EP1222055B1 - Procede et dispositif permettant de tester la geometrie du tranchant d'un outil pouvant etre entraine en rotation - Google Patents

Procede et dispositif permettant de tester la geometrie du tranchant d'un outil pouvant etre entraine en rotation Download PDF

Info

Publication number
EP1222055B1
EP1222055B1 EP00975886A EP00975886A EP1222055B1 EP 1222055 B1 EP1222055 B1 EP 1222055B1 EP 00975886 A EP00975886 A EP 00975886A EP 00975886 A EP00975886 A EP 00975886A EP 1222055 B1 EP1222055 B1 EP 1222055B1
Authority
EP
European Patent Office
Prior art keywords
tool
measuring
signals
measuring beam
time intervals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00975886A
Other languages
German (de)
English (en)
Other versions
EP1222055A1 (fr
Inventor
Heribert Bucher
Bruno Riedter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blum Novotest GmbH
Original Assignee
Blum Novotest GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blum Novotest GmbH filed Critical Blum Novotest GmbH
Priority to EP03017891A priority Critical patent/EP1400309A1/fr
Publication of EP1222055A1 publication Critical patent/EP1222055A1/fr
Application granted granted Critical
Publication of EP1222055B1 publication Critical patent/EP1222055B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0904Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool before or after machining
    • B23Q17/0909Detection of broken tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/248Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods
    • B23Q17/2485Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods using interruptions of light beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36276Program virtual, logical tools, select tool from tables
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37227Probing tool for its geometry
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37228Tool inspection, condition, dull tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37233Breakage, wear of rotating tool with multident saw, mill, drill
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37256Wear, tool wear
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37415By cutting light beam
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49145Spheres replace object, check first collision for large spheres, then small
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50133With optical beam, tool crosses beam

Definitions

  • the invention relates to a method for checking a cutting geometry of a rotationally drivable tool and a device to carry out the method according to the invention.
  • the invention relates to the testing of a cutting geometry Tool for breakage and wear control using a Measuring beam.
  • a signal is only generated according to DE 42 44 869 that indicates the immersion of a tool in the measuring plane, when there is a drastic drop in the signal as a measuring beam used laser beam is detected.
  • from comparison values are added to the measuring system, which serve as reference values serve for individual measuring processes and impair the measuring process Reduce interference.
  • DE 32 18 754 describes a method for measuring length of a rotationally drivable tool. This is what happens here Tool an optical measuring device, the position of the Tool is determined when the tool tip is a measuring plane passed the optical measuring device. By comparing the measured position with a target position of the tool the length of the tool can be calculated. That way it is also possible to determine if the tool is broken.
  • DD 245 481 A1 discloses a method and an arrangement for Photoelectric position determination of edges on rotating test objects with respect to their axis of rotation.
  • a photo receiver is determined by means of an optical measuring method, in which a predetermined edge of the test specimen from the photo receiver is detected.
  • further revolutions of the test object are made using a high resolution slow process only the photo receiver signals evaluated in the previously determined Rotational position of the test object can be detected.
  • interference signals are eliminated with a light barrier on a receiver of the light barrier incident light pulses only during specified Time intervals evaluated, the duration of which depends on the length of the time intervals is adapted within that of a transmitter the light barrier light pulse sequences are sent out.
  • the method according to the invention makes it possible to use a rotary drive Check the tool for its actual shape. For this, an area to be checked is placed on the tool set, for example the area of the cutting edge of the tool. The tool is rotated at a desired constant speed and introduced into a measuring area by a measuring beam is defined. Due to the rotation of the tool, the measuring ' beam falling on the area of the tool to be checked, it is but also possible that the measuring beam is not on the test object Area falls.
  • each a target time include to be based on occurring or non-occurring optical interactions to check whether the tool the target division has or is damaged.
  • the detection time intervals so be chosen so that they do not overlap in time. Furthermore the detection time intervals can be selected that they include the corresponding target time symmetrically.
  • Tools used as reference tools for tools to be tested used include real tools, the dimensions of which are for the tool to be tested corresponds to the desired dimensions, e.g. undamaged or new tools, but also so-called "virtual Tools ". Among” virtual tools are not here To understand tools in the real sense, but the formal Description of the dimensions of the tool geometry. The formal description can e.g. through mathematical formulas and / or data respectively. Since the invention, as described below, can also include programmable components is the use to prefer "virtual" reference tools in the form of data, e.g. stored and processed with computer support.
  • the size of the selected detection time intervals depends on choose as small as possible for the respective application, to limit detection to a time range that starts as shortly as possible before a target time and if possible ends shortly thereafter. In this way, the reliability of the Tool testing increased.
  • the detection time intervals are preferred chosen so small that they match the corresponding Target time only included with a small excess of time.
  • the target times and / or detection time intervals should preferably be depending on the speed of the tool be determined. In addition, it is advantageous if the Target times and / or detection time intervals taking into account the target division can be determined.
  • the Detection times that are used to synchronize the detection with the rotating tool to be tested are required, by a target time interval depending on the target division is determined.
  • This target time interval gives the time interval between two times at which to be expected is that different areas of the area under test immerse the tool in the measuring beam.
  • a sequence of target time intervals set.
  • the interactions of the measuring beam with obstacles on its path of propagation specify as long as detected until at least two consecutive Signals are detected, their time interval corresponds to one of the target time intervals of the defined sequence. It is preferred in the embodiments described above of the invention, the detection used for synchronization is carried out continuously.
  • the tool to be tested in the measuring range is positioned by immersing the envelope surface of the area to be checked, which results from the rotation of the Tool results, detected using the measuring beam becomes.
  • the determination the target times are performed again when the number of the signals detected at the desired times under the predetermined number.
  • a result signal generated that an unsuccessful test of the tool indicates if the number of detected at the target times Signals is below the predetermined number.
  • a determination period can be selected that the Indicates the period in which the determination of the target times is carried out becomes. So a result signal can be generated which is an unsuccessful summary check of the tool indicates if the determination of the target times is longer than that selected duration of determination is carried out.
  • the detection period and / or the determination period can thereby depending on the rotation of the tool and / or depending the target division can be determined.
  • a measuring system is used to carry out the method according to the invention uses a transmitter to emit a measuring beam, a receiver for receiving the measuring beam and Output of signals indicating a received measuring beam, an evaluation unit connected to the receiver for receiving of the signals output by the receiver and for generating Signals, the interactions of the measuring beam with obstacles specify on its path of propagation, depending on the received Signals and a control unit for controlling the measuring system having.
  • the evaluation unit evaluates the signals of the receiver only during selected evaluation time intervals from where the target times are, where an area corresponding to the area to be checked of a reference tool having a target division in immerses the measuring beam.
  • the receiver receives the Measuring beam only during selected reception time intervals in which there is only one target time at which one is to be checked Area corresponding area of a target division having reference tool immersed in the measuring beam.
  • the transmitter sends the measuring beam only during selected transmission time intervals in which There is a target time at which the one to be checked is located Area corresponding area of a target division Immerses the reference tool in the measuring beam.
  • control unit and / or the evaluation unit in the transmitter and / or the receiver to get integrated.
  • the evaluation unit and / or the control unit should be programmable his.
  • the measuring system or preferably the control unit with a rotating tool to be checked
  • To connect the machine or its control e.g. information about the speed, shape of the tool, desired machining processes and their accuracy and with the invention Measuring system performed tests of the tool.
  • the measuring beam can be any beam that interacts with a tool to be tested and with other obstacles can step on its path of propagation and one detection the interactions with a corresponding recipient or detector enables.
  • the measuring beam can be an optical one Measuring beam, an electro-magnetic measuring beam, a corpuscle measuring beam or a combination of these measuring beams.
  • the measuring beam is preferably an optical one Measuring beam and in particular a laser light beam.
  • the testing of the tool essentially takes place at the so-called target times, where it is expected that the area of the tool to be tested immersed in the measuring beam, incorrect measurements are avoided, which are due to interaction, which are not interaction of the measuring beam with the area to be checked. Furthermore, the use of the invention enables it programmable control and evaluation units, testing one Tool of a machine tool application-specific the particular tool used and the particular one used Adapt machine tool flexibly. So tools can be checked that rotate at different speeds and the most varied, even irregular geometries and divisions exhibit.
  • FIGS. 1 and 2 The simplified representation in FIGS. 1 and 2 of an inventive
  • the arrangement essentially comprises a measuring system 10, 12, 14, 16, 18 and a machine tool, of which only one to be tested Tool 20, a spindle 22 holding tool 20, a spindle motor 24 driving the spindle 22 and a controller 26 are shown.
  • the measuring system comprises a transmitter 10, a receiver 12 which a measuring beam emitted by the transmitter 10 14 receives, as well as a control unit 16 and an evaluation unit 18 connected to the transmitter 10 and the receiver 12 are.
  • the measuring beam 14 used here is a laser light beam, it is also possible, any optical suitable for measuring Beam, electromagnetic measuring beams, corpuscle measuring beams or combinations of these measuring beams.
  • the area of the measuring beam 14 between the transmitter 10 and the Receiver 12 corresponds to the area of the measuring system in which a Testing of a tool is carried out.
  • a Testing of a tool is carried out.
  • a test area 32 is defined on the tool 20 to be tested.
  • the location and dimensions of the test area 32 depend on the respective tool geometry and with this tool performed processing steps.
  • the test area 32 be in the measuring area 30 dips.
  • the tool 20 is moved from a position in which the test area 32 is outside the measuring range 30 is in position as shown in FIG. 1 move in which the test area 32 lies in the measuring area 30, as can be seen in Fig. 2. 1 and 2, the tool 20 and thus the test area 32 in a parallel to Move the longitudinal axis of the tool 20 in the direction running that the test area 32 is immersed in the measuring area 30.
  • the arrangement of the measuring system in the machine tool, the Type of tool to be tested and the location and dimensions of a specified test area is the type of movement of the test object Define tool for every application.
  • the Art the movement of the tool 20 plays in the execution of the Test procedure does not matter, it is only to be ensured that the Test area 32 immersed in the measuring area 30.
  • FIG. 3 is a simplified illustration of a cross-sectional view shown on the test area 32 of the tool 20.
  • the tool 20 has four cutting edges 202, 204, 206, 208 to be checked.
  • constant speed is rotated before and / or during the test area 32 dips into the measuring area 30, and the Test area 32 is located in the measuring area 30. Because of the rotation of the tool 20 is created to enclose the test area 32 Envelope surface 210.
  • the movement of the tool 20 from a position in which the test area 32 is outside the measurement area 30 4 is terminated as soon as the envelope surface 210 is immersed in the measuring area, as shown in FIG. 5 is.
  • the measuring beam 14 is used to immerse of the enveloping surface 210 in the measuring range 30. It is for example, it is also possible to immerse the envelope surface 210 into the measuring range 30 from the relative position of the tool 20 to determine the measuring beam 14. If the measuring beam 14 for detection immersing the envelope surface 210 in the measuring region 30 used, measuring beam 14 is blocked as soon as one of the cutting edges 202, 204, 206, 208 immersed in the measuring range 30, so that the receiver 12 no longer receives the measuring beam 14. The recipient 12 detects the interruption of the measuring beam 14 and generates a signal indicating this interruption.
  • the receiver 12 preferably emits a pulse-like one Signal down, but any known signal can be used, which indicates an interruption of the measuring beam 14. This signal is sent from the receiver 12 either directly to the control unit 16 of the measuring system or passed on to the evaluation unit 18.
  • the control unit 16 then sends a signal to the controller 26 of the machine tool.
  • the controller 26 is the movement of the tool 20. Is the area to be tested 32 of the tool 20 on an outer Surface of the same, the movement is immediately after Receipt of the signal output by the control unit 16 ended.
  • the traversing movement after receiving the signal output by the control unit 16 only after a predetermined period of time or a predetermined additional Distance ends when the test area 32 of the tool 20 not on an outer surface of the same, but "in” the tool lies.
  • the resulting positions of the tool 20 relative to the measuring area 30 or the measuring beam 14 for these different ones Cases are outlined in Fig. 6.
  • the cutting edges 202, 204, 206, 208 one after the other into the measuring range 30 and interrupt the measuring beam 14.
  • the time interval of the interruptions of the measuring beam 14 through the cutting edges 202, 204, 206, 208 is the same and constant here, since the tool 20 moves with rotates at a constant speed and the distance between the Cutting 202, 204, 206, 208 is the same.
  • This type of interruption of the measuring beam 14 leads to the fact that the receiver 12 signals, as shown by way of example in FIG. 7 are. 7 is that generated by the receiver 12 Waveform and the corresponding positions of the Tool 20 in the measuring range 30, more precisely the relative position of the Cutting 202, 204, 206, 208 to the measuring beam 14 shown. A Damage or complete absence of one of the cutting edges would result in the receiver 12 at one time, one So-called target time at which it is expected that a Cut the measuring beam interrupts, no signal generated because the damaged or missing cutting edge no interruption of the measuring beam 14 caused.
  • the receiver 12 would also generate a signal if the interruption of the measuring beam 14 is not due to an interruption is due to one of the cutting edges, but has other reasons. This is the case if, for example, coolant or chips into the measuring area 30 and the Interrupt measuring beam 14. The evaluation of such a signal can lead to incorrect measurements and thus to an incorrect check of the tool 20 lead.
  • Detection time intervals are used that are not temporal overlap and the respective target time with little include time surplus symmetrically.
  • the evaluation unit 18 detects a lack of a signal during of these detection time intervals can be concluded from this that one of the cutting edges 202, 204, 206, 208 is missing or damaged is, i.e. Has dimensions that are not required Dimensions correspond.
  • the procedure for evaluating the data from the receiver 12 generated signals avoids the incorrect measurements described above, since signals are not recorded and evaluated that are not an interruption of the measuring beam 14 by one of the cutting edges 202, 204, 206, 208 are due to the fact that they are outside the Detection time intervals are and therefore not by that Tool can be caused.
  • the procedure is also suitable for checking irregularly designed ones Tools.
  • the tool 20 to be tested irregularly spaced cutting edges 202, 204, 206 as in 8
  • the receiver 12 generates signals whose time intervals are different.
  • Such an irregular as an example of the signal curve to be understood is in Fig. 8 shown.
  • the evaluation unit 18 Signals from the receiver 12 only during the detection time intervals evaluated, each comprising a target time, at which it is expected that one of the cutting edges 202, 204, 206 interrupts the measuring beam 14.
  • control unit 16 receives e.g. of the controller 26 of the machine tool information that the Speed and the shape (e.g. division) of the currently used Tool.
  • control unit 16 picks up the shape (e.g. division) of the tool currently in use Data programmed into the control unit 16 or are stored in a memory, not shown. in this connection the information relating to the speed of the tool can transmitted from controller 26 to control unit 16 become.
  • the tool 20 at the Rotating the test at a previously defined constant speed, with data indicating this speed in the control unit 16 are programmed or in the memory, not shown for access by the control unit 16 are stored. This eliminates the need for information regarding the speed of the tool and / or the shape (e.g. pitch) the currently used tool to the control unit 16 to transfer.
  • the control unit 16 calculates the Target times at which the tool 20 interrupts the measuring beam 14, if it is the desired division, i.e. the target division, having.
  • the control unit 16 now controls the evaluation unit 18 so that they only receive signals from the receiver 12 during the Evaluates detection time intervals.
  • the evaluation intervals of the evaluation unit 18 include the times, at which desired interruptions of the measuring beam 14 due to the rotation of the tool 20, the must Measuring system can be synchronized with the rotation of the tool 20. The synchronization selected here is described below.
  • the evaluation unit 18 When the evaluation unit 18 is synchronized with the rotating one Tool 20 are the actual measuring process upstream step all signals generated by the receiver 12 evaluated by the evaluation unit 18 as explained below. All signals received by the receiver 12 are from the Evaluation unit 18 with respect to their temporal distance from one another evaluated. Due to e.g. from the control unit 16 The information obtained is the distances between the evaluation unit 18 between the times when the receiver 12 due to a desired interruption of the measuring beam 14 Should generate signal. These are called target time intervals below designated time intervals can vary depending on the geometry of the tool 20 to be tested be the same or from one Sequence of different target time intervals exist. The evaluation unit 18 now compares the time intervals of all of that Receiver 12 received signals with the target time interval or the target time intervals.
  • the time interval one Can be deduced from this, that the interruption of the measuring beam leading to these pulses 14 is due to one of the cutting edges 202, 204, 206, 208.
  • it is preferable to use the synchronization process only finish when more than two consecutive Signals were detected, their respective temporal Distance corresponds to the target time interval.
  • the synchronization process is preferably ended when the time intervals of several successive signals have a sequence that corresponds to this desired sequence.
  • the test reliability can be increased here by the fact that the synchronization process only ends when at least three successive signals are detected, the sequence of which is temporal Distances to each other part of the sequence of the target time intervals equivalent.
  • the sizes of the detection time intervals are to be dimensioned so that on the one hand no signal of the receiver 12 is lost, which is due to a desired interruption of the measuring beam 14 and on the other hand signals are not evaluated, which can be attributed to undesired interruptions in the measuring beam 14 are. So is the dimensioning of the detection time intervals including the speed of the tool 20, the Geometry (e.g. division) and a desired quality of one to carry out the machining operation of the tool 20. Ideally, the detection time intervals become so small chosen that they the target times with only a small excess of time contain. However, this requires an exact and complex Control of the measuring system to avoid incorrect measurements. The sizes of the detection time intervals are therefore dependent of the respective application.
  • the evaluation unit 18 performs the detection of pulses from the receiver 12 during the detection time intervals for a to be determined Detection duration by.
  • the detection period should be chosen so that each of the Cut 202, 204, 206, 208 at least once in the measuring range dips. That is, the detection duration should at least be that Correspond to the duration of a complete rotation of the tool 20.
  • An increased reliability of the method according to the invention can be achieved if a longer detection period is chosen will, i.e. checked the tool for more than one turn becomes. It should be borne in mind that when choosing the Test duration of the actual operation of the machine tool is not essential is extended.
  • Detects the evaluation unit 18 during the detection period a number of signals of the receiver 12 which are below a predetermined Number, it can be concluded that a the cutting edge 202, 204, 206, 208 is missing or damaged.
  • This predetermined number depends on the duration of the detection, the geometry or division of the tool 20, a desired one Quality and reliability of the measurement process and others Determine factors that influence the measuring process. Will one Number of signals detected by the receiver 12 that are greater than the evaluation unit outputs the predetermined number or the same size 18 a signal indicating that the entire test of the tool was successful. Is the number of detected signals below the predetermined number, the evaluation unit gives 18 outputs a signal indicating a failed overall check.
  • the detection period is to be chosen so that it is the duration of a complete revolution corresponds to the tool 20. In this case it can be done be concluded that the tool 20 is not damaged or has the desired geometry if the number of detected Signals corresponds to the number of cutting edges. That at the case shown in Fig. 7 is the testing of the tool 20 successful if four signals are detected while at in the case shown in FIG. 8, the testing of the tool 20 is successful if three signals are detected.
  • the detection during the Detection time intervals performed by the evaluation unit 18 signals from the receiver 12 only during the the desired times comprehensive detection time intervals.
  • the Detection can also be achieved by the Transmitter 10 the measuring beam 14 only during the the desired times comprehensive detection time intervals. This will also reached when the receiver 12, the measuring beam 14 only during the detection time intervals comprising the target times detected.
  • a tool can be checked under Use any combination of these three, the latter Embodiments are performed.
  • the Control unit 16 and / or the evaluation unit 18 programmable Include units Using the programmable units it becomes possible to the measuring system according to the invention respective machine tool used, the different to be tested Adapt tools and different test conditions, without changing the structure of the measuring system to have to.
  • the programmable units can e.g. out Microprocessors exist in the control unit 16 and / or the evaluation unit 18 are integrated, in the form of a computer system be made available with the control unit 16 and / or the evaluation unit 18 is connected, or by any Combinations of these are formed.

Claims (28)

  1. Procédé pour vérifier la géométrie du tranchant d'un outil pouvant être entraíné en rotation, au moyen d'un système de mesure (10 - 18), comprenant les étapes suivantes :
    on détermine une zone à vérifier sur l'outil (20),
    on fait tourner l'outil (20) à une vitesse de rotation choisie constante,
    on émet un rayon de mesure (14) qui détermine une zone de mesure (30),
    on positionne l'outil (20) de telle sorte qu'une enveloppante formée par la rotation de sa zone à vérifier (32) plonge dans la zone de mesure (30), et
    on détecte des signaux qui indiquent des interactions du rayon de mesure (14) avec des obstacles sur son parcours de propagation,
    caractérisé en ce que
    on détermine des instants de consigne auxquels une zone d'un outil de référence présentant une subdivision de consigne, ladite zone correspondant à la zone à vérifier (32), plonge dans la zone de mesure (30) pendant la rotation,
    on synchronise le système de mesure (10 - 18) avec la rotation de l'outil (20) en se basant sur la succession de signaux détectés, et
    on effectue la détection ensuite uniquement pendant des intervalles temporels choisis de détection qui incluent chacun un instant de consigne.
  2. Procédé selon la revendication 1, caractérisé en ce que l'on choisit les intervalles temporels de détection de manière à ne pas de superposer temporellement.
  3. Procédé selon l'une ou l'autre des revendications 1 et 2, caractérisé en ce que l'on choisit les intervalles temporels de détection de manière à inclure chacun symétriquement l'instant de consigne correspondant.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'on choisit les intervalles temporels de détection de manière à commencer peu avant l'instant de consigne correspondant et à se terminer peu après l'intervalle temporel correspondant.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'on détermine les instants de consigne et/ou les intervalles temporels de détection en fonction de la vitesse de rotation de l'outil (20).
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'on détermine les instants de consigne et/ou les intervalles temporels de détection en fonction de la subdivision de consigne.
  7. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la détermination des instants de consigne comprend les étapes suivantes :
    on détermine un intervalle temporel de consigne en fonction de la subdivision de consigne de l'outil (20) et de la vitesse de rotation choisie, et
    on détecte les signaux qui indiquent les interactions du rayon de mesure (14) avec des obstacles sur son parcours de propagation, 1a détection étant effectuée jusqu'à ce qu'au moins deux signaux successifs soient détectés dont la distance temporelle coïncide avec l'intervalle temporel de consigne.
  8. Procédé selon la revendication 7, caractérisé en ce que
    la distance temporelle des instants de consigne correspond à l'intervalle temporel de consigne, et
    l'on commence la détection pendant les intervalles temporels de détection après un dernier signal détecté pendant l'intervalle temporel de consigne.
  9. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la détermination des instants de consigne inclut les étapes suivantes :
    on fixe une succession d'intervalles temporels de consigne en fonction de la subdivision de consigne de l'outil (20) qui inclut au moins deux intervalles temporels de consigne fixés, et
    on détecte les signaux qui indiquent des interactions du rayon de mesure (14) avec des obstacles sur son parcours de propagation, la détection étant effectuée jusqu'à ce qu'au moins deux signaux successifs soient détectés dont la distance temporelle correspond à l'un des intervalles temporels de consigne.
  10. Procédé selon l'une des revendications 7 à 9, caractérisé en ce que l'on effectue en continu la détection de signaux pour synchroniser le système de mesure (10 - 18).
  11. Procédé selon l'une ou l'autre des revendications 9 et 10, caractérisé en ce que
    une succession de distances temporelles entre les instants de consigne correspond à la succession fixée d'intervalles temporels de consigne, et
    on commence la détection pendant les intervalles temporels de détection après le dernier des signaux détectés pendant l'un des intervalles temporels de consigne.
  12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que l'on détecte la plongée de l'enveloppante de la zone à vérifier (32) dans la zone de mesure (30) en utilisant le rayon de mesure (14).
  13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce qu'en réponse aux signaux détectés, on génère un signal de résultat qui indique un résultat sommé de la vérification de la géométrie du tranchant.
  14. Procédé selon la revendication 13, caractérisé en ce que l'on génère un signal de résultat qui indique une vérification sommée réussie de la géométrie du tranchant lorsqu'un certain nombre de signaux détectés pendant les intervalles temporels de détection est supérieur à un nombre prédéterminé ou correspond au nombre prédéterminé.
  15. Procédé selon la revendication 13, caractérisé en ce que l'on effectue la détermination des instants de consigne et la détection une nouvelle fois lorsque le nombre des signaux détectés pendant les intervalles temporels de détection est inférieur au nombre prédéterminé.
  16. Procédé selon l'une des revendications 13 à 15, caractérisé en ce que l'on génère un signal de résultat qui indique une vérification sommée non réussie de la géométrie du tranchant, lorsque le nombre des signaux détectés pendant les intervalles temporels de détection est inférieur au nombre prédéterminé.
  17. Procédé selon l'une des revendications 1 à 16, caractérisé en ce que l'on effectue la détection pendant les intervalles temporels de détection pour une durée de détection choisie.
  18. Procédé selon l'une des revendications 1 à 17, caractérisé en ce que
    l'on effectue la détermination des instants de consigne pour une durée de détermination choisie et/ou
    on génère un signal de résultat qui indique une vérification non réussie de l'outil (20) lorsque l'on effectue la détermination des instants de consigne plus longtemps que la durée de détermination choisie.
  19. Procédé selon l'une ou l'autre des revendications 17 et 18, caractérisé en ce que l'on détermine la durée de détection et/ou la durée de détermination en fonction de la vitesse de rotation de l'outil et/ou en fonction de la subdivision de consigne.
  20. Procédé selon l'une des revendications 1 à 19, caractérisé en ce qu'après achèvement de la vérification, on répète le procédé selon l'une des revendications précédentes, afin de vérifier une autre zone sur l'outil (20), l'outil (20) étant déplacé par rapport à la zone de mesure (30), de telle sorte qu'une enveloppante formée par la rotation de l'autre zone à vérifier plonge dans la zone de mesure.
  21. Procédé selon l'une des revendications 1 à 20, caractérisé en ce qu'en supplément à 1a rotation de l'outil (20), on fait déplacer celui-ci simultanément par rapport à la zone de mesure (30), de sorte qu'une enveloppante, formée par la rotation et par le mouvement relatif de l'outil (20), de la zone à vérifier (32) plonge dans la zone de mesure (30).
  22. Système de mesure pour vérifier la géométrie du tranchant d'un outil (20) pouvant être entraíné en rotation à une vitesse de rotation choisie, comportant
    un émetteur (10) pour émettre un rayon de mesure (14),
    un récepteur (12) pour recevoir le rayon de mesure (14) et pour émettre des signaux qui indiquent un rayon de mesure reçu (14),
    une unité d'évaluation (18) reliée au récepteur (12) et destinée à recevoir les signaux émis par le récepteur (12) et à générer des signaux qui indiquent des interactions du rayon de mesure (14) avec des obstacles sur son parcours de propagation, en fonction des signaux reçus, et
    une unité de commande (16) pour commander le système de mesure,
    caractérisé en ce que
    l'unité d'évaluation (18) évalue les signaux du récepteur (12) uniquement pendant des intervalles temporels d'évaluation choisis qui incluent chacun un instant de consigne auquel une zone, correspondante à la zone à vérifier (32), d'un outil de référence présentant une subdivision de consigne plonge dans le rayon de mesure (14) pendant la rotation.
  23. Système de mesure pour vérifier la géométrie du tranchant d'un outil (20) pouvant être entraíné en rotation à une vitesse de rotation choisie, comportant
    un émetteur (10) pour émettre un rayon de mesure (14),
    un récepteur (12) pour recevoir le rayon de mesure (14) et pour émettre des signaux qui indiquent un rayon de mesure reçu (14),
    une unité d'évaluation (18) reliée au récepteur (12) et destinée à recevoir les signaux émis par le récepteur (12) et à générer des signaux qui indiquent des interactions du rayon de mesure (14) avec des obstacles sur son parcours de propagation, en fonction des signaux reçus, et
    une unité de commande (16) pour commander le système de mesure,
    caractérisé en ce que
    le récepteur reçoit le rayon de mesure (14) uniquement pendant des intervalles temporels de réception choisis qui incluent chacun un instant de consigne auquel une zone, correspondante à la zone à vérifier (32), d'un outil de référence présentant une subdivision de consigne plonge dans le rayon de mesure (14) pendant la rotation.
  24. Système de mesure pour vérifier la géométrie du tranchant d'un outil (20) pouvant être entraíné en rotation à une vitesse de rotation choisie, comportant
    un émetteur (10) pour émettre un rayon de mesure (14),
    un récepteur (12) pour recevoir le rayon de mesure (14) et pour émettre des signaux qui indiquent un rayon de mesure reçu (14),
    une unité d'évaluation (18) reliée au récepteur (12) et destinée à recevoir les signaux émis par le récepteur (12) et à générer des signaux qui indiquent des interactions du rayon de mesure (14) avec des obstacles sur son parcours de propagation, en fonction des signaux reçus, et
    une unité de commande (16) pour commander le système de mesure,
    caractérisé en ce que
    l'émetteur (10) émet le rayon de mesure optique (14) uniquement pendant des intervalles temporels d'émission choisis qui incluent chacun un instant de consigne auquel une zone, correspondante à la zone à vérifier (32), d'un outil de référence présentant une subdivision de consigne plonge dans le rayon de mesure (14) pendant la rotation.
  25. Système de mesure selon l'une des revendications 22 à 24, caractérisé en ce que l'unité d'évaluation (18) et/ou l'unité de commande (16) sont intégrées au moins partiellement dans l'émetteur (10) et/ou dans le récepteur (12).
  26. Système de mesure selon l'une des revendications 22 à 25, caractérisé en ce que l'unité de commande (16) et/ou l'unité d'évaluation (18) sont programmables.
  27. Système de mesure selon l'une des revendications 22 à 26, caractérisé en ce que l'unité de commande (16) et/ou l'unité d'évaluation (18) sont reliées à une commande (26) d'une machine faisant tourner l'outil (20).
  28. Système de mesure selon l'une des revendications 22 à 27, caractérisé en ce que le rayon de mesure (14) est un rayon de mesure optique, de préférence un rayon de lumière laser.
EP00975886A 1999-10-19 2000-10-19 Procede et dispositif permettant de tester la geometrie du tranchant d'un outil pouvant etre entraine en rotation Expired - Lifetime EP1222055B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03017891A EP1400309A1 (fr) 1999-10-19 2000-10-19 Procédé et dispositif permettant de tester la géometrie du tranchant d'un outil pouvant être entraíné en rotation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19950331 1999-10-19
DE19950331A DE19950331C2 (de) 1999-10-19 1999-10-19 Verfahren und Vorrichtung zum Prüfen einer Schneidengeometrie eines drehantreibbaren Werkzeugs
PCT/EP2000/010313 WO2001028737A1 (fr) 1999-10-19 2000-10-19 Procede et dispositif permettant de tester la geometrie du tranchant d'un outil pouvant etre entraine en rotation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP03017891A Division EP1400309A1 (fr) 1999-10-19 2000-10-19 Procédé et dispositif permettant de tester la géometrie du tranchant d'un outil pouvant être entraíné en rotation

Publications (2)

Publication Number Publication Date
EP1222055A1 EP1222055A1 (fr) 2002-07-17
EP1222055B1 true EP1222055B1 (fr) 2003-08-06

Family

ID=7926160

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00975886A Expired - Lifetime EP1222055B1 (fr) 1999-10-19 2000-10-19 Procede et dispositif permettant de tester la geometrie du tranchant d'un outil pouvant etre entraine en rotation
EP03017891A Withdrawn EP1400309A1 (fr) 1999-10-19 2000-10-19 Procédé et dispositif permettant de tester la géometrie du tranchant d'un outil pouvant être entraíné en rotation

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP03017891A Withdrawn EP1400309A1 (fr) 1999-10-19 2000-10-19 Procédé et dispositif permettant de tester la géometrie du tranchant d'un outil pouvant être entraíné en rotation

Country Status (5)

Country Link
US (1) US6597464B2 (fr)
EP (2) EP1222055B1 (fr)
JP (1) JP2003512185A (fr)
DE (2) DE19950331C2 (fr)
WO (1) WO2001028737A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635894B1 (en) * 1999-11-22 2003-10-21 Renishaw Plc Optical measuring apparatus for measuring objects on machines
WO2003018251A1 (fr) 2001-08-20 2003-03-06 Blum-Novotest Gmbh Procede et dispositif pour la determination de la position d'outils pouvant etre entraines en rotation
GB0210175D0 (en) * 2002-05-03 2002-06-12 Renishaw Plc Broken tool detector
DE10349476A1 (de) * 2003-10-21 2005-05-25 Siemens Ag Zeitgenaue Durchführung einer Mess- oder Steueraktion sowie Synchronisation mehrerer solcher Aktionen
GB0325710D0 (en) * 2003-11-04 2003-12-10 Collins Stephen R Detecting breakages in machine tools and the like
JP2005300626A (ja) * 2004-04-07 2005-10-27 Ricoh Co Ltd クリーニング装置、画像形成装置
WO2009038465A1 (fr) * 2007-09-17 2009-03-26 Conoptica As Procédé et appareil d'obtention de position et de changement de pièce rotative
ITBO20120289A1 (it) * 2012-05-25 2013-11-26 Marposs Spa Metodo per stimare la velocita' di rotazione di un utensile montato su un mandrino rotante di una macchina utensile
DE102012106139B4 (de) * 2012-07-09 2015-06-11 Hochschule Reutlingen Verfahren und Vorrichtung zur Ermittlung eines Werkzeugverschleißes in einer Werkzeugmaschine zur geometrisch bestimmten Zerspanung
JP6193911B2 (ja) * 2015-04-13 2017-09-06 ファナック株式会社 主軸の劣化状態の検査機能を有する工作機械
CN105458833A (zh) * 2015-12-04 2016-04-06 重庆大学 一种工件旋转中心测定设备和方法
CN106483144A (zh) * 2016-11-30 2017-03-08 拓卡奔马机电科技有限公司 裁床刀片检测装置及检测方法
EP3450909A1 (fr) * 2017-09-05 2019-03-06 Renishaw PLC Appareil et procédé optiques de réglage d'outil sans contact
DE102018006653A1 (de) * 2018-08-22 2020-02-27 Blum-Novotest Gmbh Werkzeugkontrolle in einer Werkstückbearbeitugnsmaschine
WO2020070847A1 (fr) * 2018-10-04 2020-04-09 株式会社Fuji Changeur d'outil automatique
US11267093B2 (en) 2020-02-10 2022-03-08 Pratt & Whitney Canada Corp. System and method for managing machine tool maintenance
CN113523320B (zh) * 2021-07-30 2023-07-14 云南正成工精密机械有限公司 一种对称主轴加工机床

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817647A (en) * 1963-01-11 1974-06-18 J Lemelson Tool control arrangement
US3900738A (en) * 1973-05-23 1975-08-19 Lockheed Missiles Space Non-contact measuring gauge
DE3218754C2 (de) 1982-05-18 1985-11-28 Friedrich Deckel AG, 8000 München Verfahren und Einrichtung zur Vermessung eines in einem zustellbaren Werkzeughalter einer Werkzeugmaschine eingespannten Werkzeugs
US4667113A (en) * 1985-08-09 1987-05-19 Hitachi Seiko Ltd. Tool failure detection apparatus
DD245481A1 (de) * 1986-01-23 1987-05-06 Univ Schiller Jena Verfahren und anordnung zur fotoelektrischen lagebestimmung von kanten an rotierenden prueflingen bezueglich deren drehachse
JP2879445B2 (ja) * 1989-02-10 1999-04-05 株式会社デイスコ ブレード不良を検出する検出装置
DE3905949A1 (de) * 1989-02-25 1990-08-30 Herbert Prof Dr Ing Schulz Verfahren zum vermessen von schneidkanten
US5005978A (en) * 1989-11-06 1991-04-09 Cyberoptics Corporation Apparatus and method for the noncontact measurement of drill diameter, runout, and tip position
DE69223544T2 (de) * 1991-04-26 1998-07-09 Nippon Telegraph & Telephone Verfahren und Vorrichtung zum Messen des Profils eines Objekts
DE4244869C2 (de) * 1992-11-14 1997-08-28 Chiron Werke Gmbh Verfahren zum Vermessen eines Werkzeuges
DE19720176C1 (de) * 1996-04-06 1999-02-25 Leuze Electronic Gmbh & Co Verfahren zur Elimination von Störsignalen bei einer Lichtschranke

Also Published As

Publication number Publication date
US20020118372A1 (en) 2002-08-29
EP1222055A1 (fr) 2002-07-17
DE19950331A1 (de) 2001-05-23
EP1400309A1 (fr) 2004-03-24
WO2001028737A1 (fr) 2001-04-26
JP2003512185A (ja) 2003-04-02
DE19950331C2 (de) 2001-09-06
US6597464B2 (en) 2003-07-22
DE50003218D1 (de) 2003-09-11

Similar Documents

Publication Publication Date Title
EP1222055B1 (fr) Procede et dispositif permettant de tester la geometrie du tranchant d'un outil pouvant etre entraine en rotation
DE4407682C2 (de) Laserbearbeitungsvorrichtung und Verfahren zu deren Brennpunkteinstellung
DE60019399T2 (de) Optische messeinrichtung zur messung von objekten auf maschinen
EP3941673B1 (fr) Procédé de surveillance automatique de processus lors de la rectification en continu
DE3530560A1 (de) Akustische abtastung einer beruehrung zwischen einem schneidwerkzeug und einem werkstueck
DE102017005488A1 (de) Vorrichtung und Verfahren zum Messen und Kontrollieren eines drehantreibbaren Werkzeugs in einer Werkzeugmaschine
DE2045114B2 (de) Vorrichtung zum erstellen eines die kontur eines modells beschreibenden datentraegers
DE2331952A1 (de) Anordnung zum feststellen von fehlern mit einer laserabtasteinrichtung
DE602004004806T2 (de) Verfahren und system zum überprüfen der position eines mechanischen teils mit einem lichtstrahl
DE3737471A1 (de) Messeinrichtung fuer schneidwerkzeuge
CH714162B1 (de) Verfahren zum automatischen Bestimmen der geometrischen Abmessungen eines Werkzeugs mit einem schneckengangförmigen Bearbeitungsbereich.
EP3840916B1 (fr) Contrôle d'outil dans une machine d'usinage de pièces ouvrées
DE102005043659B4 (de) Verfahren zur Kontrolle eines drehantreibbaren Werkzeugs
EP3636373B1 (fr) Procédé et dispositif de vérification d'un serrage de lame à barre et / ou d'un logement de lame d'une tête de lame à barre destinée à la fabrication d'une roue conique
EP0784747B1 (fr) Procede et dispositif de commande d'un organe de reglage
DE3719714C2 (de) Verfahren und Vorrichtung zum Abtasten eines Bandmaterials in Richtung der Weite des Bandmaterials
DE2429324A1 (de) Vorrichtung und verfahren zur untersuchung von gegenstaenden
WO2019011535A1 (fr) Procédé de mise en œuvre d'un usinage par enlèvement de matière et dispositif d'usinage par enlèvement de matière d'un composant
EP0194333A1 (fr) Procédé et dispositif pour la collection et l'exploitation des données d'état de machines
EP0052802B1 (fr) Méthode et dispositif de surveillance des conditions d'usinage sur une machine-outil
DE2241263B2 (de) Überwachungsvorrichtung zur Erfassung eines Fehlers auf der Oberfläche eines sich bewegenden bandförmigen Gegenstandes
WO2018219554A1 (fr) Dispositif et procédé d'essai non destructif pour un composant
DE2017138B2 (de) Vorrichtung zur automatischen Aufnahme von Spektren
EP3803728B1 (fr) Procédé et système pour fournir des protocoles de processus pour des données de machine
DE102005026375A1 (de) Vorrichtung und Verfahren zur Positions-und/oder Dimensionsbestimmung von einem an einer Werkzeugmaschine angeordneten Werkzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020410

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030806

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50003218

Country of ref document: DE

Date of ref document: 20030911

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181011

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190906

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191029

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191021

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50003218

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20201018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20201018