EP1253669B1 - Réseau d'antennes avec un nombre d' éléments rayonnants résonants - Google Patents

Réseau d'antennes avec un nombre d' éléments rayonnants résonants Download PDF

Info

Publication number
EP1253669B1
EP1253669B1 EP02006322A EP02006322A EP1253669B1 EP 1253669 B1 EP1253669 B1 EP 1253669B1 EP 02006322 A EP02006322 A EP 02006322A EP 02006322 A EP02006322 A EP 02006322A EP 1253669 B1 EP1253669 B1 EP 1253669B1
Authority
EP
European Patent Office
Prior art keywords
elements
antenna array
branches
reactive
array according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02006322A
Other languages
German (de)
English (en)
Other versions
EP1253669A2 (fr
EP1253669A3 (fr
Inventor
Klaus Dr. Solbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7682854&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1253669(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP1253669A2 publication Critical patent/EP1253669A2/fr
Publication of EP1253669A3 publication Critical patent/EP1253669A3/fr
Application granted granted Critical
Publication of EP1253669B1 publication Critical patent/EP1253669B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the invention relates to a group antenna with a number of Resonant radiator elements according to the preamble of claim 1.
  • Group antennas are made by combining individual Antenna elements and a network for common feed produced. To achieve the widest possible adaptation bandwidth The overall antenna is made possible by networks Parallel branches of supply lines exist (parallel supply) in Contrary to those from series orders (series supply). For Vertical array antennas become parallel feed networks used the same length signal paths from the feed point to each Ensure radiating element, so that all radiators for all frequencies work in phase. In such group antennas is the Adjustment bandwidth usually alone by the bandwidth of the Radiator elements determined as the network with broadband Line branches can be constructed. The relative bandwidth of array antennas with resonant radiating elements, especially of the Type microstrip patch antenna is therefore only a few percent limited, depending on the height of the substrate material used.
  • Array antennas having a number of resonant radiating elements and a feed network, which has a number of between one Input terminal and the individual resonant emitter elements in parallel connected feeders are well known, e.g. from JP 2001-134028.
  • the object of the invention is a group antenna with resonant radiator elements in such a way that an increase in the Adjustment bandwidth without disadvantageous overhead in the radiators and the food network is possible.
  • the invention provides a group antenna with a number of Resonant radiator elements and a feed network, which a Number of between an input terminal and the individual resonant radiating elements contains parallel feed lines created.
  • the parallel connected Feed lines have the same length signal paths and one each weakly coupled transmission resonator, whereby in the Feeders a passage filter (in the literature as well Transmission filter referred) is formed.
  • a passage filter in the literature as well Transmission filter referred
  • An advantage of the group antenna according to the invention is that Supply network at the same time for distribution or collection of signals the resonant radiator elements and to compensate for the reactive components the radiator element impedance is used.
  • the transmission resonators are through two in the feeders arranged dummy elements formed.
  • a first dummy element at a first distance l 1 and a second dummy element at a second distance l 2 which may be greater than the first distance l 1 , are arranged in front of the respective resonant radiator element.
  • the feeders branch from one common input connection to several resonant steel elements.
  • the signal paths of all feeder lines between the Input terminal and the respective resonant radiator elements same long.
  • the array contains a group of 2 ⁇ 2 patch emitters, wherein the feed network includes a common input branch connected to a single input terminal, which at a first branch into two separate first branches and wherein the separate first branches split at second branches in individual branches connected to the individual patch radiators, and wherein the first dummy elements are arranged at a first distance l 1 in front of the individual patch radiators and the second dummy elements at a second distance l 2 are provided from the first dummy elements toward the input terminal.
  • this contains a set of 1 ⁇ 8 patch emitters, wherein the feed network includes a common input branch connected to an input terminal, which splits at a first branch into two separate first branches, each of the separate splitting first branches at second branches into respectively two separate second branches and splitting each of the separated second branches at third branches into respectively two separate individual branches connected to the individual patch radiators, and wherein the first dummy elements are at a first distance l 1 respectively the individual patch radiators are arranged, and the second dummy elements are arranged at a second distance l 2 from the first dummy elements toward the input terminal.
  • the first dummy elements in the separate connected to the individual patch emitters Arranged single branches.
  • a common Blind element arranged in the common input branch.
  • the first dummy elements between the second branches and the third branches in the separated second branches provided.
  • the second Dummy elements between the first branch and the second Branches provided in the separate first branches are provided in the separate first branches.
  • the dummy elements are formed by capacitances.
  • the capacities are through the stubs provided stubs formed.
  • the dummy elements be formed by inductors.
  • the branches are preferably T-branches.
  • the T-branches can be Wilkinson splitters, reactive T-branches, Directional coupler with phase compensation or magic T-branches be.
  • the resonant radiator elements may also be through dipoles or through Slot radiator be formed.
  • the feed network contains symmetrical branches.
  • the feed network contain unbalanced branches.
  • a weakly coupled transmission resonator is formed in the feed line, the stop attenuation increases with the size of the capacitances, and the bandwidth decreases with increasing length l 2 .
  • a large distance l 2 is required, for example 2 ⁇ .
  • the effective imaginary part of the filter impedance decreases at approximately the same frequency gradient as that of the connected radiator element increases.
  • the opposite nature of the phase responses must continue to be set by the distance I 1 .
  • FIGS. 3 and 4 show exemplary embodiments in the form of a 2 ⁇ 2 group of patch emitters or a 1 ⁇ 8 group of patch emitters, which are each coupled via a feed network 202 or 302 to an input terminal 203 or 303 ,
  • the Food Networks 202; 302 serve at the same time for distribution or collection of the signals at the resonance radiating elements 201 k and 301 k of the groups.
  • the capacitances C 1 are characterized by equal line lengths l 1 from the resonant radiator elements 201 k ; 301 k separated.
  • the feed network 202 is constructed in the manner of tree-shaped combined T-branches.
  • the k to each of the radiator elements 201 leading parallel-connected feed lines 204 k extend in a part of the feed network 202 together and separate until immediately before the individual radiator elements 201 k into individual line branches 211 k .
  • feed network 202 includes a common input branch 205 connected to input port 203, which splits at a first branch 206 into two separate first branches 207 i .
  • the separate first branches 207 i split at second branches 208 i into the individual branches 211 k connected to the individual patch radiators 201 k .
  • the first dummy elements in the form of the first capacitances C 1 are arranged at a first distance l 1 in each case in front of the individual patch radiators 211 k .
  • the second dummy elements in the form of the second capacitances C 2 are arranged at a second distance l 2 from the first dummy elements C 1 in the direction of the input terminal 203.
  • the first capacitances C 1 for each radiator element 201 k are arranged separately in the single branch 211 k of the feed network 202, whereas the second capacitance C 2 for all feed lines 204 k in the form of the line branches of the feed network 202 are jointly located in the is arranged with the input terminal 203 coupled common input branch 205.
  • the capacitances C 1 , C 2 are each provided in the form of a short idle stub. Because of the equally long signal paths in the feed network 202, all four distances between the stubs forming the capacitances C 1 and the stubs forming the capacitance C 2 are the same.
  • the individual radiator elements 301 k are coupled to a common input terminal 303 via a feed network 302.
  • Each of the individual radiators 301 k is coupled to the common input terminal 303 via a feed line 304 k , one of which is shown in dashed lines in FIG. 4.
  • a common input branch 305 connected to the input terminal 303 splits at a first branch 306 into two separate first branches 307 i .
  • Each of the separate first branches 307 i in turn splits at second branches 308 i into two separate second branches 309 j in each case.
  • Each of the separate second branches 309 j in turn splits at third branches 310 j into two separate individual branches 311 k , which in turn are connected to the individual radiator elements 301 k .
  • the first dummy elements in the form of the first capacitances C 1 are arranged at a first distance I 1 in front of the individual radiator elements 301 k in the second branches 309 j , ie one capacitance C 1 in common for two radiator elements 301 k and at the same distance l 1 before them.
  • the second dummy elements in the form of the second capacitances C 2 are arranged at a second distance l 2 from the first capacitances C 1 in the direction of the input terminal 303, in each case on the first branches 307 i , ie in each case one capacitance C 2 together for four radiator elements 301 k or for four feed lines 304 k .
  • the capacitances C 1 , C 2 are, as in the exemplary embodiment illustrated in FIG. 3, in each case formed by a branch line branching off from the feed lines 304 k .
  • the lengths of all signal paths formed by the feed lines 304 k are the same for all radiator elements 301 k , as are the distances l 1 and l 2 in which the individual capacitances C 1 and C 2 are removed from each other and from the radiator elements 301 k as well as from the input terminal 303 are arranged.
  • Deviating from the two illustrated embodiments are also other variants of the concept of broadening the Adjustment bandwidth possible, depending on the size of the group and structure of the Feed network.
  • leads can be used, e.g. Waveguide or Coaxial line and other T-junctions, e.g. Wilkinson divider, reactive T-branches with characteristic jumps in the Branch lines, directional couplers with phase compensation or magical T-junctions.
  • T-junctions e.g. Wilkinson divider, reactive T-branches with characteristic jumps in the Branch lines, directional couplers with phase compensation or magical T-junctions.
  • the capacitances C 1 , C 2 can be realized in other ways, for example by dip sticks or diaphragms in waveguide technology. It is also possible to use inductive reactive elements instead of capacitances for the production of the transmission resonator structure.
  • the application is also not on group antennas with patch emitters limited, but applicable to all types of radiators whose Feedpoint impedance is determined by a resonant circuit resonance, e.g. Dipoles or slot radiators, possibly also in combination with other circuit elements, such as coupling reactances or additional line pieces.
  • a resonant circuit resonance e.g. Dipoles or slot radiators
  • other circuit elements such as coupling reactances or additional line pieces.
  • the concept is the same applicable to antennas with equal assignment of the radiator elements (symmetrical 1: 1 divider in the feed network) or with Non-uniform assignment (unbalanced divisors), but in any case with the same long signal paths, i. with the same phase of the radiator elements.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Aerials (AREA)

Claims (20)

  1. Antenne en réseau constituée d'un certain nombre d'éléments rayonnants résonants (101 ; 201k ; 301k) et d'un réseau d'alimentation (202 ; 302) qui contient un certain nombre de lignes d'alimentation (104 ; 204k ; 304k) branchées en parallèle entre une borne d'entrée (103 ; 203 ; 303) et chacun des éléments rayonnants résonants (101 ; 201k ; 301k), les lignes d'alimentation (104 ; 204k ; 304k) branchées en parallèle présentant des trajets de signal de même longueur et comprenant à chaque fois un résonateur de transmission faiblement couplé qui est formé à chaque fois dans une ligne d'alimentation (104 ; 204k ; 304k) par l'arrangement suivant de deux composants réactifs (C1, C2) :
    le premier élément réactif est disposé dans la ligne d'alimentation (104 ; 204k ; 304k) à une première distance I1 et le deuxième élément réactif (C2) à une deuxième distance, laquelle est supérieure à la distance I1, de l'élément rayonnant résonant (104 ; 204k ; 304k) correspondant,
    caractérisée en ce que
    le deuxième élément réactif (C2) est disposé à une distance I2 ≈ N.λ/2 du premier élément réactif (C1), N étant égal à 1, 2, 3, ... et λ étant la fréquence centrale de fonctionnement de l'antenne en réseau.
  2. Antenne en réseau selon la revendication 1, caractérisée en ce que les lignes d'alimentation (204k ; 304k) se ramifient sur plusieurs éléments rayonnants résonants (204k ; 304k) à partir d'une borne d'entrée commune (203 ; 303).
  3. Antenne en réseau selon la revendication 2, caractérisée en ce que les lignes d'alimentation (204k ; 304k) se fractionnent au niveau des ramifications respectives entre une branche à chaque fois commune et des branches à chaque fois individuelles, le premier élément réactif (C1) se trouvant du côté de l'élément rayonnant d'une ramification donnée et le deuxième élément réactif (C2) se trouvant du côté de l'entrée de la ramification donnée.
  4. Antenne en réseau selon la revendication 3, caractérisée en ce qu'une seule ramification (308i) se trouve dans une branche d'une ligne d'alimentation (304k) entre le premier élément réactif (C1) et le deuxième élément réactif (C2).
  5. Antenne en réseau selon la revendication 3, caractérisée en ce que plusieurs ramifications (206, 208i) se trouvent les unes derrière les autres dans une branche d'une ligne d'alimentation (204k) entre le premier élément réactif (C1) et le deuxième élément réactif (C2).
  6. Antenne en réseau selon l'une des revendications 3 à 5, caractérisée en ce que l'antenne en réseau comprend un groupe de 2 x 2 éléments rayonnants de connexion (201k) avec lequel le réseau d'alimentation (202) comprend une branche d'entrée (205) commune reliée à une seule borne d'entrée (203) et qui se divise au niveau d'une première ramification (206) en deux premières branches (207i) séparées, les premières branches (207i) séparées se divisant au niveau de deuxièmes ramifications (208i) en branches individuelles (211k) reliées avec les éléments rayonnants de connexion individuels (201k), et les premiers éléments réactifs (C1) étant disposés à une première distance (I1) à chaque fois avant les éléments rayonnants de connexion individuels (211k) et les deuxièmes éléments réactifs (C2) étant disposés à une deuxième distance (I2) des premiers éléments réactifs (C1) en direction de la borne d'entrée (203).
  7. Antenne en réseau selon l'une des revendications 3 à 5, caractérisée en ce que l'antenne en réseau comprend un groupe de 1 × 8 éléments rayonnants de connexion (301k) avec lequel le réseau d'alimentation (302) comprend une branche d'entrée (305) commune reliée à une borne d'entrée (303) et qui se divise au niveau d'une première ramification (306) en deux premières branches (307i) séparées, les premières branches (307i) séparées se divisant au niveau de deuxièmes ramifications (308i) à chaque fois en deux deuxièmes branches individuelles (309j) séparées et chacune des deuxièmes branches individuelles (309j) séparées se divisant de nouveau au niveau de troisièmes ramifications (310j) en deux branches individuelles (311k) séparées à chaque fois reliées avec les éléments rayonnants de connexion individuels (301k), et les premiers éléments réactifs (C1) étant disposés à une première distance (I1) à chaque fois avant les éléments rayonnants de connexion individuels (301k) et les deuxièmes éléments réactifs (C2) étant disposés à une deuxième distance (I2) avant des premiers éléments réactifs (C1) en direction de la borne d'entrée (303).
  8. Antenne en réseau selon la revendication 6 ou 7, caractérisée en ce que les premiers éléments réactifs (C1) sont disposés dans les branches individuelles (211k ; 311k) séparées reliées avec des éléments rayonnants de connexion individuels.
  9. Antenne en réseau selon la revendication 6, caractérisée en ce que un élément réactif (C1) commun disposé dans la branche d'entrée commune (305).
  10. Antenne en réseau selon la revendication 7, caractérisée en ce que les premiers éléments réactifs (C1) sont prévus entre les deuxièmes ramifications (308i) et les troisièmes ramifications (310j) dans les deuxièmes branches (309j) séparées.
  11. Antenne en réseau selon la revendication 7 ou 10, caractérisée en ce que les deuxièmes éléments réactifs (C2) sont prévus entre la première ramification (306) et les deuxièmes ramifications (308j) dans les premières branches (307i) séparées.
  12. Antenne en réseau selon l'une des revendications 2 à 11, caractérisée en ce que les éléments réactifs sont formés par des condensateurs (C1, C2).
  13. Antenne en réseau selon la revendication 12, caractérisée en ce que les condensateurs (C1, C2) sont formés par des tronçons de ligne prévues sur les lignes d'alimentation (204k ; 304k).
  14. Antenne en réseau selon l'une des revendications 2 à 11, caractérisée en ce que les éléments réactifs sont formés par des inductances.
  15. Antenne en réseau selon l'une des revendications 3 à 6, caractérisée en ce que les ramifications (206, 208i ; 306, 308i ; 310j) sont formées par des ramifications en T.
  16. Antenne en réseau selon la revendication 15, caractérisée en ce que les ramifications en T sont formées par des séparateurs de Wilkinson, des ramifications en T réactives, des coupleurs directionnels avec compensation de phase ou des ramifications en T magiques.
  17. Antenne en réseau selon l'une des revendications 1 à 5, caractérisée en ce que les éléments rayonnants résonnants sont formés par des dipôles.
  18. Antenne en réseau selon l'une des revendications 1 à 5, caractérisée en ce que les éléments rayonnants résonnants sont formés par des fentes rayonnantes.
  19. Antenne en réseau selon l'une des revendications 2 à 18, caractérisée en ce que le réseau d'alimentation (202 ; 302) contient des ramifications symétriques.
  20. Antenne en réseau selon l'une des revendications 2 à 19, caractérisée en ce que le réseau d'alimentation contient des ramifications asymétriques.
EP02006322A 2001-04-26 2002-03-21 Réseau d'antennes avec un nombre d' éléments rayonnants résonants Expired - Fee Related EP1253669B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10120533 2001-04-26
DE10120533A DE10120533B4 (de) 2001-04-26 2001-04-26 Gruppenantenne mit einer Anzahl von Resonanz-Strahlerelementen

Publications (3)

Publication Number Publication Date
EP1253669A2 EP1253669A2 (fr) 2002-10-30
EP1253669A3 EP1253669A3 (fr) 2004-01-02
EP1253669B1 true EP1253669B1 (fr) 2005-05-11

Family

ID=7682854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02006322A Expired - Fee Related EP1253669B1 (fr) 2001-04-26 2002-03-21 Réseau d'antennes avec un nombre d' éléments rayonnants résonants

Country Status (2)

Country Link
EP (1) EP1253669B1 (fr)
DE (2) DE10120533B4 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5091044B2 (ja) * 2008-07-31 2012-12-05 株式会社デンソー マイクロストリップアレーアンテナ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233607A (en) * 1977-10-28 1980-11-11 Ball Corporation Apparatus and method for improving r.f. isolation between adjacent antennas
US4686535A (en) * 1984-09-05 1987-08-11 Ball Corporation Microstrip antenna system with fixed beam steering for rotating projectile radar system
IL82331A (en) * 1987-04-26 1991-04-15 M W A Ltd Microstrip and stripline antenna
DK168780B1 (da) * 1992-04-15 1994-06-06 Celwave R F A S Antennesystem samt fremgangsmåde til fremstilling heraf
US5841401A (en) * 1996-08-16 1998-11-24 Raytheon Company Printed circuit antenna
FI981022A (fi) * 1998-05-08 1999-11-09 Juha Pyrhoenen Kestomagneettitahtikonerakenne
JP3378513B2 (ja) * 1998-10-23 2003-02-17 東光株式会社 平面型指向性アンテナ

Also Published As

Publication number Publication date
EP1253669A2 (fr) 2002-10-30
DE10120533A1 (de) 2002-11-14
DE50203051D1 (de) 2005-06-16
EP1253669A3 (fr) 2004-01-02
DE10120533B4 (de) 2007-02-15

Similar Documents

Publication Publication Date Title
DE69028271T2 (de) Hochfrequenz-Übertragungsleitungsschaltung
DE2631026C2 (fr)
DE69008116T2 (de) Ebene Antenne.
DE3886689T2 (de) Anregungsvorrichtung einer zirkularpolarisierten Welle mit einer Flachantenne in einem Hohlleiter.
DE68921330T2 (de) Transversale und rekursive Filter.
DE2726799C2 (de) Frequenzweiche
EP0829922A2 (fr) Antenne à contrÔle de phases
DE69010310T2 (de) Zirkular polarisierte Antenne, insbesondere für Gruppenantenne.
DE69013779T2 (de) Hohlleiter-Speisenetzwerk für Gruppenantennen.
DE10034911A1 (de) Antenne für Mehrfrequenzbetrieb
DE1909092A1 (de) Hybridkoppler mit 90 deg.-Phasenverschiebung
DE10222838A1 (de) Sektorantenne in Hohlleitertechnik
EP1223638B1 (fr) Réseau d'antennes
DE68918426T2 (de) Doppelfrequenz strahlende Vorrichtung.
DE112009005005B4 (de) Phasenschieber für ein N-port-Speisesystem und eine Verzögerungsvorrichtung
EP1253669B1 (fr) Réseau d'antennes avec un nombre d' éléments rayonnants résonants
DE2723384A1 (de) Hochfrequenz-koppler
DE10028937A1 (de) Planarantenne mit Hohlleiteranordnung
DE102013220254A1 (de) Hochfrequenzschaltung mit gekreuzten Leitungen
EP1303001A1 (fr) Coupleur directionnel en ligne microbande par bande large
EP2815455B1 (fr) Structure de couplage pour le croisement de lignes de transmission
EP0154858A2 (fr) Antenne
EP1801910B1 (fr) Adaptateur coaxial d'impedances
DE68910719T2 (de) Mikrowellensperrfilter in Mikrostreifenausführung.
EP0227005B1 (fr) Dispositif d'émission à deux émetteurs haute fréquence émettant des fréquences différentes avec des diagrammes de rayonnement différents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040506

17Q First examination report despatched

Effective date: 20040604

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE FR GB IT NL SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50203051

Country of ref document: DE

Date of ref document: 20050616

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050808

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

ET Fr: translation filed
PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: KATHREIN-WERKE KG

Effective date: 20060213

NLR1 Nl: opposition has been filed with the epo

Opponent name: KATHREIN-WERKE KG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20070630

NLR2 Nl: decision of opposition

Effective date: 20070630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140319

Year of fee payment: 13

Ref country code: NL

Payment date: 20140319

Year of fee payment: 13

Ref country code: SE

Payment date: 20140319

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140328

Year of fee payment: 13

Ref country code: FR

Payment date: 20140319

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140319

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50203051

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140916

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50203051

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150322

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150321

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150321

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401