EP1255077B1 - Vorrichtung zum Verbrennen eines gasförmigen Brennstoff-Oxidator-Gemischs - Google Patents

Vorrichtung zum Verbrennen eines gasförmigen Brennstoff-Oxidator-Gemischs Download PDF

Info

Publication number
EP1255077B1
EP1255077B1 EP02405325A EP02405325A EP1255077B1 EP 1255077 B1 EP1255077 B1 EP 1255077B1 EP 02405325 A EP02405325 A EP 02405325A EP 02405325 A EP02405325 A EP 02405325A EP 1255077 B1 EP1255077 B1 EP 1255077B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
swirl
generator arrangement
axis
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02405325A
Other languages
English (en)
French (fr)
Other versions
EP1255077A3 (de
EP1255077A2 (de
Inventor
Richard Carroni
Adnan Eroglu
Timothy Griffin
Verena Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1255077A2 publication Critical patent/EP1255077A2/de
Publication of EP1255077A3 publication Critical patent/EP1255077A3/de
Application granted granted Critical
Publication of EP1255077B1 publication Critical patent/EP1255077B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/13002Catalytic combustion followed by a homogeneous combustion phase or stabilizing a homogeneous combustion phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/107Flame diffusing means coated with catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement

Definitions

  • the invention relates to a device for burning a gaseous fuel-oxidizer mixture, in particular for a power plant.
  • a premix burner in which an interior tapering conical inner body is arranged in the flow direction.
  • An outer casing of the inner space is pierced by tangentially arranged air-engaging passages through which a combustion air flow flows into the inner space. This can form a swirl flow in the interior, which is then enriched via at least one fuel nozzle with a fuel.
  • the mixing tube passes over a cross-sectional jump in a combustion chamber, forming in the region of the plane of the cross-sectional jump a return flow zone, which ensures the stability of the combustion.
  • the known premix burner requires a relatively large installation space. Leaving the mixing tube away reduces the stability and homogeneity of the flames in the combustion chamber. Furthermore, there is the danger of pressure pulsations.
  • US Pat. No. 6,109,018 is a catalyst structure with several parallel to the main flow direction channels, some of which are catalytically active, partly catalytically inactive.
  • US 5,729,967 discloses a catalyst swirler assembly disposed upstream of a cross-sectional enlargement at the entrance of a combustor.
  • the invention aims to remedy this situation.
  • the invention as characterized in the claims, deals with the problem of providing for an apparatus of the type mentioned an embodiment which is particularly improved in terms of compactness of their construction and stability and homogeneity of the flames in the combustion chamber.
  • the invention is based on the general idea to generate a swirl flow from the fuel-oxidizer mixture and to increase the temperature of the mixture before entering the combustion chamber with a catalyst.
  • the device according to the invention comprises a flow-through catalyst swirl generator arrangement, in which part of the fuel-oxidizer mixture burns and creates a swirling flow.
  • the proposal according to the invention can increase the stability and homogeneity of the flames in the combustion chamber and reduce the risk of pulsation.
  • a catalyst swirler assembly can build relatively short in the flow direction, so that the apparatus as a whole has a compact structure.
  • the catalyst swirl generator arrangement in such a way that it has a catalyst and a swirl generator immediately downstream of it.
  • the catalyst swirl generator assembly comprises a catalyst which is designed as a swirl generator.
  • the catalyst or the catalyst body is formed so that the flow exiting therefrom has the desired twist.
  • the catalyst-swirl generator arrangement has a plurality of, substantially parallel to each other, ie in the same direction extending, Wegströmbare channels, of which one, in particular about half, catalytically active and the other are formed catalytically inactive.
  • the channels may be distributed around a longitudinal central axis of the catalyst swirler assembly, with this longitudinal central axis extending in the main flow direction of the catalyst swirler assembly.
  • the channels may be inclined relative to the longitudinal central axis, such that the longitudinal direction of the channels in each case extends inclined with respect to a straight line which extends parallel to the longitudinal central axis.
  • the inclination of the channels with respect to the longitudinal central axis in the flow direction in particular continuously or stepwise and continuously or progressively increase, wherein the inclination of the channels at the inlet may have the value zero that is, the channels then run at their entry parallel to the longitudinal central axis.
  • the catalyst-swirl generator arrangement can have a plurality of layers of a corrugated or folded first web material radially to the longitudinal center axis whose waves or folds form the catalytically active or inactive channels, wherein an intermediate layer of a smooth second radially between two adjacent layers Web material is arranged.
  • This construction ensures that radially adjacent waves or folds can not penetrate each other, so that the channels always have constant flow cross-sections.
  • a device 1 has a flow-through catalyst-swirl generator arrangement 2, whose upstream side 3 is supplied with a gaseous fuel-oxidizer mixture 4, which in FIG Fig. 1 symbolized by arrows. It is expressly stated herein that neither the production of the catalyst-swirl generator arrangement nor the catalyst swirl generator arrangement alone is the subject of the present invention.
  • the device 1 forms a burner with an inflow line 30, in which the catalyst swirl generator arrangement 2 is arranged.
  • the catalyst swirl generator assembly 2 is formed so that it burns a portion of the fuel-oxidizer mixture 4 and that exits at a downstream side 5 a swirl flow, which is symbolized by an arrow 6.
  • the catalyst-swirl generator arrangement 2 is arranged immediately before an abrupt cross-sectional widening 7 (cross-sectional jump), which is formed at the inlet of a combustion chamber 8. As a result, the swirl flow can burst immediately.
  • a central recirculation zone 9 can thereby be formed in the combustion chamber 8.
  • Corresponding vortices 10 are indicated by closed arrow lines.
  • the recirculation zone 9 forms a kind of anchoring for a homogeneous flame front 11 in the combustion chamber 8.
  • a stabilization of the flame front 11 results from the fact that the central vortex 10 mixing between the products of homogeneous combustion in the combustion chamber 8 with the partially burned products of the catalytic Support combustion in the catalyst swirler assembly 2. This corresponds to an internal exhaust gas recirculation, which causes an intensive preheating of the total mixture and at the same time the local velocities to values reduced, which correspond to the flame speed.
  • a recirculation zone 12 which is generated by the sudden cross-sectional widening 7.
  • Corresponding vortices 13 are also indicated here by closed arrow lines.
  • the resulting flame stabilization additionally supports the complete combustion and reduces the emission of pollutants, such as CO and NO x , due to the improved mixing.
  • Such a device comes e.g. used in power plants and serves there to produce hot gases for operating a turbine, in particular a gas turbine.
  • part of the fuel-oxidizer mixture 4 burns as it flows through the catalyst-swirl generator arrangement 2, as a result of which the temperature of the introduced fuel-oxidizer mixture increases at the inlet of the combustion chamber 8.
  • These high temperatures additionally improve the flame stability and avoid the formation of pulsations.
  • the exact position of the flame front 11 in the combustion chamber 8 can be influenced by the geometry and / or the arrangement and / or the construction of the catalyst swirl generator arrangement 2.
  • the catalyst swirl generator arrangement 2 preferably consists of a catalyst 14, which is designed as a swirl generator. It is also possible to form the swirl generator and the catalyst as separate components, which are arranged one behind the other in the flow direction. Such an embodiment is in Fig. 1 additionally indicated by a broken line which symbolizes the boundary 15 between an upstream catalyst 16 and a swirl generator 17 immediately adjacent to the catalyst 16.
  • the catalyst swirl generator arrangement 2 has a plurality of channels 18 and 19, which run essentially parallel to one another and can flow through them.
  • the one channels are formed as catalytically active channels 18, while the other channels are formed as catalytically inactive channels 19.
  • catalytically active channels 18 and catalytically inactive channels 19 alternate, whereby the cooling effect for the catalyst 14 or the catalyst swirl generator arrangement 2 is improved.
  • the channels 18, 19 are arranged distributed around a longitudinal central axis 20 of the here cylindrical, in particular circular cylindrical, catalyst-swirl generator arrangement 2 in the radial direction and in the circumferential direction.
  • the longitudinal central axis 20 runs parallel to the main flow direction of the catalyst-swirl generator arrangement 2.
  • the channels 18, 19 are inclined relative to the longitudinal center axis 20, that is, the longitudinal directions of the channels 18, 19 are inclined relative to a straight line which is parallel to the longitudinal central axis 20.
  • This connection is in Fig. 2 by way of example with reference to a single channel 18, ie a longitudinal direction 21 of this channel 18 shown by a broken line is inclined at an angle ⁇ with respect to a straight line 22 which is also shown by a broken line and extends parallel to the longitudinal central axis 20.
  • This inclination angle ⁇ must be chosen large enough to ensure that the central recirculation zone 9 can form in the combustion chamber 8. In addition, the inclination angle ⁇ must not be too large to avoid an excessive pressure drop at the cross-sectional widening 7.
  • At least at radially outwardly disposed channels 18, 19 are suitable values for the angle ⁇ , for example, between 30 ° and 60 °, which may correspond, for example, swirl numbers ⁇ of 0.4 to 1.2. If the outflow side 5 of the catalyst swirl generator arrangement 2 is positioned immediately before the cross-sectional widening 7, the angle of inclination ⁇ and thus the pressure loss of the arrangement 2 can be reduced.
  • the inclination ⁇ of the channels 18, 19 with respect to the longitudinal central axis 20 in the flow direction of the catalyst swirl generator assembly 2 increase , This change in inclination can be done appropriately steadily and progressively.
  • the flow resistance of the catalyst swirl generator arrangement 2 can be optimized.
  • the inclination ⁇ of the channels 18, 19 may increase radially from inside to outside. This means that for channels 18, 19, which are arranged radially further inward, the inclination ⁇ may be smaller than in channels 18, 19, which are arranged radially further outward.
  • the catalyst swirl generator arrangement 2 may have a first longitudinal section 23 containing the inflow side 3 and a second longitudinal section 24 having the outflow side 5.
  • These longitudinal sections 23, 24 are in Fig. 2 marked by curly brackets.
  • the longitudinal sections 23, 24 can - as here - be about the same size.
  • the channels 18 and 19 in the first longitudinal section 23 may extend parallel to the longitudinal central axis 20, while in the second longitudinal section 24 they have an inclination with respect to the longitudinal central axis 20, which may optionally increase in the flow direction.
  • the swirl generator 17 is formed in the rear longitudinal section 24 of the arrangement 2.
  • the second longitudinal section 24 extends over approximately one fifth, one quarter or one third of the total length of the arrangement 2.
  • the catalyst swirler assembly 2 may be conveniently constructed by placing a corrugated or folded first web material 25 on a flat or smooth second web material 26 becomes.
  • a layering thereby forms in the radial direction, wherein the layers formed by the first web material 25 are radially separated from one another by intermediate layers which are formed by the second web material 26.
  • the second web material 26 ensures that the undulations and folds of the first web material 25 of the one layer can not protrude into the undulations and folds of the first web material 25 of a radially adjacent layer. Rather, the intermediate layers of the second web material 26 ensure constant channel cross-sections.
  • the individual channels 18 and 19 are formed by the waves or folds of the first web material 25.
  • the catalytically active channels 18 may suitably one side of the first web material 25, according to Fig. 3 in each case the upper side, be coated with a catalytically active coating 27.
  • the opposite underside of the first web material 25 is then uncoated, whereby the catalytically inactive channels 19 arise.
  • the layers of the second web material 26 may also be coated on one side with the catalyst coating 27 in order to form the catalytically active channels 18.
  • the web materials 25, 26 consist of a metal sheet, which is preformed and optionally coated.
  • the sheet materials 25 and 26 may be stacked concentrically with respect to the longitudinal central axis 20. However, an embodiment in which the web materials 25 and 26 are spirally layered with respect to the longitudinal central axis 20 is preferred. This results in a particularly simple way to Hertelung the catalyst-swirler assembly 2:
  • the stacked sheet materials 25 and 26 are wound on a spindle 28, which forms the center of the catalyst-swirl generator assembly 2 after winding and extends concentrically to the longitudinal central axis 20.
  • the spindle 28 thus carries the web material 25, 26, wherein its diameter is chosen so large that the winding of the corrugated or folded first web material 25 is still feasible with reasonable effort.
  • the complete winding can be secured, for example, by tension wires 29, which circumferentially surround the winding and keep it in shape at least until the installation of the catalyst-swirl generator arrangement 2 in a burner or the like.
  • this spindle 28 is formed so that with their help, the central recirculation zone 9 and the flame front 11 in the combustion chamber 8 (see. Fig. 1 ) can be influenced in particular in terms of shape and position.
  • the spindle 28 is formed as a flow-through pipe, which allows a central flow through the catalyst-swirler assembly 2 with the fuel-oxidizer mixture 4.
  • the tube-shaped spindle 28 may have at its outlet end an outlet nozzle or an outlet aperture, wherein it may also be expedient to design the outlet end in such a way that it converges in the flow direction.
  • aerodynamic variables of the flow entering the combustion chamber 8 can be changed, which affect the position and extent of the flame front 11 and / or the central recirculation zone 9.
  • the spin-generating structure requires a minimum length L which results from dividing the channel diameter by the tangent of the angle of inclination ⁇ .
  • the thus determined length is relatively short, so that the top too Fig. 1 explained construction with separate catalyst 16 and separate swirl generator 17 in the flow direction still relatively short builds.
  • the axial length of the formed as a swirl generator catalyst 14, so the catalyst swirler assembly 2, according to the requirements of the catalytic conversion of the system can be addressed.
  • the integrated construction of the catalyst swirl generator arrangement 2 is also of particular advantage when the arrangement 2, as described above with reference to Fig. 1 explained, two or more longitudinal sections 23, 24 has, in which the channels 18, 19 differ from each other in terms of their inclination.
  • the channels 18, 19 in the upstream first longitudinal section 23 with respect to the longitudinal central axis 20 are not inclined so that they are parallel to the main flow direction, while they are inclined in the downstream longitudinal section 24 and thus form the swirl generator.
  • the one-piece design of the catalyst-swirl generator assembly 2 reduces pressure losses at the transition between the successive longitudinal sections 23, 24.
  • a significant advantage of the catalyst swirl generator arrangement 2 presented here is seen in the fact that in the arrangement 2 according to the invention, the ignition of a homogeneous combustion reaction within the channels 18 can be avoided, whereby at the same time the risk of flashbacks is reduced.
  • the channels 18 with sufficiently small flow cross-sections which may for example be between 1 mm to 5 mm, are equipped. This has the consequence that form very large surfaces, which counteracts flame formation (thermodynamic flame extinction). In this way, along the length of the channels 18, the homogeneous ignition can be avoided.
  • a catalytically active surface within the swirl generator promotes the adsorption of radicals of the homogeneous phase, thereby avoiding the ignition and flashback (chemical flame extinction).

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Vorrichtung zum Verbrennen eines gasförmigen Brennstoff-Oxidator-Gemischs, insbesondere für eine Kraftwerksanlage.
  • Stand der Technik
  • Aus der EP 0 833 105 A2 ist ein Vormischbrenner bekannt, bei dem in einem Innenraum ein sich in Strömungsrichtung verjüngender kegelförmiger Innenkörper angeordnet ist. Eine äußere Ummantelung des Innenraums ist durch tangential angeordnete Lufteingriffskanäle durchbrochen, durch welche ein Verbrennungsluftstrom in den Innenraum strömt. Hierdurch kann sich im Innenraum eine Drallströmung ausbilden, die dann über mindestens eine Brennstoffdüse mit einem Brennstoff angereichert wird. Im nachgeschalteten Mischrohr erfolgt dann die Gemischbildung der beiden Medien. Das Mischrohr geht anschließend über einen Querschnittssprung in einen Brennraum über, wobei sich im Bereich der Ebene des Querschnittssprungs eine Rückströmzone bildet, welche die Stabilität der Verbrennung gewährleistet. Zur Ausbildung eines derartigen Mischrohrs benötigt der bekannte Vormischbrenner einen relativ großen Einbauraum. Läßt man das Mischrohr weg, reduziert sich die Stabilität und Homogenität der Flammen in der Brennkammer. Des weiteren besteht die Gefahr von Druckpulsationen.
  • Aus der US 5 202 303 und der US 5 328 359 sind Katalysatoren bekannt, die aus gewelltem oder gefaltetem Bahnmaterial aufgebaut sind, wobei ihre Falten oder Wellen eine Vielzahl von durchströmbaren Kanälen bilden. Bei der Durchströmung eines derartigen Katalysators wird ein Teil eines Brennstoff-Oxidator-Gemischs verbrannt. Um bei einem solchen Katalysator eine Überhitzung zu vermeiden, muß die Verbrennung auf nur einen Teil des den Katalysator durchströmenden Gemischs beschränkt werden. Zu diesem Zweck sind nur einige der Kanäle, z.B. durch eine entsprechende Beschichtung, katalytisch aktiv ausgebildet, während die anderen Kanäle katalytisch inaktiv sind. Bei der Durchströmung des Katalysators findet dann nur innerhalb der katalytisch aktiven Kanäle eine Verbrennung statt, während die Durchströmung der katalytisch inaktiven Kanäle den Katalysator kühlt. Bei herkömmlichen Katalysatoren sind jedoch die Katalysatoraustrittstemperaturen zu niedrig, um die Flammen in der Brennkammer hinreichend zu stabilisieren.
  • US 6 179 608 beschreibt den Aufbau eines Drallerzeugers mit gegenüber der axialen Richtung geneigt angeordneten Kanälen.
  • Aus US 6 109 018 ist eine Katalysatorstruktur mit mehreren parallel zur Hauptströmungsrichtung verlaufenden Kanälen, die teils katalytisch aktiv, teils katalytisch inaktiv sind.
  • US 5 729 967 offenbart eine Katalysator-Drallerzeuger-Anordnung, die stromauf einer Querschnittserweiterung am Eintritt einer Brennkammer angeordnet ist.
  • Darstellung der Erfindung
  • Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für eine Vorrichtung der eingangs genannten Art eine Ausführungsform anzugeben, die insbesondere hinsichtlich Kompaktheit ihres Aufbaus und Stabilität und Homogenität der Flammen in der Brennkammer, verbessert ist.
  • Dieses Problem wird durch den Gegenstande des unabhängigen Anspruchs 1 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung beruht auf dem allgemeinen Gedanken, aus dem Brennstoff-Oxidator-Gemisch eine Drallströmung zu erzeugen und die Temperatur des Gemischs vor dem Eintritt in die Brennkammer mit einem Katalysator zu erhöhen. Zu diesem Zweck weist die erfindungsgemäße Vorrichtung eine durchströmbare Katalysator-Drallerzeuger-Anordnung auf, in der ein Teil des Brennstoff-Oxidator-Gemischs verbrennt und die eine Drallströmung erzeugt. Durch den erfindungsgemäßen Vorschlag kann in der Brennkammer die Stabilität und Homogenität der Flammen erhöht und die Pulsationsgefahr reduziert werden. Darüber hinaus kann eine derartige Katalysator-Drallerzeuger-Anordnung in der Strömungsrichtung relativ kurz bauen, so daß die Vorrichtung insgesamt einen kompakten Aufbau besitzt.
  • Grundsätzlich ist es möglich, die Katalysator-Drallerzeuger-Anordnung so auszubilden, daß sie einen Katalysator und einen stromab unmittelbar daran anschliessenden Drallerzeuger aufweist. Bevorzugt wird jedoch eine Ausführungsform, bei der die Katalysator-Drallerzeuger-Anordnung einen Katalysator aufweist, der als Drallerzeuger ausgebildet ist. Mit anderen Worten, der Katalysator bzw. der Katalysatorkörper ist so ausgebildet, daß die daraus austretende Strömung den gewünschten Drall aufweist. Durch diese Bauweise können zwei Funktionen, nämlich die katalytische Verbrennung und die Drallerzeugung, in ein kompaktes Bauteil integriert werden.
  • Zweckmäßig besitzt die Katalysator-Drallerzeuger-Anordnung mehrere, im wesentlichen parallel zueinander, also in der gleichen Richtung verlaufende, durchströmbare Kanäle, von denen die einen, insbesondere etwa die Hälfte, katalytisch aktiv und die anderen katalytisch inaktiv ausgebildet sind. Die Kanäle können um eine Längsmittelachse der Katalysator-Drallerzeuger-Anordnung verteilt angeordnet sein, wobei sich diese Längsmittelachse in der Hauptdurchströmungsrichtung der Katalysator-Drallerzeuger-Anordnung erstreckt. Entsprechend einer vorteilhaften Ausführungsform können die Kanäle gegenüber der Längsmittelachse geneigt sein, derart, daß die Längsrichtung der Kanäle jeweils gegenüber einer Geraden geneigt verläuft, die sich parallel zur Längsmittelachse erstreckt. Hierdurch wird für die Kanäle eine Anordnung vorgeschlagen, die bewirkt, daß an der Abströmseite der Katalysator-Drallerzeuger-Anordnung, also an den Austrittsenden der Kanäle, die gewünschte Drallströmung austritt.
  • Um den Druckabfall bei der Durchströmung der Katalysator-Drallerzeuger-Anordlung zu reduzieren, kann die Neigung der Kanäle gegenüber der Längsmittelachse in der Strömungsrichtung, insbesondere stetig oder stufenförmig sowie kontinuierlich oder progressiv, zunehmen, wobei die Neigung der Kanäle am Eintritt den Wert Null aufweisen kann, das heißt, die Kanäle verlaufen dann an ihrem Eintritt parallel zur Längsmittelachse.
  • Gemäß einer besonderen Weiterbildung kann die Katalysator-Drallerzeuger-Anordnung radial zur Längsmittelachse mehrere Schichten aus einem gewellten oder gefalteten ersten Bahnmaterial aufweisen, dessen Wellen oder Falten die katalytisch aktiven bzw. inaktiven Kanäle bilden, wobei radial zwischen zwei benachbarten Schichten eine Zwischenschicht aus einem glatten zweiten Bahnmaterial angeordnet ist. Dieser Aufbau gewährleistet, daß radial benachbarte Wellen oder Falten nicht ineinander eindringen können, so daß die Kanäle stets gleichbleibende Strömungsquerschnitte aufweisen.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Kurze Beschreibung der Zeichnungen
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder funktional gleiche oder ähnliche Bauteile beziehen. Es zeigen, jeweils schematisch,
  • Fig. 1
    eine stark vereinfachte Prinzipdarstellung einer Vorrichtung nach der Erfindung,
    Fig. 2
    eine perspektivische Ansicht einer bevorzugten Ausführungsform einer Katalysator-Drallerzeuger-Anordnung für die Vorrichtung nach der Erfindung,
    Fig. 3
    einen Teilquerschnitt durch die Katalysator-Drallerzeuger-Anordnung gemäß Fig. 2.
    Wege zur Ausführung der Erfindung
  • Entsprechend Fig. 1 weist eine erfindungsgemäße Vorrichtung 1 eine durchströmbare Katalysator-Drallerzeuger-Anordnung 2 auf, deren Anströmseite 3 ein gasförmiges Brennstoff-Oxidator-Gemisch 4 zugeführt wird, das in Fig. 1 durch Pfeile symbolisiert ist. Es sei hier ausdrücklich festgehalten, dass weder die Herstellung der Katalysator-Drallerzeuger- Anordnung, noch die Katalysator-Drallerzeuger- Anordnung allein für sich, Gegenstand der vorliegenden Erfindung sind. Die Vorrichtung 1 bildet einen Brenner mit einer Zuströmleitung 30, in der die Katalysator-Drallerzeuger-Anordnung 2 angeordnet ist. Die Katalysator-Drallerzeuger-Anordnung 2 ist so ausgebildet, daß darin ein Teil des Brennstoff-Oxidator-Gemischs 4 verbrennt und daß an einer Abströmseite 5 eine Drallströmung austritt, was durch einen Pfeil 6 symbolisiert ist. Die Katalysator-Drallerzeuger-Anordnung 2 ist dabei unmittelbar vor einer abrupten Querschnittserweiterung 7 (Querschnittssprung) angeordnet, die am Eintritt einer Brennkammer 8 ausgebildet ist. Hierdurch kann die Drallströmung sofort aufplatzen.
  • Bei einer hinreichend großen Drallzahl kann sich dadurch in der Brennkammer 8 eine zentrale Rezirkulationszone 9 ausbilden. Entsprechende Wirbel 10 sind durch geschlossene Pfeillinien angedeutet. Die Rezirkulationszone 9 bildet eine Art Verankerung für eine homogene Flammenfront 11 in der Brennkammer 8. Eine Stabilisierung der Flammenfront 11 ergibt sich dadurch, daß die zentralen Wirbel 10 eine Vermischung zwischen den Produkten der homogenen Verbrennung in der Brennkammer 8 mit den teilweise verbrannten Produkten der katalytischen Verbrennung in der Katalysator-Drallerzeuger-Anordnung 2 unterstützen. Dies entspricht einer internen Abgasrückführung, die eine intensive Vorheizung der Gesamtmischung bewirkt und gleichzeitig die lokalen Geschwindigkeiten auf Werte reduziert, die der Flammengeschwindigkeit entsprechen. Dieser Vorgang wird in entsprechender Weise auch durch eine Rezirkulationszone 12 unterstützt, die durch die plötzliche Querschnittserweiterung 7 erzeugt wird. Entsprechende Wirbel 13 sind hier ebenfalls durch geschlossene Pfeillinien angedeutet. Die so erreichte Flammenstabilisierung unterstützt zusätzlich die komplette Verbrennung und reduziert die Emission von Schadstoffen, wie z.B. CO und NOx, aufgrund der verbesserten Durchmischung.
  • Eine derartige Vorrichtung kommt z.B. bei Kraftwerksanlagen zum Einsatz und dient dort zur Erzeugung heißer Gase zum Betrieb einer Turbine, insbesondere einer Gasturbine.
  • Wie bereits weiter oben erläutert verbrennt ein Teil des Brennstoff-Oxidator-Gemischs 4 bei der Durchströmung der Katalysator-Drallerzeuger-Anordnung 2, wodurch sich am Eintritt der Brennkammer 8 die Temperatur des eingeleiteten Brennstoff-Oxidator-Gemischs erhöht. Diese hohen Temperaturen verbessern zusätzlich die Flammenstabilität und vermeiden die Entstehung von Pulsationen.
  • Die genaue Position der Flammenfront 11 in der Brennkammer 8 kann durch die Geometrie und/oder die Anordnung und/oder den Aufbau der Katalysator-Drallerzeuger-Anordnung 2 beeinflußt werden.
  • Die Katalysator-Drallerzeuger-Anordnung 2 besteht vorzugsweise aus einem Katalysator 14, der als Drallerzeuger ausgebildet ist. Ebenso ist es möglich, den Drallerzeuger und den Katalysator als separate Bauteile auszubilden, die in Strömungsrichtung hintereinander angeordnet sind. Eine derartige Ausführungsform ist in Fig. 1 zusätzlich durch eine unterbrochene Linie angedeutet, welche die Grenze 15 zwischen einem stromauf angeordneten Katalysator 16 und einem stromab des Katalysators 16 unmittelbar daran anschließenden Drallerzeuger 17 symbolisiert.
  • Entsprechend den Fig. 2 und 3 weist die Katalysator-Drallerzeuger-Anordnung 2 mehrere, im wesentlichen parallel zueinander verlaufende, durchströmbare Kanäle 18 und 19 auf. Die einen Kanäle sind als katalytisch aktive Kanäle 18 ausgebildet, während die anderen Kanäle als katalytisch inaktive Kanäle 19 ausgebildet sind. Zweckmäßig wechseln sich katalytisch aktive Kanäle 18 und katalytisch inaktive Kanäle 19 ab, wodurch die Kühlwirkung für den Katalysator 14 bzw. die Katalysator-Drallerzeuger-Anordnung 2 verbessert wird. Die Kanäle 18, 19 sind um eine Längsmittelachse 20 der hier zylindrisch, insbesondere kreiszylindrisch, ausgebildeten Katalysator-Drallerzeuger-Anordnung 2 in radialer Richtung und in Umfangsrichtung verteilt angeordnet. Die Längsmittelachse 20 verläuft dabei parallel zur Hauptdurchströmungsrichtung der Katalysator-Drallerzeuger-Anordnung 2.
  • Um den Drallerzeuger in den Katalysator 14 zu integrieren, sind die Kanäle 18, 19 gegenüber der Längsmittelachse 20 geneigt, das heißt, die Längsrichtungen der Kanäle 18, 19 verlaufen gegenüber einer Geraden jeweils geneigt, die parallel zur Längsmittelachse 20 verläuft. Dieser Zusammenhang ist in Fig. 2 exemplarisch anhand eines einzelnen Kanals 18 gezeigt, d.h. eine durch eine unterbrochene Linie dargestellte Längsrichtung 21 dieses Kanals 18 ist um einen Winkel α gegenüber einer ebenfalls durch eine unterbrochene Linie dargestellte Geraden 22 geneigt, die sich parallel zur Längsmittelachse 20 erstreckt.
  • Dieser Neigungswinkel α muß groß genug gewählt werden, um sicherzustellen, daß sich die zentrale Rezirkulationszone 9 in der Brennkammer 8 ausbilden kann. Darüber hinaus darf der Neigungswinkel α auch nicht zu groß gewählt werden, um einen zu großen Druckabfall an der Querschnittserweiterung 7 zu vermeiden. Zumindest bei radial weiter außen angeordneten Kanälen 18, 19 liegen geeignete Werte für den Winkel α beispielsweise zwischen 30° und 60°, was z.B. Drallzahlen Ω von 0,4 bis 1,2 entsprechen kann. Sofern die Abströmseite 5 der Katalysator-Drallerzeuger-Anordnung 2 unmittelbar vor der Querschnittserweiterung 7 positioniert ist, können der Neigungswinkel α und somit der Druckverlust der Anordnung 2 reduziert werden.
  • Bei der Ausführungsform gemäß Fig. 2 besitzen alle Kanäle 18, 19 entlang ihrer gesamten Länge die gleiche Neigung α gegenüber der Längsmittelachse 20. Bei einer hier nicht gezeigten anderen Ausführungsform kann die Neigung α der Kanäle 18, 19 gegenüber der Längsmittelachse 20 in der Durchströmungsrichtung der Katalysator-Drallerzeuger-Anordnung 2 zunehmen. Diese Neigungsveränderung kann zweckmäßig stetig und progressiv erfolgen. Insbesondere kann die Neigung α an der Anströmseite der Katalysator-Drallerzeuger-Anordnung 2 den Wert α = 0° aufweisen. Durch diese Gestaltung der Kanäle 18, 19 kann der Strömungswiderstand der Katalysator-Drallerzeuger-Anordnung 2 optimiert werden. Bei einer anderen Ausführungsform kann die Neigung α der Kanäle 18, 19 radial von innen nach außen zunehmen. Das bedeutet, daß bei Kanälen 18, 19, die radial weiter innen angeordnet sind, die Neigung α kleiner sein kann als bei Kanälen 18, 19, die radial weiter außen angeordnet sind. Diese Maßnahmen vereinfachen die Herstellung der Katalysator-Drallerzeuger-Anordnung 2.
  • Beispielsweise kann die Katalysator-Drallerzeuger-Anordnung 2 einen die Anströmseite 3 enthaltenden ersten Längsabschnitt 23 sowie einen die Abströmseite 5 aufweisenden zweiten Längsabschnitt 24 besitzen. Diese Längsabschnitte 23, 24 sind in Fig. 2 durch geschweifte Klammern gekennzeichnet. Die Längsschnitte 23, 24 können - wie hier - etwa gleich groß sein. Bei einer bevorzugten Ausführungsform können die Kanäle 18 und 19 im ersten Längsabschnitt 23 parallel zur Längsmittelachse 20 verlaufen, während sie im zweiten Längsabschnitt 24 eine Neigung gegenüber der Längsmittelachse 20 besitzen, die optional in Strömungsrichtung zunehmen kann. Hierdurch wird der Drallerzeuger 17 im hinteren Längsabschnitt 24 der Anordnung 2 ausgebildet. Zweckmäßig erstreckt sich der zweite Längsabschnitt 24 über etwa ein Fünftel, ein Viertel oder ein Drittel der Gesamtlänge der Anordnung 2.
  • Entsprechend den Fig. 2 und 3 kann die Katalysator-Drallerzeuger-Anordnung 2 zweckmäßig dadurch aufgebaut werden, daß ein gewelltes oder gefaltetes erstes Bahnmaterial 25 auf ein flaches oder glattes zweites Bahnmaterial 26 aufgelegt wird. Bezüglich der Längsmittelachse 20 bildet sich dadurch in radialer Richtung eine Schichtung aus, wobei die durch das erste Bahnmaterial 25 gebildeten Schichten durch Zwischenschichten radial voneinander getrennt sind, die vom zweiten Bahnmaterial 26 gebildet sind. Bei diesem Aufbau gewährleistet das zweite Bahnmaterial 26, daß die Wellen und Falten des ersten Bahnmaterials 25 der einen Schicht nicht in die Wellen und Falten des ersten Bahnmaterials 25 einer radial benachbarten Schicht hineinragen können. Vielmehr gewährleisten die Zwischenschichten aus dem zweiten Bahnmaterial 26 gleichbleibende Kanalquerschnitte. Die einzelnen Kanäle 18 und 19 werden dabei durch die Wellen oder Falten des ersten Bahnmaterials 25 gebildet. Zur Ausbildung der katalytisch aktiven Kanäle 18 kann zweckmäßig eine Seite des ersten Bahnmaterials 25, gemäß Fig. 3 jeweils die Oberseite, mit einer katalytisch aktiven Beschichtung 27 beschichtet sein. Die gegenüberliegende Unterseite des ersten Bahnmaterials 25 ist dann unbeschichtet, wodurch die katalytisch inaktiven Kanäle 19 entstehen. Alternativ oder zusätzlich können auch die Schichten des zweiten Bahnmaterials 26 einseitig mit der Katalysatorbeschichtung 27 beschichtet sein, um die katalytisch aktiven Kanäle 18 auszubilden. Zweckmäßig bestehen die Bahnmaterialien 25, 26 aus einem Metallblech, das entsprechend vorgeformt und gegebenenfalls beschichtet ist.
  • Die Bahnmaterialien 25 und 26 können bezüglich der Längsmittelachse 20 konzenrisch geschichtet sein. Bevorzugt wird jedoch eine Ausführungsform, bei der die Bahnmaterialien 25 und 26 bezüglich der Längsmittelachse 20 spiralförmig gechichtet sind. Hierdurch ergibt sich eine besonders einfache Möglichkeit zur Hertelung der Katalysator-Drallerzeuger-Anordnung 2:
  • Die aufeinander gelegten Bahnmaterialien 25 und 26 werden auf eine Spindel 28 aufgewickelt, die nach dem Aufwickeln das Zentrum der Katalysator-Drallerzeuger-Anordnung 2 bildet und sich konzentrisch zur Längsmittelachse 20 erstreckt.
  • Die Spindel 28 trägt somit das Bahnmaterial 25, 26, wobei ihr Durchmesser so groß gewählt ist, daß das Aufwickeln des gewellten oder gefalteten ersten Bahnmaterials 25 noch mit vertretbarem Aufwand realisierbar ist. Die vollständige Wicklung kann beispielsweise durch Spanndrähte 29 gesichert werden, die umfangsmäßig die Wicklung umfassen und diese zumindest bis zum Einbau der Katalysator-Drallerzeuger-Anordnung 2 in einen Brenner oder dergleichen in Form halten.
  • Zweckmäßig wird diese Spindel 28 so ausgebildet, daß mit ihrer Hilfe die zentrale Rezirkulationszone 9 bzw. die Flammenfront 11 in der Brennkammer 8 (vgl. Fig. 1) insbesondere hinsichtlich Form und Position beeinflußt werden kann. Beispielsweise ist die Spindel 28 als durchströmbares Rohr ausgebildet, das eine zentrale Durchströmung der Katalysator-Drallerzeuger-Anordnung 2 mit dem Brennstoff-Oxidator-Gemisch 4 ermöglicht. Zweckmäßig kann dann die rohrförmig ausgebildete Spindel 28 an ihrem Austrittsende eine Austrittsdüse oder eine Austrittsblende besitzen, wobei es außerdem zweckmäßig sein kann, das Austrittsende so auszubilden, daß es in Strömungsrichtung konvergiert. Durch diese Maßnahmen können aerodynamische Größen der in die Brennkammer 8 eintretenden Strömung verändert werden, die sich auf die Position und Ausdehnung der Flammenfront 11 und/oder der zentralen Rezirkulationszone 9 auswirken.
  • Ebenso ist es möglich, in die Spindel 28 eine Lanze für eine Brennstoff- und/oder Oxidator-Injektion zu integrieren.
  • Um den gewünschten Drall erzeugen zu können, benötigt die drallerzeugende Struktur eine minimale Länge L, die sich dadurch ergibt, daß der Kanaldurchmesser durch den Tangens des Neigungswinkels α dividiert wird. Die hierdurch ermittelte Länge ist relativ kurz, so daß auch die oben zu Fig. 1 erläuterte Bauweise mit separatem Katalysator 16 und separatem Drallerzeuger 17 in Strömungsrichtung noch relativ kurz baut. Bei der integrierten Bauform kann sich die axiale Länge des als Drallerzeuger ausgebildeten Katalysators 14, also der Katalysator-Drallerzeuger-Anordnung 2, nach den Anforderungen der katalytischen Konversion des Systems richten.
  • Die integrierte Bauweise der Katalysator-Drallerzeuger-Anordnung 2 ist auch dann von besonderem Vorteil, wenn die Anordnung 2, wie oben mit Bezug auf Fig. 1 erläutert, zwei oder mehr Längsabschnitte 23, 24 besitzt, in denen sich die Kanäle 18, 19 hinsichtlich ihrer Neigung voneinander unterscheiden. Beispielsweise sind die Kanäle 18, 19 im stromauf liegenden ersten Längsabschnitt 23 gegenüber der Längsmittelachse 20 nicht geneigt, so daß sie parallel zur Hauptdurchströmungsrichtung verlaufen, während sie im stromab liegenden Längsabschnitt 24 geneigt sind und so den Drallerzeuger ausbilden. Die einteilige Bauweise der Katalysator-Drallerzeuger-Anordnung 2 reduziert dabei Druckverluste beim Übergang zwischen den aufeinanderfolgenden Längsabschnitten 23, 24. Während bei einer Bauweise mit separaten Längsabschnitten 23, 24 für den Übergang von dem einen Längsabschnitt 23 zum anderen Längsabschnitt 24 zur Erzielung einer hinreichenden Durchmischung ein Mindestabstand zwischen den aufeinander folgenden Längsabschnitten 23, 24 eingehalten werden muß, entfällt bei der einstückigen Ausbildung der Längsabschnitte 23, 24 ein derartiger Übergangs- und Mischbereich, so daß die erfindungsgemäße Anordnung 2 besonders kurz bauen kann.
  • Ein bedeutender Vorteil der hier vorgestellten Katalysator-Drallerzeuger-Anordnung 2 wird darin gesehen, daß bei der erfindungsgemäßen Anordnung 2 die Zündung einer homogenen Verbrennungsreaktion innerhalb der Kanäle 18 vermieden werden kann, wodurch gleichzeitig die Gefahr von Flammenrückschlägen reduziert ist. Um dieses Ziel zu erreichen, können einerseits die Kanäle 18 mit hinreichend kleinen Strömungsquerschnitten, die beispielsweise zwischen 1 mm bis 5 mm liegen können, ausgestattet werden. Dies hat zur Folge, daß sich sehr große Oberflächen ausbilden, was einer Flammenbildung entgegenwirkt (thermodynamische Flammenauslöschung). Hierdurch kann entlang der Länge der Kanäle 18 die homogene Zündung vermieden werden. Andererseits unterstützt eine katalytisch aktive Oberfläche innerhalb des Drallerzeugers die Adsorption von Radikalen der homogenen Phase, wodurch die Entzündung und ein Flammenrückschlag vermieden werden (chemische Flammenauslöschung).
  • Bezugszeichenliste
  • 1
    Vorrichtung
    2
    Katalysator-Drallerzeuger-Anordnung
    3
    Anströmseite von 2
    4
    Brennstoff-Oxidator-Gemisch
    5
    Abströmseite von 2
    6
    Drallströmung
    7
    Querschnittserweiterung
    8
    Brennkammer
    9
    zentrale Rezirkulationszone
    10
    Wirbel
    11
    Flammenfront
    12
    Rezirkulationszone
    13
    Wirbel
    14
    Katalysator
    15
    Grenze
    16
    Katalysator
    17
    Drallerzeuger
    18
    katalytisch aktiver Kanal
    19
    katalytisch inaktiver Kanal
    20
    Längsmittelachse von 2
    21
    Längsrichtung von 18, 19
    22
    Gerade
    23
    erster Längsabschnitt
    24
    zweiter Längsabschnitt
    25
    erstes Bahnmaterial
    26
    zweites Bahnmaterial
    27
    katalytische Beschichtung
    28
    Spindel
    29
    Spanndraht
    30
    Zuströmleitung

Claims (12)

  1. Vorrichtung zum Verbrennen eines gasförmigen Brennstoff-Oxidator-Gemischs, insbesondere für eine Kraftwerksanlage,
    - mit einer durchströmbaren Katalysator-Drallerzeuger-Anordnung (2), in der ein Teil des Brennstoff-Oxidator-Gemischs verbrennt und die eine Drallströmung (6) erzeugt,
    - wobei die Katalysator-Drallerzeuger-Anordnung (2) unmittelbar stromauf einer abrupten Querschnittserweiterung (7) am Eintritt einer Brennkammer (8) angeordnet ist,
    dadurch gekennzeichnet,
    - dass die Katalysator-Drallerzeuger-Anordnung (2) mehrere durchströmbare Kanäle (18, 19) aufweist, von denen die einen katalytisch aktiv und die anderen katalytisch inaktiv ausgebildet sind,
    - dass die Kanäle (18, 19) um eine Längsmittelachse (20) der Katalysator-Drallerzeuger-Anordnung (2) verteilt angeordnet sind, die sich in der Hauptdurchströmungsrichtung der Katalysator-Drallerzeuger-Anordnung (2) erstreckt, und dass die Kanäle (18, 19) gegenüber der Längsmittelachse (20) der Katalysator-Drallerzeuger-Anordnung (2) geneigt sind, derart, dass die Längsrichtungen (21) der Kanäle (18, 19) jeweils gegenüber einer Geraden (22) geneigt verlaufen, die parallel zur Längsmittelachse (20) der Katalysator-Drallerzeuger-Anordnung verläuft.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Katalysator-Drallerzeuger-Anordnung (2) einen Katalysator (16) und einen stromab unmittelbar daran anschließenden Drallerzeuger (17) aufweist.
  3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet,dass die Katalysator-Drallerzeuger-Anordnung (2) einen Katalysator (14) aufweist, der als Drallerzeuger ausgebildet ist.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Neigung der Kanäle (18, 19) gegenüber der Längsmittelachse (20) der Katalysator-Drallerzeuger-Anordnung (2) in Strömungsrichtung zunimmt.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Neigung der Kanäle (18, 19) gegenüber der Längsmittelachse (20) der Katalysator-Drallerzeuger-Anordnung (2) radial von innen nach außen zunimmt.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Kanäle (18, 19) in einem die Anströmseite (3) der Katalysator-Drallerzeuger-Anordnung (2) enthaltenden ersten Längsabschnitt (23) parallel zur Längsmittelachse (20) der Katalysator-Drallerzeuger-Anordnung (2) verlaufen und erst in einem die Abströmseite (5) der Katalysator-Drallerzeuger-Anordnung (2) enthaltenden zweiten Längsabschnitt (24) gegenüber der Längsmittelachse (20) der Katalysator-Drallerzeuger-Anordnung (2) geneigt sind.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Katalysator-Drallerzeuger-Anordnung (2) radial zu einer parallel zur Hauptdurchströmungsrichtung der Katalysator-Drallerzeuger-Anordnung (2) verlaufenden Längsmittelachse (20) mehrere Schichten aus einem gewellten oder gefalteten ersten Bahnmaterial (25) aufweist, dessen Wellen oder Falten die Kanäle (18, 19) bilden, wobei radial zwischen zwei benachbarten Schichten eine Zwischenschicht aus einem flachen oder glatten zweiten Bahnmaterial (26) angeordnet ist.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Bahnmaterialien (25, 26) bezüglich der Längsmittelachse (20) konzentrisch oder spiralförmig geschichtet sind.
  9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Katalysator-Drallerzeuger-Anordnung (2) eine zentrale Spindel (28) aufweist, die sich konzentrisch zur Längsmittelachse erstreckt und die die Bahnmaterialien (25, 26) trägt.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Spindel (28) so ausgebildet ist, dass sie eine Rezirkulationszone (9) und/oder eine Flammenfront (11) in einer stromab der Katalysator-Drallerzeuger-Anordnung (2) angeordneten Brennkammer (8) aerodynamisch beeinflußt.
  11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Spindel (28) als durchströmbares Rohr ausgebildet ist, durch das ein Teil des Brennstoff-Oxidator-Gemischs die Katalysator-Drallerzeuger-Anordnung (2) zentral durchströmt.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die rohrförmige Spindel (28) an ihrem Austrittsende konvergiert und/oder eine Austrittsblende und/oder eine Austrittsdüse aufweist.
EP02405325A 2001-04-30 2002-04-22 Vorrichtung zum Verbrennen eines gasförmigen Brennstoff-Oxidator-Gemischs Expired - Lifetime EP1255077B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US28699501P 2001-04-30 2001-04-30
US286995P 2001-04-30
CH20012298 2001-12-14
CH22982001 2001-12-14

Publications (3)

Publication Number Publication Date
EP1255077A2 EP1255077A2 (de) 2002-11-06
EP1255077A3 EP1255077A3 (de) 2004-01-07
EP1255077B1 true EP1255077B1 (de) 2008-06-11

Family

ID=25739053

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02405325A Expired - Lifetime EP1255077B1 (de) 2001-04-30 2002-04-22 Vorrichtung zum Verbrennen eines gasförmigen Brennstoff-Oxidator-Gemischs

Country Status (4)

Country Link
US (1) US6638055B2 (de)
EP (1) EP1255077B1 (de)
DE (1) DE50212351D1 (de)
NO (1) NO328378B1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119035A1 (de) * 2001-04-18 2002-10-24 Alstom Switzerland Ltd Katalytisch arbeitender Brenner
WO2004020901A1 (de) * 2002-08-30 2004-03-11 Alstom Technology Ltd Hybridbrenner und zugehöriges betriebsverfahren
EP1532395B1 (de) * 2002-08-30 2016-11-16 General Electric Technology GmbH Verfahren und vorrichtung zum vermischen von fluidströmungen
EP1439349A1 (de) * 2003-01-14 2004-07-21 Alstom Technology Ltd Verbrennungsverfahren sowie Brenner zur Durchführung des Verfahrens
DE10329162A1 (de) * 2003-06-27 2005-01-13 Alstom Technology Ltd Katalytischer Reaktor und zugehöriges Betriebsverfahren
ATE371102T1 (de) * 2003-11-05 2007-09-15 Scambia Ind Dev Ag Verfahren zur herstellung eines katalysatorkörpers und durch das verfahren herstellbarer katalysatorkörper
DE102005004062A1 (de) * 2005-01-21 2006-07-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Porenkörpereinrichtung für einen Porenbrenner, Verfahren zur Herstellung eines Porenkörpers für einen Porenbrenner und Porenbrenner
DE502006000817D1 (de) * 2005-05-11 2008-07-10 Scambia Ind Dev Ag Verfahren zur Herstellung mindestens eines Blechelements, Verfahren zur Herstellung mindestens eines Katalysatorkörpers, hergestelltes Blechelement sowie hergestellter Katalysatorkörper
EP1898153B1 (de) * 2006-09-06 2009-11-25 Electrolux Home Products Corporation N.V. Gasbrenner für Kochgeräte
EP2718644B1 (de) * 2011-06-10 2020-09-09 Carrier Corporation Ausstosser mit beweglichem strömungswirbler
FR3039254B1 (fr) * 2015-07-24 2021-10-08 Snecma Chambre de combustion comportant des dispositifs d'injection additionnels debouchant directement dans les zones de recirculation de coin, turbomachine la comprenant, et procede d'alimentation en carburant de celle-ci

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136140A (ja) 1983-01-25 1984-08-04 Babcock Hitachi Kk 燃焼用触媒体
US5202303A (en) 1989-02-24 1993-04-13 W. R. Grace & Co.-Conn. Combustion apparatus for high-temperature environment
JP2774557B2 (ja) 1989-03-30 1998-07-09 財団法人電力中央研究所 触媒燃焼式ガスタービン用燃焼器
JPH03181338A (ja) * 1989-12-11 1991-08-07 Gebr Sulzer Ag 触媒エレメントおよび触媒反応用反応器
US5453003A (en) * 1991-01-09 1995-09-26 Pfefferle; William C. Catalytic method
US5634784A (en) * 1991-01-09 1997-06-03 Precision Combustion, Inc. Catalytic method
DE4202018C1 (en) * 1992-01-25 1993-04-29 Abb Patent Gmbh, 6800 Mannheim, De Combustion chamber for gas turbine plant - has two catalyst holders consisting of honeycomb segments with flame holder downstream of them.
US5328359A (en) 1992-05-19 1994-07-12 W. R. Grace & Co.-Conn. Ignition stage for a high temperature combustor
FR2698156B1 (fr) * 1992-11-16 1995-01-27 Rhone Poulenc Chimie Procédé de traitement thermique d'un effluent comprenant des matières organiques polluantes ou un composé inorganique.
US5361586A (en) 1993-04-15 1994-11-08 Westinghouse Electric Corporation Gas turbine ultra low NOx combustor
US5512250A (en) * 1994-03-02 1996-04-30 Catalytica, Inc. Catalyst structure employing integral heat exchange
DE4426351B4 (de) * 1994-07-25 2006-04-06 Alstom Brennkammer für eine Gasturbine
DE19536836C2 (de) * 1995-10-02 2003-11-13 Alstom Verfahren zum Betrieb einer Kraftwerksanlage
DE19547912A1 (de) * 1995-12-21 1997-06-26 Abb Research Ltd Brenner für einen Wärmeerzeuger
JPH09243016A (ja) * 1996-03-12 1997-09-16 Kansai Electric Power Co Inc:The 触媒燃焼器
US6109018A (en) * 1996-07-26 2000-08-29 Catalytica, Inc. Electrically-heated combustion catalyst structure and method for start-up of a gas turbine using same
DE19640198A1 (de) 1996-09-30 1998-04-02 Abb Research Ltd Vormischbrenner
JP4158301B2 (ja) * 1999-03-24 2008-10-01 株式会社デンソー 気化機能付触媒燃焼装置
US6179608B1 (en) * 1999-05-28 2001-01-30 Precision Combustion, Inc. Swirling flashback arrestor

Also Published As

Publication number Publication date
US6638055B2 (en) 2003-10-28
NO328378B1 (no) 2010-02-08
NO20022034D0 (no) 2002-04-29
NO20022034L (no) 2002-10-31
EP1255077A3 (de) 2004-01-07
EP1255077A2 (de) 2002-11-06
US20020197580A1 (en) 2002-12-26
DE50212351D1 (de) 2008-07-24

Similar Documents

Publication Publication Date Title
EP1802915B1 (de) Brenner für gasturbine
EP1279898B1 (de) Vormischbrenner mit hoher Flammenstabilität
EP1497589B1 (de) Brennkammer mit flammenloser oxidation
EP2116766B1 (de) Brenner mit Brennstofflanze
DE2936073C2 (de) Verbrennungsverfahren zur Reduzierung der Emission von Stickstoffoxiden und Rauch
EP0704657B1 (de) Brenner
EP1182398B1 (de) Verfahren zur Erhöhung der strömungsmechanischen Stabilität eines Vormischbrenners sowie Vormischbrenner zur Durchführung des Verfahrens
DE2838258C2 (de) Ringbrennkammer für ein Strahltriebwerk
DE4426351B4 (de) Brennkammer für eine Gasturbine
EP1807656B1 (de) Vormischbrenner
EP0899508B1 (de) Brenner für einen Wärmeerzeuger
EP1864056B1 (de) Vormischbrenner für eine gasturbinenbrennkammer
EP1534997B1 (de) Gasturbinenbrenner
EP1255077B1 (de) Vorrichtung zum Verbrennen eines gasförmigen Brennstoff-Oxidator-Gemischs
EP0481111B1 (de) Brennkammer einer Gasturbine
EP1251314A2 (de) Katalytisch arbeitender Brenner
EP2601447A2 (de) Gasturbinenbrennkammer
DE2545234C2 (de) Mischeinrichtung für Brenner
EP2583033B1 (de) Turbinenbrenner
EP0882932B1 (de) Brennkammer
DE102017118165B4 (de) Brennerkopf, Brennersystem und Verwendung des Brennersystems
DE19507088B4 (de) Vormischbrenner
EP1255078A1 (de) Katalysator
EP3301370A1 (de) Brennerkopf, brennersystem und verwendung des brennersystems
DE10164097A1 (de) Vormischbrenner mit hoher Flammenstabilität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20040705

AKX Designation fees paid

Designated state(s): DE GB SE

17Q First examination report despatched

Effective date: 20051124

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F23C 13/00 20060101ALI20080211BHEP

Ipc: F23R 3/40 20060101AFI20080211BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50212351

Country of ref document: DE

Date of ref document: 20080724

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110328

Year of fee payment: 10

Ref country code: DE

Payment date: 20110429

Year of fee payment: 10

Ref country code: SE

Payment date: 20110406

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50212351

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101