EP1864056B1 - Vormischbrenner für eine gasturbinenbrennkammer - Google Patents
Vormischbrenner für eine gasturbinenbrennkammer Download PDFInfo
- Publication number
- EP1864056B1 EP1864056B1 EP06725400.3A EP06725400A EP1864056B1 EP 1864056 B1 EP1864056 B1 EP 1864056B1 EP 06725400 A EP06725400 A EP 06725400A EP 1864056 B1 EP1864056 B1 EP 1864056B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- injection
- main
- liquid fuel
- injection orifices
- premix burner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 43
- 239000000446 fuel Substances 0.000 claims description 143
- 238000002347 injection Methods 0.000 claims description 133
- 239000007924 injection Substances 0.000 claims description 133
- 239000007788 liquid Substances 0.000 claims description 72
- 239000000203 mixture Substances 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000002156 mixing Methods 0.000 description 70
- 239000007800 oxidant agent Substances 0.000 description 19
- 238000001704 evaporation Methods 0.000 description 11
- 230000008020 evaporation Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000000889 atomisation Methods 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 5
- 241001156002 Anthonomus pomorum Species 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 230000002328 demineralizing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D17/00—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
- F23D17/002—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
Definitions
- the invention relates to a premix burner for a combustion chamber of a gas turbine, in particular in a power plant, at least comprising a mixing space limiting housing, an oxidant supply for supplying a gaseous oxidizer in the mixing chamber, a gas fuel supply for supplying a gaseous fuel into the mixing chamber and a liquid fuel supply means for feeding a liquid fuel into the mixing chamber, comprising a centrally disposed burner lance extending from a burner head into the mixing space, and an outlet opening for the exit of the fuel / air mixture.
- a premix burner of the type mentioned is out EP 0 433 790 known.
- the known burner has a built-up of several nested shells housing which surrounds a mixing chamber.
- the staggered arrangement of the half-shells slots for tangentially supplying an oxidizer, in particular combustion air, formed in the mixing chamber.
- a swirling flow is formed in the mixing chamber, which at the burner outlet due to a Cross-sectional jump becomes unstable and merges into an annular swirling flow with a backflow in the core. This backflow allows the stabilization of a flame front downstream of the burner outlet.
- Within the inlet slots for the combustion air injectors are provided for injecting a gaseous fuel into the combustion air.
- the burner is equipped with a central lance for supplying a liquid fuel which extends from the burner head into the mixing chamber.
- the lance has at its free-standing, axial end an injection port through which the liquid fuel in the mixing chamber and in the combustion chamber arranged downstream of the combustion chamber of a combustion chamber can be injected.
- the injection of the liquid fuel into the mixing chamber is parallel to the burner axis and the injection of the gaseous fuel into the combustion air parallel to the flow direction.
- the arrangement of the outlet openings determines the quality of mixing of fuel and combustion air as well as the fuel distribution at the burner outlet. But these variables have a significant influence on the NO x emissions and extinguishing limit of the burner and its stability with regard to combustion pulsations.
- the problem with the operation of premix burners, in particular those in connection with gas turbine plants, is the partial load range, since in this case only comparatively small amounts of fuel are added to the combustion air. In the complete mixing of the fuel with the entire combustion air but creates a mixture, which is just in the lower part load range is no longer flammable or only forms a very unstable flame. This leads to undesirable combustion pulsations or possible extinguishment of the flame.
- One way to reduce these adverse effects is to deliver the entire required amount of fuel through the central lance.
- the burner is then operated at very high air ratios as a diffusion burner. This results in high flame stability on the one hand, but also very high NO x emissions on the other hand.
- This premix burner comprises a housing composed of a plurality of shells, a mixing space into which combustion air is introduced via tangentially arranged slots, which merges into a swirling flow in the mixing space, means for introducing fuel into the combustion air flow, these means being a first group substantially parallel to the first Burner axis aligned fuel outlet openings for a first fuel and at least a second group comprises substantially aligned parallel to the burner axis fuel outlet openings for a second fuel, wherein the first and the second group are acted upon independently, and these means are preferably arranged in the region of the combustion air inlet slots.
- pilot fuel can also be introduced via a lance.
- the burner can be operated exclusively with liquid fuel, there is the possibility to maintain or repair the gas fuel supply without the operation of the burner or the combustion chamber must be completely interrupted. This is advantageous for the efficiency of the gas turbine equipped therewith.
- the injection of liquid fuel into the mixing chamber of the burner or in the combustion chamber of the combustion chamber usually to significantly increased flame temperatures, which is due for example to insufficient atomization, mixing and evaporation of the liquid fuel before its ignition. Increased flame temperatures, however, are accompanied by a disproportionately increased production of NO x emissions and soot.
- a generic Vormischbrenner is the subject of EP 1 336 800 which is characterized in particular by measures to further reduce thermoacoustic vibrations within the combustion system and thus increased combustion stability.
- This burner is based on the basic idea of stabilizing by means of fluidic measures the central backflow zone forming downstream of the burner outlet, within which the fuel / air mixture ignites.
- the relatively far reaching into the mixing chamber central burner lance in its downstream end region with a widening cross section.
- the lance has outlet openings for preferably liquid fuel and combustion air and the corresponding feed channels for these media.
- the proximity of the introduction of fuel prevents the risk of the flame from migrating into the mixing space and, on the other hand, this proximity promotes the swirl breakdown of the fuel / air mixture which propagates in the direction of flow, with the result that the backflow zone is stabilized.
- Different cross-sectional shapes of the end portion of the lance also affect, to varying degrees, the formation of coherent structures.
- the far reaching into the mixing chamber injection of fuel has the disadvantage of a reduced mixing quality of the fuel / air mixture with the already mentioned elsewhere sequence of increased NO x emissions.
- the invention aims to remedy this situation.
- the invention as characterized in the claims, the object of the invention to provide for a generic burner, an improved embodiment, which is particularly comparatively inexpensive feasible and thereby allows a reduction of NO x emissions and soot formation.
- the invention is based on the general idea, in a generic burner according to EP 1336800 providing the lance with at least one pilot injection hole and part of the injection holes of the liquid fuel, the injection holes (14) of the lance (6) being arranged in at least one row parallel to the main discharge direction (9), and a second liquid fuel supply means in the form of one of the oxidizer stream flow around the tube at least predominantly within or upstream of the inlet opening of the housing.
- This design distributes the liquid fuel injection to several injection holes, reducing the flow rate at the single injection hole. In this way, the atomization effect of the individual injection holes can be improved. At the same time, this results in improved mixing and improved evaporation of the liquid fuel.
- the arrangement of the injection holes in series and parallel to the main outflow direction inevitably results in a part of the injection holes being relatively far removed from the outlet opening of the mixing chamber.
- the liquid fuel injected there has therefore an increased residence time in the mixing chamber, which favors the mixing and evaporation of the fuel.
- Also particularly advantageous for the mixing and evaporation is the radial component of the main injection direction at the respective injection hole. Because this measure intensifies the mixing and evaporation of the liquid fuel.
- the construction according to the invention thus results in a significant improvement in the atomization, the mixing and the evaporation of the liquid fuel. This delays the ignition of the liquid fuel and reduces the risk of locally excessive flame temperatures. As a result, NO x formation is reduced; In addition, less soot is produced. It is of particular advantage in this case that the described improvement of the emission values can be achieved without the liquid fuel being required for this purpose Water or steam or other diluent would have to be supplied. As a consequence, the burner according to the invention does not require water for operation with liquid fuel. The proportion of water in the liquid fuel (so-called " ⁇ value”) is therefore low and is preferably zero. Since no such diluent is needed for the operation of the burner with liquid fuel, corresponding facilities for the preparation of such a diluent accounted for. The cost of implementing such a burner are therefore comparatively low.
- the admixing of the liquid fuel takes place within the tangential inlet opening of the mixing space or immediately upstream thereof.
- This injection in conjunction with the turbulent swirl flow within the mixing space, leads to an intensive mixing of fuel and oxidizer. At the same time thereby extends the residence time of the injected liquid fuel, which also improves the mixing and especially the evaporation of the liquid fuel.
- the injection of the liquid fuel is enabled by the second liquid fuel supply device via such a tube an optimal distribution of the injection of the liquid fuel along the respective inlet opening. This also supports the atomization, mixing and evaporation of the liquid fuel.
- the said pipe can additionally be used to supply the same to the oxidator stream via the pipe upstream of the respective inlet opening for the operation of the burner with gas fuel.
- the tube contains at least one gas fuel channel in addition to the liquid fuel channel.
- the injected at this point gas fuel thus also has a particularly long residence time in the burner, which intensifies the mixing with the Oxidatorstrom.
- the integration of the liquid fuel channel and the at least one gas fuel channel into a common tube thereby reduces the manufacturing cost of the burner.
- a burner 1 according to the invention comprises a mixing space 3 delimited by a housing 2.
- the burner 1 also has a burner head 4, which is arranged opposite an outlet opening 5 of the mixing space 3.
- a lance 6 is mounted, which projects centrally into the mixing chamber 3.
- the housing 2 is designed in the embodiments shown here so that the mixing chamber 3 has two inlet openings 7 for the oxidizer. These inlet openings 7 are arranged and designed so that forms a tangential inflow and thus a concentric vortex system for the mixing chamber 3.
- This is achieved here by a half-shell construction of the housing 2, wherein the half-shells are arranged offset in their parting plane with respect to a longitudinal center axis of the housing 2 eccentrically to each other.
- the housing 2 is formed substantially conically with a cross-section widening towards the outlet opening 5.
- the conical design of the housing 2 is not mandatory. It may also be cylindrical, wherein it is expedient in such an embodiment of the housing 2, a conical to arrange tapered inner body within the mixing chamber 3, as in the cited above EP 1 292 795 is explained in more detail.
- the burner 1 is used to supply a combustion chamber, not shown, of a gas turbine, in particular in a power plant, with an oxidizer-fuel mixture.
- the burner 1 is connected to said combustion chamber, in such a way that the outlet opening 5 opens at a combustion chamber 8 of the combustion chamber.
- the burner 1 is equipped with an oxidant supply device 10, which in the Fig. 1, 2, 3 symbolized by an arrow.
- the Oxidatorzu slaughter 10 is used for supplying a gaseous oxidizer, usually air, in the mixing chamber 3.
- the inventive burner 1 is designed for operation with liquid fuel, such as fuel oil.
- the burner 1 has a first liquid fuel supply device 12, with the aid of which liquid fuel can be introduced into the mixing chamber 3.
- This first liquid fuel supply device 12 is equipped with at least one main supply line 13, which supplies the liquid fuel to a plurality of injection holes 14. Through these injection holes 14, the liquid fuel can be introduced into the mixing chamber 3.
- the injection holes 14 are arranged or distributed such that at least a plurality of injection holes 14 are arranged with respect to the main outflow direction 9 in at least one row.
- the individual injection holes 14 are configured in such a way that a main injection direction 15 of the respective injection hole 14 symbolized here by an arrow has a radial component which extends radially to the main outflow direction 9.
- Main injection direction is understood to mean that direction which has a spray jet with or without spin on average.
- the injection holes 14 are formed on the lance 6, whereby the injection of liquid fuel into the swirl flow, which is due to the tangential supply of the oxidizer in the mixing chamber 3, quasi from the inside.
- the injection holes 14 are arranged in more than one row parallel to the main outflow direction 9, for example in two diametrically opposite rows.
- Fig. 2 lie the injection holes 14, for example, in the parting plane of the two housing halves 2, within which the two housing halves 2 are arranged eccentrically offset from each other and the slot-shaped inlet openings 7 form.
- the number of rows of injection holes 14 suitably corresponds to the number of inlet openings 7 of the mixing space 3. In this way, each group of the injection holes 14 can be assigned specifically to an inlet opening 7. However, this is not mandatory. As well, more or less rows of injection holes 17 may be arranged, or the rows may be offset from the inlet opening 7 upstream or downstream.
- the injection holes 14 mounted in two opposite rows are arranged in pairs in the same longitudinal plane, the injection holes of the opposite rows also be offset to each other.
- the lined-up injection holes 14 of each row preferably have a uniform spacing from one another.
- the liquid fuel supply device 12 is equipped with a pilot supply line 16, by means of which at least one pilot injection hole 17 liquid fuel can be supplied.
- the at least one pilot injection hole 17 is designed such that it has a main injection direction 18, indicated by an arrow, which exclusively has an axial component which extends parallel to the main discharge direction 9.
- liquid fuel can thus be injected into the mixing chamber 3 or directly into the combustion chamber 8 axially, ie, parallel to the main outflow direction 9 with or without swirl.
- the injection holes 14 may also be configured such that their respective main injection direction 15 also has an axial component in addition to the radial component, which therefore extends parallel to the main outflow direction 9. In this way, for example, the mixing with the oxidizer flow can be improved.
- the injection holes 14 may also be configured such that the respective main injection direction 15 also has a peripheral component in addition to the radial component. This peripheral component or tangential component extends transversely to the main outflow direction 9 and transversely to the radial component. In this case, this peripheral component is expediently oriented in the direction of rotation of the swirl flow, which forms due to the tangential inflow of the oxidizer in the mixing chamber 3.
- the perimeter component can help improve the mixing of the liquid fuel with the oxidizer. It is understood that the injection holes 14 may be configured such that the main injection direction 15 has the axial component and the circumferential component cumulatively or alternatively in addition to the radial component.
- the injection holes 14 For the arrangement, positioning and dimensioning of the injection holes 14 and for the orientation of the main injection direction 15, an optimum is advantageously sought, which leads to a particularly good atomization, mixing and evaporation of the liquid fuel in the oxidizer gas.
- the injection holes 14 must have a specific ratio of length to diameter in order to be able to represent the respective desired main injection direction clean. It is quite possible that it will be necessary to choose the wall thickness of the lance 6 larger than is the case, for example, in a conventional lance 6 for injecting liquid fuel.
- Each inlet opening 7 is associated with a tube 19, see also the FIGS. 2 and 3 ,
- the tubes 19 are arranged inside or with respect to the oxidizer flow upstream of the respective associated inlet opening 7 and extend quasi parallel along the entire respective inlet opening 7.
- the tubes 19 are expediently not provided with a circular cross-section, but have in adaptation to the space. and flow conditions within or immediately upstream of the inlet port 7 have a long-round, oval or streamline profile.
- a gas fuel supply device 11 comprises at least one supply line; In the present case, two supply lines are provided, namely a first supply line 20 and a second supply line 21. With the supply lines 20, 21 can be supplied to several injection holes 22, 23 gas fuel. In this case, first injection holes 22 are supplied by the first supply line 20, while second injection holes 23 are supplied from the second supply line 21. The injection holes 22, 23 are arranged upstream of the respective inlet opening 7 with respect to the oxidizer flow.
- the respective tube 19 contains at least one gas fuel channel which is connected to the respective supply line 20, 21 and which leads to the respective associated injection holes 22, 23. In the present case, a first gas fuel channel 24 is therefore contained in each tube 19, which communicates the first supply line 20 with the first injection holes 22 in a communicative manner.
- each tube 19 also includes a second gas fuel passage 25 communicating the second feed line 21 with the second injection holes 23.
- the first injection holes 22 are arranged in a first longitudinal section of the mixing chamber 3, which is remote from the outlet opening 5 and adjoins the burner head 4, thereby forming a first burner stage.
- the second injection holes 23 are arranged in a second longitudinal section of the mixing chamber 3 adjoining the outlet opening 5 and thereby form a second burner stage, which is arranged downstream of the first burner stage with respect to the main outflow direction 9.
- the two burner stages can be controlled independently. In that regard, it is in the embodiment of the Fig. 1 around a two-stage burner 1.
- both the first group of injection holes 22 and the second group of injection holes 23 are individually arranged in at least one row, which extend substantially along the respective inlet opening 7.
- the tube 19 additionally includes a liquid fuel channel 26 which extends parallel to the gas fuel channels 24, 25.
- the liquid fuel channel 26 establishes a communicating connection between the main supply pipe 13 and the injection holes 14.
- the integration of the injection holes 14 in the tube 19 results in a particularly simple structure for the burner 1, which can be operated both with gaseous fuel and with liquid fuel. At the same time results in this type of injection of the liquid fuel a particularly long residence time for the liquid fuel in the mixing chamber 3, whereby the atomization, mixing and evaporation of the liquid fuel is improved.
- the at least one tube 19 may contain only the liquid fuel channel 26, wherein then the introduction of the gas fuel may be carried out by means of a separate tube or in any other suitable manner.
- the tube 19 has a dreittingigen structure in the region of the first gas fuel channel 24, wherein each chamber forms one of the channels 24, 25, 26.
- the cut for the presentation according to Fig. 4 is selected such that a pair of opposite first injection holes 22 communicating with the first gas fuel channel 24, a pair of opposite second injection holes 23 communicating with the second gas fuel channel 25 and a plurality of injection holes 14 communicating with the liquid fuel channel 26 can be seen ,
- a plurality of injection holes 14 are again combined into groups, which are each arranged one behind the other in a row parallel to the main outflow direction 9.
- all of the injection holes 14 are each designed such that their respective main injection direction 15 has a radial component with respect to the main outflow direction 9 of the burner 1.
- a plurality of injection holes 14 are arranged along a trailing edge of the tube 19 and thereby configured such that their respective main injection direction 15 runs parallel to a main inflow direction of the burner 1.
- injection holes 14 are provided, each of which is designed so that their respective main injection direction 15 with respect to the main inflow 27 has a transverse component. In this way, the injection takes place directly into the oxidizer flow, which flows around the tube 19 and enters the mixing chamber 3 downstream of the tube 19 through the inlet opening 7.
- the injection holes 14 and the second injection holes 23 formed on the same side of the tube 19 are offset relative to each other with respect to the main discharge direction 9 so as to avoid mutual overlap.
- the staggered arrangement can be avoided, for example, that an ignitable mixture passes through the injection holes 14 in the liquid fuel supply 12 during operation of the burner 1 with gas fuel.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Nozzles For Spraying Of Liquid Fuel (AREA)
Description
- Die Erfindung betrifft einen Vormischbrenner für eine Brennkammer einer Gasturbine, insbesondere in einer Kraftwerksanlage, wenigstens umfassend ein einen Mischraum begrenzendes Gehäuse, eine Oxidatorzuführeinrichtung zum Zuführen eines gasförmigen Oxidators in den Mischraum, eine Gasbrennstoffzuführeinrichtung zum Zuführen eines gasförmigen Brennstoffs in den Mischraum sowie eine Flüssigbrennstoffzuführeinrichtung zum Zuführen eines flüssigen Brennstoffs in den Mischraum, umfassend eine zentral angeordnete Brennerlanze, die sich von einem Brennerkopf in den Mischraum hinein erstreckt, und eine Auslassöffnung zum Austritt des Brennstoff/Luft-Gemischs.
- Ein Vormischbrenner der eingangs genannten Art ist aus
EP 0 433 790 bekannt. Der bekannte Brenner besitzt ein aus mehreren ineinandergeschachtelten Schalen aufgebautes Gehäuse, welches einen Mischraum umgibt. Durch die versetzte Anordnung der Halbschalen werden Schlitze zum tangentialen Zuführen eines Oxidators, insbesondere Verbrennungsluft, in den Mischraum gebildet. Infolge des tangentialen Verbrennungslufteintritts bildet sich in dem Mischraum eine Drallströmung aus, welche am Brenneraustritt infolge eines Querschnittssprungs instabil wird und in eine annulare Drallströmung mit einer Rückströmung im Kern übergeht. Diese Rückströmung ermöglicht die Stabilisierung einer Flammenfront stromab des Brenneraustritts. Innerhalb der Eintrittsschlitze für die Verbrennungsluft sind Injektoren zum Eindüsen eines gasförmigen Brennstoffs in die Verbrennungsluft vorgesehen. Diese Eindüsung führt in Verbindung mit der turbulenten Drallströmung innerhalb des Mischraums zu einer guten Durchmischung des gasförmigen Brennstoffs mit der Verbrennungsluft. Eine gute Durchmischung ist bei derartigen Brennern eine der Voraussetzungen für niedrige NOx-Emissionen bei der Verbrennung. Außerdem ist der Brenner mit einer zentralen Lanze zur Zuführung eines flüssigen Brennstoffs ausgerüstet, welche sich ausgehend von dem Brennerkopf in den Mischraum hinein erstreckt. Die Lanze weist an ihrem freistehenden, axialen Ende eine Einspritzöffnung auf, durch welches der Flüssigbrennstoff in den Mischraum sowie in den stromab des Mischraums angeordneten Brennraum einer Brennkammer einspritzbar ist. - Bei diesem Brenner erfolgt die Eindüsung des flüssigen Brennstoffs in den Mischraum parallel zur Brennerachse und die Eindüsung des gasförmigen Brennstoffs in die Verbrennungsluft parallel zu deren Strömungsrichtung. Damit sind die Charakteristik der Eindüsung hinsichtlich Eindringtiefe und Einmischung der Brennstoffstrahlen sowie die Brennstoffverteilung entlang der Verbrennungslufteintrittsschlitze sowie der Brennerachse vorgegeben. Die Anordnung der Austrittsöffnungen legt die Mischgüte von Brennstoff und Verbrennungsluft sowie die Brennstoffverteilung am Brenneraustritt fest. Aber diese Grössen beeinflussen massgeblich die NOx-Emissionen und die Löschgrenze des Brenners sowie seine Stabilität im Hinblick auf Verbrennungspulsationen. Problematisch beim Betrieb von Vormischbrennern, insbesondere solchen in Verbindung mit Gasturbinenanlagen, ist der Teillastbereich, da hier der Verbrennungsluft nur vergleichsweise geringe Brennstoffmengen zugemischt werden. Bei der vollständigen Vermischung des Brennstoffs mit der gesamten Verbrennungsluft entsteht aber ein Gemisch, welches gerade im unteren Teillastbereich nicht mehr zündfähig ist oder nur eine sehr instabile Flamme ausbildet. Dies führt zu unerwünschten Verbrennungspulsationen oder zu einem möglichen Verlöschen der Flamme.
- Eine Möglichkeit zur Verminderung dieser nachteiligen Wirkungen besteht darin, die gesamte erforderliche Brennstoffmenge über die zentrale Lanze zuzuführen. Der Brenner wird dann bei sehr hohen Luftzahlen als Diffusionsbrenner betrieben. Daraus resultieren zum einen eine hohe Flammenstabilität, aber zum anderen auch sehr hohe NOx-Emissionen.
- Eine Weiterentwicklung des oben diskutierten Brenners ist Gegenstand der
EP 1 292 795 , welche einen Brenner offenbart, der auch bei Änderungen der Last oder der Brennstoffqualität mit annähernd konstant niedrigen Emissionswerten stabil betrieben werden kann. Dieser Vormischbrenner umfasst ein aus mehreren Schalen zusammengesetztes Gehäuse, einen Mischraum, in den über tangential angeordnete Schlitze Verbrennungsluft eingeführt wird, die im Mischraum in eine Drallströmung übergeht, Mittel zur Einbringung von Brennstoff in den Verbrennungsluftstrom, wobei diese Mittel eine erste Gruppe im wesentlichen parallel zur Brennerachse ausgerichteter Brennstoffaustrittsöffnungen für einen ersten Brennstoff umfassen und wenigstens eine zweite Gruppe im wesentlichen parallel zur Brennerachse ausgerichteter Brennstoffaustrittsöffnungen für einen zweiten Brennstoff umfasst, wobei die erste und die zweite Gruppe unabhängig voneinander beaufschlagbar sind, und diese Mittel vorzugsweise im Bereich der Verbrennungslufteintrittsschlitze angeordnet sind. - Zur weiteren Erhöhung der Flammenstabilität kann zusätzlich Pilotbrennstoff über eine Lanze eingebracht werden.
- Da der Brenner ausschließlich mit Flüssigbrennstoff betrieben werden kann, ergibt sich die Möglichkeit, die Gasbrennstoffzuführeinrichtung zu warten oder zu reparieren, ohne dass hierzu der Betrieb des Brenners bzw. der Brennkammer völlig unterbrochen werden muss. Dies ist für die Effizienz der damit ausgestatteten Gasturbine von Vorteil. Wie an anderer Stelle bereits erwähnt, führt aber die Einspritzung von Flüssigbrennstoff in den Mischraum des Brenners bzw. in den Brennraum der Brennkammer üblicherweise zu deutlich erhöhten Flammentemperaturen, was beispielsweise auf eine unzureichende Zerstäubung, Vermischung und Verdampfung des Flüssigbrennstoffs vor dessen Zündung zurückzuführen ist. Erhöhte Flammentemperaturen gehen jedoch mit einer überproportional erhöhten Produktion an NOx-Emissionen und Ruß einher. Dieser Nachteil kann dadurch etwas herabgemindert werden, dass dem flüssigen Brennstoff Wasser oder Wasserdampf, beispielsweise in einem Mengenverhältnis von 1:1, beigemischt wird, und anstelle des flüssigen Brennstoffs somit eine Brennstoff-/Wasser-Emulsion in den Mischraum eingedüst wird, was zu einer Verzögerung der Verbrennungsreaktion und zu einer Absenkung der lokalen Flammentemperaturen führt. Nachteilig ist dabei wiederum, dass die Zuführung eines derartigen Verdünnungsmittels den Wärmeübergang in der Turbine auf der Heißgasseite erhöht, was mit einer Reduzierung der Lebenszeit der Turbine einhergeht. Des weiteren gibt es Standorte für Kraftwerksanlagen, in denen Wasser zu kostbar ist, um es als Verdünnungsmittel zu verwenden. Berücksichtigt man außerdem die vergleichsweise kurze Zeit, in welcher der Brenner tatsächlich mit Flüssigbrennstoff betrieben wird, so anlässlich einer Wartung der Gasbrennstoffzuführeinrichtung oder im Pilotbetrieb, so sind die Aufwendungen zur Aufbereitung des Wassers, beispielsweise müssen hierzu Demineralisationsanlagen bereitgestellt werden, zu hoch.
- Ein gattungsgemäßer Vormischbrenner ist Gegenstand der
EP 1 336 800 , der sich insbesondere durch Maßnahmen zur weiteren Verminderung thermoakustischer Schwingungen innerhalb des Verbrennungssystems und damit erhöhter Verbrennungsstabilität auszeichnet. Dieser Brenner basiert auf dem Grundgedanken, mittels strömungstechnischer Maßnahmen die sich stromab des Brenneraustritts ausbildende zentrale Rückströmzone, innerhalb der sich das Brennstoff/Luft-Gemisch entzündet, zu stabilisieren. Zu diesem Zweck ist die relativ weit in den Mischraum hineinreichende zentrale Brennerlanze in ihrem stromabwärtigen Endbereich mit einem sich erweiternden Querschnitt ausgestattet. Die Lanze besitzt Austrittsöffnungen für vorzugsweise flüssigen Brennstoff und Verbrennungsluft und die entsprechenden Zuführkanäle für diese Medien. Zum einen verhindert die räumliche Nähe des Brennstoffeintrags die Gefahr eines Hineinwanderns der Flamme in den Mischraum und zum anderen unterstützt diese Nähe den Wirbelzusammenbruch des sich in Strömungsrichtung ausbreitenden Brennstoff/Luft-Gemischs mit der Folge einer Stabilisierung der Rückströmzone. Unterschiedliche Querschnittsformen des Endbereichs der Lanze beeinflussen außerdem in unterschiedlichem Maße die Ausbildung kohärenter Strukturen. Jedoch hat die weit in den Mischraum hineinreichende Eindüsung von Brennstoff den Nachteil einer verminderten Mischungsgüte des Brennstoff/Luft-Gemischs mit der an anderer Stelle bereits erwähnten Folge erhöhter NOx-Emissionen. - Eine alternative Lösung zur Verminderung verbrennungsgetriebener thermoakustischer Schwingungen beim Betrieb eines gattungsgemäßen Brenners offenbart
DE 10164099 . Dieser Lösungsvorschlag basiert auf dem Grundgedanken, die Eindüsung des Brennstoffs in einer Weise vorzunehmen, dass die Verzugszeit zwischen Eindüsung des Brennstoffs in den Verbrennungsluftstrom und dessen Verbrennung in der Flammenfront einer systematisch variierenden Verteilung entspricht. Dem liegt die Erkenntnis zugrunde, dass eine geringfügig um einen Mittelwert variierende Verzugszeit zwischen Eindüsungsort und Verbrennung das Auftreten solcher Schwingungen fördert, da geringfügige Schwankungen der Brennstoffzufuhr, initiiert durch Druckschwankungen im Verbrennungssystem, sich auf diese Weise zu potenzieren vermögen. Lösungsgemäß ist die weit in den Mischraum hineinreichende zentrale Brennerlanze in einem weiten Längenbereich mit umfangsmäßig über die Manteloberfläche verteilten Brennstoffeindüsungsöffnungen ausgestattet. - Nach einem älteren Vorschlag gemäß
US 5307634 ist, anders als bei den vorgenannten Ausführungsformen, das aus wenigstens zwei ineinandergeschachtelten Schalen aufgebaute Gehäuse, welches den Mischraum umgibt, nicht konisch, sondern zylindrisch ausgebildet. Die versetzte Anordnung der hier zylindrischen Halbschalen bildet die Schlitze zum tangentialen Zuführen der Verbrennungsluft in den Mischraum. Innerhalb des Mischraums bildet sich die Drallströmung aus, welche am Brenneraustritt in eine annulare Drallströmung mit einer Rückströmung im Kern übergeht. Innerhalb der Lufteintrittsschlitze sind Injektoren zum Eindüsen gasförmigen Brennstoffs in die Verbrennungsluft vorgesehen. Ausgehend vom kopfseitigen Ende des Brenners ragt ein sich konisch verjüngender Zentralkörper in den Mischraum hinein, dessen spitzes Ende mit Austrittsöffnungen für den ebenfalls gasförmigen Pilotbrennstoff versehen ist. Diese Brennstofffraktion nimmt nicht an der Vormischung teil. Ein steter Anteil von 4% bis 6% des gesamten Brennstoffs wird während des Brennerbetriebs als Pilotbrennstoff zugeführt. Dieser Anteil trägt maßgeblich zu einer Erhöhung der NOx-Emissionen bei. - Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, für einen gattungsgemässen Brenner eine verbesserte Ausführungsform anzugeben, die insbesondere vergleichsweise preiswert realisierbar ist und dabei eine Reduzierung der NOx-Emissionen sowie der Rußbildung ermöglicht.
- Erfindungsgemäß wird diese Aufgabe durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
- Die Erfindung beruht auf dem allgemeinen Gedanken, bei einem gattungsgemäßen Brenner gemäß
EP 1336800 die Lanze mit wenigstens einem Piloteinspritzloch und einem Teil der Einspritzlöcher des flüssigen Brennstoffs zu versehen, wobei die Einspritzlöcher (14) der Lanze (6) in wenigstens einer Reihe parallel zur Hauptausströmrichtung (9) angeordnet sind, und eine zweite Flüssigbrennstoffzuführeinrichtung in Gestalt eines vom Oxidatorstrom umströmten Rohrs zumindest überwiegend innerhalb oder stromauf der Einlassöffnung des Gehäuses anzuordnen. - Durch diese Bauweise wird die Einspritzung des Flüssigbrennstoffs auf mehrere Einspritzlöcher verteilt, wodurch sich der Volumenstrom am einzelnen Einspritzloch reduziert. Auf diese Weise kann die Zerstäubungswirkung der einzelnen Einspritzlöcher verbessert werden. Gleichzeitig ergibt sich dadurch eine verbesserte Vermischung sowie eine verbesserte Verdampfung des Flüssigbrennstoffs. Aus der Anordnung der Einspritzlöcher in Reihe und parallel zur Hauptausströmrichtung resultiert zwangsläufig, dass ein Teil der Einspritzlöcher relativ weit von der Auslassöffnung des Mischraums entfernt ist. Der dort eingespritzte Flüssigbrennstoff besitzt daher eine erhöhte Verweildauer im Mischraum, was die Durchmischung und Verdampfung des Brennstoffs begünstigt. Besonders vorteilhaft für die Durchmischung und Verdampfung ist außerdem die Radialkomponente der Haupteinspritzrichtung am jeweiligen Einspritzloch. Denn diese Maßnahme intensiviert die Durchmischung und Verdampfung des Flüssigbrennstoffs.
- Durch den erfindungsgemäßen Aufbau ergibt sich somit eine signifikante Verbesserung der Zerstäubung, der Durchmischung und der Verdampfung des Flüssigbrennstoffs. Dies verzögert zum einen die Zündung des Flüssigbrennstoffs und reduziert zum anderen die Gefahr lokal überhöhter Flammentemperaturen. In der Folge wird die NOx-Bildung reduziert; außerdem entsteht weniger Ruß. Von besonderem Vorteil ist dabei, dass die geschilderte Verbesserung der Emissionswerte erzielt werden kann, ohne dass dem Flüssigbrennstoff hierzu Wasser oder Wasserdampf oder ein anderes Verdünnungsmittel zugeführt werden müsste. In der Folge benötigt der erfindungsgemäße Brenner für den Betrieb mit Flüssigbrennstoff kein Wasser. Der Wasseranteil im Flüssigbrennstoff (sogenannter "ω-Wert") ist daher niedrig und beträgt vorzugsweise Null. Da für den Betrieb des Brenners mit Flüssigbrennstoff kein solches Verdünnungsmittel benötigt wird, entfallen auch entsprechende Anlagen zur Aufbereitung eines derartigen Verdünnungsmittels. Die Kosten zur Realisierung eines derartigen Brenners sind daher vergleichsweise gering.
- Durch die Anordnung mehrerer Brennstoffeinspritzlöcher entlang der wenigstens einen tangentialen Einlassöffnung für den Oxidator, erfolgt die Zumischung des Flüssigbrennstoffs innerhalb der tangentialen Einlassöffnung des Mischraums oder unmittelbar stromauf davon. Diese Eindüsung führt in Verbindung mit der turbulenten Drallströmung innerhalb des Mischraums zu einer intensiven Durchmischung von Brennstoff und Oxidator. Gleichzeitig verlängert sich dadurch die Verweilzeit des eingespritzten Flüssigbrennstoffs, was ebenfalls die Durchmischung und vor allem die Verdampfung des Flüssigbrennstoffs verbessert.
- Indem die zweite Flüssigbrennstoffzuführeinrichtung zumindest einen Flüssigbrennstoffkanal aufweist, der an die Hauptzuführleitung für Flüssigbrennstoff angeschlossen ist, und der in einem sich entlang der wenigstens einen tangentialen Einlassöffnung erstreckenden Rohr ausgebildet ist, das bezüglich der Oxidatorströmung stromauf der jeweiligen Einlassöffnung angeordnet ist, ermöglicht die Eindüsung des Flüssigbrennstoffs über ein derartiges Rohr eine optimale Verteilung der Einspritzung des Flüssigbrennstoffs entlang der jeweiligen Einlassöffnung. Auch dies unterstützt die Zerstäubung, Durchmischung und Verdampfung des Flüssigbrennstoffs.
- Bei einer besonderen Weiterbildung kann das besagte Rohr zusätzlich dazu genutzt werden, für den Betrieb des Brenners mit Gasbrennstoff denselben ebenfalls über das Rohr stromauf der jeweiligen Einlassöffnung dem Oxidatorstrom zuzuführen. Zu diesem Zweck enthält das Rohr neben dem Flüssigbrennstoffkanal zumindest einen Gasbrennstoffkanal. Der an dieser Stelle eingedüste Gasbrennstoff besitzt somit ebenfalls eine besonders lange Aufenthaltsdauer im Brenner, was die Durchmischung mit dem Oxidatorstrom intensiviert. Die Integration des Flüssigbrennstoffkanals und des wenigstens einen Gasbrennstoffkanals in ein gemeinsames Rohr reduziert dabei die Herstellungskosten des Brenners.
- Weitere wichtige Merkmale und Vorteile des erfindungsgemäßen Brenners ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
- Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen. Es zeigen, jeweils schematisch,
- Fig. 1
- einen stark vereinfachten, prinzipiellen Längsschnitt durch einen Brenner nach der Erfindung,
- Fig. 2
- einen Querschnitt durch den Brenner gemäss
Fig. 1 entsprechend Schnittlinien IX - IX, - Fig. 3
- einen Querschnitt durch den Brenner gemäss
Fig. 1 entsprechend Schnittlinien X - X, - Fig. 4
- eine vergrößerte Ansicht auf ein Detail XI aus
Fig. 2 , - Fig. 5
- eine Ansicht auf ein Detail XII aus
Fig. 1 , - Fig. 6
- eine vergrößerte Ansicht auf ein Detail XIII aus
Fig. 5 . - Entsprechend
Fig. 1 umfasst ein erfindungsgemässer Brenner 1 einen von einem Gehäuse 2 begrenzten Mischraum 3. Der Brenner 1 weist außerdem einen Brennerkopf 4 auf, der einer Auslassöffnung 5 des Mischraums 3 gegenüberliegend angeordnet ist. Am Brennerkopf 4 ist eine Lanze 6 angebracht, die zentral in den Mischraum 3 hineinragt. - Entsprechend den
Fig. 2 und 3 ist das Gehäuse 2 bei den hier gezeigten Ausführungsformen so gestaltet, dass der Mischraum 3 zwei Einlassöffnungen 7 für den Oxidator aufweist. Diese Einlassöffnungen 7 sind dabei so angeordnet und gestaltet, dass sich für den Mischraum 3 eine tangentiale Einströmung und somit ein konzentrisches Wirbelsystem ausbildet. Erreicht wird dies hier durch eine Halbschalenbauweise des Gehäuses 2, wobei die Halbschalen in ihrer Trennebene bezüglich einer Längsmittelachse des Gehäuses 2 exzentrisch zueinander versetzt angeordnet sind. Des weiteren ist das Gehäuse 2 im wesentlichen kegelförmig mit einem sich zur Auslassöffnung 5 hin aufweitenden Querschnitt ausgebildet. Indes ist die kegelförmige Ausbildung des Gehäuses 2 nicht zwingend. Es kann auch zylindrisch ausgebildet sein, wobei es bei einer solchen Ausführungsform des Gehäuses 2 zweckmässig ist, einen sich konisch verjüngenden Innenkörper innerhalb des Mischraums 3 anzuordnen, wie dies in der eingangs zitiertenEP 1 292 795 näher dargelegt ist. - Der Brenner 1 dient zur Versorgung einer nicht gezeigten Brennkammer einer Gasturbine, insbesondere in einer Kraftwerksanlage, mit einem Oxidator-Brennstoff-Gemisch. Hierzu ist der Brenner 1 an besagte Brennkammer angeschlossen, und zwar so, dass die Auslassöffnung 5 an einem Brennraum 8 der Brennkammer mündet. Dabei weist das Oxidator-Brennstoff-Gemisch an der Auslassöffnung 5 eine Hauptausströmrichtung 9 auf, die sich parallel zur Längsrichtung des Mischraums 3 erstreckt und die im wesentlichen senkrecht auf der Auslassöffnung 5 steht.
- Der Brenner 1 ist mit einer Oxidatorzuführeinrichtung 10 ausgestattet, die in den
Fig. 1, 2, 3 durch einen Pfeil symbolisiert ist. Die Oxidatorzuführeinrichtung 10 dient zum Zuführen eines gasförmigen Oxidators, in der Regel Luft, in den Mischraum 3. Der erfindungsgemäße Brenner 1 ist für einen Betrieb mit flüssigem Brennstoff, wie zum Beispiel Heizöl, ausgestaltet. Hierzu weist der Brenner 1 eine erste Flüssigbrennstoffzuführeinrichtung 12 auf, mit deren Hilfe flüssiger Brennstoff in die Mischkammer 3 eingeführt werden kann. - Diese erste Flüssigbrennstoffzuführeinrichtung 12 ist mit wenigstens einer Hauptzuführleitung 13 ausgestattet, die den Flüssigbrennstoff mehreren Einspritzlöchern 14 zuführt. Durch diese Einspritzlöcher 14 kann der Flüssigbrennstoff in den Mischraum 3 eingebracht werden. Dabei sind die Einspritzlöcher 14 so angeordnet bzw. verteilt, dass zumindest mehrere Einspritzlöcher 14 bezüglich der Hauptausströmrichtung 9 in wenigstens einer Reihe angeordnet sind. Des weiteren ist es besonders wichtig, dass die einzelnen Einspritzlöcher 14 dabei so ausgestaltet sind, dass eine hier jeweils durch einen Pfeil symbolisierte Haupteinspritzrichtung 15 des jeweiligen Einspritzlochs 14 eine Radialkomponente aufweist, die sich radial zur Hauptausströmrichtung 9 erstreckt. Als "Haupteinspritzrichtung" wird dabei diejenige Richtung verstanden, die ein Spritzstrahl mit oder ohne Drall im Mittel aufweist.
- Durch diesen Aufbau bzw. durch diese Ausgestaltung und Anordnung der Einspritzlöcher 14 ergibt sich eine in der Längsrichtung des Mischraums 3 verteilte Anordnung der Einspritzlöcher 14. Dies ist zur Erzielung einer verbesserten Zerstäubung, Durchmischung und Verdampfung des eingespritzten Flüssigbrennstoffs von Vorteil.
- Die Einspritzlöcher 14 sind an der Lanze 6 ausgebildet, wodurch die Einspritzung des Flüssigbrennstoffs in die Drallströmung, welche sich aufgrund der tangentialen Zuführung des Oxidators in dem Mischraum 3 ausbildet, quasi von innen her erfolgt.
- Vorzugsweise sind die Einspritzlöcher 14 in mehr als einer Reihe parallel zur Hauptausströmrichtung 9 angeordnet, beispielsweise in zwei diametral gegenüberliegenden Reihen. Gemäß
Fig. 2 liegen die Einspritzlöcher 14 beispielsweise in der Trennebene der beiden Gehäusehalbschalen 2, innerhalb der die beiden Gehäusehalbschalen 2 exzentrisch zueinander versetzt angeordnet sind und die schlitzförmigen Einlassöffnungen 7 ausbilden. - Die Anzahl der Reihen von Einspritzlöchern 14 entspricht zweckmäßig der Anzahl an Einlassöffnungen 7 des Mischraums 3. Auf diese Weise kann jede Gruppe der Einspritzlöcher 14 speziell einer Einlassöffnung 7 zugeordnet werden. Indes ist dies nicht zwingend. Es können ebensogut mehr oder weniger Reihen von Einspritzlöchern 17 angeordnet sein, oder die Reihen können gegenüber der Einlassöffnung 7 stromauf oder stromab versetzt sein.
- Während die in zwei gegenüberliegenden Reihen angebrachten Einspritzlöcher 14 nach der Darstellung der
Figur 2 jeweils paarweise in derselben Längsebene angeordnet sind, können die Einspritzlöcher der gegenüberliegenden Reihen auch zueinander versetzt sein. Dabei weisen die aufgereihten Einspritzlöcher 14 jeder Reihe vorzugsweise einen gleichmäßigen Abstand untereinander auf. - Die Flüssigbrennstoffzuführeinrichtung 12 ist mit einer Pilotzuführleitung 16 ausgestattet, mit deren Hilfe zumindest einem Piloteinspritzloch 17 Flüssigbrennstoff zugeführt werden kann. Im Unterschied zu den übrigen Einspritzlöchern 14 ist das wenigstens eine Piloteinspritzloch 17 so ausgestaltet, dass es eine durch einen Pfeil angedeutete Haupteinspritzrichtung 18 aufweist, die ausschließlich eine Axialkomponente aufweist, die sich parallel zur Hauptausströmrichtung 9 erstreckt. Im Pilotbetrieb des Brenners 1 kann somit Flüssigbrennstoff axial, also parallel zur Hauptausströmrichtung 9 mit oder ohne Drall in den Mischraum 3 bzw. direkt in den Brennraum 8 eingespritzt werden.
- Entsprechend
Figur 1 können die Einspritzlöcher 14 zweckmäßig auch so ausgestaltet sein, dass ihre jeweilige Haupteinspritzrichtung 15 zusätzlich zur Radialkomponente außerdem eine Axialkomponente aufweist, die sich also parallel zur Hauptausströmrichtung 9 erstreckt. Auf diese Weise kann beispielsweise die Durchmischung mit der Oxidatorströmung verbessert werden.
Außerdem können die Einspritzlöcher 14 auch so ausgestaltet sein, dass die jeweilige Haupteinspritzrichtung 15 zusätzlich zur Radialkomponente außerdem eine Umfangskomponente aufweist. Diese Umfangskomponente oder Tangentialkomponente erstreckt sich dabei quer zur Hauptausströmrichtung 9 sowie quer zur Radialkomponente. Dabei ist diese Umfangskomponente zweckmäßig in der Rotationsrichtung der Drallströmung orientiert, die sich aufgrund der tangentialen Einströmung des Oxidators im Mischraum 3 ausbildet. Auch die Umfangskomponente kann zur Verbesserung der Durchmischung des Flüssigbrennstoffs mit dem Oxidator beitragen. Dabei ist klar, dass die Einspritzlöcher 14 so ausgestaltet werden können, dass die Haupteinspritzrichtung 15 neben der Radialkomponente die Axialkomponente und die Umfangskomponente kumulativ oder alternativ aufweist. - Für die Anordnung, Positionierung und Dimensionierung der Einspritzlöcher 14 sowie für die Orientierung deren Haupteinspritzrichtung 15 wird zweckmäßig ein Optimum gesucht, das zu einer besonders guten Zerstäubung, Durchmischung und Verdampfung des Flüssigbrennstoffs im Oxidatorgas führt. Hierzu kann es insbesondere auch erforderlich sein, die einzelnen Einspritzlöcher 14 hinsichtlich Lochquerschnitt und/oder Haupteinspritzrichtung und/oder gegenseitigem Abstand unterschiedlich auszugestalten, um im Extremfall jedes einzelne Einspritzloch an die lokal herrschenden Strömungsbedingungen optimal anpassen zu können. Des weiteren ist klar, dass die Einspritzlöcher 14 ein bestimmtes Verhältnis von Länge zu Durchmesser aufweisen müssen, um die jeweils gewünschte Haupteinspritzrichtung sauber darstellen zu können. Es ist durchaus möglich, dass es dabei erforderlich wird, die Wandstärke der Lanze 6 größer zu wählen als dies zum Beispiel bei einer herkömmlichen Lanze 6 zur Eindüsung flüssigen Brennstoffs der Fall ist.
- Jeder Einlassöffnung 7 ist ein Rohr 19 zugeordnet, siehe hierzu auch die
Figuren 2 und 3 . Die Rohre 19 sind dabei innerhalb oder bezüglich der Oxidatorströmung stromauf der jeweils zugeordneten Einlassöffnung 7 angeordnet und erstrecken sich quasi parallel entlang der ganzen jeweiligen Einlassöffnung 7. Zweckmäßig sind die Rohre 19 dabei nicht mit einem kreisrunden Querschnitt ausgestattet, sondern weisen in Anpassung an die Platz- und Strömungsverhältnisse innerhalb oder unmittelbar stromauf der Einlassöffnung 7 ein langrundes, ein ovales oder ein Stromlinienprofil auf. - Eine Gasbrennstoffzuführeinrichtung 11 umfasst zumindest eine Zuführleitung; im vorliegenden Fall sind zwei Zuführleitungen vorgesehen, nämlich eine erste Zuführleitung 20 und eine zweite Zuführleitung 21. Mit den Zuführleitungen 20, 21 kann mehreren Eindüslöchern 22, 23 Gasbrennstoff zugeführt werden. Dabei werden erste Eindüslöcher 22 von der ersten Zuführleitung 20 versorgt, während zweite Eindüslöcher 23 von der zweiten Zuführleitung 21 versorgt werden. Die Eindüslöcher 22, 23 sind dabei bezüglich der Oxidatorströmung stromauf der jeweiligen Einlassöffnung 7 angeordnet. Das jeweilige Rohr 19 enthält dabei zumindest einen Gasbrennstoffkanal, der an die jeweilige Zuführleitung 20, 21 angeschlossen ist und der zu den jeweils zugeordneten Eindüslöchern 22, 23 führt. Im vorliegenden Fall ist demnach in jedem Rohr 19 ein erster Gasbrennstoffkanal 24 enthalten, der die erste Zuführleitung 20 mit den ersten Eindüslöchern 22 kommunizierend verbindet. In entsprechender Weise enthält jedes Rohr 19 auch einen zweiten Gasbrennstoffkanal 25, der die zweite Zuführleitung 21 mit den zweiten Eindüslöchern 23 kommunizierend verbindet.
- Bei den hier gezeigten Ausführungsformen sind die ersten Eindüslöcher 22 in einem von der Auslassöffnung 5 entfernten, an den Brennerkopf 4 anschließenden ersten Längsabschnitt des Mischraums 3 angeordnet und bilden dadurch eine erste Brennerstufe. Im Unterschied dazu sind die zweiten Eindüslöchern 23 in einem an die Auslassöffnung 5 anschließenden zweiten Längsabschnitt des Mischraums 3 angeordnet und bilden dadurch eine zweite Brennerstufe, die bezüglich der Hauptausströmrichtung 9 stromab der ersten Brennerstufe angeordnet ist. Über die separaten Zuführleitungen 20, 21 können die beiden Brennerstufen unabhängig voneinander gesteuert werden. Insoweit handelt es sich bei der Ausführungsform der
Fig. 1 um einen zweistufigen Brenner 1. - Innerhalb jedes Rohrs 19 sind sowohl die erste Gruppe von Eindüslöchern 22 als auch die zweite Gruppe von Eindüslöchern 23 jeweils für sich in wenigstens einer Reihe angeordnet, die sich im wesentlichen entlang der jeweiligen Einlassöffnung 7 erstrecken.
- Das Rohr 19 enthält zusätzlich einen Flüssigbrennstoffkanal 26, der sich parallel zu den Gasbrennstoffkanälen 24, 25 erstreckt. Der Flüssigbrennstoffkanal 26 stellt eine kommunizierende Verbindung zwischen der Hauptzuführleitung 13 und den Einspritzlöchern 14 her. Die Integration der Einspritzlöcher 14 in das Rohr 19 ergibt einen besonders einfachen Aufbau für den Brenner 1, der sowohl mit gasförmigem Brennstoff als auch mit flüssigem Brennstoff betrieben werden kann. Gleichzeitig ergibt sich bei dieser Art der Einspritzung des Flüssigbrennstoffs eine besonders große Verweildauer für den Flüssigbrennstoff im Mischraum 3, wodurch die Zerstäubung, Durchmischung und Verdampfung des Flüssigbrennstoffs verbessert wird.
- Dabei ist klar, dass bei einer anderen Ausführungsform das wenigstens eine Rohr 19 ausschließlich den Flüssigbrennstoffkanal 26 enthalten kann, wobei dann die Einbringung des Gasbrennstoffs mit Hilfe eines separaten Rohrs oder auf eine beliebige andere geeignete Weise erfolgen kann.
- Entsprechend
Figur 4 besitzt das Rohr 19 im Bereich des ersten Gasbrennstoffskanals 24 einen dreikammerigen Aufbau, wobei jede Kammer einen der Kanäle 24, 25, 26 bildet. Der Schnitt für die Darstellung gemäßFig. 4 ist dabei so gewählt, dass jeweils ein Paar gegenüberliegender erster Eindüslöcher 22, die mit dem ersten Gasbrennstoffkanal 24 kommunizieren, ein Paar gegenüberliegender zweiter Einspritzlöcher 23, die mit dem zweiten Gasbrennstoffkanal 25 kommunizieren, und mehrere Einspritzlöcher 14 erkennbar sind, die mit dem Flüssigbrennstoffkanal 26 kommunizieren. - Dabei ist erkennbar, dass auch hier wieder jeweils mehrere Einspritzlöcher 14 zu Gruppen zusammengefasst sind, die jeweils hintereinander in einer Reihe parallel zur Hauptausströmrichtung 9 angeordnet sind. Dabei sind sämtliche Einspritzlöcher 14 jeweils so ausgestaltet, dass ihre jeweilige Haupteinspritzrichtung 15 eine Radialkomponente bezüglich der Hauptausströmrichtung 9 des Brenners 1 aufweist. Darüber hinaus sind mehrere Einspritzlöcher 14 entlang einer Abströmkante des Rohrs 19 angeordnet und dabei so ausgestaltet, dass ihre jeweilige Haupteinspritzrichtung 15 parallel zu einer Haupteinströmrichtung des Brenners 1 verläuft. Diese Haupteinströmrichtung ist in Fig. 11 durch einen Pfeil symbolisiert und mit 27 bezeichnet. Die Haupteinströmrichtung 27 weist der in den Mischraum 3 einströmende Oxidatorstrom an der jeweiligen Einlassöffnung 7 auf. Darüber hinaus sind hier zwei Reihen von Einspritzlöchern 14 vorgesehen, die jeweils so ausgestaltet sind, dass ihre jeweilige Haupteinspritzrichtung 15 bezüglich der Haupteinströmrichtung 27 eine Querkomponente aufweist. Auf diese Weise erfolgt die Einspritzung direkt in die Oxidatorströmung, welche das Rohr 19 umströmt und stromab des Rohrs 19 durch die Einlassöffnung 7 in den Mischraum 3 eintritt.
- Entsprechend den
Fig. 5 und 6 sind die Einspritzlöcher 14 und die an der selben Seite des Rohrs 19 ausgebildeten zweiten Eindüslöcher 23 bezüglich der Hauptausströmrichtung 9 zueinander versetzt angeordnet, um auf diese Weise eine gegenseitige Überlappung zu vermeiden. Entsprechendes gilt zweckmäßig auch für die relative Lage zwischen den Einspritzlöchern 14 und den ersten Eindüslöchern 22. Durch die versetzte Anordnung kann beispielsweise vermieden werden, dass beim Betrieb des Brenners 1 mit Gasbrennstoff ein zündfähiges Gemisch durch die Einspritzlöcher 14 in die Flüssigbrennstoffzuführeinrichtung 12 gelangt. -
- 1
- Brenner
- 2
- Gehäuse
- 3
- Mischraum
- 4
- Brennerkopf
- 5
- Auslassöffnung
- 6
- Lanze
- 7
- Einlassöffnung
- 8
- Brennraum
- 9
- Hauptausströmrichtung
- 10
- Oxidatorzuführeinrichtung
- 11
- Gasbrennstoffzuführeinrichtung
- 12
- erste Flüssigbrennstoffzuführeinrichtung
- 13
- Hauptzuführleitung
- 14
- Einspritzloch
- 15
- Hautpeinspritzrichtung
- 16
- Pilotzuführleitung
- 17
- Piloteinspritzloch
- 18
- Hauptausströmrichtung von 17
- 19
- Rohr
- 20
- erste Zuführleitung
- 21
- zweite Zuführleitung
- 22
- erstes Eindüsloch
- 23
- zweites Eindüsloch
- 24
- erster Gasbrennstoffkanal
- 25
- zweiter Gasbrennstoffkanal
- 26
- Flüssigbrennstoffkanal
- 27
- Haupteinströmrichtung
Claims (13)
- Vormischbrenner für eine Brennkammer einer Gasturbine, umfassend- ein Gehäuse (2) zur Begrenzung eines Mischraums (3) zur Vormischung eines Oxidators mit einem gasförmigen und/oder flüssigen Brennstoff,- eine Oxidatorzuführeinrichtung (10) zum Zuführen des Oxidators in den Mischraum (3), welche zumindest eine Einlassöffnung (7) aufweist, die so gestaltet und angeordnet ist, dass der durch diese wenigstens eine Einlassöffnung (7) dem Mischraum (3) zugeführte Oxidator im wesentlichen tangential in den Mischraum (3) einströmt,- eine Gasbrennstoffzuführeinrichtung (11) zum Zuführen des gasförmigen Brennstoffs in den Mischraum (3),- eine erste Flüssigbrennstoffzuführeinrichtung (12) zum Zuführen des flüssigen Brennstoffs in den Mischraum (3), umfassend eine zentral angeordnete Lanze (6), die sich von einem Brennerkopf (4) in den Mischraum (3) hinein erstreckt,- eine Auslassöffnung (5) des Gehäuses (2) zum Austritt des Oxidator-Brennstoff-Gemischs aus dem Mischraum (3) in die Brennkammer,wobei die erste Flüssigbrennstoffzuführeinrichtung (12) eine Hauptzuführleitung (13) mit mehr als einem Einspritzloch (14) für Flüssigbrennstoff aufweist, und zumindest der überwiegende Teil oder alle dieser Einspritzlöcher (14) so ausgestaltet sind, dass eine Haupteinspritzrichtung (15) des jeweiligen Einspritzlochs (14) eine Radialkomponente aufweist, die sich senkrecht zu einer Hauptausströmrichtung (9) des Brenners erstreckt, wobei unter Hauptausströmrichtung (9) des Brenners eine Richtung zu verstehen ist, welche das aus dem Mischraum (3) ausströmende Oxidator-Brennstoff-Gemisch an der Auslassöffnung (5) des Mischraums (3) aufweist, dadurch gekennzeichnet, dass die Lanze (6) wenigstens ein Piloteinspritzloch (17) und einen Teil der Einspritzlöcher (14) aufweist, wobei die Einspritzlöcher (14) der Lanze (6) in wenigstens einer Reihe parallel zur Hauptausströmrichtung (9) angeordnet sind, und dass eine zweite Flüssigbrennstoffzuführeinrichtung in Gestalt eines vom Oxidatorstrom umströmten Rohrs (19) zumindest überwiegend innerhalb oder stromauf der Einlassöffnung (7) des Gehäuses (2) angeordnet ist.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet,- dass eine erste Anzahl dieser Einspritzlöcher (14) entlang einer ersten Reihe parallel zur Hauptausströmrichtung (9) angeordnet ist,- dass eine zweite Anzahl dieser Einspritzlöcher (14) entlang einer zweiten Reihe parallel zur Hauptausströmrichtung (9) angeordnet ist, und- dass die beiden Reihen der Einspritzlöcher (14) der ersten Flüssigbrennstoffzuführeinrichtung (12) einander diametral gegenüberliegen.
- Vormischbrenner nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet,- dass die Einspritzlöcher (14) zumindest überwiegend so ausgestaltet sind, dass die Haupteinspritzrichtung (15) des jeweiligen Einspritzlochs (14) zusätzlich eine Axialkomponente in Richtung der Hauptausströmrichtung (9) aufweist, und/oder- dass die Einspritzlöcher (14) zumindest überwiegend so ausgestaltet sind, dass die Haupteinspritzrichtung (15) des jeweiligen Einspritzlochs (14) zusätzlich eine Tangentialkomponente in einer Drallrichtung in dem Mischraum (3) aufweist.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet,- dass die Lanze (6) mit einer Hauptzuführleitung (13) und einer Pilotzuführleitung (16) ausgestattet ist,- dass die Pilotzuführleitung (16) das Piloteinspritzloch (17) speist, das an dem freien Ende der Lanze (6) angeordnet ist und dessen Haupteinspritzrichtung (18) parallel zur Hauptausströmrichtung (9) gerichtet ist,- dass die Hauptzuführleitung (13) mindestens eine Reihe von Einspritzlöchern (14) speist, die sich parallel zur Hauptauströmrichtung (18) über die Mantelfläche der Lanze (6) erstrecken und deren Haupteinspritzrichtung (15) eine Radialkomponente aufweist.
- Vormischbrenner nach Anspruch 4, dadurch gekennzeichnet, dass die Lanze (6) zwei diametral gegenüberliegende Reihen von Einspritzlöchern (14) aufweist.
- Vormischbrenner nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Einspritzlöcher (14) eine Haupteinspritzrichtung (15) mit einer Radialkomponente und mit einer Axialkomponente und/oder einer Tangentialkomponente aufweisen.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass das Rohr (19) eine ovalförmige Querschnittsform besitzt.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet,- dass eine Anzahl der Einspritzlöcher (14) so ausgestaltet ist, dass eine Haupteinspritzrichtung (15) des jeweiligen Einspritzlochs (14) parallel zur Haupteinströmrichtung (27) des in den Mischraum (3) einströmenden Oxidatorstroms verläuft, und/oder- dass eine Anzahl der Einspritzlöcher (14) so ausgestaltetist, dass eine Haupteinspritzrichtung (15) des jeweiligen Einspritzlochs (14) eine Querkomponente aufweist, die wenigstens annähernd senkrecht zur Haupteinströmrichtung (27) des Oxidatorstroms in der Einlassöffnung (7) verläuft.
- Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass das Rohr (19) zumindest einen Flüssigbrennstoffkanal (26) aufweist, der mehrere Einspritzlöcher (14) der Flüssigbrennstoffzuführeinrichtung (12) speist.
- Vormischbrenner nach Anspruch 9, dadurch gekennzeichnet, dass in dem Rohr (19) parallel zu dem Flüssigbrennstoffkanal (26) wenigstens ein Gasbrennstoffkanal (24, 25) ausgebildet ist, der Eindüslöcher (22, 23) speist und der an wenigstens eine Zuführleitung (20, 21) für den Gasbrennstoff angeschlossen ist.
- Vormischbrenner nach Anspruch 10, dadurch gekennzeichnet,- dass in dem Rohr (19) parallel zum Flüssigbrennstoffkanal (26) ein erster Gasbrennstoffkanal (24) ausgebildet ist, der an eine erste Zuführleitung (20) angeschlossen ist, und der eine erste Gruppe von Eindüslöchern (22) mit Gasbrennstoff speist,- dass in dem Rohr (19) parallel zum Flüssigbrennstoffkanal (26) ein zweiter Gasbrennstoffkanal (25) ausgebildet ist, der an eine zweite Zuführleitung (21) angeschlossen ist, und der eine zweite Gruppe von Eindüslöchern (23) mit Gasbrennstoff speist.
- Vormischbrenner nach Anspruch 11, dadurch gekennzeichnet, dass die zweite Gruppe von Eindüslöchern (23) bezüglich der Hauptausströmrichtung (9) stromab der ersten Gruppe von Eindüslöchern (22) angeordnet ist.
- Vormischbrenner nach Anspruch 12, dadurch gekennzeichnet, dass beide Gruppen von Eindüslöchern (22, 23) in wenigstens einer Reihe auf der Mantelfläche des Rohres (19) angeordnet sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005015152A DE102005015152A1 (de) | 2005-03-31 | 2005-03-31 | Vormischbrenner für eine Gasturbinenbrennkammer |
PCT/EP2006/061144 WO2006103257A1 (de) | 2005-03-31 | 2006-03-29 | Vormischbrenner für eine gasturbinenbrennkammer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1864056A1 EP1864056A1 (de) | 2007-12-12 |
EP1864056B1 true EP1864056B1 (de) | 2015-07-15 |
Family
ID=36580055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06725400.3A Not-in-force EP1864056B1 (de) | 2005-03-31 | 2006-03-29 | Vormischbrenner für eine gasturbinenbrennkammer |
Country Status (5)
Country | Link |
---|---|
US (1) | US7565794B2 (de) |
EP (1) | EP1864056B1 (de) |
JP (2) | JP2008534903A (de) |
DE (1) | DE102005015152A1 (de) |
WO (1) | WO2006103257A1 (de) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005015152A1 (de) | 2005-03-31 | 2006-10-05 | Alstom Technology Ltd. | Vormischbrenner für eine Gasturbinenbrennkammer |
WO2009019113A2 (de) | 2007-08-07 | 2009-02-12 | Alstom Technology Ltd | Brenner für eine brennkammer einer turbogruppe |
WO2009019114A2 (de) * | 2007-08-07 | 2009-02-12 | Alstom Technology Ltd | Brenner für eine brennkammer einer turbogruppe |
WO2009068425A1 (de) * | 2007-11-27 | 2009-06-04 | Alstom Technology Ltd | Vormischbrenner für eine gasturbine |
DE102008015207A1 (de) | 2008-03-20 | 2009-09-24 | Rolls-Royce Deutschland Ltd & Co Kg | Fluid-Injektor-Düse |
US20090249789A1 (en) * | 2008-04-08 | 2009-10-08 | Baifang Zuo | Burner tube premixer and method for mixing air and gas in a gas turbine engine |
DE102008017844A1 (de) | 2008-04-08 | 2009-10-15 | Rolls-Royce Deutschland Ltd & Co Kg | Strömungsmaschine mit Fluid-Injektorbaugruppe |
DE102008019117A1 (de) * | 2008-04-16 | 2009-10-22 | Man Turbo Ag | Verfahren zum Betreiben eines Vormischbrenners und ein Vormischbrenner zur Durchführung des Verfahrens |
US8147121B2 (en) * | 2008-07-09 | 2012-04-03 | General Electric Company | Pre-mixing apparatus for a turbine engine |
EP2208927B1 (de) * | 2009-01-15 | 2016-03-23 | Alstom Technology Ltd | Brenner einer Gasturbine |
US20100242490A1 (en) * | 2009-03-31 | 2010-09-30 | General Electric Company | Additive delivery systems and methods |
EP2685161B1 (de) * | 2012-07-10 | 2018-01-17 | Ansaldo Energia Switzerland AG | Brenneranordnung, insbesondere für eine Gasturbine |
EP2685160B1 (de) * | 2012-07-10 | 2018-02-21 | Ansaldo Energia Switzerland AG | Multikonus-Vormischungsbrenner für eine Gasturbine |
JP6395363B2 (ja) * | 2013-10-11 | 2018-09-26 | 川崎重工業株式会社 | ガスタービンの燃料噴射装置 |
KR101596661B1 (ko) * | 2014-09-11 | 2016-02-23 | 한국항공우주연구원 | 기체산화제와 기체연료를 사용하는 로켓 연소기 |
JP6602004B2 (ja) * | 2014-09-29 | 2019-11-06 | 川崎重工業株式会社 | 燃料噴射器及びガスタービン |
KR102460672B1 (ko) * | 2021-01-06 | 2022-10-27 | 두산에너빌리티 주식회사 | 연료 노즐, 연료 노즐 모듈 및 이를 포함하는 연소기 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3703259A (en) * | 1971-05-03 | 1972-11-21 | Gen Electric | Air blast fuel atomizer |
CH680467A5 (de) | 1989-12-22 | 1992-08-31 | Asea Brown Boveri | |
US5307634A (en) * | 1992-02-26 | 1994-05-03 | United Technologies Corporation | Premix gas nozzle |
SE9304194L (sv) * | 1993-12-17 | 1995-06-18 | Abb Stal Ab | Bränslespridare |
DE4445279A1 (de) * | 1994-12-19 | 1996-06-20 | Abb Management Ag | Einspritzdüse |
US5822992A (en) * | 1995-10-19 | 1998-10-20 | General Electric Company | Low emissions combustor premixer |
EP0911583B1 (de) * | 1997-10-27 | 2003-03-12 | ALSTOM (Switzerland) Ltd | Verfahren zum Betrieb eines Vormischbrenners |
AU2001272682A1 (en) * | 2000-06-15 | 2001-12-24 | Alstom Power N.V. | Method for operating a burner and burner with stepped premix gas injection |
DE10160907A1 (de) * | 2001-12-12 | 2003-08-14 | Alstom Switzerland Ltd | Verfahren zur Verhinderung von Strömungsinstabilitäten in einem Brenner |
DE10164099A1 (de) * | 2001-12-24 | 2003-07-03 | Alstom Switzerland Ltd | Brenner mit gestufter Brennstoffeinspritzung |
DE10205839B4 (de) * | 2002-02-13 | 2011-08-11 | Alstom Technology Ltd. | Vormischbrenner zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen |
DE10334228A1 (de) * | 2002-08-19 | 2004-03-04 | Alstom (Switzerland) Ltd. | Verfahren zum Betrieb eines Vormischbrenners sowie Vorrichtung zur Durchführung des Verfahrens |
DE102005015152A1 (de) | 2005-03-31 | 2006-10-05 | Alstom Technology Ltd. | Vormischbrenner für eine Gasturbinenbrennkammer |
-
2005
- 2005-03-31 DE DE102005015152A patent/DE102005015152A1/de not_active Withdrawn
-
2006
- 2006-03-29 WO PCT/EP2006/061144 patent/WO2006103257A1/de not_active Application Discontinuation
- 2006-03-29 EP EP06725400.3A patent/EP1864056B1/de not_active Not-in-force
- 2006-03-29 JP JP2008503514A patent/JP2008534903A/ja active Pending
-
2007
- 2007-09-25 US US11/860,581 patent/US7565794B2/en active Active
-
2011
- 2011-05-30 JP JP2011003024U patent/JP3169663U/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE102005015152A1 (de) | 2006-10-05 |
US20080115497A1 (en) | 2008-05-22 |
EP1864056A1 (de) | 2007-12-12 |
WO2006103257A1 (de) | 2006-10-05 |
JP2008534903A (ja) | 2008-08-28 |
JP3169663U (ja) | 2011-08-11 |
US7565794B2 (en) | 2009-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1864056B1 (de) | Vormischbrenner für eine gasturbinenbrennkammer | |
EP1802915B1 (de) | Brenner für gasturbine | |
EP1292795B1 (de) | Verfahren zum betrieb eines brenners mit gestufter vormischgas-eindüsung | |
DE60007946T2 (de) | Eine Brennkammer | |
EP2179222B1 (de) | Brenner für eine brennkammer einer turbogruppe | |
DE69412484T2 (de) | Verbrennungskammer eines gasturbinenmotors | |
EP1754002B1 (de) | Gestufter vormischbrenner mit einem injektor für flüssigbrennstoff | |
EP0902233B1 (de) | Kombinierte Druckzerstäuberdüse | |
EP1504222B1 (de) | Vormischbrenner | |
EP1714081B1 (de) | Vormischbrenneranordnung zum betreiben einer brennkammer sowie verfahren zum betreiben einer brennkammer | |
EP2513562B1 (de) | Brenner für eine turbine | |
EP1828684A1 (de) | Vormischbrenner mit mischstrecke | |
EP0777081B1 (de) | Vormischbrenner | |
EP2116766A1 (de) | Brennstofflanze | |
EP1734306B1 (de) | Brenner zur vormischartigen Verbrennung | |
EP0433790A1 (de) | Brenner | |
WO2009068425A1 (de) | Vormischbrenner für eine gasturbine | |
EP3301370B1 (de) | Brennerkopf, brennersystem und verwendung des brennersystems in einer gasturbinenanlage | |
DE102017118165B4 (de) | Brennerkopf, Brennersystem und Verwendung des Brennersystems | |
EP1855054B1 (de) | Vorrichtung zur Brennstoffversorgung eines Vormischbrenners | |
EP1510755B1 (de) | Brenner mit Brennerlanze und gestufter Brennstoffeindüsung | |
EP0483554B1 (de) | Verfahren zur Minimierung der NOx-Emissionen aus einer Verbrennung | |
EP0730121A2 (de) | Vormischbrenner | |
DE102017118166A1 (de) | Brennerkopf, Brennersystem und Verwendung des Brennersystems | |
EP1559955B1 (de) | Brenner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070911 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: TOQAN, MAJED Inventor name: EROGLU, ADNAN |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20131022 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150325 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502006014419 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 502006014419 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 736996 Country of ref document: AT Kind code of ref document: T Effective date: 20150815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006014419 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150715 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151016 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151116 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006014419 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 |
|
26N | No opposition filed |
Effective date: 20160418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502006014419 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 502006014419 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160329 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160329 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 736996 Country of ref document: AT Kind code of ref document: T Effective date: 20160329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170727 AND 20170802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160329 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502006014419 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20060329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220321 Year of fee payment: 17 Ref country code: DE Payment date: 20220322 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006014419 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230329 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |