Way Dynamic wavelength add/drop multiplexer for UDWDM optical communication system
JP3532866B2 (ja) * 2001-02-15 2004-05-31 東京通信機工業株式会社 片側側波帯抑圧光被変調波生成装置
JP4646048B2 (ja) * 2001-03-02 2011-03-09 日本電気株式会社 単一側波帯信号光の生成方法および単一側波帯信号光の生成回路
US20020131107A1 (en) * 2001-03-16 2002-09-19 Hait John N. Hyper-dense photonic signal apparatus
US20020131112A1 (en) * 2001-03-16 2002-09-19 Hait John N. Frequency-shifted, hyper-dense signal method
US20020130251A1 (en) * 2001-03-16 2002-09-19 Myers Michael H. Photonic wavelength error detector
US7027505B2 (en) * 2001-05-04 2006-04-11 Al-Eidan Abdullah A System and method for bandwidth compression of frequency and phase modulated signals and suppression of the upper and lower sidebands from the transmission medium
US7599627B2 (en) * 2001-05-31 2009-10-06 Teradvance Communications, Llc Method and system for a polarization mode dispersion tolerant optical homodyne detection system with optimized transmission modulation
GB0122623D0 (en) * 2001-09-19 2001-11-07 Marconi Comm Ltd Improvements in or relating to signal transmission
US20030077032A1 (en) * 2001-10-10 2003-04-24 Duling Irl N. Long distance optical transmission system for high dynamic range signals
US6775424B2 (en) * 2001-11-12 2004-08-10 Fujitsu Network Communications, Inc. Modulation and filtration of optical signals
US6999688B1 (en) * 2001-12-20 2006-02-14 Sprint Communications Company L.P. Optical systems with diversity detection
US20040208646A1 (en) * 2002-01-18 2004-10-21 Seemant Choudhary System and method for multi-level phase modulated communication
JP2003244102A (ja) * 2002-02-20 2003-08-29 Hitachi Ltd 光帯域狭窄化送信装置および光残留サイドバンド送信装置
US7277647B2 (en) * 2002-03-14 2007-10-02 Lucent Technologies Inc. System and method of optical transmission
US7277645B2 (en) * 2002-03-14 2007-10-02 Lucent Technologies Inc. High-bit-rate long-haul fiber optic communication system techniques and arrangements
JP2003338805A (ja) * 2002-03-15 2003-11-28 Kddi Submarine Cable Systems Inc 光伝送システム、光送信装置及びこれらの方法
US7142788B2 (en) * 2002-04-16 2006-11-28 Corvis Corporation Optical communications systems, devices, and methods
US7146109B2 (en) * 2002-04-26 2006-12-05 Lucent Technologies Inc. Analog modulation of optical signals
US20040208583A1 (en) * 2002-06-10 2004-10-21 Kameran Azadet Single sideband dense wavelength division multiplexed optical transmission scheme
US20050231783A1 (en) * 2002-06-10 2005-10-20 Carluccio Panzeri Methods for transmitting and receiving laser signals, as well as transmitter and receiver which carry out said methods
US7471903B1 (en) * 2002-06-26 2008-12-30 Nortel Networks Limited Optical communication system
ITMI20021632A1 (it) * 2002-07-24 2004-01-26 S I C E S R L Sistema di telecominicazioni per trasmissioni ottiche in particolare trasmissioni ottiche in aria
US20040057734A1 (en) * 2002-09-25 2004-03-25 Lucent Technologies, Inc. Method and system for reducing transmission penalties associated with ghost pulses
US7269354B1 (en) * 2002-10-23 2007-09-11 Lockheed Martin Corporation Superheterodyne photonic receiver using non-serial frequency translation
DE10251889A1 (de) * 2002-11-07 2004-05-27 Siemens Ag Empfänger für winkelmodulierte optische Signale
FR2855883B1 (fr) * 2003-06-03 2005-08-26 Cit Alcatel Dispositif optoelectronique integre comportant un modulateur a electroabsorption et un element electronique de commande du modulateur
US20050074037A1 (en) * 2003-10-06 2005-04-07 Robin Rickard Optical sub-carrier multiplexed transmission
US7580630B2 (en) * 2004-06-07 2009-08-25 Nortel Networks Limited Spectral shaping for optical OFDM transmission
WO2006002080A2 (fr) * 2004-06-15 2006-01-05 Opvista Incorporated Communication optique a modulation duobinaire
DE102004028806B3 (de) * 2004-06-15 2005-12-29 Infineon Technologies Ag Empfänger für ein drahtloses Kommunikationssystem
US7421204B2 (en) * 2004-09-02 2008-09-02 Lucent Technologies Inc. Method and system for increasing the spectral efficiency of binary coded digital signals
KR100659805B1 (ko) * 2004-09-16 2006-12-19 엘에스전선 주식회사 Ossb 변조를 이용한 광 송수신 시스템 및 그 신호전송방법
US7095925B2 (en) * 2004-11-03 2006-08-22 Intel Corporation Optical phased array transmitter/receiver
EP1684448A1 (fr) * 2005-01-20 2006-07-26 Siemens Aktiengesellschaft Procédé et dispositif pour la génération de signal optique à bande latérale unique
US7324761B2 (en) 2005-01-20 2008-01-29 Massachusetts Institute Of Technology Single sideband optical transmitter
US20060222373A1 (en) * 2005-04-04 2006-10-05 Giovanni Barbarossa Methods for upgrading and deploying an optical network
US7577369B1 (en) 2005-04-04 2009-08-18 Avanex Corporation Systems for deploying an optical network
WO2006119375A2 (fr) * 2005-05-02 2006-11-09 Opvista, Incorporated Reseaux de diffusion et selection a multiples boucles en fibre optique interconnectees a commutation de protection reversible
CN101310458B (zh) * 2005-10-12 2014-01-22 奥菲迪乌姆有限公司 用于数字信号的光传输的方法和设备
US8139476B2 (en) * 2005-10-13 2012-03-20 Vello Systems, Inc. Optical ring networks using circulating optical probe in protection switching with automatic reversion
JP4549980B2 (ja) * 2006-01-23 2010-09-22 住友大阪セメント株式会社 光変調器
KR100759944B1 (ko) * 2006-03-10 2007-09-18 한국전자통신연구원 밀리미터파 생성장치 및 그 생성방법
GB0610029D0 (en) * 2006-05-19 2006-06-28 Univ Cambridge Tech A method of and apparatus for combining electrical signals
WO2008040053A1 (fr) * 2006-10-03 2008-04-10 National Ict Australia Limited Transmission par fibre optique à multiplexage par répartition orthogonale de la fréquence à bande latérale unique
US20080169878A1 (en) * 2007-01-12 2008-07-17 Giuseppe Resnati Low loss combiner for narrowband and wideband rf signals
JP4818142B2 (ja) * 2007-02-06 2011-11-16 富士通株式会社 光受信装置およびその制御方法、並びに、光伝送システム
EP1962438A1 (fr) * 2007-02-22 2008-08-27 Sony Deutschland GmbH Procédé de transmission de données et modem
US7773883B1 (en) 2007-05-04 2010-08-10 Vello Systems, Inc. Single-fiber optical ring networks based on optical double sideband modulation
US8175458B2 (en) 2007-07-17 2012-05-08 Vello Systems, Inc. Optical ring networks having node-to-node optical communication channels for carrying data traffic
WO2009012419A2 (fr) * 2007-07-17 2009-01-22 Opvista Incorporated Générateur de spectres en peigne multiplexé en longueur d'onde (wdm) optique au moyen d'un laser unique
US20090028270A1 (en) * 2007-07-27 2009-01-29 Gemtek Technology Co., Ltd. Mimo broadband channel emulator
US20110158644A1 (en) * 2007-08-30 2011-06-30 Fabio Cavaliere In or relating to multicarrier communication
US7860406B2 (en) * 2007-09-14 2010-12-28 Alcatel-Lucent Usa Inc. PMD insensitive direct-detection optical OFDM systems using self-polarization diversity
US8443024B2 (en) * 2007-10-29 2013-05-14 The Aerospace Corporation Time-domain gated filter for RF communication systems
WO2009056365A1 (fr) * 2007-10-29 2009-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Améliorations dans ou relatives à des réseaux optiques
CN101459913B (zh) * 2007-12-12 2010-10-27 华为技术有限公司 无线通信系统、中心站、接入设备及通信方法
US8135287B2 (en) * 2008-02-21 2012-03-13 Nec Laboratories America, Inc. 100 Gbit/s OFDM optical signal generation
EP2260591A4 (fr) * 2008-02-22 2013-10-23 Vello Systems Inc Canaux wdm optiques parallèles efficaces spectralement pour des réseaux optiques métropolitains et étendus longue distance
US20090290877A1 (en) * 2008-05-21 2009-11-26 Nec Laboratories America, Inc. Monitoring for High Speed OFDM Signal Transmission
US20090290878A1 (en) * 2008-05-22 2009-11-26 Nec Laboratories America, Inc. Generating an Optical OFDM Signal with Reduced OSNR Requirement
US7714760B2 (en) 2008-06-27 2010-05-11 Entropic Communications, Inc. Apparatus and methods for direct quadrature sampling
US8175113B2 (en) * 2008-06-30 2012-05-08 Infinera Corporation Communication network with node bypassed co-routed multi-channel traffic
WO2010012309A1 (fr) 2008-07-31 2010-02-04 Nokia Siemens Networks Oy Procédé de traitement de données dans un réseau optique, composant de réseau optique et système de communication
CN101729149A (zh) * 2008-10-22 2010-06-09 华为技术有限公司 一种光解偏振复用光载波的方法、装置和系统
JP5189528B2 (ja) * 2009-03-09 2013-04-24 Kddi株式会社 光送信装置及び光通信システム
US8374514B2 (en) * 2009-04-15 2013-02-12 Nec Laboratories America, Inc. Parallel digital coherent detection using symmetrical optical interleaver and direct optical down conversion
KR101382619B1 (ko) * 2009-07-24 2014-04-07 한국전자통신연구원 광 송신 장치 및 방법과 광 수신 장치 및 방법
EP2478653B1 (fr) * 2009-09-17 2014-07-23 Universität Duisburg-Essen Émetteur et récepteur pour émettre et recevoir des signaux optiques
US9054832B2 (en) 2009-12-08 2015-06-09 Treq Labs, Inc. Management, monitoring and performance optimization of optical networks
TWI406513B (zh) * 2010-01-08 2013-08-21 Ind Tech Res Inst 訊號傳送系統及方法
US20140193154A1 (en) * 2010-02-22 2014-07-10 Vello Systems, Inc. Subchannel security at the optical layer
US8705741B2 (en) * 2010-02-22 2014-04-22 Vello Systems, Inc. Subchannel security at the optical layer
JP5621530B2 (ja) * 2010-11-12 2014-11-12 富士通株式会社 受信機、光スペクトル整形方法、及び光通信システム
US8542999B2 (en) 2011-02-01 2013-09-24 Vello Systems, Inc. Minimizing bandwidth narrowing penalties in a wavelength selective switch optical network
WO2011107055A2 (fr) * 2011-04-20 2011-09-09 华为技术有限公司 Dispositif de réception de signal et procédé reposant sur une technologie de photons micro-ondes
CN103620988B (zh) * 2011-06-29 2017-03-29 瑞典爱立信有限公司 用于在光信号的上下边带中分配单独的信息的传送器和传送器中的方法
US8848831B2 (en) * 2012-09-20 2014-09-30 Lsi Corporation Direct digital synthesis of quadrature modulated signals
US10014975B2 (en) * 2012-09-28 2018-07-03 Infinera Corporation Channel carrying multiple digital subcarriers
DE102012023448A1 (de) * 2012-11-30 2014-06-05 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Verfahren zum Orten von fehlerhaften Stellen in einem HF-Signalübertragspfad
US9461751B2 (en) * 2012-12-18 2016-10-04 Ciena Corporation Frequency domain multiplex optical transmission
US20140270783A1 (en) * 2013-03-14 2014-09-18 Phase Sensitive Innovations, Inc Radio-frequency signal repetition and amplification using phase-modulation injection-locked lasers
WO2014201519A1 (fr) * 2013-06-19 2014-12-24 The University Of Sydney Dispositif et procédé pour générer un signal électrique avec une bande de fréquence supprimée
CN104509057B (zh) * 2013-07-01 2018-03-06 华为技术有限公司 信号调制方法、解调方法、调制解调装置及信号传输系统
KR20150095065A (ko) * 2014-02-12 2015-08-20 한국전자통신연구원 기지국의 신호 처리 장치 및 방법
US9240842B2 (en) * 2014-03-24 2016-01-19 The United States Of America As Represented By The Secretary Of The Air Force Isolation of RF signals using optical single side band modulation combined with optical filtering
US9602217B2 (en) * 2014-04-17 2017-03-21 Nec Corporation Ultra-wide band signal generation using digitally jointed dual sidebands and RF up-conversion for single optical carrier transmission
TW201626746A (zh) * 2015-01-13 2016-07-16 Transystem Inc 光纖通訊裝置及光纖通訊系統
DE102015221283B4 (de) * 2015-10-30 2017-09-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sender für ein optisches Freistrahl-Kommunikations-System und zugehöriges Empfängerterminal
US9838137B2 (en) * 2015-12-18 2017-12-05 Fujitsu Limited Device and method for transmitting optical signal in which a plurality of signals are multiplexed
US10505661B2 (en) * 2016-01-25 2019-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for multiplexing signals
EP3507925B1 (fr) 2016-08-30 2024-03-13 Finisar Corporation Émetteur-récepteur bidirectionnel à synchronisation temporelle
US10256934B2 (en) * 2016-10-11 2019-04-09 Zte Corporation Chirp managed laser generation for next generation passive optical networks
KR102478167B1 (ko) * 2016-11-29 2022-12-16 한국전자통신연구원 주파수 할당 방법 및 그 방법을 수행하는 전송 장치
US10601520B2 (en) 2018-02-07 2020-03-24 Infinera Corporation Clock recovery for digital subcarriers for optical networks
FR3078598B1 (fr) * 2018-03-01 2020-02-07 Thales Dispositif et procede photonique de conversion de frequence a double bande
US11368228B2 (en) 2018-04-13 2022-06-21 Infinera Corporation Apparatuses and methods for digital subcarrier parameter modifications for optical communication networks
US11095389B2 (en) 2018-07-12 2021-08-17 Infiriera Corporation Subcarrier based data center network architecture
US10892827B2 (en) 2018-09-20 2021-01-12 Neophotonics Corporation Apparatus and method for analog electronic fiber dispersion and bandwidth pre-compensation (EDPC) for use in 50 Gbps and greater PAMn optical transceivers
US11075694B2 (en) 2019-03-04 2021-07-27 Infinera Corporation Frequency division multiple access optical subcarriers
US11258528B2 (en) 2019-09-22 2022-02-22 Infinera Corporation Frequency division multiple access optical subcarriers
GB201902951D0 (en) * 2019-03-05 2019-04-17 Univ Southampton Method and system for electro-optic modulation
US11336369B2 (en) 2019-03-22 2022-05-17 Infinera Corporation Framework for handling signal integrity using ASE in optical networks
US11032020B2 (en) 2019-04-19 2021-06-08 Infiriera Corporation Synchronization for subcarrier communication
US11838105B2 (en) 2019-05-07 2023-12-05 Infinera Corporation Bidirectional optical communications
US11095374B2 (en) 2019-05-14 2021-08-17 Infinera Corporation Out-of-band communication channel for sub-carrier-based optical communication systems
US11190291B2 (en) 2019-05-14 2021-11-30 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11296812B2 (en) 2019-05-14 2022-04-05 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11476966B2 (en) 2019-05-14 2022-10-18 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11239935B2 (en) 2019-05-14 2022-02-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11489613B2 (en) 2019-05-14 2022-11-01 Infinera Corporation Out-of-band communication channel for subcarrier-based optical communication systems
US11483257B2 (en) 2019-09-05 2022-10-25 Infinera Corporation Dynamically switching queueing schemes for network switches
EP4042607A1 (fr) 2019-10-10 2022-08-17 Infinera Corporation Systèmes de commutateurs de réseaux pour réseaux de communications optiques
US11356180B2 (en) 2019-10-10 2022-06-07 Infinera Corporation Hub-leaf laser synchronization
CA3157060A1 (fr) 2019-10-10 2021-04-15 Infinera Corporation Protection et restauration a double trajet de sous-porteuse optique pour reseaux de communication optique
US11799552B2 (en) * 2020-08-06 2023-10-24 Electronics And Telecommunications Research Institute Optical network using optical amplifier in gain saturation region

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239401A (en) * 1990-12-31 1993-08-24 Gte Laboratories Incorporated Optical modulator for cancellation of second-order intermodulation products in lightwave systems
US5301058A (en) 1990-12-31 1994-04-05 Gte Laboratories Incorporated Single sideband optical modulator for lightwave systems
US5333000A (en) 1992-04-03 1994-07-26 The United States Of America As Represented By The United States Department Of Energy Coherent optical monolithic phased-array antenna steering system
IT1265018B1 (it) * 1993-08-10 1996-10-17 Cselt Centro Studi Lab Telecom Dispositivo per l'estrazione e il reinserimento di una portante ottica in reti di comunicazione ottica.
CA2139957C (fr) * 1994-02-18 1999-02-09 Andrew R. Chraplyvy Systeme de communication a fibres optiques multicanal
DE19514386A1 (de) 1995-04-19 1996-10-24 Hertz Inst Heinrich Optischer Frequenzgenerator
JPH08322106A (ja) * 1995-05-24 1996-12-03 Matsushita Electric Ind Co Ltd モータの制御方法
US5596436A (en) 1995-07-14 1997-01-21 The Regents Of The University Of California Subcarrier multiplexing with dispersion reduction and direct detection
US5608825A (en) 1996-02-01 1997-03-04 Jds Fitel Inc. Multi-wavelength filtering device using optical fiber Bragg grating
DE19628131C2 (de) 1996-07-12 2003-07-17 Semikron Elektronik Gmbh Gatespannungsbegrenzung für eine Schaltungsanordnung
US5781327A (en) * 1996-08-19 1998-07-14 Trw Inc. Optically efficient high dynamic range electro-optic modulator
CA2188358A1 (fr) * 1996-10-21 1998-04-21 Michael J. Sieben systme de modulation optique
US5745273A (en) 1996-11-27 1998-04-28 Lucent Technologies Inc. Device for single sideband modulation of an optical signal
DE19730830A1 (de) 1997-07-18 1999-01-21 Alsthom Cge Alcatel Laser zur Erzeugung eines Wellenkamms
DE19731494C2 (de) 1997-07-22 1999-05-27 Siemens Ag Verfahren und Anordnung zur Datenübertragung im Wellenlängenmultiplexverfahren in einem optischen Ringnetz
US5982963A (en) 1997-12-15 1999-11-09 University Of Southern California Tunable nonlinearly chirped grating
US6118566A (en) 1998-11-04 2000-09-12 Corvis Corporation Optical upconverter apparatuses, methods, and systems
US6130766A (en) 1999-01-07 2000-10-10 Qtera Corporation Polarization mode dispersion compensation via an automatic tracking of a principal state of polarization
US6525857B1 (en) * 2000-03-07 2003-02-25 Opvista, Inc. Method and apparatus for interleaved optical single sideband modulation
WO2001067656A1 (fr) 2000-03-07 2001-09-13 Corning, Inc. Commutateur de protection dans un anneau unique a protection partagee de canal a deux fibres optiques
US6556744B1 (en) 2001-10-12 2003-04-29 Nortel Networks Limited Reduction of dispersion effects in optical transmission fibre systems
US7116905B2 (en) 2002-03-27 2006-10-03 Fujitsu Limited Method and system for control signaling in an open ring optical network

Also Published As

Publication number Publication date
AU2001241810A1 (en) 2001-09-17
WO2001067647A2 (fr) 2001-09-13
US7206520B2 (en) 2007-04-17
US7003231B2 (en) 2006-02-21
WO2001067647A3 (fr) 2002-05-02
US20060140643A1 (en) 2006-06-29
US6525857B1 (en) 2003-02-25
US20020030877A1 (en) 2002-03-14
DE60125517D1 (de) 2007-02-08
DE60125517T2 (de) 2007-10-04
AU2001241989A1 (en) 2001-09-17
WO2001067648A3 (fr) 2002-03-21
EP1264424A2 (fr) 2002-12-11
ATE349820T1 (de) 2007-01-15
WO2001067648A2 (fr) 2001-09-13

Similar Documents

Publication Publication Date Title
EP1264424B1 (fr) Procede et appareil de modulation de bande laterale optique unique entrelacee
US6522439B2 (en) Optical distortion compensation apparatuses, methods, and systems
US6925212B2 (en) Optical transmission apparatuses, methods, and systems
US20090067843A1 (en) Optical Wavelength-Division-Multiplexed (WDM) Comb Generator Using a Single Laser
US7447436B2 (en) Optical communications using multiplexed single sideband transmission and heterodyne detection
US7577367B2 (en) Optical communication using duobinary modulation
US7146103B2 (en) Optical communications using multiplexed single sideband transmission and heterodyne detection
US5212579A (en) Method and apparatus for communicating amplitude modulated signals over an optical communication path
US5272556A (en) Optical networks
EP0496298A2 (fr) Modulateurs optiques avec modulation déphasée en quadrature pour systèmes en fibres optiques
US9300399B2 (en) Optical communication systems and methods
US7209660B1 (en) Optical communications using heterodyne detection
JP4374011B2 (ja) 光信号送信機及び光信号伝送システム
WO2002061986A2 (fr) Telecommunications par fibres optiques faisant appel a une transmission a bande laterale unique et a une detection directe
JP2000078090A (ja) 光伝送システム
JPH06204950A (ja) 光伝送方式
JPH112850A (ja) 周波数変調方式

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021009

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WAY, WINSTON, I,

Inventor name: CHEN, MING-BING

Inventor name: WU, MING, CHIA

R17P Request for examination filed (corrected)

Effective date: 20021007

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WU, MING, CHIA

Inventor name: CHEN, MING-BING

Inventor name: WAY, WINSTON, I,

17Q First examination report despatched

Effective date: 20041008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

17Q First examination report despatched

Effective date: 20041008

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60125517

Country of ref document: DE

Date of ref document: 20070208

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070528

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
RIN2 Information on inventor provided after grant (corrected)

Inventor name: WU, MING, CHIA

Inventor name: WAY, WINSTON, I,

Inventor name: CHEN, MING-BING

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070305

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070305

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110113 AND 20110119

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170914 AND 20170920

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170921 AND 20170927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60125517

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60125517

Country of ref document: DE

Owner name: TREQ LABS, LNC. (N. D. GES. D. STAAATES DELAWA, US

Free format text: FORMER OWNER: VELLO SYSTEMS, INC. (N. D. GES.D.STAATES DELAWARE ), MILPITAS, CALIF., US

Ref country code: DE

Ref legal event code: R081

Ref document number: 60125517

Country of ref document: DE

Owner name: SNELL HOLDINGS, LLC (N.D.GES.D.STAATES DELAWAR, US

Free format text: FORMER OWNER: VELLO SYSTEMS, INC. (N. D. GES.D.STAATES DELAWARE ), MILPITAS, CALIF., US

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: TREQ LABS,INC., US

Effective date: 20180105

Ref country code: FR

Ref legal event code: TP

Owner name: TREQ LABS,INC., US

Effective date: 20180105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SNELL HOLDINGS, LLC, US

Effective date: 20180308

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60125517

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60125517

Country of ref document: DE

Owner name: SNELL HOLDINGS, LLC (N.D.GES.D.STAATES DELAWAR, US

Free format text: FORMER OWNER: TREQ LABS, LNC. (N. D. GES. D. STAAATES DELAWARE), SUNNYVALE, CALIF., US

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200401

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60125517

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210304