EP1257624A1 - Composition de laminage a chaud et a temperature intermediaire de metaux non ferreux, d'alliages de cuivre, et de cuivre hydrosoluble - Google Patents
Composition de laminage a chaud et a temperature intermediaire de metaux non ferreux, d'alliages de cuivre, et de cuivre hydrosolubleInfo
- Publication number
- EP1257624A1 EP1257624A1 EP01905750A EP01905750A EP1257624A1 EP 1257624 A1 EP1257624 A1 EP 1257624A1 EP 01905750 A EP01905750 A EP 01905750A EP 01905750 A EP01905750 A EP 01905750A EP 1257624 A1 EP1257624 A1 EP 1257624A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- oil composition
- composition according
- emulsion
- soluble oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M173/00—Lubricating compositions containing more than 10% water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/06—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/12—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/10—Compounds containing silicon
- C10M2201/105—Silica
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/106—Naphthenic fractions
- C10M2203/1065—Naphthenic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/026—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
- C10M2207/126—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/104—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/223—Five-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/02—Unspecified siloxanes; Silicones
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/12—Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/24—Emulsion properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/24—Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
Definitions
- the present invention relates to a water-soluble copper, copper alloys and non-ferrous metals intermediate cold and hot rolling composition and to a process for intermediate cold or hot rolling copper, copper alloys and non-ferrous metals.
- the copper, copper alloys and non-ferrous metals rolling industry expresses the need to maximize the efficiency of their rolled metal manufacturing process. In general terms, this means that there is a wish to operate at higher rolling speeds and to produce more marketable products per operating shift. Additionally, there is also a wish to minimize the number of passes through the mill taken to achieve a given level of reduction. Both these routes require that quality and surface finish be not compromised .
- the invention thus provides an oil composition for rolling mills that enables to prepare emulsions which affords the following customer benefits:
- the invention is effective on any type of rolling, be it reversible or not, on breakdown, intermediate and finishing mills.
- the invention exhibits high reduction and rolling capabilities while providing an excellent strip surface finish when rolling at high speed.
- the invention provides a water- solucle copper, copper alloys and non-ferrous metals rolling oil composition
- a base stock oil ana based on the total weight of the composition, - from 1 to 80%, preferably from 1 to 30% by weight of a combination of
- a tetraester of a fatty acid with pentaerythritol the weight monoester : tetraester ratio of said combination ranging from 1:20 to 10:1, preferably from 1:10 to 5:1; and - from 0.02 to 2%, preferably from 0.05 to 1% by weight of an azole derivative.
- intermediate cold is herein meant that the temperature is the ambiant temperature for the copper and copper alloy ingot.
- hot rolling is herein meant that the temperature is around 750°C for the copper and copper alloy ingot.
- the oil composition further comprises, based on the total weight of the composition, from 0,1 to 20% of a mixture of ethoxylated alcohols (having from 5 to 15 carbons atoms and preferably from 12 to 15 carbon atoms) .
- a mixture of ethoxylated alcohols sold by ICI under tradenames Synperonic ® A7 and Hypermer ® A60 can be used, the Synperonic ® A7:Hypermer ® A60 weight ratio preferably ranging from 1:10 to 10:1.
- the invention further provides a process for preparing the oil composition.
- the invention further provides an emulsion containing the oil composition and a process for preparing this emulsion .
- the invention provides the use of the oil composition of the invention to prepare emulsions intended to be used m a copper, copper alloys and non-ferrous metals hot or cold intermediate rolling process
- the invention also provides a process for hot rolling copper, copper alloys and non-ferrous metals sheets, comprising applying an effective amount of the emulsion of the invention.
- the invention provides the use of the emulsion m a hot rolling process or in an intermediate rolling process.
- Figure 1 shows the curves obtained when plotting the copper loss m weight (ppm) against the duration of the test m hours, when using an emulsion of the prior art and an emulsion of the invention.
- Figure 2 is a graph showing the applied rolling force in ton/meter versus the number of passes, when using an emulsion of the prior art and an emulsion of the invention.
- the oil compositions of the invention are neat oil concentrates generally intended to be diluted m water to give oil-in-water emulsions.
- the base stock oil is any oil typically used in the field of intermediate cold or hot rolling. It can be paraffinic or naphthenic.
- Paraffinic base oils are made from crude oils that have relatively high alkane contents (high paraffin and isoparaffin contents) . Typical crudes are from the Middle East, North Sea, US mid-continen . The manufacturing process requires aromatics removal (usually by solvent extraction) and dewaxing . Paraffinic base oils are characterized by their good viscosity/temperature characteristics, i.e. high viscosity index, adequate low- temperature properties and good stability. They are often referred to as solvent neutrals, where solvent means that the base oil has been solvent -refined and neutral means that tne oil is of neutral pH . An alternative designation is high viscosity index (HVI) base oil. They are available m full range of viscosities, from light spindle oils tc viscous brightstock.
- HVI high viscosity index
- Naphthenic base oils have a naturally low pour point, are wax-free and have excellent solvent power. Solvent extraction and hydrotreatment can be used to reduce the polycyclic aromatic content.
- a preferred base oil is an hydrotreated paraffinic neutral .
- the base oil typically has a viscosity from 10 to 15C cSt at 40°C, preferably from 20 to 50 cSt at 40°C.
- the fatty acid of the monoester has from 16 to 20 carbon atoms and preferably is oleic acid.
- the polyol of the monoester is preferably glycerol .
- the fatty acid of the tetraester has from 16 to 2C carbon atoms and preferably is oleic acid.
- the azole derivative is generally selected from the group consisting of an aryltriazole, an arylimidazole and an arylthiazole .
- Examples of an aryltriazole include benzot ⁇ azole , toluol triazole and toluyl triazole.
- Examples of an arylimidazole include benzimidazole and 2 - ( 5 -aminopentyl ) benzimidazole.
- benzothiazole may be used as arylthiazole .
- Preferred azole is toluol triazole.
- the oil composition may comprise classical additives, such as surfactants, coupling agents or cosurfactants , friction reducing agents or lubricity agents, corrosion inhibitors or anti -oxidants , extreme-pressure and anti-wear agents, bactericides and fungicides, anti- foaming agents, anti -rust agents,
- classical additives such as surfactants, coupling agents or cosurfactants , friction reducing agents or lubricity agents, corrosion inhibitors or anti -oxidants , extreme-pressure and anti-wear agents, bactericides and fungicides, anti- foaming agents, anti -rust agents
- oil composition and therefore also the e---lsiGn, do not comprise nonyl phenol surfactants, which are considered to raise environment problems
- anti-foammg agents examples include siliccne cased, especially polydimethylsiloxane .
- corrosion inhibitors examples include hmde-ea p enols and zinc dialkyldithiophosphates (ZDDP) .
- extreme-pressure and anti-wear agents are dilauryl phosphate, didodecyl phosphite, tr ⁇ al ⁇ iphosphate such as t ⁇ (2 -ethylhexyl ) phosphate , t ⁇ cres_ Iphosphate (TCP), zinc dialkyl (or diaryl ) dithiophosphates (ZDDP), phospho-sulphurized fatty oils, zinc dialkyldithiocarbamate) , mercaptobenzothiazole , sulphurized fatty oils, sulphurized terpenes, sulphurized cleic acid, alkyl and aryl polysulphides , sulphurized sperm oil, sulphurized mineral oil, sulphur chloride treated fatty oils, chlornaphta xanthate, cetyl chloride, cnlonnated paraffinic oils, chlorinated paraffin wax sulphides, chlorinated paraffin wax
- corrosion inhibitors or anti-oxidants are radical scavengers such as phenolic antioxidants (ste ⁇ cally hindered), aminic antioxidants, organo-copper salts, hydroperoxides decomposers, butylated hydroxytoluene .
- antioxidants ste ⁇ cally hindered
- aminic antioxidants organo-copper salts
- hydroperoxides decomposers butylated hydroxytoluene
- anti-rust agents are amine derivative of alkenyl succinic anhydride.
- the water-soluble oil composition of the invention is prepared by blending the base oil and the other ingredients under stirring or with any mixing device, preferably whilst controlling the temperature so that is does not exceed
- An oil-m-water emulsion is prepared by diluting under stirring the oil composition of the invention m water.
- An interesting feature of the invention is that it is possible to use hard water having up to 200 mg calcium carbonate per liter.
- deiomzed water which may previously have been warmed to around 35°C.
- the emulsion generally comprises water and, based on the total volume of the emulsion, from 0.5 to 30%, preferably from 1 to 20 ! by volume, of the oil composition .
- the copper alloys to which the invention applies are any copper alloy, including brass and bronze alloys.
- non ferrous metals to which the invention applies are nickel and nickel alloys, zinc and zinc alloys.
- the hot rolling process can De tne classical process. It is generally carried out at a temperatuie of ingot 750°C.
- the cold intermediate rolling process can be the classical process. It is generally carried out at ambient temperature .
- the rolling process is preferably carried out on breakdown or finishing mills.
- the instant oil-m-water composition allows a significant reduction of the number of passes. With conventional prior art emulsions, the number of passes was typically 3-10.
- the emulsion of the invention allows lowering this number by 1 pass, which is a significant improvement.
- the emulsion preferably comprises, based on the total volume of the emulsion, from 2 to 3% by volume of the oil composition .
- the emulsion preferably comprises, based on the total volume of the emulsion, from 4 to 7% by volume of the oil composition.
- a composition is prepared by mixing the ingredients of Table 1 m the order in which they appear m this table The temperature is maintained at a maximum of 50°C to ensure a complete dissolution and homogeneisation of the ingredients without impairing the properties of the emulsion
- An emulsion is prepared by diluting under stirring the oil composition of Table 1 m deionized water prewarmed to 35°C. The characteristics of the obtained emulsion are given m Table 3.
- the emulsion stability was determined according to the following procedure. 470 ml of distilled water at room temperature or test temperature were measured into a 800-ml beaker. A 50-ml stirrer having four paddles was attached to a stirring motor so that the paddles were positioned 25mm above the bottom of tne beaker. A 50-ml dropping funnel was positioned such that the outlet was 15mm from the beaker wall. The stirrer was turned on and the rate adjusted to 1000 rpm. The sample was then heated up to a temperature of 35 ⁇ 1°C. 30 ml of the test oil were added to the dropping funnel. The dropping rate was adjusted such that all the oil was transferred to the water within 120 + 20 seconds.
- a blank is first prepared by diluting a prior art oil composition which has the composition set out in Table 4 :
- Two emulsions are prepared by respectively diluting the oil compositions of the invention and of the prior art m dionized water.
- Both emulsions are tested on copper to assess the surface finish improvement.
- the tests are carried out on copper strips in the following way.
- All surface blemishes are removed from the test copper strips with silicon carbide paper. Each side is polished with silicon carbide grains picked with a pad of cotton moistened with iso-octane The strips must be handled only with stainless steel forceps After polishing, each strip is washed with iso-octane to remove the grains and immersed into fresh iso-octane The strips are then removed from the wash solvent, dried with air and weighed to the nearest 0.1 mg 500 ml of the test metal processing oil emulsion are prepared and 200 + 1 g are weighed twice and each emulsion sample is introduced into a 250 mf flask The dry copper strips are then immersed into the flasks containing the emulsion samples and the flasked are corked. The flasked are placed into an oven at a temperature of 50°C for a given test period.
- the flasks are withdrawn from the oven.
- the strips are removed from the test emulsions, washed with acetone to remove water and with iso-octane to remove the oil They are dried with air and then, weighed to the nearest 0.1 mg .
- a further test cycle can be carried out by reimmersmg the strips into the original test samples, corking the flasks and placing them into the ovent at the same temperature and for the same period as before.
- FIG. 1 shows the curves obtained when plotting the copper loss (or copper dissolution) m weight (ppm) against the duration of the test in hours.
- the copper loss m much smaller than with the emulsion of the prior art, which means less chemical attack of the copper strip leading to a surface finish improvement.
- the emulsions of the invention and of the prior art were then tested on brass to measure the rolling force improvement .
- Figure 2 is a graph showing the applied rolling force in metric ton/meter versus the number of passes.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
- Conductive Materials (AREA)
- Metal Rolling (AREA)
- Contacts (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01905750A EP1257624B1 (fr) | 2000-02-08 | 2001-02-07 | Composition de laminage a chaud et a temperature intermediaire de metaux non ferreux, d'alliages de cuivre, et de cuivre hydrosoluble |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00400348A EP1123971A1 (fr) | 2000-02-08 | 2000-02-08 | Composition soluble dans l'eau pour le laminage à froid et à chaud de cuivre, d'aliages de cuivre et de produits intermédiaires non-ferreux |
EP00400348 | 2000-02-08 | ||
PCT/EP2001/001381 WO2001059046A1 (fr) | 2000-02-08 | 2001-02-07 | Composition de laminage a chaud et a temperature intermediaire de metaux non ferreux, d'alliages de cuivre, et de cuivre hydrosoluble |
EP01905750A EP1257624B1 (fr) | 2000-02-08 | 2001-02-07 | Composition de laminage a chaud et a temperature intermediaire de metaux non ferreux, d'alliages de cuivre, et de cuivre hydrosoluble |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1257624A1 true EP1257624A1 (fr) | 2002-11-20 |
EP1257624B1 EP1257624B1 (fr) | 2004-10-06 |
Family
ID=8173544
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00400348A Withdrawn EP1123971A1 (fr) | 2000-02-08 | 2000-02-08 | Composition soluble dans l'eau pour le laminage à froid et à chaud de cuivre, d'aliages de cuivre et de produits intermédiaires non-ferreux |
EP01905750A Expired - Lifetime EP1257624B1 (fr) | 2000-02-08 | 2001-02-07 | Composition de laminage a chaud et a temperature intermediaire de metaux non ferreux, d'alliages de cuivre, et de cuivre hydrosoluble |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00400348A Withdrawn EP1123971A1 (fr) | 2000-02-08 | 2000-02-08 | Composition soluble dans l'eau pour le laminage à froid et à chaud de cuivre, d'aliages de cuivre et de produits intermédiaires non-ferreux |
Country Status (10)
Country | Link |
---|---|
US (1) | US20060142167A1 (fr) |
EP (2) | EP1123971A1 (fr) |
JP (1) | JP2003522282A (fr) |
CN (1) | CN1395612A (fr) |
AT (1) | ATE278753T1 (fr) |
AU (2) | AU3374801A (fr) |
BR (1) | BR0108159A (fr) |
CA (1) | CA2397879A1 (fr) |
DE (1) | DE60106208T2 (fr) |
WO (1) | WO2001059046A1 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4851749B2 (ja) * | 2005-08-31 | 2012-01-11 | 住友軽金属工業株式会社 | 銅材用塑性加工油 |
JP5351428B2 (ja) * | 2008-03-28 | 2013-11-27 | 出光興産株式会社 | 圧延油組成物 |
CN101307270B (zh) * | 2008-07-04 | 2011-02-16 | 北京科技大学 | 一种铜及铜合金冷轧乳化油及其制造方法 |
BR112014013879A8 (pt) * | 2011-12-09 | 2017-06-13 | Zhong Kuan | composição e método de usinagem de ferro |
CN106190458A (zh) * | 2016-06-29 | 2016-12-07 | 兰晓光 | 一种环保型热轧油 |
CN114525166A (zh) * | 2021-12-21 | 2022-05-24 | 西安思凯石化科技有限公司 | 一种环保型铜及铜合金专用乳化液配方及其制备方法 |
CN116286142A (zh) * | 2023-03-17 | 2023-06-23 | 季华实验室 | 一种抗水纹印缺陷的不锈钢轧制液组合物 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS498004B1 (fr) * | 1968-12-30 | 1974-02-23 | ||
US3923671A (en) * | 1974-10-03 | 1975-12-02 | Aluminum Co Of America | Metal working lubricant |
US4178260A (en) * | 1974-10-31 | 1979-12-11 | Exxon Research & Engineering Co. | Ester based metal working lubricants |
GB1521081A (en) * | 1975-02-06 | 1978-08-09 | Exxon Research Engineering Co | Metal-working lubricants |
JPS62285991A (ja) * | 1986-06-03 | 1987-12-11 | Nippon Mining Co Ltd | 金属もしくは合金の圧延加工における4段冷間圧延機用圧延油 |
DE3620025A1 (de) * | 1986-06-13 | 1987-12-17 | Henkel Kgaa | Verwendung von acylierten 3-amino-1,2,4-triazolen als korrosionsinhibitoren fuer buntmetalle |
US4767554A (en) * | 1987-09-18 | 1988-08-30 | Nalco Chemical Company | Polycarboxylic acid ester drawing and ironing lubricant emulsions and concentrates |
US5114603A (en) * | 1988-02-08 | 1992-05-19 | Amoco Corporation | Friction reducing lubricating oil composition |
JP2990021B2 (ja) * | 1994-08-23 | 1999-12-13 | 住友軽金属工業株式会社 | アルミニウム用熱間圧延油および該圧延油を使用するアルミニウムの熱間圧延方法 |
EP0979266A2 (fr) * | 1996-08-30 | 2000-02-16 | Solutia Inc. | Nouveaux fluides hydrosolubles d'usinage de metaux |
DE19703085A1 (de) * | 1997-01-29 | 1998-07-30 | Henkel Kgaa | Kühlschmierstoffemulsion |
US6060438A (en) * | 1998-10-27 | 2000-05-09 | D. A. Stuart | Emulsion for the hot rolling of non-ferrous metals |
EP1123965A1 (fr) * | 2000-02-08 | 2001-08-16 | Mobil Oil Francaise | Composition d'huile pour le laminage à froid d'acier et d'acier inoxydable |
EP1123969A1 (fr) * | 2000-02-08 | 2001-08-16 | Mobil Oil Francaise | Composition soluble dans l'eau pour le laminage à froid d'aluminium et d'aliages d'aluminium |
-
2000
- 2000-02-08 EP EP00400348A patent/EP1123971A1/fr not_active Withdrawn
-
2001
- 2001-02-07 US US10/182,493 patent/US20060142167A1/en not_active Abandoned
- 2001-02-07 DE DE60106208T patent/DE60106208T2/de not_active Expired - Fee Related
- 2001-02-07 WO PCT/EP2001/001381 patent/WO2001059046A1/fr active IP Right Grant
- 2001-02-07 CA CA002397879A patent/CA2397879A1/fr not_active Abandoned
- 2001-02-07 BR BR0108159-4A patent/BR0108159A/pt not_active IP Right Cessation
- 2001-02-07 EP EP01905750A patent/EP1257624B1/fr not_active Expired - Lifetime
- 2001-02-07 CN CN01803780A patent/CN1395612A/zh active Pending
- 2001-02-07 JP JP2001558186A patent/JP2003522282A/ja active Pending
- 2001-02-07 AU AU3374801A patent/AU3374801A/xx active Pending
- 2001-02-07 AT AT01905750T patent/ATE278753T1/de not_active IP Right Cessation
- 2001-02-07 AU AU2001233748A patent/AU2001233748B2/en not_active Ceased
Non-Patent Citations (1)
Title |
---|
See references of WO0159046A1 * |
Also Published As
Publication number | Publication date |
---|---|
ATE278753T1 (de) | 2004-10-15 |
AU2001233748B2 (en) | 2004-12-23 |
EP1123971A1 (fr) | 2001-08-16 |
CN1395612A (zh) | 2003-02-05 |
BR0108159A (pt) | 2003-01-21 |
DE60106208D1 (de) | 2004-11-11 |
JP2003522282A (ja) | 2003-07-22 |
DE60106208T2 (de) | 2006-02-16 |
WO2001059046A1 (fr) | 2001-08-16 |
US20060142167A1 (en) | 2006-06-29 |
EP1257624B1 (fr) | 2004-10-06 |
AU3374801A (en) | 2001-08-20 |
CA2397879A1 (fr) | 2001-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1265978B1 (fr) | Aluminium hydrosoluble et une composition de laminage a chaud d'alliages d'aluminium | |
AU2001248310B2 (en) | Hot rolling process for rolling aluminium and aluminium alloys sheets | |
EP1020511A2 (fr) | Lubrifiant pour machines d'industrie alimentaire ne formant pas de boues à des températures élevées | |
US6090761A (en) | Non-sludging, high temperature resistant food compatible lubricant for food processing machinery | |
AU2001239249A1 (en) | Water-soluble aluminium and aluminium alloys hot rolling composition | |
AU2001248310A1 (en) | Hot rolling process for rolling aluminium and aluminium alloys sheets | |
AU2001233748B2 (en) | Water-soluble copper, copper alloys and non-ferrous metals intermediate cold and hot rolling composition | |
AU2001233748A1 (en) | Water-soluble copper, copper alloys and non-ferrous metals intermediate cold and hot rolling composition | |
EP1123965A1 (fr) | Composition d'huile pour le laminage à froid d'acier et d'acier inoxydable | |
JP5607350B2 (ja) | 電磁鋼板用冷間圧延油組成物及び圧延方法 | |
EP1123968A1 (fr) | Composition pour le laminage à froid d'alumine et d'alliages d'alumine | |
EP1123966A1 (fr) | Composition d'huile pour le laminage à froid de cuivre et d'alliages non-ferreux | |
KR950010600B1 (ko) | 방부성 및 유화분산성이 우수한 박판 냉각 압연유 | |
WO2001059044A1 (fr) | Composition d'huile soluble dans l'eau destinee au laminage a froid de l'aluminium et d'alliages aluminium | |
EP1123963A1 (fr) | Composition lubrifiante non-salissante | |
JP4117038B2 (ja) | 金属加工油組成物 | |
AU2212000A (en) | Phosphate ester compositions in a weight ratio greater than 1:1 monoalkyl to dialkyl phosphate used as lubricant additives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020827 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CLAIRE, JEAN-YVES Inventor name: PRINCE, FRANCIS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20041006 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60106208 Country of ref document: DE Date of ref document: 20041111 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050106 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050106 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050207 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050207 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20041006 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20050707 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070105 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20070108 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070228 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050306 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070201 Year of fee payment: 7 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080207 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20080901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20081031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080207 |