EP1230473A1 - Elektronisch gesteuerte drosselklappe mit elliptischem querschnitt und drosselklappe - Google Patents
Elektronisch gesteuerte drosselklappe mit elliptischem querschnitt und drosselklappeInfo
- Publication number
- EP1230473A1 EP1230473A1 EP00975700A EP00975700A EP1230473A1 EP 1230473 A1 EP1230473 A1 EP 1230473A1 EP 00975700 A EP00975700 A EP 00975700A EP 00975700 A EP00975700 A EP 00975700A EP 1230473 A1 EP1230473 A1 EP 1230473A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- throttle valve
- airflow passage
- assembly
- throttle
- airflow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/08—Throttle valves specially adapted therefor; Arrangements of such valves in conduits
- F02D9/10—Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
- F02D9/1065—Mechanical control linkage between an actuator and the flap, e.g. including levers, gears, springs, clutches, limit stops of the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D11/00—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
- F02D11/06—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
- F02D11/10—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/08—Throttle valves specially adapted therefor; Arrangements of such valves in conduits
- F02D9/10—Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
- F02D9/1035—Details of the valve housing
- F02D9/104—Shaping of the flow path in the vicinity of the flap, e.g. having inserts in the housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D11/00—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
- F02D11/06—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
- F02D11/10—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
- F02D2011/101—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
- F02D2011/102—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being moved only by an electric actuator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/02—Light metals
- F05C2201/021—Aluminium
Definitions
- This application discloses an elliptically shaped throttle body for mounted to an intake manifold of an automobile engine
- a throttle body is mounted to the intake manifold of an automobile engine and includes a throttle valve disposed within and airflow passage to regulate the flow of air into the intake manifold
- the throttle body is fab ⁇ cated by an aluminum casting process
- the aluminum casting process requires additional finish machining to insure adherence of all critical dimensions
- the shape of the airflow passage and the entire throttle body is limited by the capabilities of the finish machining processes
- Non-standard shapes complicate and add cost to the manufacture of the throttle body, making use of non-standard shapes undesirable Critical dimensions can be held more precisely and consistently in a plastic molding process compared to a cast surface from the aluminum casting process Molding the throttle body from plastic reduces or eliminates the need for finish machining, is cheaper, and allows for the use of non-standard shapes
- the throttle valve disposed within the throttle body may also be fabricated from plastic
- One design consideration of great importance in the design of the throttle valve is the amount of deflection that the throttle valve experiences during operation Specifically, the intake manifold applies a vacuum load on the throttle valve during operation The vacuum load will be greatest when the throttle valve is in the closed position The applied vacuum load acts to deflect the edges of the throttle valves, and thereby creates a larger opening than is desired causing engine idle inconsistencies Repeated deflection of the throttle valve may cause throttle plate degradation
- the subject invention is a throttle body assembly proportioned such that the greatest width is larger than the greatest height.
- the throttle body of the preferred embodiment defines an elliptically shaped air passage and throttle valve such that the overall height of the throttle body is reduced.
- the air passage includes a contoured bore that allows the airflow passage to be fabricated to reduce the height of the throttle body.
- the throttle body mounts to an intake manifold of an internal combustion engine and defines an airflow passage having a height and width.
- the throttle valve rotates between an open and closed position to regulate airflow through the airflow passage.
- the airflow passage and the throttle valve have an elliptical shape such that the greatest width is larger than the greatest height.
- the airflow passage also includes a contoured shape and the throttle valve includes a periphery.
- the contoured shape is disposed in the airflow passage such that a constant distance between the periphery of the throttle valve and the airflow passage is maintained for a predetermined amount of rotation of the throttle valve. Further, the contoured shape in combination with the elliptical shape of the bore provides for greater control of airflow thought the airflow passage at smaller throttle valve openings because a ratio of contoured surface to contoured surface area is greater for an elliptically shaped bore than in similar circular bores.
- the subject invention utilizes plastic molding to accomplish the objectives of having smaller more compact components to satisfy current demands and reduce the amount of throttle plate deflection caused by vacuum load. Further, the subject invention provides a contoured air passage that provides additional control of airflow through the throttle body.
- Figure 1 is a front view of an throttle body with an elliptically shaped airflow passage and throttle valve
- Figure 2 is a cross-sectional view of the throttle valve.
- the subject invention is a throttle body assembly 10 for mounting to an intake manifold of an internal combustion engine.
- the throttle body assembly includes a throttle body 12 defining an airflow passage 14 having a height l ⁇ and width 18.
- a throttle valve 20 mounts to a shaft 22 for rotation about an axis A.
- the throttle valve 20 rotates between open and closed positions to regulate airflow through the airflow passage 14.
- the shaft 22 includes a first end 24 that extends out of the airflow passage into a housing 26.
- a linkage assembly 28 driven by an electric motor 30 is disposed within the housing 26.
- the airflow passage 14 and the throttle valve 20 are proportioned such that the greatest width 18 is larger than the greatest height 16.
- the shape formed by the throttle body 20 may be any square or curvilinear shaped.
- the preferred embodiment of the subject invention is an electronically controlled throttle body assembly fabricated from plastic.
- the throttle body assembly 10 includes a throttle body 12 defining the airflow passage 14.
- the airflow passage 14 is elliptically shaped.
- the elliptically shape of the airflow passage 14 provides an area equal to round airflow passages and provides a reduced height assembly.
- the throttle valve 20 mounted to the shaft 22 is elliptically shaped to correspond to the shape of the airflow passage 14.
- the throttle valve 20 of the preferred embodiment is molded from plastic.
- the intake manifold (not shown) to which the throttle body 12 mounts produces a vacuum load.
- the vacuum load produced by the intake manifold will pull on the throttle valve 20 causing a deflection at an edge 32 of the throttle valve 20.
- the elliptical shape of the throttle valve 20 reduces the distance from the edge 32 of the throttle valve 20 to the shaft 22 as compared to a traditional round throttle valve. Reducing the distance between the edge 32 of the throttle valve 20 and the shaft 22 increases the rigidity of the throttle valve 20, thereby reducing or eliminating the amount of deflection.
- the throttle body 12 is mounted at the top of the engine and is very close to the hood of the automobile.
- the elliptically shaped throttle body 12 provides for additional space between the hood and the throttle body 12 and also allows lowering of the hood line toward the engine.
- the airflow passage 14 includes a contoured shape 34 on the downstream side of the throttle valve 20.
- the contoured shape 34 is disposed such that a predetermined distance between the edge 32 of the throttle valve 20 and the airflow passage 14 is maintained for a predetermined amount of rotation of the throttle valve 20.
- the throttle valve 20 regulates airflow through the airflow passage 14 by changing the amount of area available for the flow of air. Without the contoured shape 34 the change of area accompanying rotation of the throttle valve 20 is constant throughout the entire rotation of the throttle valve 20.
- the contoured shape 34 of the airflow passage provides for different rates of change in the airflow passage dependent on the position of the throttle valve 20.
- the contoured shape 34 will match a radial path 36 of the edge 32 throttle valve 20 through a portion of throttle valve 20 rotation and taper away from the throttle valve 20 as the throttle valve 20 is rotated toward the open position.
- This configuration provides for the airflow area to change at differing rates depending on the position of the throttle valve 20.
- the contoured shape combined with the elliptical shape of the throttle valve 20 and the airflow passage 14 provides for more control over the airflow at smaller throttle valve 20 openings. Greater control results from a greater ratio of contoured surface to contoured surface area provided by the elliptical shape of the throttle valve 20 and the airflow passages 14 as compared with a circular airflow passage and throttle valve.
- the preferred embodiment includes a contoured shape 34 on the downstream 38 side of the throttle valve 20.
- the contoured shape 34 follows the throttle valve 20 from the closed position to a point approximately 30 degrees from the closed position.
- the contoured shape 34 tapers away from the path of rotation 36 of the edge 32 of the throttle valve 20 to provide a greater rate of change corresponding to rotation of the throttle valve 20.
- the preferred embodiment of the contoured shape 34 includes the predetermined distance that varies along the 30 degrees of throttle movement.
- the contoured shape 34 in the preferred embodiment continually tapers away from the path of the edge 36 of the throttle valve 20 to gradually increase the rate of change of area through the airflow passage.
- the contoured shape 34 may follow the path of rotation of the edge 32 of the throttle body 12 further then that of the preferred embodiment to control the rate of change of the area through the air flow passage 14.
- the throttle body assembly 10 of the preferred embodiment is fabricated from plastic and allows the contoured shape 34 to be molded into the airflow passage 14.
- the contoured passage 34 of the preferred embodiment is disposed only on the downstream side 38 of the throttle valve 20. It should be understood that a worker knowledgeable in the art would understand that a second contoured shape may be disposed on the upstream side 40 of the throttle valve 20. In such a configuration the contoured shape 34 extends about the throttle valve 20.
- the foregoing description is exemplary and not just a material specification.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16640199P | 1999-11-18 | 1999-11-18 | |
US166401P | 1999-11-18 | ||
PCT/CA2000/001330 WO2001036799A1 (en) | 1999-11-18 | 2000-11-09 | Electronically controlled throttle valve with elliptical bore and throttle valve |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1230473A1 true EP1230473A1 (de) | 2002-08-14 |
Family
ID=22603156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00975700A Withdrawn EP1230473A1 (de) | 1999-11-18 | 2000-11-09 | Elektronisch gesteuerte drosselklappe mit elliptischem querschnitt und drosselklappe |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1230473A1 (de) |
JP (1) | JP2004512451A (de) |
WO (1) | WO2001036799A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004162679A (ja) * | 2002-11-08 | 2004-06-10 | Aisan Ind Co Ltd | 電動式スロットルボデー |
DE10308790B4 (de) * | 2003-02-28 | 2009-07-02 | Robert Bosch Gmbh | Drosselklappengehäuse mit strömungsoptimiertem Einlauf |
JP4457115B2 (ja) | 2007-01-16 | 2010-04-28 | 日立オートモティブシステムズ株式会社 | バタフライ式弁装置 |
EP2184468A1 (de) | 2008-11-11 | 2010-05-12 | Honda Motor Co., Ltd | Einlasssystem für Verbrennungsmotoren |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2694963B1 (fr) * | 1992-08-21 | 1994-10-21 | Solex | Corps de papillon à conduit d'admission de forme évolutive et procédé de fabrication d'un tel corps. |
DE4240127C2 (de) * | 1992-11-28 | 1997-04-24 | Bosch Gmbh Robert | Drosselvorrichtung für eine Brennkraftmaschine und Verfahren zur Herstellung von Dosierwandungen in der Drosselvorrichtung |
DE4334180A1 (de) * | 1993-10-07 | 1995-04-13 | Bosch Gmbh Robert | Drosselvorrichtung |
DE4429956A1 (de) * | 1994-08-24 | 1996-02-29 | Dellorto Spa | Drosselklappenkörper mit veränderlichem Querschnitt für die Systeme der Kraftstoffzuführung von Verbrennungsmotoren |
US6186115B1 (en) * | 1995-12-19 | 2001-02-13 | Hitachi, Ltd. | Throttle valve control device for an internal combustion engine |
-
2000
- 2000-11-09 JP JP2001538657A patent/JP2004512451A/ja active Pending
- 2000-11-09 EP EP00975700A patent/EP1230473A1/de not_active Withdrawn
- 2000-11-09 WO PCT/CA2000/001330 patent/WO2001036799A1/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO0136799A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2001036799A1 (en) | 2001-05-25 |
JP2004512451A (ja) | 2004-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5575256A (en) | Throttle valve housing formed of molded plastic | |
US20090095350A1 (en) | Actuator for an air intake valve | |
JP3887309B2 (ja) | バイパス吸気量制御装置 | |
US4905647A (en) | Throttle body | |
US20020109117A1 (en) | Modified flow throttle bore | |
US20030106516A1 (en) | Intake manifold for internal combustion engine, and multiple and independent intake passages | |
WO2001036799A1 (en) | Electronically controlled throttle valve with elliptical bore and throttle valve | |
US6006722A (en) | Fine resolution air control valve | |
EP1884641B1 (de) | Ventilbetätigungsmechanismus | |
US6971632B2 (en) | Throttle plate wedge | |
US20070227794A1 (en) | Device which is designed to be arranged as an additional part behind a radiator grille in an engine compartment of a motor vehicle | |
JP4266451B2 (ja) | 一体化された吸気マニホールド/スロットルバルブチャンバユニット | |
US6843224B2 (en) | Throttle apparatus | |
JP5527583B2 (ja) | 内燃機関用吸気装置 | |
CA2425287A1 (en) | Throttle valve assembly | |
US6772730B2 (en) | Throttle-valve assembly | |
JP2002349396A (ja) | バイパス吸気量制御装置 | |
JPH07269377A (ja) | 吸入空気制御装置 | |
JP2002070591A (ja) | 吸気制御装置 | |
EP1408263A1 (de) | Drosselklappe mit Geräuschverminderungsvorrichtung | |
WO2002014721A1 (en) | Rotatable airflow control mechanism and method of manufacturing | |
JP3494737B2 (ja) | 内燃機関の吸気制御装置 | |
JP3546497B2 (ja) | スワールコントロールバルブ | |
EP0628713B1 (de) | Ein Drosselmechanismus | |
EP0628710B1 (de) | Ein Drosselmechanismus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020411 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH DE FR GB LI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040602 |