EP1261827B8 - Reactor and method for gasifying and/or melting materials - Google Patents

Reactor and method for gasifying and/or melting materials Download PDF

Info

Publication number
EP1261827B8
EP1261827B8 EP01911636A EP01911636A EP1261827B8 EP 1261827 B8 EP1261827 B8 EP 1261827B8 EP 01911636 A EP01911636 A EP 01911636A EP 01911636 A EP01911636 A EP 01911636A EP 1261827 B8 EP1261827 B8 EP 1261827B8
Authority
EP
European Patent Office
Prior art keywords
section
feed
reactor
gas
gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01911636A
Other languages
German (de)
French (fr)
Other versions
EP1261827A1 (en
EP1261827B1 (en
Inventor
Eckhardt Tischer
Frank Wuchert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KBI INTERNATIONAL Ltd
Original Assignee
KBI INTERNAT Ltd
KBI INTERNATIONAL Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7631232&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1261827(B8) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KBI INTERNAT Ltd, KBI INTERNATIONAL Ltd filed Critical KBI INTERNAT Ltd
Publication of EP1261827A1 publication Critical patent/EP1261827A1/en
Application granted granted Critical
Publication of EP1261827B1 publication Critical patent/EP1261827B1/en
Publication of EP1261827B8 publication Critical patent/EP1261827B8/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/101Combustion in two or more stages with controlled oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/104Combustion in two or more stages with ash melting stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/106Combustion in two or more stages with recirculation of unburned solid or gaseous matter into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/16Waste feed arrangements using chute
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/18Waste feed arrangements using airlock systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/20Waste supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50002Burning with downwards directed draft through the waste mass

Definitions

  • the present invention relates to a reactor and a method for gasifying and / or melting substances.
  • the invention relates to the material and / or energy recovery of any waste, e.g. with predominantly organic components but also special waste.
  • the reactor according to the invention and the method are also suitable for gasifying and melting feedstocks of any composition or for energy generation through the use of organic substances.
  • a special task is to enable simple, inexpensive and environmentally friendly material and / or energy recovery of waste.
  • the aim is to increase the functional reliability of a corresponding reactor by largely avoiding the operational uncertainties associated with the recycle gas flow.
  • Another object of the invention is to significantly reduce the pollution in the excess gas to be extracted, so that the effort in a subsequent gas cleaning can be minimized.
  • the double injection of oxygen or fuel gas (gas mixtures) enables combustion on the one hand of the pyrolysis gases and, on the other hand, allows a sufficiently high temperature to be maintained in the lower reactor section so that the melts which collect there are kept liquid.
  • a reduction section is formed between the two injection means, through which all gases have to flow before suction and in which they are consequently largely reduced.
  • a preheating section is added to the feed section, in which the waste is pre-dried, for example, at temperatures around 100.degree.
  • the feedstocks can also be cooled in this section under certain circumstances if this is useful for the overall process.
  • An advantageous embodiment of the reactor is characterized in that the total length of the feed section and pre-tempering section is several times greater than the diameter of the feed section.
  • the pouring column in the feed and pre-tempering section acts as a plug which closes at the top and prevents large amounts of ambient air from being drawn into the reactor.
  • the reactor can be closed at its upper end by a lock, a double flap system or a similar device. This prevents the uncontrolled entry of ambient air and the escape of gases from the bed even better.
  • the reactor is expediently essentially cylindrical and the gas supply space and the gas extraction space are - D ⁇
  • This embodiment is particularly suitable for recycling predominantly organic feedstocks.
  • Other embodiments e.g. are more expedient for other feedstocks, can have non-cylindrical basic shapes and differently positioned and shaped means for gas extraction and supply.
  • the pyrolysis section of the reactor is also double-walled and a heat transfer medium is guided in the wall cavity.
  • the wall can be cooled thereby, which reduces the material stress, on the other hand, depending on the feedstock used and the resulting heat requirement, additional heat can be supplied to or derived from the bulkhead as required.
  • the process steps essential to the invention can advantageously be further developed by pre-drying the feed material by heating the pouring column above the level in which the shock-like heating takes place to about 100 ° C.
  • water components of the feedstock are largely evaporated, which also improves the desired automatic downward movement of the feedstock.
  • the negative pressure for extracting the excess gases can be regulated, the extraction being carried out in such a way that on the one hand no gas escapes from the top of the reactor and on the other hand only minimal amounts of additional ambient air are sucked in through the bulk column.
  • the aim of minimizing the amount of false air present in the reactor is to reduce the proportion of nitrogen oxides in the excess gas and also to keep the total amount of gas small in order to make the subsequent gas economy simple.
  • the single figure shows a simplified sectional view of a reactor according to the invention.
  • a preferred embodiment of a reactor is described below with reference to FIG. 1.
  • the process steps that occur in the treatment of waste with organic constituents as starting materials in this reactor are also given.
  • the implementation of the method according to the invention is not necessarily linked to the reactor explained, but can also be carried out using modified systems, if necessary.
  • Input materials may be useful modifications of the reactor and / or the process (eg flexible arrangement and design of the technical design of the gas supply and discharge, the heating or cooling of the reactor jacket or the like).
  • different feedstocks can also be combined, for example by adding feedstocks with a higher energy value (e.g. organic waste, contaminated waste wood or the like) when gasifying / melting non-organic feedstocks.
  • the reactor shown in the figure has at its upper end a feed section 1 with at least one feed opening 2, through which the feedstock to be used in terms of material and / or energy is fed.
  • the proportion of organic constituents predominates with this feed material, so that the reactor and the process described are particularly suitable for the treatment of normal household garbage and commercial garbage.
  • combustible constituents of certain feedstock compositions are not high enough to carry out the combustion and gasification processes, combustible additives or energy sources can be added to the feedstock. It is possible to add a certain amount of coke in a conventional manner or to increase the total calorific value by adding wood. Under certain circumstances, it can also be useful to add other additives, for example to influence the pH that is set. Such measures are known to the person skilled in the art 3, however, so that a detailed description is not given here.
  • the feedstock and possibly the aggregates are fed into the feed opening 2 via a suitable delivery device 3 Reactor introduced.
  • a pillar 4 is thus formed.
  • the height of the pouring column 4 is monitored using fill level measuring devices which are not specifically designated. This bed height is to be kept between a minimum and a maximum level. The minimum level is chosen so that the pouring column 4 acts in the upper section of the reactor as a barrier layer, which prevents larger amounts of ambient air from entering the reactor.
  • the pre-tempering section 5 serves to pre-dry the starting materials.
  • the feed section and the pre-tempering section are advantageously cylindrical or conical with a slight increase in cross-section downwards.
  • the pre-tempering section 5 has a double wall, wherein a wall cavity 6 is formed, in which a heat transfer medium is guided. With the help of the heat transfer medium, heat can be supplied to the bulkhead in the region of the double-walled predrying section 5, so that the feed material is preheated or predried. Possibly. the wall cavity can be omitted and the heat can be supplied directly from the hotter zones of the reactor, for example by conduction.
  • the heat supply is dimensioned in such a way that the adherence of certain ingredients to the wall is largely excluded.
  • water components can be removed by the pre-drying, so that they do not additionally burden the further gasification process.
  • the pouring column 4 can be tempered to approximately 100 ° C.
  • the pre-tempering section may be omitted entirely if predrying is due to the composition of the Feed material is not required, or the pre-tempering section is used in special cases to cool the feed materials.
  • a pyrolysis section 8 adjoins below the pre-tempering section 5, the cross-section widening abruptly at the transition between the pre-tempering section (or the feed section if the pre-tempering section is omitted) and the pyrolysis section.
  • the free shaft cross section in this transition region is preferably increased by at least twice, which on the one hand reduces the sinking speed of the feed materials and on the other hand forms a pouring cone 9.
  • the pouring cone 9 is fed centrally from the pouring column 4 in the predrying section. At the edge areas the cone flattens out, so that a free space is created there.
  • gas supply means 10 which in the example shown is designed as an annular gas supply space 10 which is opened approximately in the plane of the cross-sectional expansion in the pyrolysis section 8.
  • the purpose of the gas supply space 10 is to bring hot gases to the pouring cone 9.
  • the gas supply means can also be designed as nozzles, wall openings or other devices which enable the supply of hot gases to the pouring column.
  • the burner 12 generates the required hot gas, which is preferably brought tangentially to the debris cone 9 via the combustion chambers and the gas supply space ,
  • multiple combustion chambers or multiple burners can be used if this is for one heating the cone as evenly as possible is desirable.
  • the combustion in burner 12 is expediently carried out with a lack of oxygen, so that an inert combustion gas with temperatures of approximately 1000 ° C. is provided by an almost stoichiometric combustion.
  • the burner will need foreign fuels that are not obtained directly from the reactor.
  • natural gas, oil, the excess gas generated and temporarily stored by a previous gasification process, gas mixture, liquid-gas mixture, dust-gas mixture or other media that are suitable from an energy point of view are used.
  • the burner 12 can also be operated with a possibly previously cleaned excess gas.
  • the feed material present in the cone area is heated in a shock-like manner.
  • the very rapid heating of the material to temperatures between 800 ° C and 1000 ° C causes this material to dry very quickly, avoiding sticking and sticking to the wall. Rather, there is at least some conglomeration of the starting materials.
  • the expulsion of pyrolysis products is already started in this upper section of the reactor. Since the gas supplied is largely inert, these pyrolysis products are only incinerated to a small extent, insofar as air can be sucked in through the pouring column 4 piled above the pouring cone or carried along by the feed material.
  • the feed material then drops further down in the pyrolysis section 8, the pyrolysis being continued, among other things. also with the materials in the center, which are also heated by heat transfer.
  • the wall of the pyrolysis section is preferably heat-insulated and / or double-walled, so that, if necessary, a heat transfer medium can also be guided in the wall cavity formed.
  • the heat insulation or the additional supply of heat with the aid of the heat transfer medium are dimensioned such that the starting materials have a temperature of preferably above 500 ° C. in the lower region of the pyrolysis section 8. The temperature required at this point can be specifically controlled depending on the special feed materials.
  • a melting and superheating section 14 follows below the pyrolysis section 8. This has a cross-sectional constriction on the basis of which the sinking rate of the feed material changes. In the example of the treatment of predominantly organic waste, the cross-section is narrowed by at least 10%, which is generated, for example, by conically drawing in the corresponding shaft part at an angle of approximately 60 ° to the horizontal.
  • upper injection means 15 which in the example shown are formed by a plurality of oxygen lances 16 distributed around the circumference. In order to protect the oxygen lances 16 from overheating, they are water-cooled, for example.
  • nozzles, burners or the like are used as the upper injection means, via which various fuel gases or gas compositions can be supplied in a controlled manner, with the aim of setting the temperature in the melting and superheating zone to a desired value. If the supply of oxygen is not sufficient for this (if, for example, no feedstocks with a sufficiently high energy value are available at this position for a short time), foreign combustion gases or excess gases obtained from the reactor can also be supplied via the injection means. In the specific example, with the aid of the upper injection means 15, the targeted and metered addition of oxygen takes place immediately below the level of the cross-sectional constriction. As a result, a hot zone 17 is formed in the region of the melting and superheating section 14, in which temperatures of from 1500 ° C. to 2000 ° C. preferably prevail, but which must be adapted to the respective feed material.
  • the (inert) combustion gases supplied via the gas supply space 10 and the pyrolysis gases formed in the pyrolysis section 8 are sucked through this hot zone 17.
  • the supply of oxygen in the hot zone is controlled in such a way that combustion takes place in the absence of oxygen, which ultimately leads to a further increase in temperature and to the extensive coking of the residues of the feedstock.
  • the temperature m of the hot zone 17 is set so that slag-forming mineral constituents and metallic constituents are melted in this zone, a certain proportion of pollutants contained in the insert material (eg heavy metals) being dissolved in these melts.
  • the molten metal and the slag melt then drip down.
  • the largely coked residues also continue to decline.
  • a reduction section 20 is then formed below the melting and superheating section 14, in which the coked residues sink further down with a sufficient dwell time.
  • the reduction section 20 comprises a gas extraction space 21, via which excess gases are extracted. All extracted gases must therefore flow through both the hot zone 17 and a reduction zone 22 formed below it by the coked residues.
  • the gases are reduced with the help of the carbon present there. In particular, there is a conversion of carbon dioxide into carbon monoxide, the carbon still contained in the bed being used up in particular and thus being further gasified.
  • the gases are also cooled so that they can be extracted at a technically manageable temperature, preferably about 800 ° C. to 1000 ° C.
  • the extracted excess gases are fed to subsequent (not shown) cooling and / or cleaning stages and a suitable conveying device (compressor or blower).
  • a suitable conveying device compressor or blower.
  • a partial flow of approximately 10% to 20% can be supplied as the own gas to the above-mentioned burner 12 and / or the injection means, the cooling / cleaning for this partial flow being able to be kept to a minimum.
  • the gas extraction chamber 21 is in turn advantageously (but not necessarily) designed in a ring shape, with a connected conveyor device serving to extract the gases.
  • a fireproof-lined stove 25 connects below the gas extraction chamber 21. The metal melts and the slag melts are collected in the hearth 25.
  • lower injection means 26 are provided immediately above the melts and below the gas extraction chamber 21, which in turn have a plurality of oxygen lances 16 (possibly water-cooled) in the example shown.
  • the lower injection means can alternatively be designed and operated, as was explained above for the upper injection means 15.
  • a temperature for the melts is set which is sufficiently high to keep the melts liquid and, after appropriate collection, to be able to discharge them from the reactor via a tap 27. For example, temperatures of about 1500 ° C are appropriate.
  • the distribution of the total amount of oxygen / fuel gas supplied to the combustion chamber 11, the upper injection means 15 and the lower injection means 26 is to be optimized depending on the feed used and on the other process parameters, with the aim of largely utilizing the feed and minimizing the amount of pollutants in the residues.
  • an oxygen-air mixture or an oxygen-fuel gas mixture can be supplied instead of oxygen, for example for reasons of cost reduction.
  • temperature values given by way of example have to be adapted depending on the feed materials to be processed and the desired process speed.
  • the feedstocks may need to be mechanically comminuted before being introduced into the reactor to prevent clogging avoid.
  • certain additives may be required to stabilize the calorific value and to increase the yield of excess gas as well as to improve slag formation, basicity and the slag flow.
  • liquids are also to be converted in the reactor, these can advantageously be supplied via a liquid injection 30 which opens into the gas supply space 10 or is combined with other gas supply means.
  • Water, water vapor or other liquids intended for disposal can be introduced via the liquid injection 30, whereby in addition to the desired disposal, it is also possible to regulate the temperature of the inert combustion gases, the pyrolysis process and / or the composition and the temperature of the excess gases.
  • the dust feed 31 is preferably a metering tube which is guided centrally in the feed section 1 and in the preheating section 5 and which ends in the vicinity of the cone 9. The dusts are therefore transported directly in the vicinity of the shock-like heating of the feed materials, so that when they emerge from the metering tube they are immediately exposed to a high temperature effect, which causes combustion or gasification, without causing deflagrations or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

A reactor used for gasifying and/or melting feed materials comprises a feed section, a pyrolysis section, gas feed devices, and a melting and super heating section. A reactor comprises a feed section (1) having an opening (2) for the feed materials; a pyrolysis section (8) connected to the preceding section to expand the cross-section so that a debris cone (9) of the feed materials is formed; gas feed devices (10) which open out into the plane of the expanded cross-section in the pyrolysis section and feed hot gases to the debris cone; a melting and super heating section (14) connected to the pyrolysis section; upper feeding devices (15) for introducing an energy-rich medium into the melting and super heating section; a reaction section (20) connected to the melting and super heating section and containing gas suction devices (21) for removing excess gases; a hearth (25) with a tap (27) for collecting and deviating metal melts and slag melts; and lower feeding devices for introducing an energy-rich medium to prevent solidification of the melts. An independent claim is also included for a process for carrying out gasifying and/or melting of feed materials. Preferred Features: A pre-tempering section (5) is arranged between the feed section and the pyrolysis section and has double walls to create a hollow chamber (6) into which a heat transfer medium is fed.

Description

Reaktor und Verfahren zum Vergasen und/oder Schmelzen von Stoffen Reactor and process for gasifying and / or melting substances
Die vorliegende Erfindung betrifft einen Reaktor und ein Verfahren zum Vergasen und/oder Schmelzen von Stoffen. Insbesondere betrifft die Erfindung die stoffliche und/oder energetische Verwertung von beliebigen Abfällen, z.B. mit vorwiegend organischen Bestandteilen aber auch von Sonderabfällen. Der erfindungsgemäße Reaktor und das Verfahren eignen sich aber auch zum Vergasen und Schmelzen von Einsatzstoffen beliebiger Zusammensetzung oder auch zur Energiegewinnung durch Einsatz von organischen Stoffen.The present invention relates to a reactor and a method for gasifying and / or melting substances. In particular, the invention relates to the material and / or energy recovery of any waste, e.g. with predominantly organic components but also special waste. However, the reactor according to the invention and the method are also suitable for gasifying and melting feedstocks of any composition or for energy generation through the use of organic substances.
Seit geraumer Zeit werden Lösungen zur thermischen Entsorgung verschiedenartiger Abfälle und sonstiger Stoffe gesucht. Neben Verbrennungsverfahren sind verschiedene Vergasungsverfahren bekannt, die vor allem darauf abzielen, zu Ergebnissen mit einer geringeren Schadstoffbelastung der Umwelt zu gelan- gen und den Aufwand der Behandlung der Einsatzstoffe aber auch der im Prozeß entstehenden Gase zu reduzieren. Die bekannten Verfahren sind jedoch durch eine aufwendige und nur schwer zu beherrschende Technologie, sowie damit im Zusammenhang stehende hohe Entsorgungskosten für den zu behandelnden Einsatzstoff bzw. den Abfall gekennzeichnet.Solutions for the thermal disposal of various types of waste and other substances have been sought for some time. In addition to combustion processes, various gasification processes are known which primarily aim to achieve results with a lower pollutant load in the environment and to reduce the effort involved in treating the starting materials and also the gases produced in the process. However, the known methods are characterized by complex and difficult to control technology, and the associated high disposal costs for the feedstock or waste to be treated.
In der DE 43 17 145 Cl ist ein auf dem Prinzip der Entgasung basierendes Verfahren zu Entsorgung unterschiedlich zusammengesetzter Abfallmaterialien beschrieben. Gemäß dem angegebe- nen Verfahren sollen entstehende staubhaltige Gase als Kreislaufgas vollständig abgezogen werden und nachfolgend in der Schmelz- und Überhitzungszone mit Sauerstoff verbrannt werden. Diese Kreislaufgasführung und die weiterhin beschrie- bene Absaugung des Überschußgases zwischen der Kreislaufgas- absaugungsöffnung und der Schmelz- und Überhitzungszone führt jedoch, wie Versuche gezeigt haben, nicht zu dem angestrebten Ziel, ein mit nur wenigen Schadstoffen belastetes Überschuß- gas zu erhalten. Wenn der ebenfalls in dieser Druckschrift angegebene Kreislaufgas-Kupolofen zur Durchführung des Verfahrens verwendet wird, ist u.a. die Schadstoffbelastung des Überschußgases so groß, daß die dadurch notwendige Gaswirtschaft zur Reinigung des Überschußgases derart aufwen- dig wird, daß eine wirtschaftliche Entsorgung entsprechender Abfallmaterialien nicht mehr möglich ist.DE 43 17 145 Cl describes a method based on the principle of degassing for disposal of waste materials of different compositions. In accordance with the stated process, any dust-containing gases that are formed are to be completely removed as recycle gas and subsequently burned with oxygen in the melting and superheating zone. This recycle gas flow and the still described However, as experiments have shown, even suctioning off the excess gas between the cycle gas suction opening and the melting and superheating zone does not achieve the desired goal of obtaining an excess gas which is contaminated with only a few pollutants. If the cycle gas cupola furnace also specified in this publication is used to carry out the process, the pollutant load in the excess gas is so great, among other things, that the gas management required for cleaning the excess gas becomes so complex that it is no longer possible to dispose of appropriate waste materials economically is.
In der DE 196 40 497 C2 ist ein koksbeheizter Kreislaufgas- Kupolofen zur Verwertung von Abfallmaterialien beschrieben. Dieser Kreislaufgas-Kupolofen zeichnet sich dadurch aus, daß unterhalb des Begichtungstrichters ein zusätzlicher Gasabzug angeordnet ist. Die an dieser Stelle abgezogenen Pyrolysegase werden über eine Kreislaufgasführung im unteren Ofenabschnitt wieder zugeführt, um dort eine Verbrennung der Gase zu bewir- ken. Da die Abzugszone für die Überschußgase oberhalb der heißen Zone angeordnet ist, werden nicht nur Überschußgase sondern auch ein großer Anteil von Pyrolysegasen abgesaugt, wodurch in dem Gasgemisch u.a. schwierig zu entfernende Kohlenwasserstoffe enthalten sind. Damit wird die nachfol- gende Gaswirtschaft äußerst aufwendig und die Umweltbelastung nimmt zu.DE 196 40 497 C2 describes a coke-heated cycle gas cupola furnace for recycling waste materials. This cycle gas cupola is characterized in that an additional gas vent is arranged below the charging funnel. The pyrolysis gases drawn off at this point are fed back in via a recycle gas duct in the lower furnace section in order to cause the gases to be burnt there. Since the discharge zone for the excess gases is arranged above the hot zone, not only excess gases but also a large proportion of pyrolysis gases are sucked off, so that, among other things, difficult to remove hydrocarbons are included. This makes the subsequent gas industry extremely complex and increases the environmental impact.
Die DE 198 16 864 AI zeigt demgegenüber einen koksbeheizten Kreislaufgas-Kupolofen, bei welchem die Überschußgasabsaugung unterhalb der Schmelz- und Überhitzungszone angeordnet ist. Zwar kann damit die Qualität der Überschußgase erhöht werden, da die abgesaugten Gase beim Durchströmen der Überhitzungszone weitgehend reduziert werden, jedoch führt die räumliche Nähe der Überhitzungszone zu sehr heißen Überschußgasen, die nachfolgend aufwendig gekühlt werden müssen. Problematisch ist auch, daß es durch die gewählte Anordnung zu Ansinterun- gen von Schlacken und Stäuben in Folgebauteilen des nachge- schalteten Gasweges kommt. Andererseits sind die Temperaturen im Herdbereich unterhalb der Gasabsaugung nicht mehr ausreichend hoch, um die dort vorhandenen Metallschmelzen und Schlackeschmelzen unter verschiedenen Einsatzbedingungen flüssig zu halten. Der notwendige Abstich wird dadurch gestört oder vollständig unmöglich gemacht.DE 198 16 864 AI, on the other hand, shows a coke-heated cycle gas cupola furnace in which the excess gas extraction is arranged below the melting and superheating zone. Although the quality of the excess gases can be increased in this way, since the extracted gases are largely reduced as they flow through the overheating zone, the spatial ones result Proximity of the overheating zone to very hot excess gases, which subsequently have to be cooled in a complex manner. It is also problematic that the chosen arrangement leads to sintering of slag and dusts in subsequent components of the gas path connected downstream. On the other hand, the temperatures in the range below the gas extraction are no longer high enough to keep the metal melts and slag melts there under various conditions of use. The necessary racking is disturbed or made completely impossible.
Den aus dem oben genannten Stand der Technik bekannten Lösungen liegt immer das Grundprinzip der Kreislaufgasführung für einen Teilstrom der gebildeten Gase zugrunde, wobei die Gase im oberen Bereich des Ofens abgesaugt und im unteren Bereich wieder zugeführt werden. Die Fachwelt ging bislang davon aus, daß diese Gasführung auch zur Erwärmung der Schüttsäule unter Nutzung des Gegenstromprinzips notwendig ist. Das Kreislaufgasprinzip bring jedoch u.a. die folgenden Nachteile mit sich: Die im Schachtofen aufsteigenden Gase kühlen sich in der Schüttsäule ab, so daß Kondensationserscheinungen von Pyrolyseprodukten in den Gasabsaugbereichen, in den Kreislaufgasleitungen und in den zur Wiederzuführung der Kreislaufgase benötigten Gasstrahlverdichtern führen, wodurch die Funktion des Kreislaufgasofens gestört wird. Bei der Kreislaufgasabsaugung gemäß dem Stand der Technik werden zwangsläufig auch Stäube und kleinere Abfallpartikel abgesaugt, die mit den kondensierten Pyrolyseprodukten innerhalb der gesamten Kreislaufgasführung zu schwer entfernbaren Ablagerungen führen. Weiterhin kann die Schüttsäule durch das aufsteigende Kreislaufgas nur relativ langsam erwärmt werden, so daß es insbesondere bei der Vergasung von Abfällen mit höheren Anteilen von Kunststoffen zu Anklebungen und Anhaftungen der Abfallteile an der Wandung des Schachtes kommt, die letztlich zu vollständigen Verstopfungen des Ofens führen können.The solutions known from the abovementioned prior art are always based on the basic principle of recycle gas guidance for a partial flow of the gases formed, the gases being drawn off in the upper region of the furnace and fed back in in the lower region. Experts have previously assumed that this gas flow is also necessary to heat the column using the countercurrent principle. However, the recycle gas principle has the following disadvantages: The gases rising in the shaft furnace cool down in the pouring column, so that condensation of pyrolysis products in the gas extraction areas, in the recycle gas lines and in the gas jet compressors required to recycle the recycle gases leads to the function of the Recycle gas oven is disrupted. In the case of the cycle gas extraction according to the prior art, dusts and smaller waste particles are inevitably also extracted, which lead to deposits which are difficult to remove within the entire cycle gas duct with the condensed pyrolysis products. Furthermore, the bulk column can only be heated relatively slowly by the rising recycle gas, so that it becomes sticky and adherent, particularly in the gasification of waste with higher proportions of plastics There are pieces of waste on the wall of the shaft, which can ultimately lead to complete blockages of the furnace.
Eine Aufgabe der vorliegenden Erfindung besteht somit darin, einen verbesserten Reaktor und ein Verfahren zum Vergasen und Schmelzen von Einsatzstoffen bereitzustellen, welche die Nachteile des Standes der Technik vermeiden. Eine spezielle Aufgabe besteht darin, die einfache, preiswerte und umweltgerechte stoffliche und/oder energetische Verwertung von Abfäl- len zu ermöglichen. Insbesondere wird angestrebt, die Funktionssicherheit eines entsprechenden Reaktors zu erhöhen, indem die mit der Kreislaufgasführung einhergehenden Betriebsunsicherheiten weitgehend vermieden werden. Eine weitere Aufgabe der Erfindung besteht darin, die Schadstoff- belastung in dem abzusaugenden Überschußgas deutlich zu vermindern, damit der Aufwand in einer nachfolgenden Gasreinigung minimiert werden kann.It is therefore an object of the present invention to provide an improved reactor and a process for gasifying and melting feedstocks which avoid the disadvantages of the prior art. A special task is to enable simple, inexpensive and environmentally friendly material and / or energy recovery of waste. In particular, the aim is to increase the functional reliability of a corresponding reactor by largely avoiding the operational uncertainties associated with the recycle gas flow. Another object of the invention is to significantly reduce the pollution in the excess gas to be extracted, so that the effort in a subsequent gas cleaning can be minimized.
Diese und weitere Aufgaben werden durch den im Anspruch 1 angegebenen Reaktor gelöst. Erfindungsgemäß wird der im Stand der Technik seit längerer Zeit verfolgte Ansatz des Kreislaufgasverfahrens verlassen und statt dessen kommt als Reaktor ein Schachtofen zum Einsatz, der nach dem Gleichstromprinzip arbeitet. Durch vollständigen Verzicht auf die herkömmliche Kreislaufgasführung werden alle damit im Zusammenhang stehenden Probleme der Kondensation von Pyrolyseprodukten und der Entstehung unerwünschter Ablagerungen vollständig vermieden. Weiterhin erfolgt bereits im oberen Teil des Reaktors eine teilweise Konglomeration der Einsatzstoffe, aufgrund der schockartigen Erhitzung der Schüttsäule, so daß Anhaftungen an der Innenwand des Reaktors weitgehend ausgeschlossen sind. Die doppelte Eindüsung von Sauerstoff oder Brenngas (Gasgemischen) ermöglicht einerseits die Verbrennung der Pyrolysegase und gestattet andererseits im unteren Reaktorabschnitt die Aufrechterhaltung einer ausreichend hohen Temperatur, so daß die sich dort sammelnden Schmelzen flüssig gehalten werden. Zwischen den beiden Eindüsungsmitteln bildet sich ein Reduktionsabschnitt aus, durch welchen alle Gase vor der Absaugung strömen müssen und in dem sie folglich weitgehend reduziert werden.These and other objects are achieved by the reactor specified in claim 1. According to the invention, the approach of the cycle gas process which has been pursued in the prior art for a long time is abandoned and instead a shaft furnace is used as the reactor, which works according to the direct current principle. By completely dispensing with the conventional recycle gas flow, all the problems associated with the condensation of pyrolysis products and the formation of undesirable deposits are completely avoided. Furthermore, a partial conglomeration of the feedstocks already takes place in the upper part of the reactor, due to the shock-like heating of the pouring column, so that buildup on the inner wall of the reactor is largely excluded. The double injection of oxygen or fuel gas (gas mixtures) enables combustion on the one hand of the pyrolysis gases and, on the other hand, allows a sufficiently high temperature to be maintained in the lower reactor section so that the melts which collect there are kept liquid. A reduction section is formed between the two injection means, through which all gases have to flow before suction and in which they are consequently largely reduced.
Bei einer Ausführungsform, die sich insbesondere zur Verga- sung von Abfällen eignet, fügt sich an den Zuführabschnitt ein Vortemperierungsabschnitt an, in welchem die Abfälle beispielsweise bei Temperaturen um 100 °C vorgetrocknet werden. Bei abgewandelten Ausführungsformen kann in diesem Abschnitt unter Umständen auch eine Kühlung der Einsatzstoffe erfolgen, wenn dies für den Gesamtprozeß nützlich ist.In one embodiment, which is particularly suitable for the gasification of waste, a preheating section is added to the feed section, in which the waste is pre-dried, for example, at temperatures around 100.degree. In modified embodiments, the feedstocks can also be cooled in this section under certain circumstances if this is useful for the overall process.
Eine vorteilhafte Ausführungsform des Reaktors zeichnet sich dadurch aus, daß die Gesamtlänge von Zuführabschnitt und Vortemperierungsabschnitt mehrfach größer als der Durchmesser des Zuführabschnitts ist. Durch diese Gestaltung wirkt die Schüttsäule im Zuführ- und Vortemperierungsabschnitt als ein nach oben abschließender Pfropfen, der die Ansaugung zu großer Anteile von Umgebungsluft in den Reaktor verhindert.An advantageous embodiment of the reactor is characterized in that the total length of the feed section and pre-tempering section is several times greater than the diameter of the feed section. As a result of this design, the pouring column in the feed and pre-tempering section acts as a plug which closes at the top and prevents large amounts of ambient air from being drawn into the reactor.
Bei einer abgewandelten Ausführungsform kann der Reaktor an seinem oberen Ende durch eine Schleuse, ein Doppelklappensystem oder eine ähnliche Einrichtung abgeschlossen werden. Damit wird der unkontrollierte Eintritt von Umgebungsluft und der Austritt von Gasen aus der Schüttung noch besser vermie- den.In a modified embodiment, the reactor can be closed at its upper end by a lock, a double flap system or a similar device. This prevents the uncontrolled entry of ambient air and the escape of gases from the bed even better.
Zweckmäßigerweise ist der Reaktor im wesentlichen zylindrisch aufgebaut und der Gaszuführraum und der Gasabsaugraum sind - D ~The reactor is expediently essentially cylindrical and the gas supply space and the gas extraction space are - D ~
ringförmig ausgestaltet, so daß die Gaszuführung und die Gasabsaugung jeweils am gesamten Umfang der Schüttsäule erfolgen. Diese Ausführungsform eignet sich speziell zur Verwertung von vorwiegend organischen Einsatzstoffen. Andere Ausführungsformen, die z.B. für andere Einsatzstoffe zweckmäßiger sind, können nicht-zylindrische Grundformen und anders positionierte und geformte Mittel zur Gasabsaugung und -Zuführung besitzen.designed in a ring shape so that the gas supply and the gas extraction take place on the entire circumference of the pouring column. This embodiment is particularly suitable for recycling predominantly organic feedstocks. Other embodiments, e.g. are more expedient for other feedstocks, can have non-cylindrical basic shapes and differently positioned and shaped means for gas extraction and supply.
Es ist besonders vorteilhaft, wenn auch der Pyrolyseabschnitt des Reaktors doppelwandig ausgebildet ist und im Wandungshohlraum ein Wärmeübertragungsmedium geführt ist. Einerseits kann dadurch die Wandung gekühlt werden, wodurch die Materialbeanspruchung verringert wird, andererseits kann je nach eingesetztem Einsatzstoff und dem sich daraus ergebenden Wärmebedarf der Schüttsäule bei Bedarf zusätzliche Wärme zugeführt oder von dieser Wärme abgeleitet werden.It is particularly advantageous if the pyrolysis section of the reactor is also double-walled and a heat transfer medium is guided in the wall cavity. On the one hand, the wall can be cooled thereby, which reduces the material stress, on the other hand, depending on the feedstock used and the resulting heat requirement, additional heat can be supplied to or derived from the bulkhead as required.
Die o.g. Aufgaben der Erfindung werden auch durch das im Anspruch 12 angegebene Verfahren zum Vergasen und/oder Schmelzen von Einsatzstoffen gelöst, welches sich u.a. vorteilhaft zur stofflichen und/oder energetischen Verwertung von Abfällen und sonstigen Einsatzstoffen eignet.The above Objects of the invention are also achieved by the process for gasifying and / or melting feedstocks, which is u.a. advantageous for material and / or energy recovery of waste and other input materials.
Die erfindungswesentlichen Verfahrensschritte können vorteilhaft weitergebildet werden, indem eine Vortrocknung des Einsatzstoffs durch Erwärmung der Schüttsäule oberhalb der Ebene, in welcher die schockartige Erhitzung erfolgt, auf etwa 100°C vorgenommen wird. Dabei werden Wasseranteile des Einsatzstoffs weitgehend ausgedampft, wodurch auch die gewünschte selbsttätige Abwärtsbewegung der Einsatzmasse verbessert wird. Bei einer abgewandelten Verfahrensvariante erfolgt keine Vortrocknung der Einsatzstoffe oder auch eine Kühlung der Einsatzstoffe, wobei letzteres zweckdienlich sein kann, um bei heißen Ausgangsmaterialien ein Anhaften an der Wandung des Zuführabschnitts zu vermeiden.The process steps essential to the invention can advantageously be further developed by pre-drying the feed material by heating the pouring column above the level in which the shock-like heating takes place to about 100 ° C. In the process, water components of the feedstock are largely evaporated, which also improves the desired automatic downward movement of the feedstock. In a modified process variant, there is no predrying of the feedstocks or even one Cooling of the starting materials, the latter being useful in order to avoid sticking to the wall of the feed section in the case of hot starting materials.
Es ist weiterhin besonders vorteilhaft, wenn der Unterdruck zur Absaugung der Überschußgase regelbar ist, wobei die Absaugung so erfolgen soll, daß einerseits kein Gas nach oben aus dem Reaktor entweicht und andererseits nur minimale Mengen zusätzlicher Umgebungsluft durch die Schüttsäule ange- saugt werden. Die Minimierung der Menge der im Reaktor vorhandenen Falschluft hat zum Ziel, den Anteil der Stickoxyde im Überschußgas zu reduzieren und auch die Gesamtgasmenge klein zu halten, um die nachfolgende Gaswirtschaft einfach gestalten zu können.It is also particularly advantageous if the negative pressure for extracting the excess gases can be regulated, the extraction being carried out in such a way that on the one hand no gas escapes from the top of the reactor and on the other hand only minimal amounts of additional ambient air are sucked in through the bulk column. The aim of minimizing the amount of false air present in the reactor is to reduce the proportion of nitrogen oxides in the excess gas and also to keep the total amount of gas small in order to make the subsequent gas economy simple.
Weitere Vorteilen, Einzelheiten und Weiterbildungen ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen der Erfindung, unter Bezugnahme auf die beigefügte Zeichnung.Further advantages, details and further developments result from the following description of preferred embodiments of the invention, with reference to the attached drawing.
Die einzige Figur zeigt eine vereinfachte Schnittansicht eines erfindungsgemäßen Reaktors.The single figure shows a simplified sectional view of a reactor according to the invention.
Nachfolgend wird anhand der Figur 1 eine bevorzugte Ausfüh- rungsform eines Reaktors beschrieben. Im Zusammenhang mit der Erläuterung der Einzelheiten des Reaktors werden auch die Verfahrensschritte angegeben, die bei der Behandlung von Abfällen mit organischen Bestandteilen als Einsatzstoffe in diesem Reaktor ablaufen. Wie aus den angefügten Patentansprü- chen erkennbar ist, ist die Durchführung des erfindungsgemäßen Verfahrens jedoch nicht zwingend an den erläuterten Reaktor gebunden, sondern kann ggf. auch unter Einsatz veränderter Anlagen ausgeführt werden. Bei der Verwendung anderer Einsatzstoffe könne Abwandlungen des Reaktors und/oder des Verfahrens zweckdienlich sind (z.B. flexible Anordnung und Gestaltung der technischen Ausfuhrung der Gaszu- und -abfuhrung, der Erwärmung oder Kühlung des Reaktormantels o.a.). Generell können auch verschiedene Einsatzstoffe kombiniert werden, beispielsweise durch Zusatz von Einsatzstoffen mit höherem Energiewert (z.B. organische Abfalle, belastetes Altholz o.dgl.) beim Vergasen/Schmelzen von nicht-organischen Einsatzstoffen.A preferred embodiment of a reactor is described below with reference to FIG. 1. In connection with the explanation of the details of the reactor, the process steps that occur in the treatment of waste with organic constituents as starting materials in this reactor are also given. However, as can be seen from the attached patent claims, the implementation of the method according to the invention is not necessarily linked to the reactor explained, but can also be carried out using modified systems, if necessary. When using others Input materials may be useful modifications of the reactor and / or the process (eg flexible arrangement and design of the technical design of the gas supply and discharge, the heating or cooling of the reactor jacket or the like). In general, different feedstocks can also be combined, for example by adding feedstocks with a higher energy value (e.g. organic waste, contaminated waste wood or the like) when gasifying / melting non-organic feedstocks.
Der in der Figur dargestellte Reaktor besitzt an seinem oberen Ende einen Zufuhrabschnitt 1 mit wenigstens einer Zufuhroffnung 2, über welche der stofflich und/oder energetisch zu verwertende Einsatzstoff zugeführt wird. Vorzugs- weise überwiegt bei diesem Einsatzstoff der Anteil der organischen Bestandteile, so daß sich der Reaktor und das beschriebene Verfahren vor allem zur Behandlung von üblichem Hausmull und hausmullahnlichen Gewerbeabfallen eignet. Sofern bei bestimmten EinsatzstoffZusammensetzungen die brennbaren Bestandteile nicht ausreichend hoch s nd, um die Verbren- nungs- und Vergasungsprozesse durchzufuhren, können dem Einsatzstoff brennbare Zuschlagsstoffe bzw. Energieträger zugesetzt werden. Dabei ist es möglich, in herkömmlicher Weise eine bestimmte Menge Koks zuzusetzen oder den Gesa t- brennwert durch Zusatz von Holz zu erhohen. Unter Umstanden kann es auch nützlich sein, andere Zuschlagsstoffe hinzuzufügen, um beispielsweise den sich einstellenden pH-Wert zu beeinflussen. Derartige Maßnahmen sind dem Fachmann 3edoch bekannt, so daß auf eine detaillierte Darstellung an dieser Stelle verzichtet wird.The reactor shown in the figure has at its upper end a feed section 1 with at least one feed opening 2, through which the feedstock to be used in terms of material and / or energy is fed. Preferably, the proportion of organic constituents predominates with this feed material, so that the reactor and the process described are particularly suitable for the treatment of normal household garbage and commercial garbage. If the combustible constituents of certain feedstock compositions are not high enough to carry out the combustion and gasification processes, combustible additives or energy sources can be added to the feedstock. It is possible to add a certain amount of coke in a conventional manner or to increase the total calorific value by adding wood. Under certain circumstances, it can also be useful to add other additives, for example to influence the pH that is set. Such measures are known to the person skilled in the art 3, however, so that a detailed description is not given here.
über eine geeignete Fordereinrichtung 3 wird der Einsatzstoff und ggf. die Zuschlagsstoffe über die Zufuhroffnung 2 in den Reaktor eingebracht. Damit bildet sich eine Schüttsäule 4 aus. Mit nicht gesondert bezeichneten Füllstandsmeßgeräten wird die Höhe der Schüttsäule 4 überwacht. Diese Schütthöhe ist zwischen einem minimalen und einem maximalen Pegel zu halten. Der minimale Pegel wird so gewählt, daß die Schüttsäule 4 im oberen Abschnitt des Reaktors als Sperrschicht wirkt, die das Eindringen größerer Mengen von Umgebungsluft in den Reaktor verhindert.The feedstock and possibly the aggregates are fed into the feed opening 2 via a suitable delivery device 3 Reactor introduced. A pillar 4 is thus formed. The height of the pouring column 4 is monitored using fill level measuring devices which are not specifically designated. This bed height is to be kept between a minimum and a maximum level. The minimum level is chosen so that the pouring column 4 acts in the upper section of the reactor as a barrier layer, which prevents larger amounts of ambient air from entering the reactor.
An den Zuführabschnitt 1 schließt sich unten ein Vortemperierungsabschnitt 5 an, der im gezeigten Beispiel der Vortrocknung der Einsatzstoffe dient. Der Zuführabschnitt und der Vortemperierungsabschnitt sind vorteilhaft zylindrisch oder konisch mit leichter Querschnittszunahme nach unten gestal- tet. Der Vortemperierungsabschnitt 5 besitzt eine doppelte Wandung, wobei ein Wandungshohlraum 6 ausgebildet ist, in welchem ein Wärmeübertragungsmedium geführt wird. Mit Hilfe des Wärmeübertragungsmediums kann der Schüttsäule im Bereich des doppelwandig ausgelegten Vortrocknungsabschnitts 5 Wärme zugeführt werden, so daß der Einsatzstoff vorgewärmt bzw. vorgetrocknet wird. Ggf. kann der Wandungshohlraum entfallen und die Wärmezufuhr beispielsweise durch Wärmeleitung unmittelbar von den heißeren Zonen des Reaktors erfolgen. Die Wärmezufuhr wird so dimensioniert, daß ein Anhaften bestimm- ter Einsatzstoffanteile an der Wandung weitgehend ausgeschlossen ist. Außerdem können durch die Vortrocknung Wasserbestandteile ausgetragen werden, so daß diese den weiteren Vergasungsprozeß nicht zusätzlich belasten. Im Vortemperierungsabschnitt 5 kann die Schüttsäule 4 etwa auf 100°C tempe- riert werden.At the bottom of the feed section 1 there is a pre-tempering section 5 which, in the example shown, serves to pre-dry the starting materials. The feed section and the pre-tempering section are advantageously cylindrical or conical with a slight increase in cross-section downwards. The pre-tempering section 5 has a double wall, wherein a wall cavity 6 is formed, in which a heat transfer medium is guided. With the help of the heat transfer medium, heat can be supplied to the bulkhead in the region of the double-walled predrying section 5, so that the feed material is preheated or predried. Possibly. the wall cavity can be omitted and the heat can be supplied directly from the hotter zones of the reactor, for example by conduction. The heat supply is dimensioned in such a way that the adherence of certain ingredients to the wall is largely excluded. In addition, water components can be removed by the pre-drying, so that they do not additionally burden the further gasification process. In the pre-tempering section 5, the pouring column 4 can be tempered to approximately 100 ° C.
Der Vortemperierungsabschnitt kann ggf. gänzlich entfallen, wenn eine Vortrocknung aufgrund der Zusammensetzung des Einsatzstoffs nicht erforderlich ist, oder der Vortemperierungsabschnitt wird in besonderen Fällen zur Kühlung der Einsatzstoffe verwendet.The pre-tempering section may be omitted entirely if predrying is due to the composition of the Feed material is not required, or the pre-tempering section is used in special cases to cool the feed materials.
Unterhalb des Vortemperierungsabschnitt 5 schließt sich ein Pyrolyseabschnitt 8 an, wobei es beim Übergang zwischen Vortemperierungsabschnitt (bzw. dem Zuführabschnitt, wenn der Vortemperierungsabschnitt entfällt) und Pyrolyseabschnitt zu einer sprunghaften Querschnittserweiterung kommt. Vorzugs- weise vergrößert sich der freie Schachtquerschnitt in diesem Übergangsbereich mindestens um das Doppelte, wodurch einerseits die Sinkgeschwindigkeit der Einsatzstoffe reduziert wird und andererseits ein Schüttkegel 9 ausgebildet wird. Der Schüttkegel 9 wird zentral von der Schüttsäule 4 im Vortrock- nungsabschnitt gespeist. An den Randbereichen flacht der Schüttkegel ab, so daß dort ein freier Raum entsteht. In diesem oberen Randbereich des Pyrolyseabschnitts 8 befinden sich Gaszuführmittel 10, die im dargestellten Beispiel als ein ringförmiger Gaszuführraum 10 ausgestaltet ist, der etwa in der Ebene der Querschnittserweiterung in den Pyrolyseabschnitt 8 geöffnet ist. Der Zweck des Gaszuführraums 10 besteht darin, heiße Gase an den Schüttkegel 9 heranzuführen. Die Gaszuführmittel können auch als Düsen, Wandungsöffnungen oder andere Vorrichtungen gestaltet sein, die die Zufuhr heißer Gase an die Schüttsäule ermöglichen. Dazu mündet im gezeigten Beispiel zumindest eine Brennkammer 11, die zumindest mit einem Brenner 12 bestückt ist, in den Gaszuführraum 10. Der Brenner 12 erzeugt das benötigte heiße Gas, welches vorzugsweise tangential über die Brennkammern und den Gaszu- führraum an den Schuttkegel 9 herangeführt wird. Bei abgewandelten Ausführungsformen können mehrere Brennkammern oder mehrere Brenner eingesetzt werden, wenn dies für eine möglichst gleichmäßige Erwärmung des Schüttkegels wünschenswert ist.A pyrolysis section 8 adjoins below the pre-tempering section 5, the cross-section widening abruptly at the transition between the pre-tempering section (or the feed section if the pre-tempering section is omitted) and the pyrolysis section. The free shaft cross section in this transition region is preferably increased by at least twice, which on the one hand reduces the sinking speed of the feed materials and on the other hand forms a pouring cone 9. The pouring cone 9 is fed centrally from the pouring column 4 in the predrying section. At the edge areas the cone flattens out, so that a free space is created there. In this upper edge region of the pyrolysis section 8 there are gas supply means 10, which in the example shown is designed as an annular gas supply space 10 which is opened approximately in the plane of the cross-sectional expansion in the pyrolysis section 8. The purpose of the gas supply space 10 is to bring hot gases to the pouring cone 9. The gas supply means can also be designed as nozzles, wall openings or other devices which enable the supply of hot gases to the pouring column. For this purpose, in the example shown, at least one combustion chamber 11, which is equipped with at least one burner 12, opens into the gas supply space 10. The burner 12 generates the required hot gas, which is preferably brought tangentially to the debris cone 9 via the combustion chambers and the gas supply space , In modified embodiments, multiple combustion chambers or multiple burners can be used if this is for one heating the cone as evenly as possible is desirable.
Die Verbrennung im Brenner 12 erfolgt zweckmäßig unter Sauer- Stoffmangel, so daß durch eine nahezu stöchiometrische Verbrennung ein inertes Verbrennungsgas mit Temperaturen von etwa 1000 °C bereitgestellt wird. Zumindest im Anfahrbetrieb wird der Brenner Fremdbrennstoffe benötigen, die nicht unmittelbar aus dem Reaktor gewonnen werden. Beispielsweise kommen Erdgas, Öl, das von einem vorangegangenen Vergasungsverfahren erzeugte und zwischengespeicherte Überschußgas, Gasgemisch, Flüssigkeits-Gasgemisch, Staub-Gasgemisch oder andere unter energetischen Aspekten geeignete Medien zum Einsatz. Sobald der Reaktor seinen im weiteren beschriebenen Betriebszustand eingenommen hat, kann der Brenner 12 auch mit einem ggf. vorher gereinigten Überschußgas betrieben werden. Durch die Zufuhr des Verbrennungsgases, welches bei geeigneter Regelung weitgehend aus Kohlendioxid und Wasserdampf besteht, wird der im Schüttkegelbereich vorhandene Einsatzstoff schockartig erhitzt. Die sehr schnelle Erwärmung des Materials auf Temperaturen zwischen 800°C und 1000°C bewirkt ein sehr schnelles Trocknen dieses Materials, wodurch ein Verkleben und Anhaften an der Wandung vermieden wird. Vielmehr kommt es zumindest teilweise zu einer Konglomeration der Einsatzstoffe. Außerdem wird bereits in diesem oberen Abschnitt des Reaktors das Austreiben von Pyrolyseprodukten in Gang gesetzt. Da das zugeführte Gas weitgehend inert ist, werden diese Pyrolyseprodukte nur in geringem Maße einer Verbrennung zugeführt, soweit Luft durch die oberhalb des Schüttkegels aufgetürmte Schüttsäule 4 eingesaugt werden kann bzw. vom Einsatzmaterial mitgeführt wird. Durch die schnelle und starke Erhitzung der Einsatzstoffe werden außerdem feine Stäube und kleinere Partikel schnell vergast oder verbrannt, so daß die bisher im Stand der Technik entstehenden Probleme bei der Staubbehandlung vermieden werden. Vielmehr können den Einsatzstoffen in bestimmen Relationen jetzt Staube und Femanteile gezielt zugesetzt werden.The combustion in burner 12 is expediently carried out with a lack of oxygen, so that an inert combustion gas with temperatures of approximately 1000 ° C. is provided by an almost stoichiometric combustion. At least during start-up, the burner will need foreign fuels that are not obtained directly from the reactor. For example, natural gas, oil, the excess gas generated and temporarily stored by a previous gasification process, gas mixture, liquid-gas mixture, dust-gas mixture or other media that are suitable from an energy point of view are used. As soon as the reactor has assumed its operating state described in the following, the burner 12 can also be operated with a possibly previously cleaned excess gas. By supplying the combustion gas, which with suitable control largely consists of carbon dioxide and water vapor, the feed material present in the cone area is heated in a shock-like manner. The very rapid heating of the material to temperatures between 800 ° C and 1000 ° C causes this material to dry very quickly, avoiding sticking and sticking to the wall. Rather, there is at least some conglomeration of the starting materials. In addition, the expulsion of pyrolysis products is already started in this upper section of the reactor. Since the gas supplied is largely inert, these pyrolysis products are only incinerated to a small extent, insofar as air can be sucked in through the pouring column 4 piled above the pouring cone or carried along by the feed material. Due to the rapid and strong heating of the input materials, fine dusts and smaller particles are also quickly gasified or burned, so that the previously in Problems arising in the prior art in dust treatment can be avoided. Rather, dust and fractions can now be added to the feedstocks in certain ratios.
Das Einsatzmaterial sinkt dann im Pyrolyseabschnitt 8 weiter nach unten wobei die Pyrolyse fortgesetzt wird, u.a. auch bei den im Zentrum geführten Materialien, die durch Wärmeübertragung ebenfalls erwärmt werden. Die Wandung des Pyrolyseab- Schnitts ist vorzugsweise warmeisoliert und/oder doppelwandig ausgebildet, so daß bei Bedarf in dem ausgebildeten Wandungshohlraum ebenfalls ein Warmeubertragungsmedium gefuhrt werden kann. Die Warmeisolation bzw. die zusätzliche Wärmezufuhr mit Hilfe des Warmeubertragungsmediums werden so dimensioniert, daß die Einsatzstoffe im unteren Bereich des Pyrolyseabschnitts 8 eine Temperatur von vorzugsweise über 500°C aufweisen. Die an diese Stelle gewünschte Temperatur kann in Abhängigkeit von den speziellen Einsatzmaterialien gezielt geregelt werden.The feed material then drops further down in the pyrolysis section 8, the pyrolysis being continued, among other things. also with the materials in the center, which are also heated by heat transfer. The wall of the pyrolysis section is preferably heat-insulated and / or double-walled, so that, if necessary, a heat transfer medium can also be guided in the wall cavity formed. The heat insulation or the additional supply of heat with the aid of the heat transfer medium are dimensioned such that the starting materials have a temperature of preferably above 500 ° C. in the lower region of the pyrolysis section 8. The temperature required at this point can be specifically controlled depending on the special feed materials.
Unterhalb des Pyrolyseabschnitts 8 schließt sich ein Schmelz- und Uberhitzungsabschnitt 14 an. Dieser weist eine Quer- schnittseinengung auf, aufgrund derer sich die Sinkgeschwindigkeit des Einsatzstoffmateπals verändert. Im Beispiel der Behandlung vorwiegend organischer Abfalle erfolgt eine Quer- schnittseinengung um mindestens 10 %, die beispielsweise durch konische Einzüge des entsprechenden Schachtteiles in einem Winkel von etwa 60° zur Horizontalen erzeugt wird. Außerdem befinden sich im Schmelz- und Uberhitzungsabschnitt 14 obere Eindusungsmittel 15, die im dargestellten Beispiel durch mehrere am Umfang verteilte Sauerstofflanzen 16 gebildet sind. Um die Sauerstofflanzen 16 vor einer Uberhitzung zu schützen, werden diese beispielsweise wassergekühlt. Bei anderen Ausfuhrungen kommen Düsen, Brenner oder dergleichen als obere Eindusungsmittel zum Einsatz, über welche gesteuert verschiedene Brenngase oder Gaszusammensetzungen zugeführt werden können, mit dem Ziel, die Temperatur in der Schmelz- und überhitzungszone auf einen gewünschten Wert einzustellen. Sofern die Zufuhr von Sauerstoff dafür nicht ausreichend ist (wenn beispielsweise kurzfristig keine Einsatzstoffe mit ausreichend hohem Energiewert an dieser Position zur Verfugung stehen) , können auch Fremdbrenngase oder aus dem Reaktor gewonnene Uberschußgase über die Eindusungsmittel zugeführt werden. Im speziellen Beispiel erfolgt mit Hilfe der oberen Eindusungsmitell 15 die gezielte und dosierte Zugabe von Sauerstoff unmittelbar unterhalb der Ebene der Querschnittseinengung. Dadurch bildet sich im Bereich des Schmelz- und Uberhitzungsabschnitts 14 eine heiße Zone 17 aus, in welcher vorzugsweise Temperaturen von 1500°C bis 2000°C herrschen, die aber auf das jeweilige Einsatzmaterial abzustimmen sind.A melting and superheating section 14 follows below the pyrolysis section 8. This has a cross-sectional constriction on the basis of which the sinking rate of the feed material changes. In the example of the treatment of predominantly organic waste, the cross-section is narrowed by at least 10%, which is generated, for example, by conically drawing in the corresponding shaft part at an angle of approximately 60 ° to the horizontal. In addition, in the melting and superheating section 14 there are upper injection means 15, which in the example shown are formed by a plurality of oxygen lances 16 distributed around the circumference. In order to protect the oxygen lances 16 from overheating, they are water-cooled, for example. at other designs, nozzles, burners or the like are used as the upper injection means, via which various fuel gases or gas compositions can be supplied in a controlled manner, with the aim of setting the temperature in the melting and superheating zone to a desired value. If the supply of oxygen is not sufficient for this (if, for example, no feedstocks with a sufficiently high energy value are available at this position for a short time), foreign combustion gases or excess gases obtained from the reactor can also be supplied via the injection means. In the specific example, with the aid of the upper injection means 15, the targeted and metered addition of oxygen takes place immediately below the level of the cross-sectional constriction. As a result, a hot zone 17 is formed in the region of the melting and superheating section 14, in which temperatures of from 1500 ° C. to 2000 ° C. preferably prevail, but which must be adapted to the respective feed material.
Die über den Gaszufuhrraum 10 zugefuhrten (inerten) Verbren- nungsgase und die im Pyrolyseabschnitt 8 ausgebildeten Pyrolysegase werden durch diese heiße Zone 17 hindurchgesaugt. Die Sauerstoffzufuhrung in der heißen Zone wird so gesteuert, daß eine Verbrennung unter Sauerstoffmangel erfolgt, die schließlich zu einer weiteren Temperaturerhöhung und zur weitgehenden Verkokung der Reststoffe des Einsatzmaterials fuhren. Die Temperatur m der heißen Zone 17 wird so eingestellt, daß schlackebildende mineralische Bestandteile und metallische Bestandteile m dieser Zone aufgeschmolzen werden, wobei ein bestimmter Anteil von im Einsatzmateπal enthaltenen Schadstoffen (z.B. Schwermetalle) in diesen Schmelzen gelost wird. Die Metallschmelze und die Schlackenschmelze tropfen dann nach unten. Die möglichst weitgehend verkokten Reststoffe sinken ebenfalls weiter abwärts. Unterhalb des Schmelz- und Uberhitzungsabschnitts 14 ist dann ein Reduktionsabschnitt 20 ausgebildet, in welchem die verkokten Reststoffe mit ausreichender Verweilzeit weiter abwärts sinken. Der Reduktionsabschnitt 20 umfaßt einen Gasabsaugraum 21, über welchen Überschußgase abgesaugt werden. Alle abgesaugten Gase müssen somit sowohl die heiße Zone 17 als auch eine unter dieser durch die verkokten Reststoffe ausgebildete Reduktionszone 22 durchströmen. In der Reduktionszone 22 werden die Gase mit Hilfe des dort vorhandenen Kohlenstoffs reduziert. Insbesondere kommt es zur Umwandlung von Kohlendioxid in Kohlenmonoxid, wobei vor allem der in der Schüttung noch enthaltene Kohlenstoff aufgebraucht und somit weiter vergast wird. Beim Durchlaufen der Reduk- tionszone 22 werden die Gase außerdem abgekühlt, so daß sie mit einer technisch beherrschbaren Temperatur, vorzugsweise etwa 800°C bis 1000°C, abgesaugt werden können. Die abgesaugten Überschußgase werden nachfolgenden (nicht gezeigten) Kühl- und/oder Reinigungsstufen und einer geeigneten Fördereinrichtung (Verdichter oder Gebläse) zugeführt. Bei der Vergasung von Abfall mit vorwiegend organischen Bestandteilen stehen danach beispielsweise etwa 80% bis 90% der Überschußgase als Brenngas für eine stoffliche und/oder energetische Nutzung zur Verfügung. Dabei kann ein Teilstrom von etwa 10% bis 20% als Eigengas dem o.g. Brenner 12 und/oder den Eindüsungsmitteln zugeführt werden, wobei die Kühlung/Reinigung für diesen Teilstrom auf ein Mindestmaß beschränkt werden kann. Der Gasabsaugraum 21 ist wiederum vorteilhaft (aber nicht zwingend) ringförmig ausgebildet, wobei eine angeschlossene Fördereinrichtung der Absaugung der Gase dient. Unterhalb des Gasabsaugraumes 21 schließt sich ein feuerfest ausgekleideter Herd 25 an. Im Herd 25 werden die Metallschmelzen und die Schlackeschmelzen gesammelt. Damit diese Schmelzen flüssig bleiben, sind unmittelbar oberhalb der Schmelzen und unterhalb des Gasabsaugraumes 21 untere Eindusungsmittel 26 vorgesehen, die im dargestellten Beispiel wiederum mehrere Sauerstofflanzen 16 (ggf. wassergekühlt) aufweisen. Die unteren Eindusungsmittel können alternativ gestaltet und betrieben sein, wie dies oben für die oberen Eindusungsmittel 15 erläutert wurde. Über die Eindüsung einer geeigneten Menge von Sauerstoff, Gas, Brenngas o.ö. wird eine Temperatur für die Schmelzen eingestellt, die ausreichend hoch ist, um die Schmelzen flüssig zu halten und nach entsprechender Sammlung über einen Abstich 27 aus dem Reaktor ausgeleiten zu können. Beispielsweise sind Temperaturen von etwa 1500 °C zweckmäßig. Die Aufteilung der Gesamtmenge des zugeführten Sauerstoffs/Brenngases auf die Brennkammer 11, die oberen Eindusungsmittel 15 und die unteren Eindusungsmittel 26 ist in Abhängigkeit vom verwendeten Einsatzmaterial und von den übrigen Prozeßparametern zu optimieren, mit dem Ziel der weitgehenden Verwertung des Einsatzmaterials und der Minimierung des Schadstoffanteils in den Reststoffen.The (inert) combustion gases supplied via the gas supply space 10 and the pyrolysis gases formed in the pyrolysis section 8 are sucked through this hot zone 17. The supply of oxygen in the hot zone is controlled in such a way that combustion takes place in the absence of oxygen, which ultimately leads to a further increase in temperature and to the extensive coking of the residues of the feedstock. The temperature m of the hot zone 17 is set so that slag-forming mineral constituents and metallic constituents are melted in this zone, a certain proportion of pollutants contained in the insert material (eg heavy metals) being dissolved in these melts. The molten metal and the slag melt then drip down. The largely coked residues also continue to decline. A reduction section 20 is then formed below the melting and superheating section 14, in which the coked residues sink further down with a sufficient dwell time. The reduction section 20 comprises a gas extraction space 21, via which excess gases are extracted. All extracted gases must therefore flow through both the hot zone 17 and a reduction zone 22 formed below it by the coked residues. In the reduction zone 22, the gases are reduced with the help of the carbon present there. In particular, there is a conversion of carbon dioxide into carbon monoxide, the carbon still contained in the bed being used up in particular and thus being further gasified. When passing through the reduction zone 22, the gases are also cooled so that they can be extracted at a technically manageable temperature, preferably about 800 ° C. to 1000 ° C. The extracted excess gases are fed to subsequent (not shown) cooling and / or cleaning stages and a suitable conveying device (compressor or blower). When gasifying waste with predominantly organic constituents, about 80% to 90% of the excess gases are then available as fuel gas for material and / or energy use. A partial flow of approximately 10% to 20% can be supplied as the own gas to the above-mentioned burner 12 and / or the injection means, the cooling / cleaning for this partial flow being able to be kept to a minimum. The gas extraction chamber 21 is in turn advantageously (but not necessarily) designed in a ring shape, with a connected conveyor device serving to extract the gases. A fireproof-lined stove 25 connects below the gas extraction chamber 21. The metal melts and the slag melts are collected in the hearth 25. So that these melts remain liquid, lower injection means 26 are provided immediately above the melts and below the gas extraction chamber 21, which in turn have a plurality of oxygen lances 16 (possibly water-cooled) in the example shown. The lower injection means can alternatively be designed and operated, as was explained above for the upper injection means 15. By injecting a suitable amount of oxygen, gas, fuel gas or similar a temperature for the melts is set which is sufficiently high to keep the melts liquid and, after appropriate collection, to be able to discharge them from the reactor via a tap 27. For example, temperatures of about 1500 ° C are appropriate. The distribution of the total amount of oxygen / fuel gas supplied to the combustion chamber 11, the upper injection means 15 and the lower injection means 26 is to be optimized depending on the feed used and on the other process parameters, with the aim of largely utilizing the feed and minimizing the amount of pollutants in the residues.
Für den Fachmann wird verständlich sein, daß beispielsweise aus Gründen der Kostenreduzierung anstelle von Sauerstoff auch ein Sauerstoff-Luft-Gemisch bzw. ein Sauerstoff-Brenngas-Gemisch zugeführt werden kann. Ebenso ist offensichtlich, daß die beispielhaft angegebenen Temperaturwerte in Abhängigkeit von den zu verarbeitenden Einsatzmaterialien und der gewünschten Prozeßgeschwindigkeit anzupassen sind. Es ist auch verständlich, daß die Einsatzmaterialien unter Umständen einer mechanischen Zerkleinerung zu unterziehen sind, bevor sie in den Reaktor eingebracht werden, um ein Verstopfen zu vermeiden. In Abhängigkeit von den Einsatzstoffen und von den gewünschten Endprodukten können bestimmte Zuschlagsstoffe zur Stabilisierung des Heizwertes und zur Erhöhung der Ausbeute an Überschußgas sowie zur Verbesserung der Schlackebildung, der Basizität und des Schlackeflusses erforderlich werden.It will be understood by the person skilled in the art that an oxygen-air mixture or an oxygen-fuel gas mixture can be supplied instead of oxygen, for example for reasons of cost reduction. It is also obvious that the temperature values given by way of example have to be adapted depending on the feed materials to be processed and the desired process speed. It is also understood that the feedstocks may need to be mechanically comminuted before being introduced into the reactor to prevent clogging avoid. Depending on the starting materials and the desired end products, certain additives may be required to stabilize the calorific value and to increase the yield of excess gas as well as to improve slag formation, basicity and the slag flow.
Sofern im Reaktor auch Flüssigkeiten umgesetzt werden sollen, können diese vorteilhaft über eine Flüssigkeitseindüsung 30 zugeführt werden, die in den Gaszuführraum 10 mündet bzw. mit anderen Gaszuführmitteln kombiniert ist. Über die Flüssigkeitseindüsung 30 können Wasser, Wasserdampf oder andere zur Entsorgung bestimmte Flüssigkeiten eingebracht werden, wobei neben der gewünschten Entsorgung auch eine Regelung der Temperatur der inerten Verbrennungsgase, des Pyrolyseprozes- ses und/oder der Zusammensetzung und der Temperatur der Überschußgase möglich wird.If liquids are also to be converted in the reactor, these can advantageously be supplied via a liquid injection 30 which opens into the gas supply space 10 or is combined with other gas supply means. Water, water vapor or other liquids intended for disposal can be introduced via the liquid injection 30, whereby in addition to the desired disposal, it is also possible to regulate the temperature of the inert combustion gases, the pyrolysis process and / or the composition and the temperature of the excess gases.
Weiterhin ist es möglich, bei Bedarf gezielt zu entsorgende Stäube über eine Staubzuführung 31 in den Prozeß einzubrin- gen. Die Staubzuführung 31 ist vorzugsweise ein mittig im Zuführabschnitt 1 und im Vortemperierungsabschnitt 5 geführtes Dosierrohr, welches in der Nähe des Schüttkegels 9 endet. Die Stäube werden daher unmittelbar in die Nähe der schockartigen Erhitzung der Einsatzstoffe befördert, so daß sie beim Austreten aus dem Dosierrohr sofort einer hohen Temperatureinwirkung ausgesetzt sind, die ein Verbrennen oder Vergasen bewirkt, ohne daß es zu Verpuffungen oder dergleichen kommt.It is also possible, if required, to introduce dusts to be disposed of specifically into the process via a dust feed 31. The dust feed 31 is preferably a metering tube which is guided centrally in the feed section 1 and in the preheating section 5 and which ends in the vicinity of the cone 9. The dusts are therefore transported directly in the vicinity of the shock-like heating of the feed materials, so that when they emerge from the metering tube they are immediately exposed to a high temperature effect, which causes combustion or gasification, without causing deflagrations or the like.
Obwohl sich die oben spezielle erläuterte Ausführungsform insbesondere zur Behandlung (Vergasen und Schmelzen) von Abfällen mit organischen Bestandteilen eignet, wird es für den Fachmann offensichtlich sein, daß bei der Verwendung anderer Einsatzstoffe Abwandlungen des Reaktors erforderlich oder zweckdienlich sind. Generell können auch Sonderabfälle oder Einsatzstoffe mit höheren Metallanteilen behandelt werden, wobei teilweise das Vergasungs- und teilweise das Schmelzprinzip überwiegen wird. Es können auch verschiedene Einsatzstoffe kombiniert werden. So ist es beispielsweise möglich, zum Schmelzen von nicht-organischen Einsatzstoffen gezielt Einsatzstoffe mit höherem Energiewert (z.B. organische Abfälle, belastetes Altholz o.dgl.) zuzusetzen.Although the specific embodiment described above is particularly suitable for the treatment (gasification and melting) of waste with organic constituents, it will be obvious to the person skilled in the art that modifications of the reactor are necessary when using other feedstocks or are useful. In general, special wastes or feedstocks with higher metal contents can also be treated, whereby the gasification principle and the melting principle will predominate. Different feedstocks can also be combined. For example, to melt non-organic feedstocks it is possible to add feedstocks with a higher energy value (e.g. organic waste, contaminated waste wood or the like).
Aus den speziellen Einsatzgebieten können sich weitere Abwandlungen und Weiterbildungen für den erfindungsgemäßen Reaktor und das erfindungsgemäße Verfahren ergeben. Further modifications and developments for the reactor according to the invention and the method according to the invention can result from the special fields of application.

Claims

Patentansprüche claims
1. Reaktor zum Vergasen und/oder Schmelzen von Einsatzstoffen, umfassend: • einen Zuführabschnitt (1) mit einer Zuführöffnung (2), über welche die Einsatzstoffe von oben in den Reaktor eingebracht werden;A reactor for gasifying and / or melting feed materials, comprising: • a feed section (1) with a feed opening (2), through which the feed materials are introduced into the reactor from above;
• einen Pyrolyseabschnitt (8), der sich unter Schaffung einer Querschnittserweiterung unten an den vorangehenden Abschnitt (1, 5) anschließt, so daß sich dort ein Schüttkegel (9) des Einsatzstoffs ausbilden kann;• a pyrolysis section (8) which adjoins the preceding section (1, 5) to create a cross-sectional expansion, so that a pouring cone (9) of the feed material can form there;
• Gaszuführmittel (10), die etwa in der Ebene der Querschnittserweiterung in den Pyrolyseabschnitt (8) münden und über welche heiße Gase an den Schüttkegel (9) zuge- führt werden;• Gas supply means (10) which open into the pyrolysis section (8) approximately in the plane of the cross-sectional expansion and via which hot gases are supplied to the pouring cone (9);
• einen Schmelz- und Uberhitzungsabschnitt (14), der sich unter Schaffung einer Querschnittseinengung unten an den Pyrolyseabschnitt (8) anschließt;• a melting and superheating section (14) which adjoins the pyrolysis section (8) at the bottom to create a cross-sectional constriction;
• obere Eindusungsmittel (15), über die unmittelbar unter- halb der Ebene der Querschnittseinengung ein energiereiches Medium in den Schmelz- und Uberhitzungsabschnitt (14) eingebracht wird;• upper injection means (15), via which an energy-rich medium is introduced into the melting and superheating section (14) directly below the level of the cross-sectional constriction;
• einen Reduktionsabschnitt (20) , der sich unten an den Schmelz- und Uberhitzungsabschnitt (14) anschließt und Gasabsaugmittel (21) umfaßt, über welche Überschußgase abgesaugt werden;• a reduction section (20), which adjoins the melting and superheating section (14) at the bottom and comprises gas extraction means (21) via which excess gases are extracted;
• einen Herd (25) mit einem Abstich (27) unterhalb des Reduktionsabschnitts (20) , zur Sammlung und Ableitung von Metallschmelzen und Schlackeschmelzen; • untere Eindusungsmittel (26) , über die unmittelbar oberhalb der Schmelzen und unterhalb der Gasabsaugmittel (21) ein energiereiches Medium zugeführt wird, um ein Erstarren der Schmelzen zu verhindern. • a stove (25) with a tapping (27) below the reduction section (20), for collecting and discharging metal melts and slag melts; • lower injection means (26), via which an energy-rich medium is supplied directly above the melts and below the gas suction means (21) in order to prevent the melts from solidifying.
2. Reaktor nach Anspruch 1, dadurch gekennzeichnet, daß zwischen dem Zuführabschnitt (1) und dem Pyrolyseabschnitt (8) ein Vortemperierungsabschnitt (5) angeordnet ist.2. Reactor according to claim 1, characterized in that a preheating section (5) is arranged between the feed section (1) and the pyrolysis section (8).
3. Reaktor nach Anspruch 2, dadurch gekennzeichnet, daß der Vortemperierungsabschnitt (5) zumindest abschnittsweise zur Schaffung eines Wandungshohlraums (6) doppelwandig ausgebildet ist, wobei im Wandungshohlraum (6) ein Wärme- Übertragungsmedium geführt ist.3. Reactor according to claim 2, characterized in that the preheating section (5) is at least sectionally double-walled to create a wall cavity (6), wherein a heat transfer medium is guided in the wall cavity (6).
4. Reaktor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Gaszuführmittel als Gaszuführraum (10) ausgebildet sind, in die mindestens eine Brennkammer (11) mündet, die mit mindestens einem Brenner (12) bestückt ist, der über die Brennkammer und den Gasraum etwa 1000°C heiße Gase an den Schüttkegel (9) bereitstellt.4. Reactor according to one of claims 1 to 3, characterized in that the gas supply means are designed as a gas supply chamber (10) into which at least one combustion chamber (11) opens, which is equipped with at least one burner (12), which is via the combustion chamber and the gas space provides about 1000 ° C hot gases to the pouring cone (9).
5. Reaktor nach einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, daß der Zuführabschnitt (1), ggf. der5. Reactor according to one of claims 1 to 4, characterized in that the feed section (1), possibly the
Vortemperierungsabschnitt (5), der Pyrolyseabschnitt (8) und der Reduktionsabschnitt (20) zylindrisch oder nach unten leicht konisch aufgeweitet ausgebildet sind, daß die Gesamtlänge von Zuführabschnitt (1) und Vortemperierungs- abschnitt (5) mindestens dreimal so groß wie der Durchmesser des Zuführabschnitts am oberen Ende ist, und daß der Querschnitt des Pyrolyseabschnitts (8) mindestens doppelt so groß wie der Querschnitt am unteren Ende des Vortrocknungsabschnitts ist.Pre-tempering section (5), the pyrolysis section (8) and the reduction section (20) are cylindrical or slightly tapered downwards in such a way that the total length of the feed section (1) and pre-tempering section (5) is at least three times the diameter of the feed section is at the upper end, and that the cross section of the pyrolysis section (8) is at least twice as large as the cross section at the lower end of the predrying section.
6. Reaktor nach Anspruch 1, dadurch gekennzeichnet, daß die Gaszuführmittel (10) und die Gasabsaugmittel (21) ringförmig am Umfang des Reaktors ausgebildet sind. 6. Reactor according to claim 1, characterized in that the gas supply means (10) and the gas suction means (21) are annular in shape on the circumference of the reactor.
7. Reaktor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Pyrolyseabschnitt (8) zur Schaffung eines weiteren Wandungshohlraums doppelwandig ausgebildet ist, wobei in diesem weiteren Wandungshohlraum ein Wärmeübertragungsmedium geführt ist.7. Reactor according to one of claims 1 to 6, characterized in that the pyrolysis section (8) is double-walled to create a further wall cavity, wherein a heat transfer medium is guided in this further wall cavity.
8. Reaktor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die oberen und/oder die unteren Eindusungsmittel (15, 26) mehrere ringförmig am Umfang des Reaktors angeordnete Sauerstofflanzen (16) oder Düsen umfassen, über welche Sauerstoff bzw. ein Brenngasgemisch zugeführt werden.8. Reactor according to one of claims 1 to 7, characterized in that the upper and / or the lower injection means (15, 26) comprise a plurality of annularly arranged on the circumference of the reactor oxygen lances (16) or nozzles, via which oxygen or a fuel gas mixture be fed.
9. Reaktor nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Gaszuführmittel (10) mit einer Flüssigkeitseinspeisung (30) verbunden sind, über welche flüssige oder dampfförmige Stoffe zuführbar sind.9. Reactor according to one of claims 1 to 8, characterized in that the gas supply means (10) are connected to a liquid feed (30) via which liquid or vaporous substances can be supplied.
10. Reaktor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß weiterhin eine Staubzuführung (31) vorgesehen ist, über welche Stäube unmittelbar in die Ebene der Querschnittserweiterung zwischen Zuführabschnitt (5) und Pyrolyseabschnitt (8) zuführbar sind.10. Reactor according to one of claims 1 to 9, characterized in that a dust feed (31) is further provided, via which dusts can be fed directly into the plane of the cross-sectional expansion between the feed section (5) and pyrolysis section (8).
11. Reaktor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Zuführabschnitt (1) nach oben weitgehend gasdicht abgeschlossen ist, wobei die EinsatzstoffZuführung über eine Schleuseneinrichtung erfolgt. 11. Reactor according to one of claims 1 to 10, characterized in that the feed section (1) is largely gas-tight at the top, the feed material being supplied via a lock device.
12. Verfahren zum Vergasen und/oder Schmelzen von Einsatzstoffen, die folgenden Schritte umfassend:12. A process for gasifying and / or melting feedstocks, comprising the following steps:
• Ausbildung einer weitgehend von der Umgebung abgeschirmten Schüttsäule (4) in einem Schachtförmigen Reaktor;• formation of a bulk column (4) largely shielded from the environment in a shaft-shaped reactor;
• schockartige Erhitzung der Schüttsäule (4) durch Zuführung von heißen Gasen im oberen Bereich, um in den Einsatzstoffen eine Pyrolyse auszulösen;• shock-like heating of the pouring column (4) by supplying hot gases in the upper area in order to trigger pyrolysis in the feedstocks;
• Erzeugung einer tiefer gelegenen heißen Zone (17) mit Temperaturen oberhalb von 1000 °C durch Zuführung energiereicher Medien;• Creation of a lower lying hot zone (17) with temperatures above 1000 ° C by supplying high-energy media;
• Verbrennen der Pyrolyseprodukte, Schmelzen von ggf. enthaltenen metallischen und mineralischen Bestandteilen und weitegehendes Verkoken der Reststoffe der Einsatzstoffe in der heißen Zone (17);• Burning the pyrolysis products, melting any metallic and mineral components that may be present and largely coking the residues of the feed materials in the hot zone (17);
• Absaugen aller Gase nach unten durch die Schüttsäule• Aspiration of all gases down through the pouring column
(4), durch die heiße Zone (17) und durch eine tiefer liegende Reduktionszone (22);(4), through the hot zone (17) and through a lower-lying reduction zone (22);
• Ausleiten reduzierter Überschußgase aus dem Reaktor im Bereich der Reduktionszone (22);• discharging reduced excess gases from the reactor in the area of the reduction zone (22);
• Sammeln der ggf. vorhandenen Metall- und/oder Schlackeschmelzen im untersten Abschnitt des Reaktors;• Collecting any metal and / or slag melts that may be present in the lowest section of the reactor;
• Einleiten von energiereichen Medien unmittelbar oberhalb der gesammelten Schmelzen, um diese flüssig zu halten;• Introducing high-energy media directly above the collected melts in order to keep them liquid;
• Abstechen der Schmelzen bei Bedarf.• Parting off the melts if necessary.
13. Verfahren nach Anspruch 12, wobei als energiereiche Medien Sauerstoff, Brenngase, Anteile des abgesaugten Überschußgases, Flüssigbrennstoffe oder staubförmige Brennstoffe zugeführt werden. 13. The method according to claim 12, wherein oxygen, fuel gases, portions of the extracted excess gas, liquid fuels or dusty fuels are supplied as high-energy media.
14. Verfahren nach Anspruch 12 oder 13, weiterhin die folgenden Schritte umfassend:14. The method of claim 12 or 13, further comprising the following steps:
• Füllstandsüberwachung des Reaktors, so daß die Schütt- säule stets eine Höhe zwischen einem Minimalwert und einem Maximalwert aufweist;• Level monitoring of the reactor, so that the pouring column always has a height between a minimum value and a maximum value;
• Einstellung des Minimalwerts derart, daß die Schüttsäule oberhalb des Punktes der schockartigen Erhitzung durch relativ dicht gepackten Einsatzstoff von der Umwelt abgeschirmt ist.• Setting the minimum value in such a way that the pouring column above the point of shock-like heating is shielded from the environment by relatively densely packed feed material.
15. Verfahren nach einem der Ansprüche 12 bis 14, umfassend den Schritt der Vortrocknung der Einsatzstoffe durch Erwärmung der Schüttsäule oberhalb des Punktes der schockartigen Erhitzung auf etwa 100°C.15. The method according to any one of claims 12 to 14, comprising the step of predrying the starting materials by heating the pouring column above the point of shock-like heating to about 100 ° C.
16. Verfahren nach einem der Ansprüche 12 bis 15, umfassend den Schritt der Regelung des Unterdrucks zur Absaugung der Gase, so daß nahezu keine Gase nach oben aus dem Reaktor entweichen und nur minimale Mengen zusätzlicher Umgebungsluft von oben durch die Schüttsäule angesaugt werden.16. The method according to any one of claims 12 to 15, comprising the step of regulating the negative pressure for suction of the gases, so that almost no gases escape upward from the reactor and only minimal amounts of additional ambient air are sucked in from above through the bulk column.
17. Verfahren nach einem der Ansprüche 12 bis 16, weiterhin die folgenden Schritte umfassend:17. The method according to any one of claims 12 to 16, further comprising the following steps:
• Erzeugung der heißen Gase zur schockartigen Erhitzung der Schüttsäule durch Verbrennen von Fremdbrennstoffen in der Startphase des Verfahrens;• Generation of the hot gases for the shock-like heating of the bulk column by burning foreign fuels in the start phase of the process;
• Erzeugung der heißen Gase zur schockartigen Erhitzung der Schüttsäule durch Verbrennen der zumindest teilweise gereinigten reduzierten Überschußgase, die aus dem Reaktor ausgeleitet werden, ggf. in Kombination mit Fremdbrennstoffen. • Generation of the hot gases for the shock-like heating of the bulk column by burning the at least partially cleaned reduced excess gases which are discharged from the reactor, possibly in combination with extraneous fuels.
18. Verfahren nach Anspruch 17, wobei die Verbrennung unter Sauerstoffmangel ausgeführt wird, so daß ein inertes Verbrennungsgas entsteht, welches weitgehend aus Kohlen- dioxid und Wasserdampf besteht.18. The method according to claim 17, wherein the combustion is carried out with a lack of oxygen, so that an inert combustion gas is formed, which consists largely of carbon dioxide and water vapor.
19. Verfahren nach einem der Ansprüche 12 bis 18, wobei die ausgeleiteten Überschußgase einer nachgeschalteten Gaswirtschaft zur Kühlung und/oder Reinigung zugeführt werden.19. The method according to any one of claims 12 to 18, wherein the discharged excess gases are fed to a downstream gas industry for cooling and / or cleaning.
20. Verfahren nach einem der Ansprüche 12 bis 19, wobei in unmittelbarer Nähe der schockartigen Erhitzung der Schüttsäule zu verwertende Stäube hinzugefügt werden.20. The method according to any one of claims 12 to 19, wherein dusts to be used are added in the immediate vicinity of the shock-like heating of the pouring column.
21. Verfahren nach einem der Ansprüche 12 bis 20, wobei ein Reaktor nach einem der Ansprüche 1 bis 11 verwendet wird. 21. The method according to any one of claims 12 to 20, wherein a reactor according to one of claims 1 to 11 is used.
EP01911636A 2000-02-17 2001-02-13 Reactor and method for gasifying and/or melting materials Expired - Lifetime EP1261827B8 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10007115A DE10007115C2 (en) 2000-02-17 2000-02-17 Process and reactor for gasifying and melting feedstocks with descending gas flow
DE10007115 2000-02-17
PCT/EP2001/001581 WO2001061246A1 (en) 2000-02-17 2001-02-13 Reactor and method for gasifying and/or melting materials

Publications (3)

Publication Number Publication Date
EP1261827A1 EP1261827A1 (en) 2002-12-04
EP1261827B1 EP1261827B1 (en) 2005-11-16
EP1261827B8 true EP1261827B8 (en) 2006-01-25

Family

ID=7631232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01911636A Expired - Lifetime EP1261827B8 (en) 2000-02-17 2001-02-13 Reactor and method for gasifying and/or melting materials

Country Status (21)

Country Link
US (1) US6662735B2 (en)
EP (1) EP1261827B8 (en)
JP (1) JP4426150B2 (en)
KR (1) KR100770889B1 (en)
CN (1) CN1212487C (en)
AT (1) ATE310208T1 (en)
AU (1) AU4061501A (en)
BR (1) BR0108578B1 (en)
CA (1) CA2400234C (en)
CY (1) CY1105497T1 (en)
CZ (1) CZ305021B6 (en)
DE (2) DE10007115C2 (en)
DK (1) DK1261827T3 (en)
EA (1) EA004195B1 (en)
ES (1) ES2253356T3 (en)
HU (1) HU228016B1 (en)
MX (1) MXPA02007967A (en)
PL (1) PL193225B1 (en)
SK (1) SK288020B6 (en)
WO (1) WO2001061246A1 (en)
ZA (1) ZA200206571B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH694696A5 (en) * 2000-12-21 2005-06-15 Nesi Plant S A Method and device for the production of hydrogen and carbon dioxide by gasification of raw materials.
WO2002055631A1 (en) * 2001-01-15 2002-07-18 Takamo Industries Co., Ltd. Plastic liquefying device
DE10121773A1 (en) * 2001-05-04 2002-11-07 Krupp Polysius Ag Plant and method for producing cement clinker
DE20120189U1 (en) * 2001-12-14 2003-04-24 Umweltkontor Renewable Energy Co-current shaft reactor
DE20200095U1 (en) * 2002-01-04 2003-05-08 Umweltkontor Renewable Energy Co-current shaft reactor
DE20200935U1 (en) 2002-01-23 2003-05-28 Umweltkontor Renewable Energy Co-current shaft reactor
DE102004010407B4 (en) * 2004-03-01 2013-02-21 Kbi International Ltd. Reactor for thermal waste treatment
DE102004016993B4 (en) * 2004-04-02 2014-11-06 Kbi International Ltd. Thermal waste treatment reactor with a feed channel and thermal waste treatment process
DE102004020919B4 (en) * 2004-04-28 2009-12-31 Kbi International Ltd. Reactor for thermal waste treatment with injection agents
DE102004045926B4 (en) * 2004-09-22 2009-11-26 Mallon, Joachim, Dipl.-Phys. disposal unit
DE102004050098B4 (en) 2004-10-14 2007-05-31 Martin GmbH für Umwelt- und Energietechnik Combustion plant, in particular waste incineration plant
DE102005052753A1 (en) * 2005-11-04 2007-05-10 Polysius Ag Plant and process for the production of cement clinker
US20070266914A1 (en) * 2006-05-18 2007-11-22 Graham Robert G Method for gasifying solid organic materials and apparatus therefor
DE102008014799A1 (en) * 2008-03-18 2009-09-24 Karl-Heinz Tetzlaff Process and apparatus for producing synthesis gas from biomass
KR100889398B1 (en) * 2008-05-22 2009-03-19 한국기계연구원 Ultra high temperature fusion form scrapped material gas brazier
DE202009002781U1 (en) 2009-02-27 2009-06-10 Kbi International Ltd. Reactor for the thermal treatment of a feedstock
BRPI1104219B1 (en) * 2011-08-25 2013-04-02 thermal gradient based solid waste treatment process composed of two distinct thermal sources.
DE102012009265B4 (en) * 2012-05-11 2013-12-05 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Cooled ring gas collector
GB2511756A (en) * 2013-03-11 2014-09-17 Envirofusion Ltd A Reactor for Processing Feed Material
CA2914002A1 (en) * 2013-06-12 2014-12-18 Gas Technology Institute Entrained-flow gasifier and method for removing molten slag
CN103557528B (en) * 2013-11-04 2016-02-24 赵山山 Integral type environmental protection gasification and melting incineration stove
SE1650997A1 (en) * 2014-01-08 2016-07-07 Combustion boiler with pre-drying fuel chute
CN104789271B (en) * 2015-04-07 2017-03-29 龙东生 Powder low temperature distillation gasification installation
ITUB20159583A1 (en) 2015-12-29 2017-06-29 Microsystemfuel S R L SELF-COMBINATION OF BIOMASS.
CN106196080A (en) * 2016-07-13 2016-12-07 北京保利洁科技发展有限公司 A kind of method of solid waste resource recovery
CN106979524B (en) * 2017-04-01 2019-05-07 广东焕杰环保科技有限公司 A kind of flue gas recirculation incinerator and its incinerating method
PL240502B1 (en) * 2018-01-23 2022-04-19 S E A Wagner Spolka Z Ograniczona Odpowiedzialnoscia Method for thermal utilization of municipal wastes and/or sewage sludges
CA3121255A1 (en) 2018-11-28 2020-06-04 Kbi Invest & Management Ag Reactor and process for gasifying and/or melting of feed materials
EP3660132A1 (en) 2018-11-28 2020-06-03 Waste & Energy Solutions GmbH Reactor and process for gasifying and/or melting of feed materials
CN113286868B (en) 2018-11-28 2023-08-08 非洲彩虹矿产有限公司 Reactor and method for gasifying and/or melting a feedstock
EP4026885A1 (en) 2021-01-06 2022-07-13 KBI Invest & Management AG Reactor and process for gasifying and/or melting of feed materials and for the production of hydrogen

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB456111A (en) * 1935-04-11 1936-11-03 Humboldt Deutzmotoren Ag Improvements in or relating to gas producers with simultaneous up and down draught
US3985518A (en) * 1974-01-21 1976-10-12 Union Carbide Corporation Oxygen refuse converter
AT349596B (en) * 1974-09-14 1979-04-10 Kernforschungsanlage Juelich PLANT FOR INCINERATING MUELL
JPS5238459A (en) * 1975-08-14 1977-03-25 Sato Gijutsu Kenkyusho:Kk Waste gas purification method and its apparatus
DE2654041C2 (en) 1976-11-29 1978-11-09 Kernforschungsanlage Juelich, Gmbh, 5170 Juelich Equipment and process for incineration of waste materials
US4213404A (en) * 1978-11-09 1980-07-22 Energy Alternatives, Inc. Solid refuse furnace
DE3523653A1 (en) * 1985-07-02 1987-02-12 Bbc Brown Boveri & Cie FLUIDIZED LAYER REACTOR
DK222686D0 (en) * 1986-05-14 1986-05-14 Rockwool Int MINERAL WOOL PRODUCTION
US4643110A (en) * 1986-07-07 1987-02-17 Enron, Inc. Direct fuel-fired furnace arrangement for the recovery of gallium and germanium from coal fly ash
AT390961B (en) 1986-08-14 1990-07-25 Voest Alpine Ag GASIFICATION REACTOR FOR THE PRODUCTION OF COMBUSTIBLE GAS FROM WASTE
FR2610087B1 (en) * 1987-01-22 1989-11-24 Aerospatiale PROCESS AND DEVICE FOR THE DESTRUCTION OF SOLID WASTE BY PYROLYSIS
AT388925B (en) * 1987-01-29 1989-09-25 Voest Alpine Ind Anlagen METHOD FOR GASIFYING FUELS WITH OXYGEN IN A SHAFT-SHAPED OVEN
NL8902749A (en) * 1989-11-07 1991-06-03 Leonardus Mathijs Marie Nevels METHOD FOR COMBUSTION OF VARIOUS WASTE MATERIAL, INCLUDING OVEN, AND UNIVERSAL WASTE COMBUSTION SYSTEM WITH NUMBER OF SUCH OVENS.
JP2957627B2 (en) * 1990-03-15 1999-10-06 大阪瓦斯株式会社 Municipal waste incineration melting equipment
DE4030554A1 (en) * 1990-09-27 1992-04-09 Bergmann Michael Dr Procedure and device for thermal treatment of waste materials - comprises reactor combustion zone charged with waste, coke and lime, and gas produced passes through hot coke be also located in reactor
JPH04156394A (en) * 1990-10-19 1992-05-28 Ebaa Kooto Kk Communication medium such as postcard and its manufacture as well as laminated sheet for manufacture of communication medium
US5054405A (en) * 1990-11-02 1991-10-08 Serawaste Systems Corporation High temperature turbulent gasification unit and method
US5318602A (en) * 1991-11-26 1994-06-07 Helmut Juch Fuel gas generator for lean gas generation
DE4230311C1 (en) * 1992-09-10 1993-12-09 Wamsler Umwelttechnik Gmbh Process and incinerator for incinerating waste
DE4317145C1 (en) * 1993-05-24 1994-04-28 Feustel Hans Ulrich Dipl Ing Scrap disposal in coke-fired shaft furnace - involves circulation of organic content gasification gas to metal content melting zone
US5588381A (en) * 1995-03-07 1996-12-31 Leslie Technologies, Inc. Method and system for burning waste materials
AT405942B (en) * 1995-03-17 1999-12-27 Voest Alpine Ind Anlagen METHOD FOR REDUCING FINE ORE AND SYSTEM FOR IMPLEMENTING THE METHOD
JP3118630B2 (en) * 1995-09-22 2000-12-18 株式会社日立製作所 Coal gasifier
DE19640497C2 (en) * 1996-10-01 1999-01-28 Hans Ulrich Dipl Ing Feustel Coke-heated cycle gas cupola for material and / or energy recovery of waste materials
DE19816864C2 (en) * 1996-10-01 2001-05-10 Hans Ulrich Feustel Coke-heated cycle gas cupola furnace for material and / or energy recovery of waste materials of different compositions
US6021723A (en) * 1997-06-04 2000-02-08 John A. Vallomy Hazardous waste treatment method and apparatus

Also Published As

Publication number Publication date
CA2400234A1 (en) 2001-08-23
KR20020093806A (en) 2002-12-16
JP4426150B2 (en) 2010-03-03
ATE310208T1 (en) 2005-12-15
MXPA02007967A (en) 2004-04-05
JP2003527554A (en) 2003-09-16
CZ20022908A3 (en) 2003-01-15
AU4061501A (en) 2001-08-27
EA200200854A1 (en) 2002-12-26
CN1212487C (en) 2005-07-27
HUP0300690A2 (en) 2003-07-28
PL193225B1 (en) 2007-01-31
SK12912002A3 (en) 2005-06-02
PL357563A1 (en) 2004-07-26
EP1261827A1 (en) 2002-12-04
CN1404566A (en) 2003-03-19
EA004195B1 (en) 2004-02-26
HU228016B1 (en) 2012-08-28
SK288020B6 (en) 2012-11-05
DK1261827T3 (en) 2006-07-03
ZA200206571B (en) 2003-06-12
DE10007115A1 (en) 2001-09-06
ES2253356T3 (en) 2006-06-01
EP1261827B1 (en) 2005-11-16
CZ305021B6 (en) 2015-04-01
CA2400234C (en) 2010-01-12
WO2001061246A1 (en) 2001-08-23
CY1105497T1 (en) 2010-04-28
DE50108084D1 (en) 2005-12-22
KR100770889B1 (en) 2007-10-26
WO2001061246A8 (en) 2001-11-15
US20030010267A1 (en) 2003-01-16
BR0108578A (en) 2003-04-29
DE10007115C2 (en) 2002-06-27
US6662735B2 (en) 2003-12-16
BR0108578B1 (en) 2009-12-01

Similar Documents

Publication Publication Date Title
EP1261827B8 (en) Reactor and method for gasifying and/or melting materials
US4650546A (en) Method for the treatment of moist products
DE3811820A1 (en) METHOD AND SYSTEM FOR THERMAL WASTE DISPOSAL
CH615215A5 (en)
DE2752609A1 (en) METHOD AND DEVICE FOR PRODUCING HEATING GAS
DE19608826C2 (en) DC gasification reactor
DE2428891C3 (en) Shaft furnace for melting mineral substances for the production of mineral wool
EP0862019B1 (en) Method and device for thermal treatment of fly ash from grate incinerators
DE4339675C1 (en) Method and device for melting solid combustion residues
DE19640497A1 (en) Coke-fired gas circulation cupola furnace
DE3512810A1 (en) METHOD AND INSTALLATION FOR THE COMBUSTION OF WASTE
EP0413799B1 (en) Arrangement of grates for incineration of refuse and waste and method of its operation
DE4200341A1 (en) Gasification of waste to form combustible gas and molten slag - utilises oxygen agent in economical, environment-friendly, simple system wity cyclone
EP0055440A1 (en) Process and plant for the continuous production of combustible gas from organic waste materials
EP1583811B1 (en) Shaft-melt gasifier and a method for thermal treatment and processing of waste materials
EP0790291A2 (en) Process for operating a high-temperature reactor for the treatment of waste products
DE102008021019B4 (en) Oven for pyrolysis of waste material and method for operating a furnace
DE4011945C1 (en) Waste material pyrolysis system - compresses material and heats it by friction against chamber walls
EP1323809B1 (en) Co-current shaft reactor
EP0031558A1 (en) Refuse incineration plant
EP0704658B1 (en) Process for thermal treatment of waste material, especially refuse
DE19816864A1 (en) Coke heated circulating-gas cupola furnace
DE102007017859A1 (en) Double-walled direct current gasifier for organic components and water, has gas and/or vapor and/or combustion medium supplying devices arranged over each other in plane or multiple planes
WO2005083041A1 (en) Reactor for thermal processing of waste
DE897310C (en) Method and device for the gasification of fuels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT PAYMENT 20020917;LV;MK;RO;SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

19U Interruption of proceedings before grant

Effective date: 20040801

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20050502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: LT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50108084

Country of ref document: DE

Date of ref document: 20051222

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KBI INTERNATIONAL LTD

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: KBI INTERNATIONAL LTD

Effective date: 20051228

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060314

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20051116

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20060400602

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2253356

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: EGE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060817

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150218

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20150219

Year of fee payment: 15

Ref country code: ES

Payment date: 20150225

Year of fee payment: 15

Ref country code: LU

Payment date: 20150225

Year of fee payment: 15

Ref country code: PT

Payment date: 20150209

Year of fee payment: 15

Ref country code: MC

Payment date: 20150212

Year of fee payment: 15

Ref country code: CH

Payment date: 20150218

Year of fee payment: 15

Ref country code: DK

Payment date: 20150218

Year of fee payment: 15

Ref country code: IT

Payment date: 20150218

Year of fee payment: 15

Ref country code: FI

Payment date: 20150211

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150219

Year of fee payment: 15

Ref country code: TR

Payment date: 20150128

Year of fee payment: 15

Ref country code: SE

Payment date: 20150218

Year of fee payment: 15

Ref country code: FR

Payment date: 20150219

Year of fee payment: 15

Ref country code: CY

Payment date: 20150202

Year of fee payment: 15

Ref country code: GR

Payment date: 20150212

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150218

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160213

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 310208

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160213

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160213

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160213

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160214

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160905

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160816

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160213

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20060400602

Country of ref document: GR

Effective date: 20160905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180219

Year of fee payment: 18

Ref country code: GB

Payment date: 20180216

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108084

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160213