EP1223638B1 - Réseau d'antennes - Google Patents

Réseau d'antennes Download PDF

Info

Publication number
EP1223638B1
EP1223638B1 EP01129695A EP01129695A EP1223638B1 EP 1223638 B1 EP1223638 B1 EP 1223638B1 EP 01129695 A EP01129695 A EP 01129695A EP 01129695 A EP01129695 A EP 01129695A EP 1223638 B1 EP1223638 B1 EP 1223638B1
Authority
EP
European Patent Office
Prior art keywords
antenna
antenna array
output
array system
subarrays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01129695A
Other languages
German (de)
English (en)
Other versions
EP1223638A3 (fr
EP1223638A2 (fr
Inventor
Klaus Prof. Dr. Solbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP1223638A2 publication Critical patent/EP1223638A2/fr
Publication of EP1223638A3 publication Critical patent/EP1223638A3/fr
Application granted granted Critical
Publication of EP1223638B1 publication Critical patent/EP1223638B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the invention relates to a group antenna system according to the preamble of Claim 1.
  • They are group antenna systems with an electrically large group antenna known the first Antenna sub-group and a second antenna sub-group, wherein a combination line network is provided which has an entrance to Recording an antenna power signal and one with the first Antenna sub-group connected first output to deliver a first Output signal to the first antenna sub-group and one with the second Antenna sub-group connected second output to deliver the second Output signal to the second antenna sub-group.
  • Such prior art array antenna systems have typically antenna subgroups in the form of antenna halves in are arranged next to each other on one level.
  • the two antenna halves are from the outputs of a combination line network that through a power divider is formed, in-phase output signals supplied, to generate a summation diagram of the antennas (or antiphase Output signals to generate a difference diagram).
  • Group antenna systems are known from EP 0 310 661 B1 and from EP 0 615 659 B1 known, which is a number of spatially separated radiation elements contain those for generating a spatial deflection of the antenna beam signals shifted from each other by a predetermined phase become.
  • Antenna arrangements are known from DE 1 105 486, DE 1 042 587 and DE 957 239, which to improve the adaptation bandwidth a spatial Spacing of the individual radiation elements with respect to the main beam direction provide the antenna arrangement.
  • the object of the invention is a group antenna system with a wide range of adaptation to create which is simple in structure and insensitive to external Force is.
  • the invention provides a group antenna system with an electrically long one Group antenna created, the first antenna sub-group and a second Antenna subset includes, and with a combination line network, the an input for receiving an antenna power signal and one with the first antenna sub-group connected first output for delivering a first Output signal to the first antenna sub-group and one with the second antenna sub-group connected second output for outputting the second output signal to the second antenna subgroup, the combination line network a phase shifter for generating a phase shift between the output signals of the first output and the second Output before it is fed to the antenna subgroups.
  • the group antenna system according to the invention exhibits one versus a corresponding conventional one Group antenna system significantly increased adaptation bandwidth.
  • the group antenna preferably comprises two of the same size Antenna subsets or it consists of several such pairs of equally large antenna subgroups.
  • the first antenna subgroup is a first Half antenna of the group antenna forms, and that the second Antenna sub-group forms a second half-antenna of the group antenna.
  • the waveguide paths preferably have one around a certain one Difference different length, so that a shift of the Antenna sub-groups emitted radiation by a quarter wavelength in the sense of a compensation of the phase shifting device generated 90 ° phase shift is effected.
  • the Antenna sub-groups arranged in a common plane.
  • the antenna subgroups are advantageously in the direction of the division electrically large.
  • the Antenna subgroups in the direction perpendicular to the division are small.
  • the reflection factors of the antenna subgroups are preferably the same.
  • the combination cable network contains a 4-port power divider in the group antenna system.
  • the 4-port power divider is preferably a Wilkinson divider, one 3 dB directional coupler or an E-H waveguide double-T branch educated.
  • Electrically large group antenna comprises a first antenna sub-group 11 and a second antenna sub-group 12, which in the illustrated Embodiment each have a first and a second half antenna Form group antenna 10 and are the same size.
  • On Combination line network 13 includes an input for receiving a Antenna power signal and a first output that is connected to the first Antenna sub-group 11 is connected and a first output signal delivers this, as well as a second output, which with the second Antenna sub-group 12 is connected and a second output signal delivers this.
  • the combination line network 13 can, for example, a 4-port power divider included by a Wilkinson divider, a 3 dB directional coupler or an E-H waveguide double-T branch can be formed can, as shown by way of example in FIGS. 2a) to c).
  • the input reflection factor ru of the antenna sub-groups 11, 12, FIG. 1, assumes a minimum around the nominal frequency f0, with a useful bandwidth ⁇ f, as shown in Figure 3.
  • the useful bandwidth ⁇ f is a measure of that Adaptation bandwidth with which the group antenna can be operated.
  • FIG. 4 shows includes that Combination line network 13, a phase shifter 14, which between an output of the combination line network 13 and one of the the group antenna 10 forming antenna sub-groups 11, 12 is connected (In the exemplary embodiment shown in FIG. 4, the Phase shifter 14 between the second output of the Combination line network 13 and the second antenna subgroup 12 switched), and a phase shift, by the amount 90 °, between the Output signals of the first output and the second output of the Combination line network 13 before the supply of the output signals the antenna sub-groups 11, 12 of the group antenna 10 are generated.
  • Phase shifting device 14 generates phase shift in the beam path the antenna radiation emitted by the antenna subgroups 11, 12 to compensate again so that the antenna radiation is uniform again Has phase position of the originally intended signal.
  • FIG. 5 which in Figure 5a) in the side view and in Figure 5b) is shown in plan view Antenna sub-groups 21, 22 of the group antenna 20 perpendicular to Main beam direction of the antenna and arranged by a quarter wavelength shifted against each other.
  • the first antenna subgroup 21 is directly with connected to the first output of the combination line network 23, while the second antenna subgroup 22 has a Phase shifter 24 with the second output of the Combination line network 23 is connected, so that the displacement of the two antenna sub-groups 21, 22 by a quarter wavelength ⁇ / 4 against each other exactly that caused by the phase shifter 24 Phase shift compensated by -90 °.
  • FIG. 6a again shows a side view and 6b) shows a plan view Antenna sub-groups 31, 32 of the group antenna 30 obliquely to Main beam direction of the antenna arranged.
  • the middle of the Antenna subgroups 31, 32, which in Figure 6a) by P1 or by P2 are identified with regard to the main beam direction of the Group antenna shifted against each other by a quarter wavelength ⁇ / 4, so that again a compensation of a 90 ° phase shift between the input signals of the two antenna subgroups 31 and 32 becomes.
  • antenna sub-groups 41, 42 of a group antenna 40 each with dielectric layers 45, 46 of different dielectric numbers ⁇ r1 or ⁇ r2 covered.
  • that points to the first antenna subgroup 41 provided dielectric layer 45 has a dielectric constant ⁇ r1 that dielectric layer 46 provided on the second antenna subgroup 42 has a dielectric constant ⁇ r2.
  • the dielectric layers 45, 46 have a thickness d.
  • the thickness is d of the two dielectric layers 45, 46 are the same, but this need not be the case necessarily be the case.
  • the thickness d of the dielectric layers 45, 46 is chosen so that there is a shift of the Antenna subgroups 41, 42 emitted radiation by a quarter Wavelength ⁇ / 4 results relative to each other, in the sense of a compensation of of the phase shifter (not shown in the figure), compare the phase shifter 14 in FIG. 4.
  • the two are Antenna sub-groups 41, 42 arranged in a common plane, this however, this need not necessarily be the case. If the two antenna sub-groups 41, 42 of the group antenna 40 with respect to the The main beam direction of the antenna would of course be this Dimensioning the thickness d of the dielectric layers 45, 46 to account.
  • FIG. 8 there is a group antenna 50 by a first antenna sub-group 51 and a second Antenna subgroup 52 formed.
  • the antenna subgroups 51, 52 are Waveguide paths 55, 56 with different cross-sectional dimensions arranged, which is a phase shift of the Antenna subgroups 51, 52 emit radiation relative to one another cause.
  • the waveguide paths 55, 56 a by a difference d different length, so that a Shift of those emitted by the antenna subgroups 51, 52 Radiations around a quarter wavelength ⁇ / 4 relative to each other in the sense compensation for the 90 ° phase shift.
  • Antenna sub-groups 51, 52 in turn in a common plane arranged. Again, this does not necessarily have to be the case, however would be a shift of the two antenna subgroups 51, 52 relative to each other with respect to the main beam direction of the array antenna 50 when dimensioning the difference d between the two waveguide paths 55, 56 to consider.
  • each Transition sections 57, 58 with a transition from a narrow one Cross section can be provided on a wide cross section, which in the Figure 8 embodiment shown with a transition Adjustment levels is realized.
  • Group antenna system is that the reflection factors of the Antenna subgroups are the same. That means that Antenna subgroups should be largely decoupled from one another have to. This is guaranteed if the antenna subgroups are at least in Direction of the division are electrically large. In the other direction no restriction, i.e. also antennas, which are in the direction perpendicular to Division are small, e.g. Antennas with only one line can be considered.
  • Figure 9 where a Group antenna 60 is formed by antenna subgroups 61, 62, which in Direction perpendicular to the division are small, namely only by two rows are formed by slot radiators.
  • the structure of the group antenna system according to the invention achieved effect with respect to that reflected on the antenna subgroups Waves is that the reflected waves on the combination line network in Incoming phase and arrive at the fourth gate of the 4-gate power divider used here can emerge or be absorbed.
  • the resulting reflection factor on Antenna input practically disappear completely, regardless of the height and the frequency dependence of the reflection factor Antenna subgroups.
  • the function is restricted by non-ideal ones Properties of the combination line network and the Phase shifter.
  • the resultant Adaptation bandwidth is nevertheless essential in many practical cases become larger than that of the antenna sub-groups as such.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (10)

  1. Système d'antennes en réseau comprenant une antenne en réseau longue électrique (10; 20; 30; 40; 50; 60) qui comprend un premier sous-réseau d'antennes (11; 21; 31; 41; 51; 61) et un deuxième sous-réseau d'antennes (12; 22; 32; 42; 52; 62) et comprenant un réseau de lignes de combinaison (13, 23) qui présente une entrée pour recevoir un signal de puissance d'antenne ainsi qu'une première sortie reliée au premier sous-réseau d'antennes (11; 21; 31; 41; 51; 61) pour délivrer un premier signal de sortie au premier sous-réseau d'antennes (11; 21; 31; 41; 51; 61) et une deuxième sortie reliée au deuxième sous-réseau d'antennes (12; 22; 32; 42; 52; 62) pour délivrer le deuxième signal de sortie au deuxième sous-réseau d'antennes (12; 22; 32; 42; 52; 62), le réseau de lignes de combinaison (13, 23) contenant un dispositif de déphasage (14, 24) pour produire un déphasage entre les signaux de sortie de la première sortie et de la deuxième sortie avant leur acheminement aux sous-réseaux d'antennes (11, 12 ; 21, 22 ; 31, 32 ; 41, 42 ; 51, 52 ; 61, 62), caractérisé en ce que des sections de guide d'ondes (55, 56) ayant des dimensions transversales différentes sont disposées sur les sous-réseaux d'antennes (51, 52), lesquelles compensent le déphasage du rayonnement d'antenne délivré par les sous-réseaux d'antennes (51, 52), les facteurs de réflexion des sous-réseaux d'antennes (51, 52) étant égaux.
  2. Système d'antennes en réseau selon la revendication 1, caractérisé en ce que l'antenne en réseau (10; 20; 30; 40; 50; 60) comprend deux sous-réseaux d'antennes (11, 12 ; 21, 22 ; 31, 32 ; 41, 42 ; 51, 52 ; 61, 62) de même taille ou se compose de plusieurs paires de ce type.
  3. Système d'antennes en réseau selon la revendication 2, caractérisé en ce que le premier sous-réseau d'antennes (11; 21; 31; 41; 51; 61) forme une première demi-antenne de l'antenne en réseau (10; 20; 30; 40; 50; 60) et que le deuxième sous-réseau d'antennes (12; 22; 32; 42; 52; 62) forme une deuxième demi-antenne de l'antenne en réseau (10; 20; 30; 40; 50; 60).
  4. Système d'antennes en réseau selon l'une des revendications précédentes, caractérisé en ce que les sections de guide d'ondes (55, 56) présentent des longueurs différentes d'une différence (d) de manière à obtenir un décalage du rayonnement émis par les sous-réseaux d'antennes (51, 52) égal à un quart de longueur d'onde en vue d'une compensation du déphasage de 90° généré par le dispositif de déphasage (14, 24).
  5. Système d'antennes en réseau selon l'une des revendications précédentes, caractérisé en ce que les sous-réseaux d'antennes (51, 52) sont disposés dans un plan commun.
  6. Système d'antennes en réseau selon l'une des revendications précédentes, caractérisé en ce qu'à la sortie des sections de guide d'ondes (55, 56) sont prévues des sections de transition (57, 58) avec une transition d'une section étroite à une section large.
  7. Système d'antennes en réseau selon l'une des revendications précédentes, caractérisé en ce que les sous-réseaux d'antennes (51, 52) sont électriquement longs le long de leur axe commun.
  8. Système d'antennes en réseau selon la revendication 7, caractérisé en ce que les sous-réseaux d'antennes (51, 52) sont électriquement courts perpendiculairement à leur axe commun.
  9. Système d'antennes en réseau selon l'une des revendications précédentes, caractérisé en ce que le réseau de lignes de combinaison (13, 23) contient un diviseur de puissance à 4 portes.
  10. Système d'antennes en réseau selon la revendication 9, caractérisé en ce que le diviseur de puissance à 4 portes est formé par un diviseur de Wilkinson, un coupleur directionnel de 3 dB ou une dérivation en double T à guide d'ondes E-H.
EP01129695A 2001-01-16 2001-12-13 Réseau d'antennes Expired - Lifetime EP1223638B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10101666 2001-01-16
DE10101666A DE10101666C1 (de) 2001-01-16 2001-01-16 Gruppenantennensystem

Publications (3)

Publication Number Publication Date
EP1223638A2 EP1223638A2 (fr) 2002-07-17
EP1223638A3 EP1223638A3 (fr) 2003-05-14
EP1223638B1 true EP1223638B1 (fr) 2004-07-14

Family

ID=7670664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01129695A Expired - Lifetime EP1223638B1 (fr) 2001-01-16 2001-12-13 Réseau d'antennes

Country Status (3)

Country Link
US (1) US6768453B2 (fr)
EP (1) EP1223638B1 (fr)
DE (1) DE10101666C1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060044189A1 (en) * 2004-09-01 2006-03-02 Livingston Stan W Radome structure
US7656345B2 (en) 2006-06-13 2010-02-02 Ball Aerospace & Technoloiges Corp. Low-profile lens method and apparatus for mechanical steering of aperture antennas
US11105918B2 (en) 2017-06-05 2021-08-31 Metawave Corporation Nodal metamaterial antenna system
US11005179B2 (en) 2017-06-05 2021-05-11 Metawave Corporation Feed structure for a metamaterial antenna system
CA3102448A1 (fr) 2017-06-05 2018-12-13 Metawave Corporation Procede et appareil de metamateriau d'antenne intelligente
US11005192B2 (en) 2017-06-05 2021-05-11 Metawave Corporation Intelligent metamaterial radar having a dynamically controllable antenna
US10942256B2 (en) 2017-06-05 2021-03-09 Metawave Corporation Intelligent metamaterial radar for target identification
US11133577B2 (en) 2018-05-24 2021-09-28 Metawave Corporation Intelligent meta-structure antennas with targeted polarization for object identification
US11385326B2 (en) 2018-06-13 2022-07-12 Metawave Corporation Hybrid analog and digital beamforming
US11217902B2 (en) 2018-07-13 2022-01-04 Metawave Corporation Analog beamforming antenna for millimeter wave applications
KR20210065153A (ko) * 2018-10-02 2021-06-03 테크놀로지안 투트키무스케스쿠스 브이티티 오와이 고정 피드 안테나를 갖는 위상 어레이 안테나 시스템
CN117477208A (zh) * 2023-11-09 2024-01-30 西安交通大学 扩展移动终端设备天线带宽的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE957239C (de) * 1955-01-26 1957-01-31 Telefunken Gmbh Antennenanordnung
DE1024587B (de) * 1956-05-30 1958-02-20 Rohde & Schwarz Antenne, vorzugsweise fuer ultrakurze elektrische Wellen
DE1020692B (de) * 1957-03-11 1957-12-12 Rohde & Schwarz Richtantenne fuer hochfrequente elektrische Wellen
DE1105486B (de) * 1958-08-21 1961-04-27 Siemens Ag Antennenanordnung mit phasen-verschoben erregten Strahlern
DE3627597C2 (de) * 1986-08-14 1998-07-30 Daimler Benz Aerospace Ag Konforme Antenne für Flugkörper
US4849763A (en) * 1987-04-23 1989-07-18 Hughes Aircraft Company Low sidelobe phased array antenna using identical solid state modules
US5229776A (en) * 1991-12-05 1993-07-20 Allied-Signal Inc. Method for field monitoring of a phased array microwave landing system far field antenna pattern employing a near field correction technique
US5877660A (en) * 1994-06-02 1999-03-02 Nihon Dengyo Kosaku Co., Ltd. Phase shifting device with rotatable cylindrical case having driver means on the end walls
DE19636850A1 (de) * 1996-09-11 1998-03-12 Daimler Benz Aerospace Ag Phasengesteuerte Antenne
US6246369B1 (en) * 1999-09-14 2001-06-12 Navsys Corporation Miniature phased array antenna system

Also Published As

Publication number Publication date
DE10101666C1 (de) 2002-09-12
EP1223638A3 (fr) 2003-05-14
US20020109638A1 (en) 2002-08-15
EP1223638A2 (fr) 2002-07-17
US6768453B2 (en) 2004-07-27

Similar Documents

Publication Publication Date Title
DE3911373C2 (de) Phasengesteuertes Radargerät mit Selbstüberwachung/Selbstabgleich und auswechselbare einstellbare Sende/Empfangs-Baueinheit
DE2631026C2 (fr)
DE3850469T2 (de) Aus identischen festkörpermodulen bestehende phasengesteuerte gruppenantenne mit niedrigen nebenzipfeln.
DE69330953T2 (de) System zur verteilung elektromagnetischer energie
DE3715083C2 (de) Verstärkeranordnung mit parallel arbeitenden Signalverstärkern
DE69109994T2 (de) Mikrowellenplattenantenne, insbesondere für Dopplerradar.
EP1223638B1 (fr) Réseau d'antennes
DE3883327T2 (de) Strahlformungsnetzwerk mit mehreren stufen.
DE69013779T2 (de) Hohlleiter-Speisenetzwerk für Gruppenantennen.
DE3743123A1 (de) Antennenvorrichtung
DE3042456C2 (fr)
DE69122193T2 (de) Matrix-Multiplexer für mehrere Frequenzen
EP0829922A2 (fr) Antenne à contrÔle de phases
DE3519577A1 (de) Hochfrequenz-netzwerke, insbesondere hochfrequenz-leistungsteiler/kombinator-netzwerke
DE3602515A1 (de) Vierstrahliges antennensystem mit raumduplizierten sende- und empfangsantennen
DE69522487T2 (de) Verteilungsnetz
DE3531474A1 (de) Antennenspeisesystem
DE2855280A1 (de) Antennenzeile, insbesondere schlitzantennenzeile
DE2946331C2 (de) Mikrowellenschaltung zur Ableitung von drei gegeneinander phasenverschobenen Mikrowellen-Signalen gleicher Leistung
EP1610148B1 (fr) Détecteur radar
DE2058485B2 (de) Anordnung fuer die umschaltung und verteilung von hochfrequenz-energie
DE68918426T2 (de) Doppelfrequenz strahlende Vorrichtung.
EP3861590B1 (fr) Système de communication
DE2904054C2 (de) 3dB-Richtungskoppler in Hohlleiterbauweise
DE112009005005B4 (de) Phasenschieber für ein N-port-Speisesystem und eine Verzögerungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 01Q 21/00 B

Ipc: 7H 01Q 3/26 A

Ipc: 7H 01Q 3/36 B

Ipc: 7H 01Q 21/22 B

17P Request for examination filed

Effective date: 20030612

17Q First examination report despatched

Effective date: 20030710

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040901

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050415

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20180605

Ref country code: FR

Ref legal event code: CD

Owner name: EADS DEUTSCHLAND GMBH, DE

Effective date: 20180605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181218

Year of fee payment: 18

Ref country code: FR

Payment date: 20181219

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181220

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191213

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191213