JP2001220103A - Hydrogen producing method by decomposition of hydrocarbon - Google Patents

Hydrogen producing method by decomposition of hydrocarbon

Info

Publication number
JP2001220103A
JP2001220103A JP2000033476A JP2000033476A JP2001220103A JP 2001220103 A JP2001220103 A JP 2001220103A JP 2000033476 A JP2000033476 A JP 2000033476A JP 2000033476 A JP2000033476 A JP 2000033476A JP 2001220103 A JP2001220103 A JP 2001220103A
Authority
JP
Japan
Prior art keywords
hydrogen
reaction
catalyst
reactor
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000033476A
Other languages
Japanese (ja)
Inventor
Tatsuki Ishihara
達己 石原
Yusaku Takita
祐作 滝田
Hidetoshi Aragai
秀利 新飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP2000033476A priority Critical patent/JP2001220103A/en
Publication of JP2001220103A publication Critical patent/JP2001220103A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized catalytic process for hydrogen production to replace of steam reforming reaction, small in energy consumption and for producing high purity hydrogen containing no CO and compatible with a fuel production process for a solid high molecular fuel cell. SOLUTION: A Ni/SiO2 catalyst is arranged on a Pd-Ag film in a reactors A and B. In the initial operation, a city gas and combustion air are introduced into the reactor A respectively from V1 and V2 to combust and exhausted from V5. Steam is generated by using the resultant heat by the combustion and the sweep steam is introduced into a hydrogen manifold. After the introduction of the sweep steam, the city gas is introduced into the reactor B from V2 to cause the methane decomposition reaction to obtain gaseous hydrogen and carbon. The resultant gaseous hydrogen in the reactor B penetrated through the Ps-Ag film and is discharged with steam from the hydrogen manifold. When the carbon generation in the reactor B reaches a certain stage, V2 is closed, V4 and V6 are opened and the combustion reaction of the carbon is performed and in the reaction A, V4 is closed, the introduction of the combustion air is stopped and successively V5 is closed to perform the methane decomposition reaction with the city gas from V1. After that, the reactors A and B are switched to each other to produce hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素製造法として炭
化水素、とくに天然ガスおよびCH4の接触分解反応と生
成した炭素の燃焼により、高分子固体電解質型燃料電池
の燃料や種々の化学プロセスに応用可能な炭素質を含ま
ない高純度水素を製造するプロセスに関する。本発明の
プロセスでは500℃程度の低温で作動し、99.999%以上の
純度を有する水素ガスを製造でき、高純度水素製造プロ
セスとして有用である。
The present invention relates to a method for producing hydrogen in a solid polymer electrolyte fuel cell and various chemical processes by the catalytic cracking reaction of hydrocarbons, particularly natural gas and CH 4 , and the combustion of generated carbon. The present invention relates to a process for producing high-purity hydrogen containing no carbonaceous material. The process of the present invention operates at a low temperature of about 500 ° C. and can produce hydrogen gas having a purity of 99.999% or more, which is useful as a high-purity hydrogen production process.

【0002】[0002]

【従来の技術】従来、炭化水素からの水素製造方法とし
てはスチームリフォーミング、石炭ガス化、部分酸化、
オートサーマルリフォーミング法が用いられるが、とく
に、水蒸気と炭化水素を反応させるスチームリフォーミ
ング法は最も一般的な、水素の製造方法として広く使用
されている。
2. Description of the Related Art Conventionally, methods for producing hydrogen from hydrocarbons include steam reforming, coal gasification, partial oxidation,
An autothermal reforming method is used. In particular, a steam reforming method in which steam reacts with a hydrocarbon is widely used as the most general method for producing hydrogen.

【0003】スチームリフォーミング法では加圧条件下
で、大きな吸熱反応であり、反応温度として700℃以上
の極めて高い反応温度と吸熱反応に伴う大きな熱エネル
ギーの投入が必要である。加えて、生成する水素中には
COおよびCO2が含まれ、これを後プロセスにおける膜分
離又は圧力スイング法にて分離除去する必要があり、装
置およびエネルギー的にコストがかかる水素製造方法で
ある。
[0003] The steam reforming method is a large endothermic reaction under a pressurized condition, and requires an extremely high reaction temperature of 700 ° C or more and a large amount of heat energy accompanying the endothermic reaction. In addition, the generated hydrogen contains
It is a hydrogen production method which includes CO and CO 2 , which must be separated and removed by a membrane separation or a pressure swing method in a post-process, and which is expensive in terms of equipment and energy.

【0004】スチームリフォーミングプロセスで得られ
た水素中の不純物COはシフト反応(CO+H2O→CO2+H2)によ
り除去されるが、化学的な平衡の制約から、スチームリ
フォーミングプロセスで生成する水素中のCOを完全に除
去することはできない。
[0004] Impurity CO in hydrogen obtained by the steam reforming process is removed by a shift reaction (CO + H 2 O → CO 2 + H 2 ). CO cannot be completely removed from the hydrogen produced in the above.

【0005】一方、新規な発電方法として高分子固体電
解質を用いた燃料電池(PEFC)が開発されているが、燃料
として用いられるH2中の不純物COは電極の活性を失活さ
せ、電池性能を低下させるので、長期に渡る安定な発電
を行うには、燃料中の不純物COを極力、除去する必要が
ある。
On the other hand, a fuel cell (PEFC) using a polymer solid electrolyte has been developed as a new power generation method. However, impurity CO in H 2 used as a fuel deactivates the activity of the electrode, and the performance of the cell is reduced. Therefore, in order to perform stable power generation for a long period of time, it is necessary to remove impurity CO in fuel as much as possible.

【0006】COを微量含むH2中に少量の酸素を添加し、
COを酸化、除去することが検討されているが、酸化過程
で、H2も同時に一部、酸化されるので、H2が一部消費さ
れてしまう。
A small amount of oxygen is added to H 2 containing a small amount of CO,
Oxidizing CO, but be removed has been studied, in the oxidation process, H 2 is also part of the same time, since it is oxidized, H 2 is consumed partially.

【0007】[0007]

【発明が解決しようとする課題】本発明は現在、一般的
な水素製造方法として使用されてきたスチームリフォー
ミング法に代わり、水素透過膜を有する膜型反応器で、
炭化水素、とくにCH4の分解を行い、高純度でCOを含ま
ない水素を500℃程度の低温で得るとともに、この反応
に必要な熱エネルギーを生成した炭素を燃焼除去するこ
とで得、高純度の水素を製造し、燃料電池を始め種々の
化学プロセスに供給することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a membrane reactor having a hydrogen permeable membrane instead of the steam reforming method which has been used as a general hydrogen production method.
Hydrocarbons, in particular performs decomposition of CH 4, hydrogen free of CO in high purity with obtaining at a low temperature of about 500 ° C., obtained by carbon burnoff that generated the heat energy required for this reaction, high purity The purpose is to produce hydrogen and supply it to various chemical processes including fuel cells.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決する目的で、炭化水素、とくにCH4→C+H2で表さ
れるCH4分解反応に着目した。この反応は低温では熱力
学的な化学平衡の制約から進行しないが、Pd系合金から
なる水素透過膜を用いて、生成したH2を反応系外に、分
離、除去すると、500℃程度の低温でも分解反応が進行
することを見いだした。一方、この反応では触媒上に炭
素が析出して、触媒は失活するが、生成した炭素を膜型
反応器中で燃焼することで、分解反応の熱源とし、触媒
を再生できることを見いだし、本発明に到達した。
The present inventors have SUMMARY OF THE INVENTION, for the purpose of solving the above problems, a hydrocarbon, particularly focusing on the CH 4 decomposition reaction represented by CH 4 → C + H 2. This reaction does not proceed from the constraints of thermodynamic chemical equilibrium at low temperatures, using a hydrogen-permeable membrane made of Pd-based alloy, the generated H 2 from the reaction system, the separation and removal, low temperature of about 500 ° C. However, they found that the decomposition reaction proceeded. On the other hand, in this reaction, carbon is deposited on the catalyst and the catalyst is deactivated, but the generated carbon is burned in a membrane reactor, which can be used as a heat source for the decomposition reaction and the catalyst can be regenerated. The invention has been reached.

【0009】ここに、請求項1に係る本発明は、Pd系合
金膜からなる水素透過膜を用いる2つの触媒反応器から
なり、一方の反応器では炭化水素、とくにCH4の分解反
応を行い、他の反応器では空気により生成した炭素の接
触燃焼により、触媒の再生および炭化水素分解の反応熱
の発生を行う。2つの反応器は定期的に切り替えられ、
繰り返し、炭化水素の分解と炭素の燃焼を行う。
Here, the present invention according to claim 1 comprises two catalytic reactors using a hydrogen permeable membrane made of a Pd-based alloy membrane, wherein one of the reactors performs a decomposition reaction of hydrocarbons, particularly CH 4. In other reactors, catalytic combustion of carbon produced by air generates catalysts and generates heat of reaction for cracking hydrocarbons. The two reactors are switched periodically,
Repeat hydrocarbon decomposition and carbon combustion.

【0010】上記、膜型反応器では生成した水素をスイ
ープし、効率よく反応の進めるために、分離の容易な水
蒸気をスイープガスとして用いる。スイープガスの水蒸
気は炭素の触媒燃焼により得ることができ、反応器出口
で、冷却するのみで、容易に水素から分離除去ができ、
高純度の水素を容易に得ることができる。
[0010] In the above-mentioned membrane reactor, in order to sweep generated hydrogen and promote the reaction efficiently, steam which is easily separated is used as a sweep gas. The water vapor of the sweep gas can be obtained by catalytic combustion of carbon, and it can be easily separated and removed from hydrogen only by cooling at the reactor outlet,
High-purity hydrogen can be easily obtained.

【0011】本発明によれば、COおよびCO2を含まない
高純度の水素を容易に得ることができるので、高分子電
解質を用いる燃料電池の燃料や種々の化学プロセスおよ
び半導体製造過程の化学原料として使用することができ
る。
According to the present invention, high-purity hydrogen free of CO and CO 2 can be easily obtained, so that fuel for a fuel cell using a polymer electrolyte and various chemical processes and chemical raw materials for a semiconductor manufacturing process can be obtained. Can be used as

【0012】本発明では炭化水素の接触分解という吸熱
反応と炭素の燃焼という発熱反応を行う2つの反応器を
並列に配置することで、熱の伝播を容易とし、反応器を
小型化できることに加え、反応温度を500℃程度とい
う低温で操作できる。
In the present invention, by disposing two reactors for performing an endothermic reaction of catalytic cracking of hydrocarbons and an exothermic reaction of burning carbon in parallel, heat can be easily transmitted and the reactor can be reduced in size. It can be operated at a reaction temperature as low as about 500 ° C.

【0013】また、請求項5および6に係る発明に使用
される触媒としては金属酸化物に担持されたNiおよびCo
系金属触媒が有効であり、NiまたはCoをベースに1種ま
たは2種以上の金属を添加物として添加した触媒が有効
である。担体酸化物としてはSiO2またはAl2O3系の金属
酸化物が有効である。
The catalyst used in the invention according to claims 5 and 6 includes Ni and Co supported on a metal oxide.
A system-based metal catalyst is effective, and a catalyst in which one or more metals are added as an additive based on Ni or Co is effective. As the carrier oxide, SiO 2 or Al 2 O 3 based metal oxide is effective.

【0014】さらに、触媒としては、Ni/SiO2触媒のみ
でも十分高い活性が炭化水素の分解および生成した炭素
の触媒燃焼ともに活性であり、繰り返し操作においても
高い活性を維持できる。
[0014] Further, as the catalyst, the Ni / SiO 2 catalyst alone has sufficiently high activity for both the decomposition of hydrocarbons and the catalytic combustion of generated carbon, and can maintain high activity even in repeated operations.

【0015】本発明の水素製造プロセスでは反応に過剰
の水蒸気を供給する必要がなく、水蒸気改質反応プロセ
スに比べると、プロセスが簡素化でき、反応装置のコン
パクト化が図れる。
In the hydrogen production process of the present invention, it is not necessary to supply excessive steam for the reaction, and the process can be simplified and the reactor can be made compact as compared with the steam reforming reaction process.

【0016】一方、従来のスチームリフォーミング反応
では反応温度として700℃以上の温度が必要であるのに
比べ、本発明の水素製造プロセスでは反応温度は500℃
程度であり、反応温度を低温化できるので、プロセスの
構成材料の耐久性が長くなることに加え、触媒の寿命も
長くできる。
On the other hand, the conventional steam reforming reaction requires a reaction temperature of 700 ° C. or higher, whereas the hydrogen production process of the present invention requires a reaction temperature of 500 ° C.
Since the reaction temperature can be lowered, the durability of the constituent materials of the process can be extended, and the life of the catalyst can be extended.

【0017】[0017]

【発明の実施の形態】次に本発明の実施の形態について
説明する。図1に本発明における炭化水素分解による水
素製造プロセスの1例を示す。図示したプロセスでは反
応器A、BにはNi/SiO2触媒がPd-Ag膜上に配置されてい
る。最初の稼動時は、反応器AにV1より都市ガス、V2よ
り燃焼空気を導入し燃焼させ、V5より排気する。燃焼に
より得られる熱を利用して、蒸気を発生させ水素マニホ
ールドにスイープ蒸気を導入する。スイープ蒸気導入
後、反応器BにV2より都市ガスを導入し、メタン分解反
応を行わせ水素ガスと炭素を得る。反応器Bで得られた
水素ガスはPd-Ag膜を透過し、水素マニホールドから蒸
気とともに排出される。反応器Bでの炭素生成がある段
階に達すると、V2を閉じV4、V6を開とし炭素の燃焼反応
を行い、反応器AではV4を閉じ、燃焼空気の導入を停止
し、続いてV5を閉じV1からの都市ガスによってメタン分
解反応を行う。その後は反応器A、Bを交互に切り替え、
水素を発生させる。水素製造終了後はV1〜V6を全て閉と
し、反応を終了させる。
Next, an embodiment of the present invention will be described. FIG. 1 shows an example of a hydrogen production process by hydrocarbon cracking in the present invention. In the illustrated process, in the reactors A and B, a Ni / SiO 2 catalyst is disposed on a Pd-Ag film. During the first operation, city gas is introduced into reactor A from V1, combustion air is introduced from V2 and burned, and exhausted from V5. Utilizing the heat obtained by the combustion, steam is generated and the sweep steam is introduced into the hydrogen manifold. After the introduction of the sweep steam, city gas is introduced into reactor B from V2, and a methane decomposition reaction is performed to obtain hydrogen gas and carbon. The hydrogen gas obtained in the reactor B passes through the Pd-Ag membrane and is discharged from the hydrogen manifold together with the vapor. When the production of carbon in the reactor B reaches a certain stage, V2 is closed and V4 and V6 are opened to perform a carbon combustion reaction.In the reactor A, V4 is closed, the introduction of combustion air is stopped, and then V5 is A methane decomposition reaction is performed with the city gas from V1. After that, the reactors A and B are alternately switched,
Generates hydrogen. After the completion of hydrogen production, V1 to V6 are all closed to terminate the reaction.

【0018】図2に、本発明に活性な触媒の探索の結果
を示す。ここでは90Pd-10Agからなる250mmの厚さの水素
透過膜を用いた。種々のNi系触媒のCH4分解活性につい
て検討を行った。この図に明らかなようにいずれのNi系
触媒もCH4の分解活性に高い活性を有し、優れたCH4分解
触媒になることがわかる。また、生成した水素の濃度を
分析したところ、ガスクロでの分析では不純物は認めら
れず、分析精度から考えて純度は99.999%以上の純度を
有することがわかった。
FIG. 2 shows the results of searching for a catalyst active in the present invention. Here, a 250 mm thick hydrogen permeable membrane made of 90Pd-10Ag was used. CH 4 decomposition activity of various Ni catalysts was studied. This one of the Ni-based catalyst as is apparent in FIG. Also has a high activity to degradation activity of CH 4, it is found to be a good CH 4 cracking catalyst. Further, when the concentration of the generated hydrogen was analyzed, no impurities were recognized by gas chromatography, and it was found that the purity was 99.999% or more in view of the analysis accuracy.

【0019】図3は、本発明における生成した炭素の酸
化活性を示す。図に明らかなように種々のNi系触媒が炭
素の接触燃焼に活性を示すが、とくにNi/SiO2およびNi-
Co/SiO2触媒の活性が高いことがわかる。前項の図2に
示したCH4分解の結果とあわせると、Ni/SiO2は両反応に
共に活性を示し、図1に示した本発明の水素製造プロセ
スの触媒として最も適することがわかる。しかし、Ni/S
iO2以外にもNi系およびCo系の多くの触媒が両反応に活
性を示し、何れの触媒も本発明の水素製造プロセスへ応
用できる。
FIG. 3 shows the oxidizing activity of the produced carbon in the present invention. As can be seen from the figure, various Ni-based catalysts are active in catalytic combustion of carbon, especially Ni / SiO 2 and Ni-
It can be seen that the activity of the Co / SiO 2 catalyst is high. When combined with the results of the decomposition of CH 4 shown in FIG. 2 in the preceding section, it can be seen that Ni / SiO 2 shows activity in both reactions and is most suitable as the catalyst for the hydrogen production process of the present invention shown in FIG. However, Ni / S
In addition to iO 2 , many Ni-based and Co-based catalysts show activity in both reactions, and any of them can be applied to the hydrogen production process of the present invention.

【0020】図4に最適と考えられるNi/SiO2触媒を用
いて、90Pd-10Agの組成からなる水素透過膜を有する膜
型反応器で、500℃においてCH4分解による水素製造、空
気燃焼による炭素燃焼をくり返し行った結果を示す。図
に明らかなように、繰り返し水素製造、炭素燃焼を行っ
ても、触媒は劣化することなく、高いCH4分解活性およ
び炭素除去を行うことができる。また、図4の結果か
ら、図1に示した本プロセスでの2つの反応器を切り替
えるタイミングは数時間から数10時間であることが望
ましい。
[0020] using a Ni / SiO 2 catalyst which is considered optimal in FIG. 4, a membrane reactor having a hydrogen-permeable membrane having the composition 90Pd-10Ag, hydrogen production by CH 4 decomposition at 500 ° C., with air combustion The results of repeated carbon combustion are shown. As is clear from the figure, even when hydrogen production and carbon combustion are repeatedly performed, the catalyst does not deteriorate, and high CH 4 decomposition activity and carbon removal can be performed. Also, from the results of FIG. 4, it is desirable that the timing of switching between the two reactors in the present process shown in FIG. 1 is several hours to several tens of hours.

【0021】水素透過膜の組成の影響を検討し、Ag濃度
の増加とともに活性が向上し、Ag含有量20%において最
も大きなCH4分解活性が得られた。そこで、本プロセス
に応用可能な水素透過膜の組成としては90Pd-10Agのみ
でなく、Pd-Ag系合金、ひいてはPd系合金およびNi系な
どの水素吸蔵合金であれば、いずれも応用可能であるこ
とがあきらかになった。
The effect of the composition of the hydrogen permeable membrane was examined, and the activity was improved as the Ag concentration increased, and the largest CH 4 decomposition activity was obtained at an Ag content of 20%. Therefore, the composition of the hydrogen-permeable membrane applicable to this process is not limited to 90Pd-10Ag, but any Pd-Ag-based alloy, and eventually any Pd-based alloy and Ni-based hydrogen-absorbing alloy can be applied. It became clear.

【0022】従って、本発明に係る炭化水素の分解反応
に基づく水素製造プロセスはコンパクトで、簡単なシス
テムであるにも関わらず、エネルギーバランスに優れ、
99.999%以上の水素を発生できるプロセスであることが
明らかになった。
Therefore, the hydrogen production process based on the hydrocarbon decomposition reaction according to the present invention is compact and simple, yet has an excellent energy balance,
It became clear that the process could generate more than 99.999% hydrogen.

【0023】本発明の水素製造プロセスに応用可能な触
媒反応器は図1に示すような平板型のみでなく、図5に
示すような2重管型の反応器でもほぼ同様の性能が得ら
れ、管型、平板型何れの反応器も応用可能である。
The catalytic reactor applicable to the hydrogen production process of the present invention is not limited to a flat plate type as shown in FIG. 1, but a double tube type reactor as shown in FIG. Any of a tubular reactor and a flat reactor can be applied.

【0024】[0024]

【実施例】次に本発明の実施例について述べる。 (実施例1)高表面積SiO2へNiとして10wt%になるよう
に秤量したNi(NO3)を蒸発乾固した後、70℃で乾燥し、4
00℃で空気焼成、500℃で水素還元してNi/SiO2触媒を調
製した。触媒は所定のサイズの粒子になるように、加圧
成形後、ふるいを用いて整粒した
Next, an embodiment of the present invention will be described. (Example 1) Ni (NO 3 ) weighed to 10 wt% as Ni on high surface area SiO 2 was evaporated to dryness, and then dried at 70 ° C.
The Ni / SiO 2 catalyst was prepared by calcining in air at 00 ° C and hydrogen reduction at 500 ° C. After pressure molding, the catalyst was sized using a sieve so that the particles became particles of the specified size.

【0025】得られた触媒は水素分離膜として、膜厚25
0mmの90Pd-10Ag膜からなる図1または図5に示す平板型
および膜型触媒反応器ヘ充填した。スイープガスとし
て、水蒸気を150℃で発生させ、供給した。反応器出口
で水冷により、水蒸気を除去し、水素を得た。原料およ
び生成物の組成は全てガスクロで分析し、炭素燃焼排ガ
スは化学発光式NOx計でも同時に分析した。
The obtained catalyst was used as a hydrogen separation membrane to a thickness of 25
The flat and membrane catalytic reactors shown in FIG. 1 or FIG. 5 were packed with a 0 mm 90Pd-10Ag membrane. As a sweep gas, steam was generated at 150 ° C. and supplied. Water vapor was removed by water cooling at the reactor outlet to obtain hydrogen. The compositions of the raw materials and products were all analyzed by gas chromatography, and the carbon exhaust gas was also analyzed by a chemiluminescence NOx meter.

【0026】CH4:N2=1:6.5の組成のガスを接触時間,W/
F=25g-cat.h/molで送入した。種々の触媒でのCH4分解活
性は図2に示したとおりである。この図から前述したよ
うに、多くのNi系触媒がCH4分解反応に活性を示すこと
がわかる。最も、活性な触媒はCo-Niであったが、Niの
みも十分な活性を有し、500℃でCH4転化率は80%を超過
した。また、この際に得られる水素中の不純物はガスク
ロの分析感度以下であり、99.999%以上の純度を
有した。また、生成した炭素の燃焼活性は図3に示すと
おりである。本発明に有効な触媒としてはCH4分解、炭
素燃焼にともに活性である必要があり、Ni/SiO2触媒が
優れた活性と繰り返し安定性を有することがわかる。
A gas having a composition of CH 4 : N 2 = 1: 6.5 is contacted for a contact time of W /
F = 25 g-cat.h / mol. The CH 4 decomposition activity with various catalysts is as shown in FIG. From this figure, it can be seen that many Ni-based catalysts are active in the CH 4 decomposition reaction as described above. The most active catalysts was a Co-Ni, Ni but also have sufficient activity, the CH 4 conversion at 500 ° C. in excess of 80%. The impurities in the hydrogen obtained at this time were less than the gas chromatography analysis sensitivity and had a purity of 99.999% or more. The combustion activity of the generated carbon is as shown in FIG. As a catalyst effective for the present invention, it is necessary to be active for both CH 4 decomposition and carbon combustion, and it is understood that the Ni / SiO 2 catalyst has excellent activity and repetition stability.

【0027】[0027]

【発明の効果】本発明に係る炭化水素の分解反応に基づ
いた水素製造プロセスでは熱的に自立できるプロセスで
あり、500℃程度の低温で高純度の水素を生成でき、か
つ、プロセスが簡素で、小型であるにもかかわらず、十
分な水素の製造能力を発揮する。
The hydrogen production process based on the hydrocarbon decomposition reaction according to the present invention is a process that can be thermally independent, can produce high-purity hydrogen at a low temperature of about 500 ° C., and has a simple process. Despite its small size, it exhibits sufficient hydrogen production capacity.

【0028】従って、この炭化水素の分解反応に基づく
水素の製造プロセスは高純度な水素を必要とする種々の
化学プロセスに適応可能であり、とくに、高分子固体電
解質を電解質に用いる燃料電池の燃料発生プロセスとし
て優れた特徴を有する。
Accordingly, the process for producing hydrogen based on the hydrocarbon decomposition reaction can be applied to various chemical processes requiring high-purity hydrogen. In particular, a fuel cell for a fuel cell using a solid polymer electrolyte as an electrolyte It has excellent characteristics as a generation process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るプロセスの概念例を示す装置フロ
ー図である。
FIG. 1 is an apparatus flow chart showing a conceptual example of a process according to the present invention.

【図2】本発明に係るCH4分解反応に対する種々の触媒
の活性の温度依存性を示す図である。
FIG. 2 is a diagram showing the temperature dependence of the activity of various catalysts for the CH 4 decomposition reaction according to the present invention.

【図3】本発明に係る種々の触媒のCH4分解で生成した
炭素の燃焼活性の温度依存性を示す図である。
FIG. 3 is a diagram showing the temperature dependence of the combustion activity of carbon generated by the decomposition of CH 4 of various catalysts according to the present invention.

【図4】本発明に係るNi/SiO2触媒でのCH4分解、炭素酸
化の繰り返し触媒活性の変化を示す図である。
FIG. 4 is a graph showing changes in the catalytic activity of repeated decomposition of CH 4 and carbon oxidation in the Ni / SiO 2 catalyst according to the present invention.

【図5】本発明に係わる、CH4分解、炭素酸化に応用可
能な管型反応器の例を示す図である。
FIG. 5 is a view showing an example of a tubular reactor applicable to CH 4 decomposition and carbon oxidation according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/89 B01J 38/00 301C 38/00 301 C10G 11/02 C09K 5/16 B01J 23/74 321M C10G 11/02 C09K 5/00 J (72)発明者 新飼 秀利 福岡県福岡市博多区千代1丁目17番1号 西部瓦斯株式会社内 Fターム(参考) 4D006 GA41 KE16Q KE16R MA03 MA31 MB04 MC02 MC02X MC03 MC03X NA39 NA54 NA64 PB18 PB66 PC80 4G040 DA03 DB01 DB03 DB05 DC01 DC02 DC03 DC04 4G069 AA04 AA15 BA02A BA02B BA18 BC10A BC16A BC31A BC32A BC32B BC43A BC51A BC66A BC67A BC68A BC68B BC72A BC72B BC75A BD05A CC07 CC32 DA05 4H029 CA00 DA00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 23/89 B01J 38/00 301C 38/00 301 C10G 11/02 C09K 5/16 B01J 23/74 321M C10G 11/02 C09K 5/00 J (72) Inventor Hidetoshi Shinkai 1-17-1 Chiyo, Hakata-ku, Fukuoka City, Fukuoka Prefecture F-term (reference) 4F006 GA41 KE16Q KE16R MA03 MA31 MB04 MC02 MC02X MC03 MC03 MC03 NA39 NA54 NA64 PB18 PB66 PC80 4G040 DA03 DB01 DB03 DB05 DC01 DC02 DC03 DC04 4G069 AA04 AA15 BA02A BA02B BA18 BC10A BC16A BC31A BC32A BC32B BC43A BC51A BC66A BC67A BC68A BC68B BC72A BC72B BC7529 DA05H07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 メタン、エタン、エチレンなどの炭化水
素を分解(CnHm→nC+1/2mH2)して水素を製造するプロセ
スと生成した炭素を燃焼(C+O2→CO2)して、触媒の再生
と分解反応の反応熱を得る2段の反応器からなることを
特長とする高純度水素製造プロセス。
1. A process for decomposing hydrocarbons such as methane, ethane and ethylene (CnHm → nC + 1 / 2mH 2 ) to produce hydrogen and burning the produced carbon (C + O 2 → CO 2 ) A high-purity hydrogen production process comprising a two-stage reactor for obtaining reaction heat of catalyst regeneration and decomposition reaction.
【請求項2】 炭化水素としては何れの炭化水素も使用
可能であるが、とくにはCH4を主成分とする都市ガスを
用いることを特長とする炭化水素分解反応による水素製
造プロセス。
2. A hydrogen production process by a hydrocarbon decomposition reaction, wherein any hydrocarbon can be used as the hydrocarbon, and in particular, a city gas containing CH 4 as a main component is used.
【請求項3】 炭化水素分解反応には生成した水素を除
去し、低温でも反応をすすめるために、水素吸蔵合金と
くにPd系、望ましくはPd-Ag系からなる水素透過膜を用
い、低温で平衡を生成物側へシフトさせることを特長と
する反応器を用いる炭化水素分解触媒プロセス。
3. In order to remove the generated hydrogen and promote the reaction even at a low temperature in the hydrocarbon decomposition reaction, a hydrogen permeable alloy, particularly a hydrogen permeable membrane made of a Pd-based, preferably Pd-Ag-based, is used. Hydrocarbon cracking catalyst process using a reactor characterized in that the catalyst is shifted to the product side.
【請求項4】 請求項3の水素分離膜を用いた炭化水素
分解反応器で、炭素分離膜を透過した水素をスイープす
るためのガスとして、炭素燃焼過程の排熱を用いて発生
させた水蒸気を用いる膜型反応プロセス。
4. A hydrocarbon cracking reactor using a hydrogen separation membrane according to claim 3, wherein steam generated by using exhaust heat of a carbon combustion process is used as a gas for sweeping hydrogen permeated through the carbon separation membrane. Using a membrane-type reaction process.
【請求項5】 一般式Ni-M/AOまたはCo-N/AOで表される
炭化水素の分解および燃焼反応触媒。ただし、MはCo,F
e,Cu,Pd,Ag,Ptからなる群より選ばれた1種もしくは2
種以上の金属元素。NはNi,Fe,Cu,Pd,Ag,Ptからなる群よ
り選ばれた1種もしくは2種以上の金属元素。AOはSi、
Mg、Zr、CeまたはAlからなる群より選ばれた1種もしく
は2種以上の金属元素からなる金属酸化物。望ましくは
MはFe、NはNi、AOはSiO2
5. A catalyst for cracking and burning hydrocarbons represented by the general formula Ni-M / AO or Co-N / AO. Where M is Co, F
One or two selected from the group consisting of e, Cu, Pd, Ag, Pt
More than one kind of metal element. N is one or more metal elements selected from the group consisting of Ni, Fe, Cu, Pd, Ag, and Pt. AO is Si,
A metal oxide comprising one or more metal elements selected from the group consisting of Mg, Zr, Ce or Al. Desirably
M is Fe, N is Ni, and AO is SiO 2 .
【請求項6】 Ni/SiO2触媒を、炭化水素分解および炭
素燃焼触媒として用いる水素製造プロセス。
6. A hydrogen production process using a Ni / SiO 2 catalyst as a catalyst for hydrocarbon cracking and carbon combustion.
【請求項7】 高分子固体電解質型燃料電池の燃料製造
プロセスとして、請求項1から6の水素製造法を用いる
こと。
7. A method for producing a solid polymer electrolyte fuel cell using the hydrogen production method according to claim 1.
JP2000033476A 2000-02-10 2000-02-10 Hydrogen producing method by decomposition of hydrocarbon Pending JP2001220103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000033476A JP2001220103A (en) 2000-02-10 2000-02-10 Hydrogen producing method by decomposition of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000033476A JP2001220103A (en) 2000-02-10 2000-02-10 Hydrogen producing method by decomposition of hydrocarbon

Publications (1)

Publication Number Publication Date
JP2001220103A true JP2001220103A (en) 2001-08-14

Family

ID=18557952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000033476A Pending JP2001220103A (en) 2000-02-10 2000-02-10 Hydrogen producing method by decomposition of hydrocarbon

Country Status (1)

Country Link
JP (1) JP2001220103A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254180A (en) * 2006-03-22 2007-10-04 Japan Steel Works Ltd:The Self-sustained lower hydrocarbon direct decomposition process and process system thereof
JP2010137131A (en) * 2008-12-10 2010-06-24 National Institute For Materials Science Co oxidation catalyst
JP2010241661A (en) * 2009-04-09 2010-10-28 Toyota Motor Corp Method and apparatus for producing carbon nanotube
JP2011116652A (en) * 2011-03-04 2011-06-16 Japan Steel Works Ltd:The Autonomous lower hydrocarbon direct decomposition process system
WO2012124636A1 (en) * 2011-03-11 2012-09-20 株式会社日本製鋼所 Synthetic gas and nanocarbon production method and production system
CN103332650A (en) * 2013-06-04 2013-10-02 东南大学 System and method for simultaneous dry-method hydrogen production from catalytic methane decomposition and carbon dioxide separation
WO2015184377A1 (en) * 2014-05-29 2015-12-03 Advanced Green Technologies, Llc System for production of carbon and net hydrogen liquid fuels
JP2017039101A (en) * 2015-08-21 2017-02-23 日立造船株式会社 Regeneration process of reforming catalyst
CN106521551A (en) * 2016-11-01 2017-03-22 电子科技大学 Preparation method for NiAu nano catalyst used for ammonia borane hydrogen-production
KR20180100887A (en) * 2017-03-02 2018-09-12 주식회사 엘지화학 Continuously preparation method of hydrogen from hydrocarbon
WO2020090245A1 (en) 2018-04-01 2020-05-07 株式会社伊原工業 Hydrogen generation device, method for separating solid product, and system for discharging/collecting solid product
WO2021079660A1 (en) 2019-10-23 2021-04-29 株式会社伊原工業 Catalyst for hydrocarbon decomposition use

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254180A (en) * 2006-03-22 2007-10-04 Japan Steel Works Ltd:The Self-sustained lower hydrocarbon direct decomposition process and process system thereof
JP2010137131A (en) * 2008-12-10 2010-06-24 National Institute For Materials Science Co oxidation catalyst
JP2010241661A (en) * 2009-04-09 2010-10-28 Toyota Motor Corp Method and apparatus for producing carbon nanotube
JP2011116652A (en) * 2011-03-04 2011-06-16 Japan Steel Works Ltd:The Autonomous lower hydrocarbon direct decomposition process system
US9498764B2 (en) 2011-03-11 2016-11-22 The Japan Steel Works, Ltd. Synthesis gas and nanocarbon production method and production system
WO2012124636A1 (en) * 2011-03-11 2012-09-20 株式会社日本製鋼所 Synthetic gas and nanocarbon production method and production system
JP2012188321A (en) * 2011-03-11 2012-10-04 Japan Steel Works Ltd:The Method and system for producing synthesis gas and nanocarbon
US9327970B2 (en) 2011-03-11 2016-05-03 The Japan Steel Works, Ltd. Synthesis gas and nanocarbon production method and production system
CN103332650A (en) * 2013-06-04 2013-10-02 东南大学 System and method for simultaneous dry-method hydrogen production from catalytic methane decomposition and carbon dioxide separation
CN103332650B (en) * 2013-06-04 2014-12-17 东南大学 System and method for simultaneous dry-method hydrogen production from catalytic methane decomposition and carbon dioxide separation
WO2015184377A1 (en) * 2014-05-29 2015-12-03 Advanced Green Technologies, Llc System for production of carbon and net hydrogen liquid fuels
JP2017039101A (en) * 2015-08-21 2017-02-23 日立造船株式会社 Regeneration process of reforming catalyst
CN106521551A (en) * 2016-11-01 2017-03-22 电子科技大学 Preparation method for NiAu nano catalyst used for ammonia borane hydrogen-production
CN106521551B (en) * 2016-11-01 2019-05-14 电子科技大学 A kind of preparation method of the NiAu nanocatalyst for ammonia borane hydrogen manufacturing
KR20180100887A (en) * 2017-03-02 2018-09-12 주식회사 엘지화학 Continuously preparation method of hydrogen from hydrocarbon
KR102257026B1 (en) * 2017-03-02 2021-05-27 주식회사 엘지화학 Continuously preparation method of hydrogen from hydrocarbon
WO2020090245A1 (en) 2018-04-01 2020-05-07 株式会社伊原工業 Hydrogen generation device, method for separating solid product, and system for discharging/collecting solid product
US11332367B2 (en) 2018-04-01 2022-05-17 Ihara Co., Ltd. Hydrogen producing apparatus, method for separating solid product and system for discharging and recycling solid product
WO2021079660A1 (en) 2019-10-23 2021-04-29 株式会社伊原工業 Catalyst for hydrocarbon decomposition use

Similar Documents

Publication Publication Date Title
Choudhary et al. CO-free fuel processing for fuel cell applications
US5525322A (en) Method for simultaneous recovery of hydrogen from water and from hydrocarbons
Ledjeff-Hey et al. Compact hydrogen production systems for solid polymer fuel cells
US6992112B2 (en) Selective removal of oxygen from syngas
US7618612B2 (en) Low-temperature hydrogen production from oxygenated hydrocarbons
US6929668B2 (en) Process for production of hydrogen by partial oxidation of hydrocarbons
JP2001220103A (en) Hydrogen producing method by decomposition of hydrocarbon
US20140120023A1 (en) Methods and systems for ammonia production
CN1946631B (en) Process for reforming hydrocarbons with carbon dioxide by the use of a selectively permeable membrane reactor
JP2005512771A (en) Shared use of pressure swing adsorption device (PSA)
Yusuf et al. Hydrogen production via natural gas reforming: A comparative study between DRM, SRM and BRM techniques
JP3406021B2 (en) Hydrogen production equipment
US7432222B2 (en) High temperature stable non-noble metal catalyst, process for production of syngas using said catalyst
CA2595466A1 (en) Catalytically active composition for the selective methanation of carbon monoxide and method for producing said composition
CN1458060A (en) Gas recovering method
Ledjeff-Hey et al. Portable PEFC generator with propane as fuel
WO2021251471A1 (en) Co2 methanation reaction apparatus provided with selective oxidation catalyst for co, and metod for removing co from gas
US20080193354A1 (en) Preparation of manganese oxide-cerium oxide-supported nano-gold catalyst and the application thereof
Nalbant et al. An overview of hydrogen production from biogas
Marinoiu et al. Carbon dioxide conversion to methane over supported nickel base catalysts
Seman et al. Nickel based catalysts supported on porous support for methane steam reforming: potential and short review
JP5102932B2 (en) High purity hydrogen production method
US20070224111A1 (en) Method for producing hydrogen
JPH08295503A (en) Method for removing co in gaseous hydrogen
Ashok et al. Methane decomposition catalysts for COx-free hydrogen production