EP1259458A1 - Method for producing hydrogen by partial oxidation of hydrocarbons - Google Patents

Method for producing hydrogen by partial oxidation of hydrocarbons

Info

Publication number
EP1259458A1
EP1259458A1 EP01907875A EP01907875A EP1259458A1 EP 1259458 A1 EP1259458 A1 EP 1259458A1 EP 01907875 A EP01907875 A EP 01907875A EP 01907875 A EP01907875 A EP 01907875A EP 1259458 A1 EP1259458 A1 EP 1259458A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
gas
carried out
carbon monoxide
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01907875A
Other languages
German (de)
French (fr)
Inventor
Cyrille Millet
Daniel Gary
Philippe Arpentinier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1259458A1 publication Critical patent/EP1259458A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40003Methods relating to valve switching
    • B01D2259/40005Methods relating to valve switching using rotary valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0877Methods of cooling by direct injection of fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a process for the production of a gaseous mixture containing at least hydrogen (H 2 ) and carbon monoxide (CO) from at least one hydrocarbon, in which a partial catalytic oxidation is carried out. at least one hydrocarbon, in the presence of oxygen or an oxygen-containing gas, to produce hydrogen and carbon monoxide.
  • Hydrogen is a gas widely used in particular in the field of chemistry.
  • this is an auto-thermal process where the thermal energy necessary for steam reforming on a catalyst is for example provided by the partial combustion of CH 4 into C0 2 and H 2 0.
  • the ratio H 2 / CO is lower than during production by steam reforming, that is to say on the order of 2.2 to 2.5.
  • reaction (1) by partial oxidation of hydrocarbons. This process does not require a catalyst. Combustion is carried out between 1300 ° C and 1400 C C with little or no steam. This process is exothermic but produces less hydrogen than the previous processes. In addition, the reaction to produce hydrogen by conversion of CO in the presence of water vapor and on the catalyst must be favored as much as possible, according to reaction (1) below:
  • Pressure Swing Adsorption Modulated pressure adsorption
  • the energy efficiency of such a process is excellent, that is to say up to 85% for large installations by upgrading the lethal vapor.
  • ammonia is a pollutant harmful to the environment (toxicity, odor, %) and the regulations on this product are becoming more and more stringent.
  • the present invention aims to propose a process for producing hydrogen gas:
  • the solution provided by the invention is then a process for producing a gaseous mixture containing at least hydrogen (H 2 ) and carbon monoxide (CO) from at least one hydrocarbon chosen from the group formed by methane, ethan ⁇ or a mixture of methane and etha ⁇ e, or a mixture of butane and propane, in which:
  • a partial catalytic oxidation of at least one hydrocarbon is carried out, at a temperature below 1200 ° C., at a pressure of 3 to 20 bars, and in the presence of oxygen or of an oxygen-containing gas , to produce hydrogen (H 2 ) and carbon monoxide (CO);
  • step (c) the gas mixture obtained in step (b) is subjected to cooling to a temperature between -20 ° C and + 80 ° C;
  • step (d) subjecting the gas mixture obtained in step (c) to separation so as to produce a gas stream rich in hydrogen; and in which there is obtained, in step (b) and / or in step (c), a gaseous mixture at a pressure of 3 to 20 bars.
  • the method of the invention may include one or more of the following characteristics:
  • step (c) the cooling is carried out by gas-gas, gas-water exchange or sudden cooling with water.
  • the hydrocarbon is methane or natural gas, preferably the volume flow ratio C I0 2 is between 1.5 and 2.1.
  • the gas mixture obtained in step (b) and / or in step (c) is at a pressure of 4 to 15 bars.
  • step (a) is carried out at a pressure of 4 to 15 bars.
  • the oxygen-containing gas is a gas mixture containing nitrogen and oxygen, preferably air.
  • the catalyst is formed of at least one metal deposited on an inert support, preferably the metal is nickel, rhodium, platinum and / or palladium or an alloy containing at least one of these metals.
  • the gas mixture obtained in step (b) contains approximately 30 to 40% (in vol.) of hydrogen, 15 to 25% of CO and the remainder being nitrogen and possibly traces of C0 2 , H 2 0 or other unavoidable impurities, preferably the gas mixture obtained in step (b) contains approximately 31 to 34% (by vol.) hydrogen, 17-21% CO and the remainder of the nitrogen and possibly traces of C0 2 , H 2 0 or other unavoidable impurities
  • Step (a) is carried out in at least one endothermic reactor.
  • - step (a) is carried out at a temperature between 600 ° C and
  • 1090X preferably from 900 to 1000 ° C.
  • step (d) the separation makes it possible to produce a gas stream rich in hydrogen containing at least 80% of hydrogen, preferably from 99.9% to 99.999999% by volume of hydrogen.
  • the separation carried out in step (d) is carried out by implementing a PSA process, a TSA process or a separation by permeation membrane using one or more membrane modules generating, on the one hand, said hydrogen-rich gas flow and, on the other hand, a gas-waste stream, preferably a PSA process for obtaining pure hydrogen.
  • the waste gas stream is sent to a cogeneration unit used to produce electricity, preferably to a boiler.
  • step (e) subjecting the gas mixture obtained in step (b) to a separation so as to remove at least some of the carbon dioxide and / or water vapor impurities which may be present, and thus produce a gaseous atmosphere having contents controlled in hydrogen, carbon monoxide and nitrogen.
  • step (d) The gaseous atmosphere having controlled contents of hydrogen, carbon monoxide and nitrogen produced is used in a heat treatment operation of metals.
  • the separation carried out in step (d) is carried out by implementing a PSA process or a TSA process using at least two adsorbers operating alternately, at least one of the adsorbers being in the phase of regeneration while at least one other of the adsorbers is in the production phase of said gas stream rich in hydrogen.
  • the separation carried out in step (d) is carried out by membrane permeation using one or more membrane modules generating, on the one hand, said gaseous stream rich in hydrogen and, on the other hand, a stream of gas-waste containing mainly nitrogen and carbon monoxide, and possibly residual hydrogen.
  • the basic principle of the present invention is to carry out a partial oxidation of methane or LPG (usually, natural gas contains essentially CH4, and% C0 2 , N 2 and heavier hydrocarbons: propane, butane. in the context of the present invention, natural gas or LPG is used, but from the chemical point of view it is indeed the molecules CH4, propane and butane which are partially oxidized) in order to obtain a hydrogen / carbon monoxide mixture according to the reaction (2) next :
  • methane or LPG usually, natural gas contains essentially CH4, and% C0 2 , N 2 and heavier hydrocarbons: propane, butane.
  • natural gas or LPG is used, but from the chemical point of view it is indeed the molecules CH4, propane and butane which are partially oxidized
  • the reaction (2) is exothermic but the enthalpy of the reaction is insufficient to reach high temperature levels, for example from 1300 ° C to 1500 ° C.
  • the principle is to use combustion in a catalytic medium to effect the partial oxidation of the CH 4 / Vi 0 2 mixture into H 2 and CO at lower temperatures, typically from 700 to 1100 ° C.
  • partial oxidation by catalysis has at least the following advantages:
  • the hydrogen extraction yield is close to 100% because the ratio of the volume of H 2 produced to the volume of CH 4 consumed is close to 2;
  • the principle of the invention consists in producing a gaseous mixture rich in hydrogen (30 to 40% H 2 , approximately 20% CO and the remainder being essentially N 2 and a few% of C0 2 , H 2 0 and other unavoidable impurities) by partial catalytic oxidation of hydrocarbons, such as methane or natural gas.
  • the gas mixture produced is then cooled using an exchanger gas-gas or gas-water, or by "brutal” or “flash” cooling (quench cooling in English) with water and is sent subsequently to an adsorption separation unit (PSA), after a possible stage of elimination of soot or other impurities generated. If the mixture is generated under pressure at the level of the catalytic partial oxidation reactor, it is not useful to use a compressor to supply the PSA unit.
  • PSA adsorption separation unit
  • the PSA process is then supplied under pressure by the mixture rich in hydrogen and it produces pure hydrogen (purity> 99.9%) under pressure.
  • the waste gas (off gas) from the PSA at pressure close to atmospheric pressure or higher if one wishes to recover the waste gas, for example a pressure of 1.5 bar, rich in CO (approx. 28%) and still containing the hydrogen (approx. 15%) is sent to a flare or a boiler burner to carry out co-generation of heat.
  • the size of the valves of the PSA unit is made as compact as possible in order to minimize the investment in material, preferably one or more rotary valves are used.
  • This technology also makes it possible to reduce the cycle time of the PSA process, typically the cycles have a duration of 0.1 to 3 minutes.
  • the productivity of the system is increased and, consequently, the volume of the receptacles containing the adsorbents, for the same quantity of gas produced, is reduced.
  • the pure hydrogen produced is then sent under pressure to the customer's network.
  • the process of the invention therefore eliminates the so-called gas to water reaction step: CO + H 2 0 - »C0 2 + H 2 .
  • the hydrogen production yield is then less good but, in the context of the production of hydrogen in small quantities (less than 300 m3 / h), the energy yield is no longer essential. In the price of gas produced, the share linked to investment becomes the most important. From there, simplifying the process (catalytic reactor for converting gas to water, unit for producing demineralized water) is more advantageous for producing one molecule of hydrogen per molecule of CH 4 consumed.
  • the partial catalytic oxidation is carried out using a reactor using the catalyst in a fixed bed with axial or radial flow and operating under high pressure, for example a pressure of 1 'order of 5 to 20 bars and this, unlike so-called "endothermic" generators, usually used in various heat treatment applications, which generally operate at lower pressures, that is to say typically less than 1.5 bars.
  • FIG. 2 represents an evaluation, from calculations based on the thermodynamic equilibrium, of the composition of the gaseous atmosphere produced by a process according to the invention which clearly shows that the conversion rates are greater than 90%
  • FIG. 3 represents, for its part, a similar evaluation of the influence of the richness of the natural gas / air mixture on the formation of soot and on the hydrogen yield in order to maximize the quantity of hydrogen produced compared to the amount of natural gas consumed.
  • FIG. 2 shows, on the one hand, the evolution of the ratio of H 2 produced by Nm 3 of natural gas consumed as a function of the temperature, in the case of a reaction using 100 Nm 3 / h of air and, on the other hand, the evolution of the molar composition of solid carbon in the atmosphere produced as a function of the temperature.
  • This maximum is all the more important as the temperature is high and always corresponds to a composition of the natural gas / air mixture for which the quantity of solid carbon produced is very low, even negligible.
  • reaction CH4 + 1/2 02 -> CO + 2H2 taking place with an increase in the number of moles, it is favored thermodynamically by a decrease in the total pressure.
  • FIG. 3 represents the evolution of the hydrogen content in the atmosphere produced as a function of the flow rate of natural gas, for 2 pressures and 3 different temperatures of implementation.
  • the principle of the invention is therefore based on the production of a gaseous mixture rich in hydrogen (for example 36% H 2 , 41% N 2 , 20% CO) by partial catalytic oxidation preferably operating under pressure (of the order of 10 bars) and at a temperature below 1100 ° C., preferably less than 1000 ° C.
  • a gaseous mixture rich in hydrogen for example 36% H 2 , 41% N 2 , 20% CO
  • partial catalytic oxidation preferably operating under pressure (of the order of 10 bars) and at a temperature below 1100 ° C., preferably less than 1000 ° C.
  • the ratio of the volume flow rate of CH on the flow rate by volume of oxygen is between 1 and 2.5, preferably between 1.5 and 2.
  • the catalytic reactor 1 supplied with air and natural gas can be filled, totally or partially, with catalyst, for example the catalyst bed can be supported on a height of an inert material, such as ceramic beads, non-activated alumina ..., or sandwiched by these same materials.
  • an inert material such as ceramic beads, non-activated alumina ..., or sandwiched by these same materials.
  • the catalyst is composed of a metallic active phase deposited on a porous support.
  • the metal can be nickel or noble metals, such as platinum, rhodium, palladium or a combination thereof, and the support can be alumina, a zeolite, silica, an aluminosilicate or silicon carbide.
  • the separation unit 7 located downstream of the catalytic reactor 1 can be a PSA or TSA type unit, or a unit using polymer membranes.
  • soot present in the gas flow leaving the catalytic reactor 1 can be removed in 2 by a cyclone device, a mechanical filter, an electrostatic dust collector or the like.
  • the invention can be applied to produce pure hydrogen or to produce specific atmospheres for heat treatment of metals.
  • the separation unit is for example a PSA unit or a membrane system, as shown diagrammatically in FIG. 1 appended.
  • the PSA unit (at 3) is supplied (at 6) under pressure by the hydrogen-rich gas mixture, which enables it to produce pure hydrogen (at 4) under pressure.
  • the waste gas at pressure close to atmospheric pressure, rich in CO (27%) and still containing hydrogen (-15%), is sent (in 5) to a flare or a boiler burner to carry out heat cogeneration.
  • the productivity of the PSA system is increased and, therefore, for the same amount of gas produced, the volume of PSA adsorbers is decreased.
  • the pure hydrogen produced (in 4) is then sent under pressure to the customer's network.
  • the process of the invention therefore makes it possible to eliminate the conventional step called reaction of gas to water: CO + H 2 0 -> C0 2 + H 2
  • the hydrogen production yield is therefore less good, but in the As part of the production of hydrogen in small quantities, that is to say less than 300 Nm 3 / h, the problem of energy efficiency is no longer of primary importance. Indeed, in the price of gas produced, the share linked to investment becomes the most important. Therefore, simplifying the process, that is to say eliminating the “shift conversion” catalytic reactor and the demineralized water production unit, is more advantageous than increasing the production yield. hydrogen.
  • existing generators produce an atmosphere containing a molar fraction of water of less than 1%, or 10,000 times higher.
  • the regeneration of the adsorbers of the separation unit 7 can be carried out using nitrogen available on the site or with part of the product, or else another dry gas and slightly loaded with C0 2 present on the site.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention concerns a method for producing a gas mixture containing hydrogen and carbon monoxide, and optionally nitrogen, from at least a hydrocarbon such as methane, propane, butane or LPG or natural gas, which consists in performing a partial catalytic oxidation (1) of one or several hydrocarbons, at a temperature of 500 °C, at a pressure of 3 to 20 bars, in the presence of oxygen or a gas containing oxygen, such as air, to produce hydrogen and carbon monoxide; then in recuperating the gas mixture which can subsequently be purified or separated, by pressure swing adsorption, temperature swing adsorption of by permeation (3), to produce hydrogen having a purity of at least 80 % and a residue gas capable of supplying a cogeneration unit. In another embodiment, the gas mixture can subsequently be purified of its water vapour impurities and carbon dioxide to obtain a thermal treatment atmosphere containing hydrogen, carbon monoxide and nitrogen.

Description

PROCEDE DE PRODUCTION D ' HYDROGENE PAR OXYDATION PARTIELLE D ' HYDROCARBURES PROCESS FOR PRODUCING HYDROGEN BY PARTIAL OXIDATION OF HYDROCARBONS
La présente invention concerne un procédé de production d'un mélange gazeux contenant au moins de l'hydrogène (H2) et du monoxyde de carbone (CO) à partir d'au moins un hydrocarbure, dans lequel on opère une oxydation catalytique partielle d'au moins un hydrocarbure, en présence d'oxygène ou d'un gaz contenant de l'oxygène, pour produire de l'hydrogène et du monoxyde de carbone. L'hydrogène est un gaz largement utilisé notamment dans le domaine de la chimie.The present invention relates to a process for the production of a gaseous mixture containing at least hydrogen (H 2 ) and carbon monoxide (CO) from at least one hydrocarbon, in which a partial catalytic oxidation is carried out. at least one hydrocarbon, in the presence of oxygen or an oxygen-containing gas, to produce hydrogen and carbon monoxide. Hydrogen is a gas widely used in particular in the field of chemistry.
Ainsi, la production annuelle globale d'hydrogène est de l'ordre de 50 milliards de m3 dont 95 % sont utilisés en raffinage, en pétrochimie, pour la synthèse de méthanol (MeOH) et pour la production d'ammoniac (NH3). L'hydrogène marchand, c'est-à-dire la production non captive, ne représente donc que quelques pour cents de cette production globale.Thus, the annual global production of hydrogen is around 50 billion m 3 , 95% of which is used in refining, petrochemicals, for the synthesis of methanol (MeOH) and for the production of ammonia (NH 3 ) . Marketable hydrogen, i.e. non-captive production, therefore only represents a few percent of this total production.
Or, compte tenu des besoins croissants en hydrogène marchand, de l'ordre d'environ + 10 % par an, et des futurs besoins pressentis dans l'industrie en général, notamment en chimie, en pétrochimie, en métallurgie, en électronique, en chimie fine, dans la production d'énergie décentralisée, des transports propres et ncn polluants, en utilisant les piles à combustible, et compte tenu des problèmes soulevés par l'infrastructure de distribution de ce produit, en particulier son transport, son stockage et les problèmes de sécurité qui y sont liés, il apparaît de plus en plus nécessaire de disposer de sources de production directement sur le site ("on site") d'utilisation.However, given the growing needs for marketable hydrogen, of the order of approximately + 10% per year, and the future needs foreseen in industry in general, in particular in chemistry, petrochemistry, metallurgy, electronics, fine chemicals, in decentralized energy production, clean and ncn polluting transport, using fuel cells, and taking into account the problems raised by the distribution infrastructure of this product, in particular its transport, storage and related security problems, it seems more and more necessary to have production sources directly on the site ("on site") of use.
La production d'hydrogène en grande quantité se fait principalement chez les raffineurs et les grands chimistes par différentes méthodes connues, à savoir :The production of hydrogen in large quantities is mainly done by refiners and large chemists by various known methods, namely:
- par reformage à la vapeur d'eau des hydrocarbures d'origine pétrolière (naphta) ou du gaz naturel. C'est une réaction très endothermique, effectuée entre 800°C et 900°C avec un ou des catalyseurs et à haute pression, par exemple de l'ordre de 15 bars à 35 bars. Les brûleurs sont situés à l'extérieur des lits catalytiques et le mélange hydrocarbures/vapeur est préchauffé grâce à des échangeurs de chaleur qui utilisent les gaz chauds de combustion. Ce procédé permet d'atteindre des rapports de production H2/CO entre 3 et 4 suivant le débit de vapeur.- by steam reforming petroleum hydrocarbons (naphtha) or natural gas. It is a very endothermic reaction, carried out between 800 ° C and 900 ° C with one or more catalysts and at high pressure, by example of the order of 15 bars to 35 bars. The burners are located outside the catalytic beds and the hydrocarbon / steam mixture is preheated by means of heat exchangers which use the hot combustion gases. This process achieves H 2 / CO production ratios between 3 and 4 depending on the steam flow.
- par reformage mixte : c'est un procédé auto-thermique où l'énergie thermique nécessaire au reformage à la vapeur sur catalyseur est par exemple apportée par la combustion partielle de CH4 en C02 et H20. Par contre, le rapport H2/CO est plus faible que lors d'une production par reformage à la vapeur d'eau, c'est-à-dire de l'ordre de 2.2 à 2.5.- by mixed reforming: this is an auto-thermal process where the thermal energy necessary for steam reforming on a catalyst is for example provided by the partial combustion of CH 4 into C0 2 and H 2 0. On the other hand, the ratio H 2 / CO is lower than during production by steam reforming, that is to say on the order of 2.2 to 2.5.
- par oxydation partielle d'hydrocarbures. Ce procédé ne nécessite pas de catalyseur. La combustion est effectuée entre 1300°C et 1400CC avec peu ou sans vapeur. Ce procédé est exothermique mais produit moins d'hydrogène que les procédés précédents. De plus, il faut favoriser au maximum la réaction de production d'hydrogène par conversion du CO en présence de vapeur d'eau et sur catalyseur, selon la réaction (1 ) suivante :- by partial oxidation of hydrocarbons. This process does not require a catalyst. Combustion is carried out between 1300 ° C and 1400 C C with little or no steam. This process is exothermic but produces less hydrogen than the previous processes. In addition, the reaction to produce hydrogen by conversion of CO in the presence of water vapor and on the catalyst must be favored as much as possible, according to reaction (1) below:
CO + H20 -» C02 + H2 (1 )CO + H20 - »C02 + H2 (1)
De là, pour une production uniquement d'hydrogène, le reformage à la vapeur est le meilleur procédé actuel, en particulier lorsqu'il est associé à la réaction de conversion de gaz à l'eau et à un procédé PSA (Pressure Swing Adsorption = Adsorption à pression modulée) pour la purification de l'hydrogène ainsi produit. Le rendement énergétique d'un tel procédé est excellent, c'est-à-dire jusqu'à 85% pour de grosses installations en valorisant la vapeur fatale.From there, for a production only of hydrogen, steam reforming is the best current process, in particular when it is associated with the reaction of conversion of gas to water and with a PSA process (Pressure Swing Adsorption = Modulated pressure adsorption) for the purification of the hydrogen thus produced. The energy efficiency of such a process is excellent, that is to say up to 85% for large installations by upgrading the lethal vapor.
Outre les unités de production spécifique, l'hydrogène marchand, donc en quantité importante, provient également d'autres sources, à savoir :In addition to the specific production units, marketable hydrogen, therefore in significant quantity, also comes from other sources, namely:
- de la récupération de l'hydrogène produit dans des opérations de déshydrogénation en chimie et raffinage, par exemple par reformage et cracking catalytique ; - du détournement d'une partie de l'hydrogène produit chez les producteurs captifs quand il est en excès. Cependant, cette source tend à se tarir compte tenu des besoins croissants en hydrogène, d'une part, pour la désulfuration des charges pour satisfaire aux normes environnementales qui se mettent en place et, d'autre part, pour le traitement hydrogenant de charges de plus en plus lourdes.- the recovery of the hydrogen produced in dehydrogenation operations in chemistry and refining, for example by reforming and catalytic cracking; - the diversion of part of the hydrogen produced by captive producers when it is in excess. However, this source tends to dry up in view of the growing hydrogen needs, on the one hand, for the desulfurization of feedstocks to meet the environmental standards which are being set up and, on the other hand, for the hydrogenating treatment of feedstocks. heavier and heavier.
- de la production du coke en sidérurgie.- the production of coke in the steel industry.
- de l'électrolyse du chlorure de sodium (NaCI) où l'hydrogène est coproduit en même temps que le Cl2. Par ailleurs, il existe aussi de petites unités de production d'hydrogène faisant appel à la décomposition de molécules riches en atomes d'hydrogène, notamment par cracking thermique de NH3, par reforming catalytique de CH3OH ou par dissociation électrolytique de H20.- electrolysis of sodium chloride (NaCI) where hydrogen is co-produced at the same time as Cl 2 . In addition, there are also small hydrogen production units using the decomposition of molecules rich in hydrogen atoms, in particular by thermal cracking of NH 3 , by catalytic reforming of CH 3 OH or by electrolytic dissociation of H 2 0.
Cependant, la production d'hydrogène à partir de NH3 ou de CH3OH nécessite toujours une logistique de livraison de ces produits liquides.However, the production of hydrogen from NH 3 or CH 3 OH still requires logistics for the delivery of these liquid products.
De plus, l'ammoniac (NH3) est un polluant néfaste pour l'environnement (toxicité, odeur, ... ) et les réglementations sur ce produit deviennent de plus en plus sévères.In addition, ammonia (NH3) is a pollutant harmful to the environment (toxicity, odor, ...) and the regulations on this product are becoming more and more stringent.
En outre, le prix d'achat de ces produits connaît des variations importantes qui tendent à pénaliser la rentabilité globale des procédés, en particulier dans le cas du méthanol.In addition, the purchase price of these products experiences significant variations which tend to penalize the overall profitability of the processes, in particular in the case of methanol.
Par ailleurs, la production d'hydrogène par électrolyse consomme beaucoup d'énergie (de l'ordre de 5 kWh/ Nm3 de H2 produit) et dans les pays où le prix du courant n'est pas bon marché, cette solution n'est pas adaptée pour des débits supérieurs à 50 Nm3/h.Furthermore, the production of hydrogen by electrolysis consumes a lot of energy (of the order of 5 kWh / Nm 3 of H 2 produced) and in countries where the price of electricity is not cheap, this solution doesn 'is not suitable for flow rates above 50 Nm 3 / h.
Ces différents procédés de production d'hydrogène présentent donc de nombreux désavantages et aucun procédé de production actuel ne peut être considéré comme totalement satisfaisant du point de vue industriel.These different processes for producing hydrogen therefore have numerous disadvantages and no current production process can be considered as completely satisfactory from the industrial point of view.
Le problème qui se pose alors est de pouvoir proposer un procédé de production d'hydrogène amélioré par rapport aux procédés connus, c'est-à-dire qui soit de maintenance et de mise en œuvre aisées, d'investissement faible, qui utilise du gaz naturel ou du GPL pour la production d'hydrogène, et qui nécessite peut d'utilités : eau, vapeurThe problem which then arises is to be able to propose an improved hydrogen production process compared to known processes, that is to say which is easy to maintain and easy to implement, low investment, which uses natural gas or LPG for the production of hydrogen, and which requires few utilities: water, steam
En d'autres termes, la présente invention vise à proposer un procédé de production d'hydrogène gazeux :In other words, the present invention aims to propose a process for producing hydrogen gas:
- qui soit peu consommateur d'énergie pour entretenir la réaction de production d'hydrogène, c'est-à-dire, si possible, mettant en œuvre une réaction auto-thermique ;- which consumes little energy to maintain the hydrogen production reaction, that is to say, if possible, implementing an auto-thermal reaction;
- ayant un rendement suffisant de conversion de l'hydrocarbure en hydrogène ;- having a sufficient yield for converting the hydrocarbon into hydrogen;
- qui soit compact, d'investissement réduit et de simplicité d'entretien et d'utilisation ;- which is compact, of reduced investment and of simplicity of maintenance and use;
- qui autorise un démarrage automatique et un fonctionnement en toute sécurité, de préférence sans personnel sur place ; - permettant d'utiliser une source primaire d'hydrocarbures peu chère;- which authorizes automatic starting and safe operation, preferably without personnel on site; - allowing the use of an inexpensive primary source of hydrocarbons;
- qui soit adapté aux productions moyennes, c'est-à-dire de 50 Nm3/h à 300 Nm3/h.- which is suitable for medium productions, that is to say from 50 Nm 3 / h to 300 Nm 3 / h.
La solution apportée par l'invention est alors un procédé de production d'un mélange gazeux contenant au moins de l'hydrogène (H2) et du monoxyde de carbone (CO) à partir d'au moins un hydrocarbure choisi dans le groupe formé par le méthane, l'éthanε ou un mélange de méthane et d'éthaπe, ou un mélange de butane et de propane, dans lequel :The solution provided by the invention is then a process for producing a gaseous mixture containing at least hydrogen (H 2 ) and carbon monoxide (CO) from at least one hydrocarbon chosen from the group formed by methane, ethanε or a mixture of methane and ethaπe, or a mixture of butane and propane, in which:
(a) on opère une oxydation catalytique partielle d'au moins un hydrocarbure, à une température inférieure à 1200°C, à une pression de 3 à 20 bars, et en présence d'oxygène ou d'un gaz contenant de l'oxygène, pour produire de l'hydrogène (H2) et du monoxyde de carbone (CO) ;(a) a partial catalytic oxidation of at least one hydrocarbon is carried out, at a temperature below 1200 ° C., at a pressure of 3 to 20 bars, and in the presence of oxygen or of an oxygen-containing gas , to produce hydrogen (H 2 ) and carbon monoxide (CO);
(b) on récupère un mélange gazeux contenant au moins de l'hydrogène (H2) et du monoxyde de carbone (CO).(b) a gaseous mixture containing at least hydrogen (H 2 ) and carbon monoxide (CO) is recovered.
(c) on soumet le mélange gazeux obtenu à l'étape (b) à un refroidissement jusqu'à une température comprise entre -20°C et +80°C ;(c) the gas mixture obtained in step (b) is subjected to cooling to a temperature between -20 ° C and + 80 ° C;
(d) soumettre le mélange gazeux obtenu à l'étape (c) à une séparation de manière à produire un flux gazeux riche en hydrogène ; et dans lequel on obtient, à l'étape (b) et/ou à l'étape (c), un mélange gazeux à une pression de 3 à 20 bars.(d) subjecting the gas mixture obtained in step (c) to separation so as to produce a gas stream rich in hydrogen; and in which there is obtained, in step (b) and / or in step (c), a gaseous mixture at a pressure of 3 to 20 bars.
Selon le cas, le procédé de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :Depending on the case, the method of the invention may include one or more of the following characteristics:
- à l'étape (c), le refroidissement est opéré par échange gaz-gaz, gaz- eau ou refroidissement brutal à l'eau.- In step (c), the cooling is carried out by gas-gas, gas-water exchange or sudden cooling with water.
- l'hydrocarbure est le méthane ou le gaz naturel, de préférence le rapport de débits volumique C I02 est compris entre 1.5 et 2.1. - le mélange gazeux obtenu à l'étape (b) et/ou à l'étape (c) est à une pression de 4 à 15 bars.- The hydrocarbon is methane or natural gas, preferably the volume flow ratio C I0 2 is between 1.5 and 2.1. - The gas mixture obtained in step (b) and / or in step (c) is at a pressure of 4 to 15 bars.
- l'étape (a) est opérée à une pression de 4 à 15 bars.- step (a) is carried out at a pressure of 4 to 15 bars.
- le gaz contenant de l'oxygène est un mélange gazeux contenant de l'azote et de l'oxygène, de préférence de l'air. - le catalyseur est formé d'au moins un métal déposé sur un support inerte, de préférence le métal est le nickel, le rhodium, le platine et/ou le palladium ou un alliage contenant au moins un de ces métaux.- The oxygen-containing gas is a gas mixture containing nitrogen and oxygen, preferably air. - The catalyst is formed of at least one metal deposited on an inert support, preferably the metal is nickel, rhodium, platinum and / or palladium or an alloy containing at least one of these metals.
- le mélange gazeux obtenu à l'étape (b) contient approximativement 30 à 40% (en vol. ) d'hydrogène, 15 à 25% de CO et le reste étant de l'azote et éventuellement des traces de C02, H20 ou d'autres impuretés inévitables, de préférence le mélange gazeux obtenu à l'étape (b) contient approximativement 31 à 34% (en vol. ) d'hydrogène, 17 à 21 % de CO et le reste étant de l'azote et éventuellement des traces de C02, H20 ou d'autres impuretés inévitables- the gas mixture obtained in step (b) contains approximately 30 to 40% (in vol.) of hydrogen, 15 to 25% of CO and the remainder being nitrogen and possibly traces of C0 2 , H 2 0 or other unavoidable impurities, preferably the gas mixture obtained in step (b) contains approximately 31 to 34% (by vol.) hydrogen, 17-21% CO and the remainder of the nitrogen and possibly traces of C0 2 , H 2 0 or other unavoidable impurities
- l'étape (a) est opérée dans au moins un réacteur endothermique. - l'étape (a) est opérée à une température comprise entre 600°C et- Step (a) is carried out in at least one endothermic reactor. - step (a) is carried out at a temperature between 600 ° C and
1090X, de préférence de 900 à 1000°C.1090X, preferably from 900 to 1000 ° C.
- à l'étape (d), la séparation permet de produire un flux gazeux riche en hydrogène contenant au moins 80% d'hydrogène, de préférence de 99.9 % à 99.999999 % en volume d'hydrogène. - la séparation opérée à l'étape (d) est réalisée par mise en œuvre d'un procédé PSA, d'un procédé TSA ou d'une séparation par perméation membranaire utilisant un ou plusieurs modules membranaire générant, d'une part, ledit flux gazeux riche en hydrogène et, d'autre part, un flux de gaz- déchet, de préférence un procédé PSA pour obtenir de l'hydrogène pur.- In step (d), the separation makes it possible to produce a gas stream rich in hydrogen containing at least 80% of hydrogen, preferably from 99.9% to 99.999999% by volume of hydrogen. the separation carried out in step (d) is carried out by implementing a PSA process, a TSA process or a separation by permeation membrane using one or more membrane modules generating, on the one hand, said hydrogen-rich gas flow and, on the other hand, a gas-waste stream, preferably a PSA process for obtaining pure hydrogen.
- le flux de gaz-déchet est envoyé vers une unité de cogénération servant à produire de l'électricité, de préférence vers une chaudière.- the waste gas stream is sent to a cogeneration unit used to produce electricity, preferably to a boiler.
- il comporte l'étape supplémentaire de :- it includes the additional step of:
(e) soumettre le mélange gazeux obtenu à l'étape (b) à une séparation de manière à éliminer au moins une partie des impuretés dioxyde de carbone et/ou vapeur d'eau éventuellement présentes, et produire ainsi une atmosphère gazeuse ayant des teneurs contrôlées en hydrogène, en monoxyde de carbone et en azote.(e) subjecting the gas mixture obtained in step (b) to a separation so as to remove at least some of the carbon dioxide and / or water vapor impurities which may be present, and thus produce a gaseous atmosphere having contents controlled in hydrogen, carbon monoxide and nitrogen.
- l'atmosphère gazeuse ayant des teneurs contrôlées en hydrogène, en monoxyde de carbone et en azote produite est utilisée dans une opération de traitement thermique des métaux. - la séparation opérée à l'étape (d) est réalisée par mise en œuvre d'un procédé PSA ou d'un procédé TSA mettant en œuvre au moins deux adsorbeurs fonctionnant en alternance, au moins l'un des adsorbeurs étant en phase de régénération pendant qu'au moins un autre des adsorbeurs est en phase de production dudit flux gazeux riche en hydrogène. - la séparation opérée à l'étape (d) est réalisée par perméation membranaire utilisant un ou plusieurs modules membranaire générant, d'une part, ledit flux gazeux riche en hydrogène et, d'autre part, un flux de gaz-déchet contenant principalement de l'azote et du monoxyde de carbone, et éventuellement de l'hydrogène résiduaire.- The gaseous atmosphere having controlled contents of hydrogen, carbon monoxide and nitrogen produced is used in a heat treatment operation of metals. the separation carried out in step (d) is carried out by implementing a PSA process or a TSA process using at least two adsorbers operating alternately, at least one of the adsorbers being in the phase of regeneration while at least one other of the adsorbers is in the production phase of said gas stream rich in hydrogen. the separation carried out in step (d) is carried out by membrane permeation using one or more membrane modules generating, on the one hand, said gaseous stream rich in hydrogen and, on the other hand, a stream of gas-waste containing mainly nitrogen and carbon monoxide, and possibly residual hydrogen.
Le principe de base de la présente invention est d'effectuer une oxydation partielle du méthane ou de GPL (habituellement, le gaz naturel contient essentiellement du CH4, et des % de C02, N2 et hydrocarbures plus lourds : propane, butane. Dans le cadre de la présente invention, on utilise du gaz naturel ou du GPL, mais du point de vue chimique ce sont bien les molécules CH4, propane et butane qui sont oxydées partiellement) afin d'obtenir un mélange hydrogène / monoxyde de carbone suivant la réaction (2) suivante :The basic principle of the present invention is to carry out a partial oxidation of methane or LPG (usually, natural gas contains essentially CH4, and% C0 2 , N 2 and heavier hydrocarbons: propane, butane. in the context of the present invention, natural gas or LPG is used, but from the chemical point of view it is indeed the molecules CH4, propane and butane which are partially oxidized) in order to obtain a hydrogen / carbon monoxide mixture according to the reaction (2) next :
CH4 + 1/2 02 -» CO + 2H2 (2)CH4 + 1/2 02 - »CO + 2H2 (2)
Du point de vu de la production d'hydrogène, cette réaction conduit à la formation de deux molécules d'hydrogène pour une molécule de méthane.From the point of view of hydrogen production, this reaction leads to the formation of two molecules of hydrogen for a molecule of methane.
La réaction (2) est exothermique mais l'enthalpie de la réaction est insuffisante pour atteindre des niveaux de température élevée, par exemple de 1300°C à 1500°C.The reaction (2) is exothermic but the enthalpy of the reaction is insufficient to reach high temperature levels, for example from 1300 ° C to 1500 ° C.
Dans les procédés classiques de combustion, c'est-à-dire sans catalyseur, il est nécessaire de brûler une partie du combustible.In conventional combustion processes, that is to say without a catalyst, it is necessary to burn part of the fuel.
Or, selon la solution de la présente invention, le principe est d'utiliser la combustion en milieu catalytique pour effectuer l'oxydation partielle du mélange CH4 / V-i 02 en H2 et CO à des températures plus faibles, typiquement de 700 à 1 100°C. En effet, l'oxydation partielle par catalyse présente au moins les avantages suivants :However, according to the solution of the present invention, the principle is to use combustion in a catalytic medium to effect the partial oxidation of the CH 4 / Vi 0 2 mixture into H 2 and CO at lower temperatures, typically from 700 to 1100 ° C. Indeed, partial oxidation by catalysis has at least the following advantages:
- le rendement d'extraction de l'hydrogène est proche de 100% car le rapport du volume de H2 produit au volume de CH4 consommé est proche de 2;- The hydrogen extraction yield is close to 100% because the ratio of the volume of H 2 produced to the volume of CH 4 consumed is close to 2;
- elle ne nécessite pas de gestion de la vapeur d'eau à la différence des reformeurs à la vapeur ;- it does not require water vapor management unlike steam reformers;
- elle peut s'effectuer avec de l'air, avec un ratio 02/CH4 proche de la stoechiométrie de la réaction d'oxydation partielle et donc avec un débit d'air à comprimer minimal ; et- It can be carried out with air, with a 0 2 / CH 4 ratio close to the stoichiometry of the partial oxidation reaction and therefore with a minimum flow of air to be compressed; and
- elle ne nécessite pas d'appoint de chaleur par brûleur comme dans le cas des reformeurs à la vapeur.- it does not require additional heat from a burner as in the case of steam reformers.
Comme schématisé sur la figure 1 , le principe de l'invention consiste à produire un mélange gazeuse riche en hydrogène (30 à 40% H2, environ 20% CO et le reste étant essentiellement N2 et quelques % de C02, H20 et autres impuretés inévitables ) par oxydation partielle catalytique d'hydrocarbures, tel le méthane ou le gaz naturel.As shown diagrammatically in FIG. 1, the principle of the invention consists in producing a gaseous mixture rich in hydrogen (30 to 40% H 2 , approximately 20% CO and the remainder being essentially N 2 and a few% of C0 2 , H 2 0 and other unavoidable impurities) by partial catalytic oxidation of hydrocarbons, such as methane or natural gas.
Le mélange gazeux produit est ensuite refroidi à l'aide d'un échangeur gaz-gaz ou gaz-eau, ou bien par refroidissement "brutal" ou "flash" (quench cooling en anglais) à l'eau et est envoyé subséquemment dans une unité de séparation par adsorption (PSA), après une étape éventuelle d'élimination des suies ou autres impuretés générées. Si le mélange est généré sous pression au niveau du réacteur d'oxydation partielle catalytique, il n'est pas utile d'utiliser un compresseur pour alimenter l'unité PSA.The gas mixture produced is then cooled using an exchanger gas-gas or gas-water, or by "brutal" or "flash" cooling (quench cooling in English) with water and is sent subsequently to an adsorption separation unit (PSA), after a possible stage of elimination of soot or other impurities generated. If the mixture is generated under pressure at the level of the catalytic partial oxidation reactor, it is not useful to use a compressor to supply the PSA unit.
Le procédé PSA est alors alimenté sous pression par le mélange riche en hydrogène et il produit de l'hydrogène pur (pureté > 99.9 %) sous pression. Le gaz résiduaire (off gas) du PSA, à pression proche de la pression atmosphérique ou supérieure si l'on souhaite valoriser le gaz résiduaire, par exemple une pression de 1.5 bar, riche en CO (env. 28%) et contenant encore de l'hydrogène (env. 15%), est envoyé dans une torchère ou bien un brûleur de chaudière pour effectuer de la co-génération de chaleur. L'encombrement de vannes de l'unité PSA est rendu le plus compact possible afin de minimiser l'investissement en matériel, de préférence on utilise une ou des vannes rotatives.The PSA process is then supplied under pressure by the mixture rich in hydrogen and it produces pure hydrogen (purity> 99.9%) under pressure. The waste gas (off gas) from the PSA, at pressure close to atmospheric pressure or higher if one wishes to recover the waste gas, for example a pressure of 1.5 bar, rich in CO (approx. 28%) and still containing the hydrogen (approx. 15%) is sent to a flare or a boiler burner to carry out co-generation of heat. The size of the valves of the PSA unit is made as compact as possible in order to minimize the investment in material, preferably one or more rotary valves are used.
Cette technologie permet également de réduire le temps de cycle du procédé PSA, typiquement les cycles ont une durée de 0.1 à 3 minutes. Ainsi, la productivité du système est accrue et, par conséquent, le volume des récipients contenant les adsorbants, pour une même quantité de gaz produit, est diminué.This technology also makes it possible to reduce the cycle time of the PSA process, typically the cycles have a duration of 0.1 to 3 minutes. Thus, the productivity of the system is increased and, consequently, the volume of the receptacles containing the adsorbents, for the same quantity of gas produced, is reduced.
L'hydrogène pur produit est ensuite envoyé sous pression dans le réseau du client. Le procédé de l'invention élimine donc l'étape de réaction dite de gaz à l'eau : CO + H20 -» C02 + H2.The pure hydrogen produced is then sent under pressure to the customer's network. The process of the invention therefore eliminates the so-called gas to water reaction step: CO + H 2 0 - »C0 2 + H 2 .
Le rendement de production d'hydrogène est alors moins bon mais, dans le cadre de la production d'hydrogène en petite quantité (moins de 300 m3/h), le rendement énergétique n'est plus primordial. Dans le prix du gaz produit, la part liée à l'investissement devient la plus importante. De là, le fait de simplifier le procédé (réacteur catalytique de conversion de gaz à l'eau, unité de production d'eau déminéralisée) est plus intéressant pour produire une molécule d'hydrogène par molécule de CH4 consommé.The hydrogen production yield is then less good but, in the context of the production of hydrogen in small quantities (less than 300 m3 / h), the energy yield is no longer essential. In the price of gas produced, the share linked to investment becomes the most important. From there, simplifying the process (catalytic reactor for converting gas to water, unit for producing demineralized water) is more advantageous for producing one molecule of hydrogen per molecule of CH 4 consumed.
De plus, un autre élément extrêmement important dans le cas de la production d'hydrogène sur site, est la maintenance et la simplicité d'utilisation car la simplification du procédé permet de diminuer les frais de maintenance et d'opération de l'unité.In addition, another extremely important element in the case of on-site hydrogen production is maintenance and simplicity of use because the simplification of the process makes it possible to reduce the maintenance and operating costs of the unit.
Selon un mode particulièrement préféré de l'invention, l'oxydation partielle catalytique est effectuée à l'aide d'un réacteur mettant en œuvre le catalyseur en lit fixe avec écoulement axial ou radial et opérant sous pression élevée, par exemple une pression de l'ordre de 5 à 20 bars et ce, contrairement aux générateurs dits "endothermiques", usuellement utilisés dans diverses applications de traitement thermique, qui opèrent généralement à des pressions plus basses, c'est-à-dire typiquement inférieure à 1.5 bars. La figure 2 ci-jointe représente une évaluation, à partir de calculs basés sur l'équilibre thermodynamique, de la composition de l'atmosphère gazeuse produite par un procédé selon l'invention qui montre clairement que les taux de conversion sont supérieurs à 90%, et la figure 3 représente, quant à elle, une évaluation analogue de l'influence de la richesse du mélange gaz naturel/air sur la formation de suies et sur le rendement en hydrogène afin de maximiser la quantité d'hydrogène produite par rapport à la quantité de gaz naturel consommée.According to a particularly preferred embodiment of the invention, the partial catalytic oxidation is carried out using a reactor using the catalyst in a fixed bed with axial or radial flow and operating under high pressure, for example a pressure of 1 'order of 5 to 20 bars and this, unlike so-called "endothermic" generators, usually used in various heat treatment applications, which generally operate at lower pressures, that is to say typically less than 1.5 bars. The attached FIG. 2 represents an evaluation, from calculations based on the thermodynamic equilibrium, of the composition of the gaseous atmosphere produced by a process according to the invention which clearly shows that the conversion rates are greater than 90% , and FIG. 3 represents, for its part, a similar evaluation of the influence of the richness of the natural gas / air mixture on the formation of soot and on the hydrogen yield in order to maximize the quantity of hydrogen produced compared to the amount of natural gas consumed.
Plus précisément, la figure 2 montre, d'une part, l'évolution du rapport de H2 produit par Nm3 de gaz naturel consommé en fonction de la température, dans le cas d'une réaction mettant en œuvre 100 Nm3/h d'air et, d'autre part, l'évolution de la composition molaire en carbone solide dans l'atmosphère produite en fonction de la température.More precisely, FIG. 2 shows, on the one hand, the evolution of the ratio of H 2 produced by Nm 3 of natural gas consumed as a function of the temperature, in the case of a reaction using 100 Nm 3 / h of air and, on the other hand, the evolution of the molar composition of solid carbon in the atmosphere produced as a function of the temperature.
Il apparaît que, pour chaque température étudiée, un maximum de rendement en hydrogène est situé dans le domaine des faibles richesses en gaz naturel du mélange gaz naturel/air.It appears that, for each temperature studied, a maximum hydrogen yield is located in the area of low natural gas richness of the natural gas / air mixture.
Ce maximum est d'autant plus important que la température est élevée et correspond toujours à une composition du mélange gaz naturel/air pour laquelle la quantité de carbone solide produite est très faible, voire négligeable.This maximum is all the more important as the temperature is high and always corresponds to a composition of the natural gas / air mixture for which the quantity of solid carbon produced is very low, even negligible.
De plus, la réaction CH4 + 1/2 02 -> CO + 2H2 se faisant avec une augmentation du nombre de moles, elle est favorisée de façon thermodynamique par une diminution de la pression totale.In addition, the reaction CH4 + 1/2 02 -> CO + 2H2 taking place with an increase in the number of moles, it is favored thermodynamically by a decrease in the total pressure.
Cette influence est mise en évidence sur la figure 3 qui représente l'évolution de la teneur en hydrogène dans l'atmosphère produite en fonction du débit de gaz naturel, pour 2 pressions et 3 températures différentes de mise en oeuvre.This influence is highlighted in FIG. 3 which represents the evolution of the hydrogen content in the atmosphere produced as a function of the flow rate of natural gas, for 2 pressures and 3 different temperatures of implementation.
On remarque aussi que plus la température est élevée, plus l'écart entre la composition en hydrogène obtenue à 10 bars et à 6 bars se réduit.It is also noted that the higher the temperature, the smaller the difference between the hydrogen composition obtained at 10 bars and at 6 bars.
En d'autres termes, le principe de l'invention repose donc sur la production d'un mélange gazeux riche en hydrogène (par exemple 36% H2, 41 % N2, 20% CO) par oxydation partielle catalytique opérant preferentiellement sous pression (de l'ordre de 10 bars) et à une température inférieure à 1100°C, preferentiellement à moins de 1000°C.In other words, the principle of the invention is therefore based on the production of a gaseous mixture rich in hydrogen (for example 36% H 2 , 41% N 2 , 20% CO) by partial catalytic oxidation preferably operating under pressure (of the order of 10 bars) and at a temperature below 1100 ° C., preferably less than 1000 ° C.
Dans cette optique, les gammes suivantes peuvent être envisagées pour mettre en œuvre le procédé de l'invention : - pression : 5 à 20 bars absolus.With this in mind, the following ranges can be envisaged for implementing the method of the invention: - pressure: 5 to 20 bars absolute.
- température : 650 à 1000°C, sachant que les générateurs endothermiques classiques du commerce opèrent à plus haute température (>1 100°C).- temperature: 650 to 1000 ° C, knowing that conventional commercial endothermic generators operate at higher temperature (> 1100 ° C).
- richesse du mélange CH4 / 02 : le rapport du débit en volume de CH sur le débit en volume d'oxygène est compris entre 1 et 2.5, preferentiellement entre 1.5 et 2.- richness of the mixture of CH 4/0 2: the ratio of the volume flow rate of CH on the flow rate by volume of oxygen is between 1 and 2.5, preferably between 1.5 and 2.
Comme représenté sur les figures 1 et 4, le réacteur catalytique 1 alimenté en air et en gaz naturel, peut être rempli, totalement ou partiellement, de catalyseur, par exemple le lit de catalyseur peut être supporté sur une hauteur d'un matériau inerte, telles des billes de céramique, d'alumine non activée... , ou pris en sandwich par ces mêmes matériaux.As shown in FIGS. 1 and 4, the catalytic reactor 1 supplied with air and natural gas can be filled, totally or partially, with catalyst, for example the catalyst bed can be supported on a height of an inert material, such as ceramic beads, non-activated alumina ..., or sandwiched by these same materials.
Le catalyseur est composé d'une phase active métallique déposée sur un support poreux. Le métal peut être du nickel ou des métaux nobles, tel que le platine, le rhodium, le palladium ou une combinaison de ceux-ci, et le support peut être de l'alumine, une zéolite, de la silice, un aluminosilicate ou du carbure de silicium. L'unité de séparation 7 située en aval du réacteur catalytique 1 peut être une unité de type PSA ou TSA, ou une unité mettant en oeuvre des membranes polymères.The catalyst is composed of a metallic active phase deposited on a porous support. The metal can be nickel or noble metals, such as platinum, rhodium, palladium or a combination thereof, and the support can be alumina, a zeolite, silica, an aluminosilicate or silicon carbide. The separation unit 7 located downstream of the catalytic reactor 1 can be a PSA or TSA type unit, or a unit using polymer membranes.
En outre, les suies présentes dans le flux de gaz sortant du réacteur 1 catalytique peuvent être éliminées en 2 par un dispositif cyclone, un filtre mécanique, un dépoussiéreur électrostatique ou un dispositif analogue.In addition, the soot present in the gas flow leaving the catalytic reactor 1 can be removed in 2 by a cyclone device, a mechanical filter, an electrostatic dust collector or the like.
L'invention peut être appliquée pour produire de l'hydrogène pur ou pour produire des atmosphères spécifiques de traitement thermique des métaux.The invention can be applied to produce pure hydrogen or to produce specific atmospheres for heat treatment of metals.
Ainsi, pour produire de l'hydrogène pur, l'unité de séparation est par exemple une unité PSA ou un système à membrane, comme schématisé sur la figure 1 ci-annexée.Thus, to produce pure hydrogen, the separation unit is for example a PSA unit or a membrane system, as shown diagrammatically in FIG. 1 appended.
L'unité PSA (en 3) est alimentée (en 6) sous pression par le mélange gazeux riche en hydrogène, ce qui lui permet de produit de l'hydrogène pur (en 4) sous pression.The PSA unit (at 3) is supplied (at 6) under pressure by the hydrogen-rich gas mixture, which enables it to produce pure hydrogen (at 4) under pressure.
Le gaz résiduaire, à pression proche de la pression atmosphérique, riche en CO (27 %) et contenant encore de l'hydrogène (-15 %), est envoyé (en 5) dans une torchère ou bien un brûleur de chaudière pour effectuer de la cogénération de chaleur.The waste gas, at pressure close to atmospheric pressure, rich in CO (27%) and still containing hydrogen (-15%), is sent (in 5) to a flare or a boiler burner to carry out heat cogeneration.
En travaillant avec des cycles d'adsorption courts, typiquement de l'ordre de 60 secondes ou moins, la productivité du système PSA est accrue et, par conséquent, pour une même quantité de gaz produit, le volume des adsorbeurs du PSA est diminué.By working with short adsorption cycles, typically on the order of 60 seconds or less, the productivity of the PSA system is increased and, therefore, for the same amount of gas produced, the volume of PSA adsorbers is decreased.
L'hydrogène pur produit (en 4) est ensuite envoyé sous pression dans le réseau du client.The pure hydrogen produced (in 4) is then sent under pressure to the customer's network.
Le procédé de l'invention permet donc d'éliminer l'étape classique de réaction dite de gaz à l'eau : CO + H20 -> C02 + H2 The process of the invention therefore makes it possible to eliminate the conventional step called reaction of gas to water: CO + H 2 0 -> C0 2 + H 2
Le rendement de production d'hydrogène est donc moins bon, mais dans le cadre de la production d'hydrogène en petite quantité, c'est-à-dire moins de 300 Nm3/h, la problématique du rendement énergétique n'est plus primordiale. En effet, dans le prix du gaz produit, la part liée à l'investissement devient la plus importante. Dès lors, le fait de simplifier le procédé, c'est-à-dire d'éliminer le réacteur catalytique de « shift conversion » et l'unité de production d'eau déminéralisée, est plus intéressant que d'accroître le rendement de production d'hydrogène.The hydrogen production yield is therefore less good, but in the As part of the production of hydrogen in small quantities, that is to say less than 300 Nm 3 / h, the problem of energy efficiency is no longer of primary importance. Indeed, in the price of gas produced, the share linked to investment becomes the most important. Therefore, simplifying the process, that is to say eliminating the “shift conversion” catalytic reactor and the demineralized water production unit, is more advantageous than increasing the production yield. hydrogen.
De plus, un second élément extrêmement important dans le cas de la production d'hydrogène « sur site » est la maintenance et la simplicité d'utilisation. En effet la simplification d'un procédé permet de diminuer les frais de maintenance et d'opération de l'unité car ces frais sont du même ordre que ceux liés à la consommation de gaz naturel ou à l'amortissement du matériel.In addition, a second extremely important element in the case of hydrogen production "on site" is maintenance and ease of use. Indeed, the simplification of a process makes it possible to reduce the maintenance and operating costs of the unit because these costs are of the same order as those linked to the consumption of natural gas or to the depreciation of the equipment.
Par ailleurs, comme schématisé sur la figure 4 ci-aππexée, pour produire des atmosphères spécifiques de traitement thermique, l'unité de séparation 7 est une unité TSA (Température Swing Adsorption = Adsorption à Température Modulée) ou PSA (Pressure Swing Adsorption = Adsorption à Pression Modulée) alimentée (en 6) avec du gaz à une pression de l'ordre de 10 bars et comprenant de 1 à n lits, qui comportent des adsorbants (alumine activée, zéolite, charbon actif), laquelle produit (en 8) un mélange réducteur CO/H2 exempt d'espèces oxydantes (H20, C02), celles-ci étant arrêtées par l'unité de séparation 7 qui permet d'éliminer la vapeur d'eau et le dioxyde de carbone contenus dans le flux gazeux (teneurs <1 ppm en eau). A titre de comparaison, les générateurs existants produisent une atmosphère contenant une fraction molaire en eau inférieure à 1 %, soit 10 000 fois plus élevée.Furthermore, as shown diagrammatically in FIG. 4 above, to produce specific atmospheres for heat treatment, the separation unit 7 is a TSA (Temperature Swing Adsorption = Pulsed Temperature) or PSA (Pressure Swing Adsorption = Adsorption) unit. at Modulated Pressure) supplied (in 6) with gas at a pressure of the order of 10 bars and comprising from 1 to n beds, which contain adsorbents (activated alumina, zeolite, activated carbon), which product (in 8) a CO / H 2 reducing mixture free of oxidizing species (H 2 0, C0 2 ), these being stopped by the separation unit 7 which makes it possible to remove the water vapor and the carbon dioxide contained in the gas flow (contents <1 ppm in water). By way of comparison, existing generators produce an atmosphere containing a molar fraction of water of less than 1%, or 10,000 times higher.
La régénération des adsorbeurs de l'unité de séparation 7 peut s'effectuer à l'aide d'azote disponible sur le site ou avec une partie du produit, ou bien encore d'un autre gaz sec et faiblement chargé en C02 présent sur le site. The regeneration of the adsorbers of the separation unit 7 can be carried out using nitrogen available on the site or with part of the product, or else another dry gas and slightly loaded with C0 2 present on the site.

Claims

Revendications claims
1. Procédé de production d'un mélange gazeux contenant au moins de l'hydrogène (H2) et du monoxyde de carbone (CO) à partir d'au moins un hydrocarbure choisi dans le groupe formé par le méthane, l'éthane ou un mélange de méthane et d'éthaπe, ou un mélange de butane et de propane, dans lequel :1. Process for producing a gaseous mixture containing at least hydrogen (H 2 ) and carbon monoxide (CO) from at least one hydrocarbon chosen from the group formed by methane, ethane or a mixture of methane and ethaπe, or a mixture of butane and propane, in which:
(a) on opère une oxydation catalytique partielle d'au moins un hydrocarbure, à une température inférieure à 1200°C, à une pression de 3 à 20 bars, et en présence d'oxygène ou d'un gaz contenant de l'oxygène, pour produire de l'hydrogène (H2) et du monoxyde de carbone (CO) ;(a) a partial catalytic oxidation of at least one hydrocarbon is carried out, at a temperature below 1200 ° C., at a pressure of 3 to 20 bars, and in the presence of oxygen or of an oxygen-containing gas , to produce hydrogen (H 2 ) and carbon monoxide (CO);
(b) on récupère un mélange gazeux contenant au moins de l'hydrogène (H2) et du monoxyde de carbone (CO).(b) a gaseous mixture containing at least hydrogen (H 2 ) and carbon monoxide (CO) is recovered.
(c) on soumet le mélange gazeux obtenu à l'étape (b) à un refroidissement jusqu'à une température comprise entre -20°C et +80°C ;(c) the gas mixture obtained in step (b) is subjected to cooling to a temperature between -20 ° C and + 80 ° C;
(d) soumettre le mélange gazeux obtenu à l'étape (c) à une séparation de manière à produire un flux gazeux riche en hydrogène ; et dans lequel on obtient, à l'étape (b) et/ou à l'étape (c), un mélange gazeux à une pression de 3 à 20 bars. (d) subjecting the gas mixture obtained in step (c) to a separation so as to produce a gas stream rich in hydrogen; and in which there is obtained, in step (b) and / or in step (c), a gaseous mixture at a pressure of 3 to 20 bars.
2. Procédé selon la revendication 1 , caractérisé en ce qu'à l'étape (c), le refroidissement est opéré par échange gaz-gaz, gaz-eau ou refroidissement brutal à l'eau.2. Method according to claim 1, characterized in that in step (c), the cooling is carried out by gas-gas, gas-water exchange or sudden cooling with water.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'hydrocarbure est le méthane ou le gaz naturel, de préférence le rapport de débits volumique CH4/02 est compris entre 1.5 et 2.1.3. A method according to one of claims 1 or 2, characterized in that the hydrocarbon is methane or natural gas, preferably the ratio of volume flow rates of CH 4/0 2 is between 1.5 and 2.1.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le mélange gazeux obtenu à l'étape (b) et/ou à l'étape (c) est à une pression de 4 à 20 bars.4. Method according to one of claims 1 to 3, characterized in that the gas mixture obtained in step (b) and / or in step (c) is at a pressure of 4 to 20 bars.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'étape (a) est opérée à une pression de 3 à 15 bars. 5. Method according to one of claims 1 to 4, characterized in that step (a) is carried out at a pressure of 3 to 15 bars.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le gaz contenant de l'oxygène est un mélange gazeux contenant de l'azote et de l'oxygène, de préférence de l'air.6. Method according to one of claims 1 to 5, characterized in that the oxygen-containing gas is a gaseous mixture containing nitrogen and oxygen, preferably air.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le catalyseur est formé d'au moins un métal déposé sur un support inerte, de préférence le métal est le nickel, le rhodium, le platine et/ou le palladium ou un alliage contenant au moins un de ces métaux.7. Method according to one of claims 1 to 6, characterized in that the catalyst is formed from at least one metal deposited on an inert support, preferably the metal is nickel, rhodium, platinum and / or palladium or an alloy containing at least one of these metals.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le mélange gazeux obtenu à l'étape (b) contient approximativement 30 à 40% (en vol. ) d'hydrogène, 15 à 25% de CO et le reste étant de l'azote et éventuellement des traces de C02, H20 ou d'autres impuretés inévitables, de préférence le mélange gazeux obtenu à l'étape (b) contient approximativement 31 à 34% (en vol. ) d'hydrogène, 17 à 21 % de CO et le reste étant de l'azote et éventuellement des traces de C02, H20 ou d'autres impuretés inévitables8. Method according to one of claims 1 to 7, characterized in that the gas mixture obtained in step (b) contains approximately 30 to 40% (in vol.) Of hydrogen, 15 to 25% of CO and the remainder being nitrogen and possibly traces of C0 2 , H 2 0 or other unavoidable impurities, preferably the gas mixture obtained in step (b) contains approximately 31 to 34% (in vol.) d hydrogen, 17 to 21% CO and the rest being nitrogen and possibly traces of C0 2 , H 2 0 or other unavoidable impurities
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que l'étape (a) est opérée dans au moins un réacteur endothermique.9. Method according to one of claims 1 to 8, characterized in that step (a) is carried out in at least one endothermic reactor.
10. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que l'étape (a) est opérée à une température comprise entre 600°C et 1090°C, de préférence de 900 à 1000°C. 10. Method according to one of claims 1 to 8, characterized in that step (a) is carried out at a temperature between 600 ° C and 1090 ° C, preferably from 900 to 1000 ° C.
11. Procédé selon l'une des revendications 1 à 10, caractérisé en qu'à l'étape (d), la séparation permet de produire un flux gazeux riche en hydrogène contenant au moins 80% d'hydrogène, de préférence de 99.9 % à 99.999999 % en volume d'hydrogène.11. Method according to one of claims 1 to 10, characterized in that in step (d), the separation makes it possible to produce a gas stream rich in hydrogen containing at least 80% hydrogen, preferably 99.9%. 99.999999% by volume of hydrogen.
12. Procédé selon l'une des revendications 1 à 11 , caractérisé en ce que la séparation opérée à l'étape (d) est réalisée par mise en œuvre d'un procédé PSA, d'un procédé TSA ou d'une séparation par perméation membranaire utilisant un ou plusieurs modules membranaire générant, d'une part, ledit flux gazeux riche en hydrogène et, d'autre part, un flux de gaz- déchet, de préférence un procédé PSA pour obtenir de l'hydrogène pur. 12. Method according to one of claims 1 to 11, characterized in that the separation carried out in step (d) is carried out by implementing a PSA process, a TSA process or a separation by membrane permeation using one or more membrane modules generating, on the one hand, said hydrogen-rich gas flow and, on the other hand, a gas-waste stream, preferably a PSA process for obtaining pure hydrogen.
13. Procédé selon l'une des revendications 1 à 11 , caractérisé en ce que le flux de gaz-déchet est envoyé vers une unité de cogénération servant à produire de l'électricité, de préférence vers une chaudière.13. Method according to one of claims 1 to 11, characterized in that the gas-waste stream is sent to a cogeneration unit used to generate electricity, preferably to a boiler.
14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce qu'il comporte l'étape supplémentaire de :14. Method according to one of claims 1 to 13, characterized in that it comprises the additional step of:
(e) soumettre le mélange gazeux obtenu à l'étape (b) à une séparation de manière à éliminer au moins une partie des impuretés dioxyde de carbone et/ou vapeur d'eau éventuellement présentes, et produire ainsi une atmosphère gazeuse ayant des teneurs contrôlées en hydrogène, en monoxyde de carbone et en azote.(e) subjecting the gas mixture obtained in step (b) to a separation so as to remove at least some of the carbon dioxide and / or water vapor impurities which may be present, and thus produce a gaseous atmosphere having contents controlled in hydrogen, carbon monoxide and nitrogen.
15. Procédé selon la revendication 14, caractérisé en ce que l'atmosphère gazeuse ayant des teneurs contrôlées en hydrogène, en monoxyde de carbone et en azote produite est utilisée dans une opération de traitement thermique des métaux.15. The method of claim 14, characterized in that the gaseous atmosphere having controlled contents of hydrogen, carbon monoxide and nitrogen produced is used in a heat treatment operation of metals.
16. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que la séparation opérée à l'étape (d) est réalisée par mise en œuvre d'un procédé PSA ou d'un procédé TSA mettant en œuvre au moins deux adsorbeurs fonctionnant en alternance, au moins l'un des adsorbeurs étant en phase de régénération pendant qu'au moins un autre des adsorbeurs est en phase de production dudit flux gazeux riche en hydrogène.16. Method according to one of claims 1 to 15, characterized in that the separation carried out in step (d) is carried out by implementing a PSA process or a TSA process using at least two adsorbers operating alternately, at least one of the adsorbers being in the regeneration phase while at least one other of the adsorbers is in the production phase of said hydrogen-rich gas stream.
17. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que la séparation opérée à l'étape (d) est réalisée par perméation membranaire utilisant un ou plusieurs modules membranaire générant, d'une part, ledit flux gazeux riche en hydrogène et, d'autre part, un flux de gaz-déchet contenant principalement de l'azote et du monoxyde de carbone, et éventuellement de l'hydrogène résiduaire. 17. Method according to one of claims 1 to 15, characterized in that the separation carried out in step (d) is carried out by membrane permeation using one or more membrane modules generating, on the one hand, said gas stream rich in hydrogen and, on the other hand, a waste gas stream containing mainly nitrogen and carbon monoxide, and possibly residual hydrogen.
EP01907875A 2000-02-24 2001-02-22 Method for producing hydrogen by partial oxidation of hydrocarbons Withdrawn EP1259458A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0002309 2000-02-24
FR0002309A FR2805531B1 (en) 2000-02-24 2000-02-24 PROCESS FOR THE PRODUCTION OF HYDROGEN BY PARTIAL OXIDATION OF HYDROCARBONS
PCT/FR2001/000519 WO2001062662A1 (en) 2000-02-24 2001-02-22 Method for producing hydrogen by partial oxidation of hydrocarbons

Publications (1)

Publication Number Publication Date
EP1259458A1 true EP1259458A1 (en) 2002-11-27

Family

ID=8847343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01907875A Withdrawn EP1259458A1 (en) 2000-02-24 2001-02-22 Method for producing hydrogen by partial oxidation of hydrocarbons

Country Status (7)

Country Link
US (1) US6929668B2 (en)
EP (1) EP1259458A1 (en)
JP (1) JP2003531795A (en)
CN (1) CN1212965C (en)
AU (1) AU2001235744A1 (en)
FR (1) FR2805531B1 (en)
WO (1) WO2001062662A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2848548B1 (en) * 2002-12-17 2005-12-23 Air Liquide PROCESS FOR GENERATING A PRESSURIZED CO-H2 SYNTHESIS MIXTURE BY CATALYTIC PARTIAL OXIDATION BY MINIMIZING SOOT FORMATION
US7008560B2 (en) * 2003-02-10 2006-03-07 Conocophillips Company Silicon carbide-supported catalysts for partial oxidation of natural gas to synthesis gas
US20040171900A1 (en) * 2003-02-28 2004-09-02 Conocophillips Company Method and device for reactions start-up
FR2857884B1 (en) * 2003-07-24 2006-11-24 Air Liquide PROCESS FOR PRODUCTION OF HYDROGEN BY ADSORPTION AND INSTALLATION FOR CARRYING OUT SAID METHOD
JP4139338B2 (en) * 2004-02-12 2008-08-27 本田技研工業株式会社 Fuel gas production equipment
US7427388B2 (en) * 2004-03-19 2008-09-23 Air Products And Chemicals, Inc. Process for improving prereforming and reforming of natural gas containing higher hydrocarbons along with methane
US7439369B2 (en) * 2004-06-22 2008-10-21 Loa Alamos National Security, Llc Method and system for hydrogen evolution and storage
US20070051238A1 (en) * 2005-09-07 2007-03-08 Ravi Jain Process for gas purification
CA2667467C (en) * 2006-10-27 2015-03-24 Questair Technologies Inc. Compact pressure swing reformer
FR2909898B1 (en) 2006-12-18 2009-08-21 Air Liquide PURIFICATION OF A H2 / CO MIXTURE WITH CONTROL OF THE HEATER SKIN TEMPERATURE
FR2911289A1 (en) 2007-01-17 2008-07-18 Air Liquide Supply gas flow purifying method for e.g. petrochemical plant, involves stopping circulation of regeneration gas by reducing skin temperature of heater until temperature is less than specific degree Celsius and performing purging of heater
US20080305030A1 (en) * 2007-06-06 2008-12-11 Mckeigue Kevin Integrated processes for generating carbon monoxide for carbon nanomaterial production
US20080305028A1 (en) * 2007-06-06 2008-12-11 Mckeigue Kevin Integrated processes for generating carbon monoxide for carbon nanomaterial production
WO2010020655A1 (en) * 2008-08-21 2010-02-25 Shell Internationale Research Maatschappij B.V. Improved process for production of elemental iron
US20100327231A1 (en) * 2009-06-26 2010-12-30 Noah Whitmore Method of producing synthesis gas
WO2011034891A1 (en) * 2009-09-16 2011-03-24 Greatpoint Energy, Inc. Two-mode process for hydrogen production
AU2013282904B2 (en) 2012-06-27 2016-11-03 Grannus, Llc Polygeneration production of power and fertilizer through emissions capture
EP3383794A4 (en) 2015-12-04 2019-04-17 Grannus, LLC Polygeneration production of hydrogen for use in various industrial processes
FR3069787B1 (en) * 2017-08-03 2019-08-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PROCESS FOR THE CONTINUOUS PRODUCTION OF A GASEOUS FLOW OF HYDROGEN
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
CN109764639A (en) * 2018-12-29 2019-05-17 上海华林工业气体有限公司 A kind of HYCO ice chest reduces the System and method for of emptying
EP3849447A4 (en) 2019-01-14 2021-11-17 Cryoelectric Science Ltd. Methods, systems, and apparatuses for cryosurgery, coldsurgery, and electrolysis
CN109748251A (en) * 2019-03-18 2019-05-14 华谊高新纯化技术(大连)有限公司 A kind of nitrogen, argon gas, oxygen Ultrapure purification technique and system
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
JP7126470B2 (en) 2019-03-27 2022-08-26 大阪瓦斯株式会社 Hydrogen production device operating method and hydrogen production device
JP7174486B2 (en) * 2019-03-27 2022-11-17 大阪瓦斯株式会社 Hydrogen production device operating method and hydrogen production device
CN115853479A (en) * 2022-12-29 2023-03-28 西南石油大学 Hydrogen production method based on low-permeability water-invasion gas reservoir

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2004219A1 (en) * 1988-11-30 1990-05-31 Michael Dunster Production of hydrogen from hydrocarbonaceous feedstock
FR2649124A1 (en) * 1989-07-03 1991-01-04 Air Liquide PROCESS FOR THE HEAT TREATMENT OF METALS UNDER ATMOSPHERE
DE3924411A1 (en) * 1989-07-24 1991-01-31 Hoechst Ceram Tec Ag RIB TUBE HEAT EXCHANGER
US5073356A (en) * 1990-09-20 1991-12-17 Air Products And Chemicals, Inc. Integrated processes for the production of carbon monoxide
US5160456A (en) * 1991-06-07 1992-11-03 Exxon Research And Engineering Company Catalyst/heat-transfer medium for syngas generation
CA2100811C (en) * 1992-08-19 1999-01-19 Akhilesh Kapoor Hydrogen and carbon monoxide production by partial oxidation of hydrocarbon feed
US5720901A (en) * 1993-12-27 1998-02-24 Shell Oil Company Process for the catalytic partial oxidation of hydrocarbons
MY131526A (en) * 1993-12-27 2007-08-30 Shell Int Research A process for the preparation of carbon monoxide and/or hydrogen
JP3403494B2 (en) * 1994-05-23 2003-05-06 日本碍子株式会社 Reforming reactor
US5968457A (en) * 1994-06-06 1999-10-19 Praxair Technology, Inc. Apparatus for producing heat treatment atmospheres
US5624964A (en) * 1995-06-06 1997-04-29 Mobil Oil Corporation Integration of steam reforming unit and cogeneration power plant
PE115299A1 (en) * 1997-09-25 1999-12-16 Shell Int Research PROCEDURE FOR THE PRODUCTION OF LIQUID HYDROCARBONS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0162662A1 *

Also Published As

Publication number Publication date
WO2001062662A1 (en) 2001-08-30
US6929668B2 (en) 2005-08-16
FR2805531A1 (en) 2001-08-31
JP2003531795A (en) 2003-10-28
US20030009943A1 (en) 2003-01-16
CN1212965C (en) 2005-08-03
AU2001235744A1 (en) 2001-09-03
FR2805531B1 (en) 2003-02-21
CN1406207A (en) 2003-03-26

Similar Documents

Publication Publication Date Title
WO2001062662A1 (en) Method for producing hydrogen by partial oxidation of hydrocarbons
AU2018320335B2 (en) Autothermal ammonia cracking process
Ledjeff-Hey et al. Compact hydrogen production systems for solid polymer fuel cells
FR2881417A1 (en) Production of synthetic gas in petrochemical industries, comprises a reactor, a manufacturing unit for producing exhaust gas, treating the produced exhaust gas in the device to eliminate carbon dioxide and recycling the gas in the reactor
Parente et al. Hydrogen and/or syngas production through combined dry and steam reforming of biogas in a membrane reactor: A thermodynamic study
FR2904832A1 (en) Converting carbonaceous material into liquid hydrocarbons, e.g. diesel cuts, by gasifying, separating carbon dioxide, converting into carbon monoxide and carrying out Fischer-Tropsch synthesis
WO2022229838A1 (en) Process for producing hydrogen from a hydrocarbon feedstock
FR2825995A1 (en) An installation for the production of synthesis gas comprises a vapor reforming reactor and a carbon dioxide conversion reactor, each heated by a hot gas current
CA2343428A1 (en) Process for producing a mixture comprising hydrogen and co
EP2107042A1 (en) Method for the production of hydrogen with thermally integrated desulphurisation unit
EP1575698B1 (en) Method for generation of a synthesis gas mixture co/h sb 2 /sb under pressure by catalytic partial oxidation with minimisation of the formation of soot
JP2001220103A (en) Hydrogen producing method by decomposition of hydrocarbon
JP3671040B2 (en) Hydrogen-based infrastructure system
US20040237406A1 (en) Membrane reactor and method for the production of highly pure hydrogen gas
WO2011148066A2 (en) Anaerobic hydrogen production method
WO2004046029A2 (en) Enrichment of oxygen for the production of hydrogen from hydrocarbons with co2 capture
EP0318342B1 (en) Process for reforming impure methanol and device for its application
FR2949772A1 (en) Producing a synthesis gas containing hydrogen from a hydrocarbon charge including e.g. methane or naphtha, comprises transforming hydrocarbon charge into synthesis gas in vapor-reforming furnace, and treating the synthesis gas
FR2796932A1 (en) Plant for production of synthesis gas from natural gas and air or oxygen diluted with inert gas comprises at least one reactor for preparation of synthesis gas and at least one compressor with power turbine
JP7096887B2 (en) Precious metal catalysts and processes for reforming methane and other hydrocarbons
Lercher et al. Methane utilisation via synthesis gas generation-catalytic chemistry and technology
WO2002085782A1 (en) Method for partial catalytic oxidation of hydrocarbons for producing synthetic gas with low h2/co ratio
RU2781139C1 (en) Method for producing hydrogen, carbon monoxide and a carbon-containing product
RU2777599C2 (en) Catalysts based on noble metals and methods for reforming methane and other hydrocarbons
WO2024110372A1 (en) Production of synthetic fuels from carbon dioxide with partial or total oxy-fuel combustion of by-products

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GARY, DANIEL

Inventor name: MILLET, CYRILLE

Inventor name: ARPENTINIER, PHILIPPE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20060703