EP1220285B1 - Ionenquelle, bei der UV/VUV-Licht zur Ionisation verwendet wird - Google Patents

Ionenquelle, bei der UV/VUV-Licht zur Ionisation verwendet wird Download PDF

Info

Publication number
EP1220285B1
EP1220285B1 EP01120299.1A EP01120299A EP1220285B1 EP 1220285 B1 EP1220285 B1 EP 1220285B1 EP 01120299 A EP01120299 A EP 01120299A EP 1220285 B1 EP1220285 B1 EP 1220285B1
Authority
EP
European Patent Office
Prior art keywords
gas
vuv
electron
ion source
ionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01120299.1A
Other languages
English (en)
French (fr)
Other versions
EP1220285A2 (de
EP1220285A3 (de
Inventor
Andreas Ulrich
Fabian Mühlberger
Ralf Dr. Zimmermann
Antonius Prof. Dr. Kettrup
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Muenchen Deutsches F
Original Assignee
Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH filed Critical Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH
Publication of EP1220285A2 publication Critical patent/EP1220285A2/de
Publication of EP1220285A3 publication Critical patent/EP1220285A3/de
Application granted granted Critical
Publication of EP1220285B1 publication Critical patent/EP1220285B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/162Direct photo-ionisation, e.g. single photon or multi-photon ionisation

Definitions

  • the invention relates to an ion source for selective one-photon ionization of an analysis gas according to the preamble of patent claim 1, as well as their use.
  • VUV - light can be generated by so-called micro hollow cathode lamps.
  • one or more parallel burning discharges into small (typically 100 ⁇ m Druchmesser) openings are constricted in a dielectric. Since gas discharge parameters scale with the product of diameter and gas pressure, the arrangement, in turn, can maintain a stable glow discharge because of the small diameter with high gas pressure and generate VUV excimer light in the dense gas [1].
  • Another alternative variant for generating brilliant UV / VUV radiation is a discharge in dense noble gases between pointed metal electrodes or a tip metal electrode and a metal surface. These variances of the corona discharge are operated both with high frequency and with direct voltage [ DE Murnick, M.Salvermoser, priv. Communication, Gaseous Electronics Conference “GEC” 2000, 24.-27. October, Houston, Texas, USA, accepted for publication s].
  • a particularly suitable for ion sources UV / VUV light source is the electron beam pumped structure described below.
  • the vacuum ultraviolet light generation in the light source which generates the ions in the ion source by photoionization, is effected by the excitation of a dense gas with an electron beam [2, 3].
  • the gas usually consists of one of the noble gases He, Ne, Ar, Kr or Xe or a noble gas and the admixture of another gas, such as hydrogen.
  • VUV generation process in a gas cell is very inefficient. Therefore, powerful and therefore very expensive, large solid-state lasers must be used (usually Nd: YAG laser with 355 nm). In operation, high incidental costs arise due to flash lamps (required for pumping the laser medium) and maintenance. Furthermore, with a solid-state laser in general, only a single VUV wavelength can be generated (118 nm using 355 nm laser radiation). Tunable solid-state lasers are extremely expensive and can not be used for practical analytical tasks. Frequency tripling is a very sensitive nonlinear process whose VUV yield scales with the cube of the primary radiation. This leads to a high instability of the system and to fluctuations in the VUV yield. Furthermore, a complex separation of the primary radiation 355 nm is necessary to prevent fragmentation of the ions formed by VUV absorption.
  • deuterium lamps based on a gas discharge in a deuterium gas and when used with a vacuum ultraviolet light transmissive window, e.g. B consisting of MgF 2 or LiF, continuum radiation and the so-called Lyman and Werner molecular bands to emit 160 or 130 nm.
  • Deuterium lamps are commercially available from various manufacturers.
  • VUV light can be generated with so-called dielectrically impeded discharges, wherein in the case of a gas discharge at least one of the electrodes is provided with a non-conductive layer. [9].
  • a gas discharge at least one of the electrodes is provided with a non-conductive layer.
  • WIESER J ET AL "VACUUM ULTRAVIOLET RARE GAS EXCIMER LIGHT SOURCE", REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Vol. 68, No. 3, March 1997 (1997-03), pages 1360-1364 , and SALVERMOSER M ET AL: "Energy flow and excimer yields in continuous wave rare gas-halogen systems", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Vol. 88, No.
  • EP 0 585 487 A discloses a device for photoionization of trace elements in a carrier gas and a corresponding detection.
  • the light source is a flashlamp or a laser.
  • the object of the invention is to provide an ion source with a light source of high useful photon density and to provide an advantageous use This object is achieved by the features of claims 1 and 6.
  • the dependent claims describe advantageous embodiments of the invention.
  • the FIG. 1 shows by way of example the configuration of the ionization region of a time-of-flight mass spectrometer with VUV eximer lamp ionization.
  • the FIG. 2 shows a section of the beam injection and FIG. 3 the entire mass spectrometer with the VUV eximer lamp.
  • the FIG. 4 shows different possibilities for coupling the UV / VUV light into the ionization chamber 14 or to the ionization site 23.
  • Die Figures 5 and 6 show exemplary application results with the developed prototype.
  • the VUV Eximerlampenech is coupled for example via a flange to the ionization chamber 14.
  • the upper part of the lamp is used to generate an electron beam 8 with the electron gun 1 and has a vacuum.
  • the electron tube 2 is evacuated via a getter pump 4 and a pump nozzle 5.
  • the electron beam 8 is focused on the film 3.
  • the film consists for example of ceramic silicon nitride and separates the high vacuum of the electron tube 2 from the gas space 9.
  • the gas space 9 is cleaned via a getter 10.
  • the lens 12 is made of UV / VUV transparent material (eg, MgF 2 or LiF) and separates the gas space 9 from the ionization space 14 of the time-of-flight mass spectrometer (TOFMS).
  • TOFMS time-of-flight mass spectrometer
  • the lens (12) focuses the UV / VUV light on the ionization site 23.
  • the ionization site 23 is located behind the inlet needle 15 (in FIG molecular beam formed from the analysis gas) between the electrodes 18 and 16 of the TOFMS.
  • a multimicro channel light guide 24 or 25 can be used.
  • a multimicro channel light guide 24 consists of a bundle with a large number of narrow capillaries (analogous to a microchannel plate).
  • the UV / VUV light passing through the capillaries may enter the ionization space 14 which has a vacuum. If the capillaries are sufficiently long and thin, the gas flow from the gas space 9 through the multi-microchannel light guide 24 into the ionization space 14 is very low (ie the vacuum in 14 is not overburdened).
  • the UV / VUV light falls either directly through the clear width of the capillary or is passed through one or more total reflections through the capillaries of the multimicro channel light guide 24.
  • a multi-microchannel light guide 25 can be used, which allows a focusing of the transmitted UV / VUV light beam 22 to the ionization 23 by a conical taper of the capillary bundles.
  • the main advantage of using multichannel light guides 24 or 25 is that they can transmit these VUV light with wavelengths smaller than 110 nm.
  • Optical lenses 12 or windows for decoupling can be used only up to about this wavelength due to the incipient intrinsic absorption of the material (LiF, MgF 2 ).
  • the entire optical system for coupling the UV / VUV radiation into the ionization chamber 14 consists of the parabolic mirror 11 and the lens 12 or a multimicro channel light guide 24 or 25. Furthermore, a combination of a lens 12 or a multimicro channel light guide 25 with a hollow optical waveguide is also possible 26, which leads the UV / VUV light via total reflections directly to the ionization 25, possible.
  • the inlet of the analysis gas into the mass spectrometer takes place effusively via an inlet needle 15 [10].
  • Other sample gas inlet techniques such as pulsed [11] or continuous supersonic molecular beams [12], can also be used.
  • FIG. 3 shows a schematic representation of a time-of-flight mass spectrometer (TOFMS, without depiction of the vacuum pumps, the reflectron ion mirror and other details) with electron-beam-pumped excimer lamp ionization.
  • TOFMS time-of-flight mass spectrometer
  • the UV / VUV light from the electron beam pumped excimer lamp 20 is focused through the optical elements described above into the effusive molecular beam emerging from the inlet needle 15.
  • the voltages in the ion source (simplified here with the Elektoden18,16 and 17 shown) are chosen so that the ionization space is field-free.
  • the ions formed by single-photon absorption of VUV photons are therefore not influenced by electric fields.
  • the ions formed accumulate at and around the ionization site 23.
  • This ion accumulation can be operated for about several ⁇ s, after which the ions again leave the acceptance volume of the time-of-flight mass spectrometer (ie the volume that can be imaged on the ion detector 21) due to space charge effects and the intrinsic velocity of the particles from the effusive molecular beam.
  • the ions In order to detect the enriched ions, abruptly suitable potentials are applied to the electrodes 18, 16 and 17 via the controlled, pulsable high-voltage supply 19. The rising edges of the voltage pulses are usually in the range of a few ns.
  • the ions are accelerated to the detector 21. In the field-free drift space (space between aperture 17 and detector 21), the ions separate according to their mass.
  • the time-of-flight mass spectrum is registered at the detector 21 with suitable electronics (not shown).
  • the panels 16 and 17 may consist of pinholes with or without networks or even networks.
  • the mass resolution and sensitivity in the above-described operation of the TOFMS with ionization by continuous radiating VUV excimer lamps is limited, since due to the continuous operation of the lamp new ions are formed during the extraction of ions. These "post-formed” ions reach the detector later than ions of equal mass formed during the enrichment time (ie, peak spreads and increased background signal occur).
  • the electron beam 8 is directed in a pulsed manner (for example by pulsed diaphragms in the electron gun or by deflection plates) onto the foil 3.
  • the electron density can be increased without thermally overloading the film 3.
  • the VUV light emission 22 collapses within 500 to 1000 ns. This can be exploited to extract the ions from the ion source at already significantly reduced VUV light intensity.
  • the FIG. 5 shows measured parameters of VUV excimer lamp ionization TOFMS (prototype) in pulsed mode.
  • the upper trace shows the light pulse of the excimer lamp measured with a photodetector.
  • the middle track shows the trigger pulse of the ion source and the bottom track shows the ion detector signal.
  • Piperidine 85 m / z
  • toluene 92 m / z
  • VUV excimer lamp ionization An important advantage of the VUV excimer lamp ionization is that 9 different wavelengths can be set by the choice of the gas in the gas space.
  • the selectivity of one-photon ionization is due to the fact that only molecules can be ionized whose ionization energy is below the photon energy of the irradiated VUV light lies. This allows the suppression of ionization of compounds such as oxygen, nitrogen or noble gases, which have very high ionization energies. Therefore, VUV ionization is very well suited for on-line analysis of trace compounds from air or process gases (exhaust gases) since the main components of the gas mixture are not ionized. Furthermore, by using different wavelengths, a more accurate statement about the composition of the observed peaks in the mass spectrum can be obtained. For example, at photon energies of about 9 eV, participation of aliphatic organic compounds in the mass spectrum can be ruled out.
  • FIG. 6 shows the emission profiles of the VUV excimer lamp for argon (left, top) and krypton (left, bottom). Also marked are the ionization energies of benzene and toluene.
  • the associated measured TOFMS mass spectra of a mixture of benzene (92 m / z) and toluene are shown.
  • the argon excimer emission (top) is 128 nm (9.7 eV). Both benzene and toluene are therefore efficiently ionized.
  • the krypton excimer emission (below) is 150 nm (8.2 eV).
  • toluene lies directly in the center of the emission curve, whereas benzene is only detected by a "shoulder emission" on the high-energy side. In the mass spectrum, therefore, the toluene peak is orders of magnitude more intense than the benzene peak.
  • the selectivity is only mediocre. With monochromatic radiation, a higher selectivity could be achieved. This can be achieved in several ways. By adding certain gases, the emission can be transferred to a narrow-band emission line. For example, a narrow band emission of 121.57 nm can be achieved with a mixture of hydrogen and neon (see Table 1). Alternatively, a narrow region can be cut out of the broadband emission spectrum. This is z. B. by filter / mirror with dichroic coating (interference filter) possible.
  • the FIG. 7 shows a first application measurement with the developed prototype of a time-of-flight mass spectrometer with VUV excimer lamp ionization.
  • Exhaust gas from a motorcycle was introduced into the mass spectrum via the inlet needle 15 via an on-line sampling system.
  • the lamp was operated with argon (128 nm).
  • the figure shows a 3D plot of mass spectrometric information (mass, time, intensity) taken during a motorcycle launch.
  • Various aromatic compounds (benzene and methylated benzenes) exhibit a highly dynamic, fluctuating time course due to transient combustion conditions during the startup phase of the engine.
  • Mass spectrometers with VUV excimer lamp ionization can advantageously be used for fast time-resolved on-line analysis of process gases or for headspace analysis.
  • Possible fields of application are, for example, in the area of the food industry (monitoring of roasting, baking, cooking or ripening etc.) of the chemical industry (monitoring of syntheses, waste streams, mineral oil processing, etc.), monitoring of combustion processes and other production processes.
  • the VUV excimer lamp ionization can also be used with other non-pulsed mass spectrometer types such as the TOFMS.
  • the FIG. 8 shows a constructed according to the invention VUV excimer lamp with optical elements for focusing the VUV light on the ionization region of a quadrupole mass spectrometer.
  • the VUV excimer lamp 20 is advantageously operated continuously.
  • the ion source 29 generates a continuous ion beam.
  • the alternating electric fields applied to the quadrupole rods 27 (generated by the controller 28) allow only ions of a mass to pass from the ion beam to the detector 30.
  • the quadrupole mass spectrometer can be successively set to a transmission set different masses and so a Massesnspektrum can be recorded.
  • Possible fields of application of quadrupole mass spectrometry with VUV excimer lamps Ionisation is in the area of the food industry (monitoring of roast, baking, cooking or maturing etc.) of the chemical industry (monitoring of syntheses, waste streams, mineral oil processing, etc.), during monitoring combustion processes and other production processes.
  • GC-MS is a standard technique of organic trace analysis.
  • VUV light for ionization for mass spectrometry in a gas chromatography-mass spectrometry coupling brings another level of selectivity to mass spectrometry.
  • Certain compounds with higher ionization energies can be excluded from ionization.
  • a fragment-free ionization compared to the standard technique of electron impact ionization (EI) is achieved.
  • EI electron impact ionization
  • Various mass spectrometer types ion trap MS, sector field MS, Qudrupol MS, time of flight MS can be used for this purpose.
  • FIG. 9 shows the schematic structure of an ionization cell detector with the VUV excimer lamp 20 of the generic type.
  • the ionization cell ie the Ionisationsraum 14
  • a suitable pull-off voltage is applied via a voltage supply 33.
  • the sample gas passes through an inlet 15 between the electrodes 31 and 32 to the ionization zone.
  • the photocurrent Photoionenstrom and photoelectron current
  • Such a detector has approximately the properties of a flame ionization detector, so it responds to most organic compounds and to some inorganic species. Due to the different wavelengths that can be provided with different gas fillings / optical systems, some selectivity can be achieved.
  • a VUV excimer lamp ionization cell detector can thus be used advantageously for various applications. For example, it can be used as a detector for gas chromatography. Another possible application is the use as a sensor for the occurrence of organic compounds in gas mixtures.
  • FIG. 10 shows by way of example the structure of an excimer VUV lamp in which by means of an electron gun 1 one of the two excimer light sources 36 of the generic type depending on the applied electric field between the deflection electrodes 35 is pumped and thus brought to light. If the gas spaces 9 of the two excimer light sources are filled with different gases or gas mixtures (see Table 1), the photons of the generated light of the two excimer light sources have a different photon energy.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

  • Gegenstand der Erfindung ist eine Ionenquelle zur selektiven Einphotonenionisation eines Analysegases nach dem Oberbegriff des Patentanspruchs 1, sowie deren Verwendung.
  • VUV - Licht kann durch sogenannte Mikrohohlkathodenlampen erzeugt werden. Dabei werden eine oder mehrere parallel brennende Entladungen in kleine (typisch 100 µm Druchmesser) Öffnungen in einem Dielektrikum eingeschnürt. Da Gasentladungsparameter mit dem Produkt aus Durchmesser und Gasdruck skalieren, kann mit der Anordnung wiederum, wegen des kleinen Durchmessers mit hohem Gasdruck eine stabile Glimmentladung aufrechterhalten und in dem dichten Gas VUV-Excimerlicht erzeugt werden [1].
  • Eine weitere alternative Variante zur Erzeugung brillanter UV/VUV Strahlung ist eine Entladung in dichten Edelgasen zwischen spitzen Metallelektroden bzw. einer Spitzen Metallelektrode und einer Metallfläche. Diese Varinaten der Koronaentladung werden sowohl mit Hochfrequenz als auch Gleichspannung betrieben [D. E. Murnick, M. Salvermoser, priv. Mitteilung, Gaseous Electronics Conference "GEC" 2000, 24.-27. Oktober, Houston, Texas, USA, zur Veröffentlichung angenommen].
  • Eine besonders für Ionenquellen geeignete UV/VUV-Lichtquelle ist der im folgenden beschriebene elektronenstrahlgepumpte Aufbau.
  • Die Vakuumultraviolettlichterzeugung in der Lichtquelle, die in der Ionenquelle die Ionen durch Photoionisation erzeugt, erfolgt durch die Anregung eines dichten Gases mit einem Elektronenstrahl [2, 3]. Das Gas besteht in der Regel aus einem der Edelgase He, Ne, Ar, Kr oder Xe bzw. einem Edelgas und der Beimischung eines anderen Gases, wie zum Beispiel Wasserstoff.
  • Stand der Technik
  • Massenspektrometrie mit laserbasierter VUV Einphotonenionisation wobei das VUV Licht aus UV-Laserpulsen durch Frequenzverdreifachung in einer Gaszelle erzeugt wird, und deren Einsatz für die chemische Analytik ist in der Literatur beschrieben [5-8]. Allerdings weist die laserbasierte Generation von VUV Licht einig gravierende Nachteile auf.
  • Der VUV Erzeugungsprozeß in einer Gaszelle ist sehr ineffizient. Daher müssen leistungsstarke und damit auch sehr teure, große Festkörperlaser eingesetzt werden (meist Nd:YAG Laser mit 355 nm). Im Betrieb entstehen hohe Nebenkosten durch Blitzlampen (zum Pumpen des Lasermediums benötigt) und Wartung. Weiterhin kann mit einem Festkörperlaser im allgemeinen nur eine einzige VUV Wellenlänge erzeugt werden (118 nm bei Verwendung von 355 nm Laserstrahlung). Abstimmbare Festkörperlaser sind extrem aufwendig und für praktische analytische Aufgaben nicht einsetzbar. Die Frequenzverdreifachung ist ein sehr empfindlicher nichtlinearer Prozeß, dessen VUV-Ausbeute mit der dritten Potenz der Primärstrahlung skaliert. Dies führt zu einer hohen Instabilität des Systems und zu Schwankungen in der VUV-Ausbeute. Weiterhin ist eine aufwendige Separation der Primärstrahlung 355 nm notwendig um eine Fragmentierungen der durch VUV-Absorption gebildeten Ionen zu verhindern.
  • Neben der laserbasierten VUV Einphotonenionisation ist prinzipiell auch der Einsatz von konventionellen Niederdruck Emissionslampen (z.B. Quecksilberdampf-Lampe) zur Ionenerzeugung für die Massenspektrometrie möglich.
  • Außerdem können Deuteriumlampen verwendet werden, die auf einer Gasentladung in einem Deuteriumgas basieren und wenn sie mit einem für vakuumultraviolettes Licht durchlässigen Fenster, z. B bestehend aus MgF2 oder LiF versehen sind, Kontinuumsstrahlung sowie die sogenannten Lyman- und Werner-Molekülbanden um 160 bzw. 130 nm emittieren. Deuteriumlampen sind von verschiedenen Herstellern kommerziell erhältlich.
  • Des weiteren kann VUV Licht mit sogenannter dielektrisch behinderten Entladungen erzeugt werden, wobei bei einer Gasentladung mindestens eine der Elektroden mit einer nichtleitenden Schicht versehen ist. [9]. Bei dieser Anordnung kann, zum Beispiel in dichten, kalten Edelgasen durch Anlegen einer mittelfrequenten Wechselspannung an die Elektroden Excimerlicht im VUV-Bereich erzeugt werden.
  • Diese Lampen erzeugen jedoch ein breites Spektrum an Wellenlängen (erfordert Wellenlängenseparation und bedingt eine geringe Nutzphotonendichte) und sind wenig brilliant (das bedingt beispielsweise eine schlechte Fokussierbarkeit).
    BOBELDIJK M ET AL: "TESTING THE PERFORMANCE OF A VUV PHOTOIONIZATION SOURCE ON A DOUBLE FOCUSSING MASS SPECTROMETER USING ALKANES AND THIOPHENES", INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, ELSEVIER SCIENTIFIC PUBLISHING CO. AMSTERDAM, NL, Bd. 110, Nr. 3, 2. Dezember 1991 (1991-12-02), Seiten 179-194 und GENUIT W. ET AL.: "SELECTIVE ION SOURCE FOR TRACE GAS ANALSIS", INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PHYSICS, Bd. 51, 1983, Seiten 207-213 offenbaren eine Ionenquelle zur selektiven Einphotonenionisation eines Analysengases, mit einem Ionisationsraum zur Aufnahme des Analysengases und einer UV/VUV Excimer-Glimmentladungslampe zum Erzeugen von Ionen aus dem Analysengas in dem Ionisationsraum mittels UV/VUV.
    US 6 052 401 A , WIESER J ET AL: "VACUUM ULTRAVIOLET RARE GAS EXCIMER LIGHT SOURCE", REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 68, Nr. 3, März 1997 (1997-03), Seiten 1360-1364, und SALVERMOSER M ET AL: "Energy flow and excimer yields in continuous wave rare gas-halogen systems", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 88, Nr. 1, 1. Juli 2000 (2000-07-01), Seiten 453-459 offenbaren eine elektronenstrahlbetriebene UV/VUV Excimer-Lampe.
    EP 0 585 487 A offenbart eine Vorrichtung zur Photoionisation von Spurenelementen in einem Trägergas und eine entsprechende Detektion. Als Lichtquelle wird eine Blitzlampe oder ein Laser eingesetzt.
  • Aufgabe und Beispiele
  • Aufgabe der Erfindung ist es, eine Ionenquelle mit einer Lichtquelle hoher Nutzphotonendichte zur Verfügung zu stellen sowie eine vorteilhafte Verwendung anzugeben Gelöst wird diese Aufgabe durch die Merkmale der Patentansprüche 1 und 6. Die Unteransprüche beschreiben vorteilhafte Ausgestaltungen der Erfindung.
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen und den Figuren näher erläutert. Dabei zeigen:
    • Figur 1
      Ionisationsraum eines Flugzeitmassenspektrometers mit elektronenstrahlgepumpter Excimer VUV-Lampe.
    • Figur 2
      Detaildarstellung eines Teils der Excimer-VUV-Lampe mit einem Parabolspiegel zur Zusammenfassung des UV/VUV-Lichtes.
    • Figur 3
      Übersichtsdarstellung des Flugzeitmassenspektrometers (TOFMS) mit Excimer-VUV-Lampen-Ionisation.
    • Figur 4
      Optische Aufbauten zur Einkopplung des UV/VUV-Lichtes in die Ionisationsregion des Flugzeitmassenspektrometers (TOFMS).
    • Figur 5
      Gemessene Zeitabläufe während eines Nachweiszyklus mit einem Excimer-VUV-Lampen-Ionisations Flugzeitmassenspektrometer (Prototyp). Dargestellt sind der VUV-Lichtimpuls (Kr), Abzugspannungsimpuls und das Ionendetektorsignal.
    • Figur 6
      Wellenlängenselektivität der Massenspektrometrie mit Excimer-VUV-Lampen-Ionisation. Dargestellt ist das Wellenlängenspektrum der Argon bzw. Krypton Excimer-Emission sowie die korrespondierenden Excimer-VUV-Lampen-Ionisation Flugzeitmassenspektren einer Mischung aus Benzol und Toluol.
    • Figur 7
      Mit einem Excimer-VUV-Lampen-Ionisations Flugzeitmassenspektrometer (Prototyp) durchgeführte on-line Messung von Abgas eines Motorrads während der Startphase (Excimergas: Argon)
    • Figur 8
      Schematische Übersichtsdarstellung des Quadrupol-Massenspektrometers (QMS) mit Excimer-VUV-Lampen-Ionisation.
    • Figur 9
      Schematische Übersichtsdarstellung eines Detektors für Gase auf Basis einer Ionisationskammer mit Excimer-VUV-Lampen-Ionisation und Detektion der erzeugten Ladungen.
    • Figur 10
      Schematische Übersichtsdarstellung einer VUV-Lampe, bei der durch Ablenkung des Elektronenstrahls auf verschiedene Eximer-VUV-Lichtquellen mit unterschiedlicher Gasfüllung die Wellenlänge des emittierten Lichts verändert werden kann.
    UV/VUV Excimerlampe
  • Die Figur 1 zeigt beispielhaft die Ausgestaltung der Ionisationsregion eines Flugzeitmassenspektrometers mit VUV-Eximerlampen-Ionisation. Die Figur 2 zeigt eine Ausschnitt der Strahleinkopplung und Figur 3 das gesamte Massenspektrometer mit der VUV-Eximerlampe. Die Figur 4 zeigt unterschiedliche Möglichkeiten zur Einkopplung des UV/VUV-Lichtes in die Ionisationskammer 14 bzw. zum Ionisationsort 23. Die Figuren 5 und 6 zeigen beispielhafte Anwendungsergebnisse mit dem entwickelten Prototyp.
  • Die VUV-Eximerlampeneinheit ist z.B. über eine Flansch an den Ionisationsraum 14 gekoppelt. Der obere Teil der Lampe dient zur Erzeugung eines Elektronenstrahls 8 mit der Elektronenkanone 1 und weist ein Vakuum auf. Die Elektronenröhre 2 wird über eine Getterpumpe 4 bzw. einen Pumpstutzen 5 evakuiert. Der Elektronenstrahl 8 wird auf die Folie 3 fokussiert. Die Folie besteht z.B. aus keramischen Siliziumnitrid und trennt das Hochvakuum der Elektronenröhre 2 vom Gasraum 9 ab. Im Gasraum 9 befindet sich eine Gasmischung, die über den elektronenstrahlgepumten Excimerprozeß im UV/VUV Spektralbereich leuchtet (radiativer Zerfall der Excimere). Der Gasraum 9 wird über einen Getter 10 gereinigt. Im Gasraum 9 befindet sich ein geeignet beschichteter Parabolspiegel 11, der das im Lumineszenzvolumen 13 gebildete UV/VUV-Licht zu einem parallelen Strahlbündel zusammenfaßt und diesen auf die Linse 12 wirft. Dieser Aufbau ermöglicht eine gute Ausnutzung des 360 Grad Abstrahlungsraumwinkels. Eine reflektierende Beschichtung der zum Gasraum 9 gerichteten Seite der Folie 3 kann die Ausbeute der UV/VUV-Nutzstrahlung weiter verbessern. Die Linse 12 besteht aus UV/VUV transparentem Material (z.B. aus MgF2 oder LiF) und trennt den Gasraum 9 vom Ionisationsraum 14 des Flugzeitmassenspektrometers (TOFMS). Die Linse (12) fokussiert das UV/VUV-Licht auf den Ionisationsort 23. Bei Verwendung eines Nadeleinlasses 15 befindet sich der Ionisationsort 23 hinter der Einlaßnadel 15 (im aus dem Analysengas gebildeten Molekularstrahl) zwischen den Elektroden 18 und 16 des TOFMS.
  • Alternativ zur Linse 12 kann ein Multimikrokanallichtleiter 24 oder 25 eingesetzt werden. Ein Multimikrokanallichtleiter 24 besteht aus einem Bündel mit sehr vielen engen Kapillaren (analog zu einer Mikrokanalplatte). Das UV/VUV Licht, das durch die Kapillaren fällt, kann in den Ionisationsraum 14 gelangen der ein Vakuum aufweist. Sind die Kapillaren hinreichend lang und dünn, so ist der Gasfluß aus dem Gasraum 9 durch den Multimikrokanallichtleiter 24 in den Ionisationsraum 14 sehr gering (d.h. das Vakuum in 14 wird nicht zu stark belastet). Das UV/VUV-Licht fällt entweder direkt durch die lichte Weite der Kapillare oder wird durch eine oder mehrere Totalreflektionen durch die Kapillaren des Multimikrokanallichtleiters 24 geleitet. Weiterhin kann ein Multimikrokanallichtleiter 25 eingesetzt werden, der durch eine konische Verjüngung der Kapillarenbündel eine Fokussierung des transmittierten UV/VUV Lichtstrahls 22 auf den Ionisationsort 23 erlaubt. Hauptvorteil des Einsatzes von Multimikrokanallichtleitern 24 oder 25 ist, das diese VUV-Licht mit Wellenlängen kleiner als 110 nm transmittieren können. Optische Linsen 12 oder Fenster zur Auskopplung können aufgrund der einsetzenden Eigenabsorption des Materials (LiF, MgF2) nur bis zu etwa dieser Wellenlänge eingesetzt werden.
  • Das gesamte optische System zur Einkopplung der UV/VUV-Strahlung in die Ionisationskammer 14 besteht im vorgestellten Beispiel aus dem Parabolspiegel 11 und der Linse 12 oder einem Multimikrokanallichtleiter 24 oder 25. Weiterhin ist auch eine Kombination einer Linse 12 öder eines Multimikrokanallichtleiter 25 mit einem Hohllichtwellenleiter 26, welcher das UV/VUV-Licht über Totalreflektionen direkt zum Ionisationsort 25 führt, möglich.
  • Wichtig ist bei der Ausgestaltung der Einkopplung der UV/VUV-Strahlung in die Ionisationskammer 14, daß eine hohe Strahldichte am Ionisationsort 23 erreicht wird.
  • Im in Figuren 1 dargestellten Beispiel erfolgt der Einlaß des Analysengases in das Massenspektrometer effusiv über eine Einlaßnadel 15 [10]. Weitere Probengaseinlaßtechniken, wie z.B. gepulste [11] oder kontinuierliche Überschallmolekularstrahlen [12] können ebenfalls angewendet werden.
  • Die Figur 3 zeigt eine schematische Darstellung eines Flugzeitmassesnspektrometers (TOFMS, ohne Darstellung der Vakuumpumpen, des Reflektron-Ionenspiegels und anderer Detaills) mit elektronenstrahlgepumpter Excimerlampen-Ionisation. Das UV/VUV-Licht aus der elektronenstrahlgepumpter Excimerlampe 20 wird durch die oben beschrieben optischen Elemente in den aus der Einlaßnadel 15 austretenden effusiven Molekularstrahl fokussiert. Die Spannungen in der Ionenquelle (hier vereinfacht mit den Elektoden18,16 und 17 dargestellt) sind dabei so gewählt, daß der Ionisationsraum feldfrei ist. Die durch Einphotonenabsorption von VUV-Photonen gebildeten Ionen werden also nicht durch elektrische Felder beeinflußt. Somit reicheren sich die gebildeten Ionen am und um den Ionisationsort 23 an. Diese Ionenanreicherung kann für etwa einige µs betrieben werden, danach verlassen die Ionen aufgrund von Raumladungseffekten und der Eigengeschwindigkeit der Teilchen aus dem effusiven Molekularstrahl wieder das Akzeptanzvolumen des Flugzeitmassenspektrometers (d. h. das Volumen, das auf den Ionendetektor 21 abgebildet werden kann). Zum Nachweis der angereicherten Ionen werden über die gesteuerte, pulsbare Hochspannungsversorgung 19 schlagartig geeigneten Potentiale an die Elektroden 18, 16 und 17 angelegt. Die Anstiegsflanken der Spannungspulse liegen meist im Bereich von einigen ns. Die Ionen werden zum Detektor 21 beschleunigt. Im feldfreien Driftraum (Raum zwischen Blende 17 und Detektor 21) trennen sich die Ionen entsprechend ihren Masse auf. Das Flugzeitmassenspektrum wird am Detektor 21 mit einer geeigneten Elektronik (nicht dargestellt) registriert. Die Blenden 16 und 17 können aus Lochblenden mit oder ohne Netzen oder auch nur aus Netzen bestehen. Die Massenauflösung und Empfindlichkeit in der oben beschrieben Betriebsweise des TOFMS mit Ionisation durch kontinuierliche strahlende VUV-Excimer Lampen ist begrenzt, da aufgrund der kontinuierlichen Betriebsweise der Lampe auch während des Ionenabzuges neue Ionen gebildet werden. Diese "nachträglich" gebildet Ionen erreichen den Detektor später als während der Anreicherungszeit gebildete Ionen gleicher Masse (d.h. es treten Peak-Verbreiterungen und ein erhöhtes Untergrundsignal auf).
  • Die oben beschriebenen Nachteile der kontinuierlichen Arbeitsweise der VUV-Excimer-Lampe können durch den gepulsten Betrieb der VUV-Excimer-Lampe vermieden werden.
  • Dabei wird der Elektronenstrahl 8 gepulst (z. B. durch gepulste Blenden in der Elektronenkanone oder durch Ablenkplatten) auf die Folie 3 gelenkt. Bei einem gepulsten Betrieb der Lampe 20 kann die Elektronendichte erhöht werden ohne die Folie 3 thermisch zu überlasten. Wenn der Elektronenstrahl 8 abgestellt wird, bricht die VUV-Lichtemission 22 innerhalb 500 bis 1000 ns zusammen. Dies kann ausgenutzt werden um die Ionen aus der Ionenquelle bei bereits signifikant reduzierter VUV-Lichtintensität abzuziehen. Die Figur 5 zeigt gemessene Parameter des VUV-Excimer-Lampen-Ionisations TOFMS (Prototyp) im gepulsten Betrieb. Die obere Spur zeigt den Lichtimpuls der Excimer-Lampe gemessen mit einem Photodetektor. Die mittlere Spur zeigt den Abzugsimpuls der Ionenquelle und die untere Spur zeigt das Ionendetektorsignal. Eingelassen wurden Piperidin (85 m/z) und Toluol (92 m/z), die entsprechenden Massenpeaks sind in der unteren Spur sichtbar.
  • Ein wichtiger Vorteil der VUV-Excimer-Lampen-Ionisation ist, daß durch die Wahl des Gases im Gasraum 9 verschiedene Wellenlängen eingestellt werden können.
  • Die Selektivität der Einphotonenionisation liegt darin begründet, daß nur Moleküle ionisiert werden können, deren Ionisationsenergie unterhalb der Photonenenergie des eingestrahlten VUV-Lichtes liegt. Das erlaubt die Unterdrückung der Ionisation von Verbindungen wie Sauerstoff, Stickstoff oder von Edelgasen, die sehr hohe Ionisationsenergien aufweisen. Daher ist die VUV-Ionisation sehr gut zur on-line Analyse von Spurenverbindungen aus Luft oder Prozeßgasen (Abgasen) geeignet, da die Hauptbestandteile der Gasmischung nicht ionisiert werden. Weiterhin kann durch den Einsatz unterschiedlicher Wellenlängen auch eine genauere Aussage über die Zusammensetzung der beobachteten Peaks im Massesnspektrum erzielt werden. Beispielsweise kann bei Photonenenergien von etwa 9 eV eine Beteiligung von aliphatischen organischen Verbindungen am Massesnspektrum ausgeschlossen werden. In der Tabelle 1 sind verschieden Gase bzw. Gasmischungen mit den entsprechenden Emissionswellenlängen (Maximalwerte) gegeben. Die Figur 6 zeigt die Emissionsprofile der VUV-Excimer-Lampe für Argon (links, oben) und Krypton (links, unten). Eingezeichnet sind auch die Ionisationsenergien von Benzol und Toluol. Auf der rechten Seite sind die zugehörigen gemessenen TOFMS Massenspektren einer Mischung aus Benzol (92 m/z) und Toluol dargestellt. Die Argon-Excimeremission (oben) liegt bei 128 nm (9,7 eV). Sowohl Benzol und Toluol werden daher effizient ionisiert. Die Krypton-Excimeremission (unten) liegt bei 150 nm (8,2 eV). Hier liegt Toluol direkt im Zentrum der Emissionskurve, während Benzol nur von einer "Schulteremission" auf der hochenergetischen Seite erfaßt wird. Im Massenspektrum ist daher der Toluolpeak um Größenordnungen intensiver als der Benzolpeak.
  • Aufgrund der relativ breiten Emissionsspektren (Figur 6, links) ist die Selektivität nur mittelmäßig. Mit monochromatischerer Strahlung ließe sich eine höhere Selektivität erzielen. Dies Kann auf mehrere Wege erreicht werden. Durch Zugabe bestimmter Gase kann die Emission auf eine schmalbandige Emissionslinie übertragen werden. Beispielsweise kann mit einer Mischung aus Wasserstoff und Neon eine schmalbandige Emission auf 121,57 nm erzielt werden (siehe Tabelle 1). Alternativ kann aus dem breitbandigen Emissiönspektrum ein schmaler Bereich heasugeschnitten werden. Dies ist z. B. durch Filter/Spiegel mit dichroidischer Beschichtung (Interferenzfilter) möglich. Die Figur 7 zeigt eine erste Anwendungsmessung mit dem entwickelten Prototyp eines Flugzeitmassenspektrometers mit VUV-Excimer-Lampen-Ionisation. Über ein On-line Probenahmesystem wurde Abgas eine Motorrads (TYP 43F) über die Einlaßnadel 15 in das Massesnspektrum eingelassen. Die Lampe wurde mit Argon betrieben (128 nm). Die Figur zeigt einen 3D Plot der massenspektrometrischen Information (Masse, Zeit, Intensität) aufgenommen während eines Startvorgangs des Motorrads. Verschieden aromatische Verbindungen (Benzol und methylierte Benzole) zeigen einen hochdynamischen, fluktuierenden Zeitverlauf aufgrund der instationären Verbrennungsbedingungen während der Startphase des Motors. Massenspektrometer mit VUV-Excimer-Lampen-Ionisation können vorteilhaft zur schnellen zeitaufgelösten on-line Analyse von Prozeßgasen oder zur Headspaceanalyse eingesetzt werden. Mögliche Anwendungsfelder liegen beispielsweise im Bereich der Lebensmittelindustrie (Überwachung von Röst-, Back- Koch- oder Reifevorgängen etc.) der chemischen Industrie (Überwachung von Synthesen, Abfallstoffstömen, der Mineralölverarbeitung etc.), bei der Überwachung von Verbrennungsprozessen und anderen Produktionsvorgängen.
  • 2) Quadrupol-Massenspektrometer mit elektronenstrahlgepumpter UV/VUV Excimerlampe
  • Die VUV-Excimer-Lampen-Ionisation kann auch mit anderen Massenspektrometer-Typen, die nicht gepulst wie das TOFMS arbeiten, eingesetzt werden. Die Figur 8 zeigt eine erfindungsgemäß aufgebauten VUV-Excimer-Lampe mit optischen Elementen zur Fokussierung des VUV-Lichtes auf die Ionisationsregion eines Quadrupol-Massenspektrometers. Hier wird die VUV-Excimer-Lampe 20 vorteilhaft kontinuierlich betrieben. Die Ionenquelle 29 erzeugt einen kontinuierlichen Ionenstrahl. Die an den Quadruplolstäben 27 anliegenden elektrischen Wechselfelder (von der Steuerung 28 erzeugt) lassen nur jeweils Ionen einer Masse aus dem Ionenstrahl zum Detektor 30 passieren. Durch Verändern der Wechselfelder mittels der Steuerung 28 läßt sich das Quadrupol-Massenspektrometer nacheinander auf eine Transmission verschiedener Massen einstellen und so kann eine Massesnspektrum aufgenommen werden. Mögliche Anwendungsfelder der Quadrupolmassenspektrometrie mit VUV-Excimer Lampen Ionisation liegen beispielsweise im Bereich der Lebensmittelindustrie (Überwachung von Röst-, Back- Koch- oder Reifevorgängen etc.) der chemischen Industrie (Überwachung von Synthesen, Abfallstoffstömen, der Mineralölverarbeitung etc.), bei der Überwachung von Verbrennungsprozessen und anderen Produktionsvorgängen.
  • 3) Elektronenstrahlgepumpter Excimerlampen-Ionisation für Massenspektrometer in einer Gaschromatographie-Massenspektrometrie (GC-MS) Kopplung
  • GC-MS ist eine Standardtechnik der organischen Spurenanalyse. Die Verwendung von VUV Licht zur Ionisation für die Massenspektrometrie in einer Gaschromatographie-Massenspektrometrie Kopplung bringt eine weitere Selektivitätsstufe in die Massenspektrometrie. Bestimmte Verbindungen mit höherliegenden Ionisationsenergien können von der Ionisation ausgeschlossen werden. Außerdem wird eine fragmentfreiere Ionisation im Vergleich zur Standardtechnik Elektronenstoßionisation (EI) erzielt. Verschiedene Massenspektrometer-Typen (Ionenfallen-MS, Sektorfeld-MS, Qudrupol-MS, Flugzeit-MS) können für diesen Zweck eingesetzt werden.
  • 4) Elektronenstrahlgepumpte UV/VUV Excimerlampe für Ionisationszellendetektoren
  • Zur Bestimmung ob organische Verbindungen (und/oder anorganische Verbindungen mit niedriger Ionisationsschwelle) in einer Luftprobe vorkommen benötigt man nicht unbedingt ein Massenspektrometer. Es reicht aus, in einem Ionisationsraum durch Einstrahlung des VUV Lichtes Ionen und Elektronen zu erzeugen und diese beispielsweise über den Ladungsfluß mittels eines Amperemeters 34 oder an einem Widerstand mittels eines Oszilloskops nachzuweisen. Die Figur 9 zeigt den schematischen Aufbau eines Ionisationszellendetektors mit der VUV-Excimer-Lampe 20 der gattungsgemäßen Art. In der Ionisationszelle (d. h. dem Ionisationsraum 14) befinden sich die Elektroden 31 und 32. Zwischen den Elektroden 31 und 32 ist über eine Spannungsversorgung 33 eine geeignete Abzugsspannung angelegt. Das Probengas gelangt über einen Einlaß 15 zwischen die Elektroden 31 und 32 zur Ionisationszone. Beispielsweise über ein Amperemeter 34 kann der Photostrom (Photoionenstrom und Photoelektronenstrom) nachgewiesen werden.
  • Ein solcher Detektor hat in etwa die Eigenschaften eines Flammenionisationsdetektors, er reagiert also auf die meisten organischen Verbindungen und auf einige anorganische Spezies. Durch die unterschiedliche Wellenlängen, die mit verschiedenen Gasfüllungen/optischen Systemen bereitgestellt werden können, kann eine gewisse Selektivität erreicht werden. Ein VUV-Excimer-Lampen-Ionisationszellendetektor kann damit vorteilhaft für verschiedene Anwendungen eingesetzt werden. Beispielsweise kann er als Detektor für ein Gaschromatographie eingesetzt werden. Eine andere mögliche Anwendung ist der Einsatz als Sensor für das Auftreten organischer Verbindungen in Gasgemischen.
  • 5) Multilampen-Aufbau mit einer Elektronenkanone für MS und Zähler
  • Figur 10 zeigt beispielhaft den Aufbau einer Excimer-VUV-Lampe bei der mittels einer Elek-tronenkanone 1 eine der zwei Excimer-Lichtquellen 36 der gattungsgemäßen Art je nach anliegendem elektrischen Feld zwischen den Ablenkelektroden 35 gepumpt und somit zum leuchten gebracht wird. Befüllt man die Gasräume 9 der beiden Excimer-Lichtquellen mit verschiedenen Gasen oder Gasgemischen (vgl. Tab. 1), so haben die Photonen des erzeugten Lichtes der beiden Excimer-Lichtquellen eine unterschiedliche Photonenenergie.
  • Bedingt durch das Ionisationspotential lassen sich somit bei der Analyse eines komplexen Probengases mittels Lichtstrahl von der einen öder anderen Lichtquelle Substanzen im Massenspektrum ein- oder ausblenden. Ebenso können durch geeignete Wahl des Gas oder Gasgemisches und somit der Photonenenergie isobare Verbindungen getrennt voneinander nachgewiesen werden.
  • Bezugszeichenliste
  • 1
    Elektronenkanone
    2
    Raum der Elektronenkanone (Vakuum)
    3
    Membran (z.B. 1x1 mm2, Dicke =300 nm aus SiNx-Keramik)
    4
    Getter-Pumpe
    5
    Ventil zum Abpumpen
    6
    Gaseinlaß
    7
    Gasauslaß
    8
    Elektronenstrahl
    9
    Gasraum (z.B. Gefüllt mit 500 mbar Argon)
    10
    Getter-Patrone
    11
    Reflektor (z.B. Aluminium Parabolspiegel mit MgF2 Beschich tung)
    12
    Linse (z.B. aus MgF2)
    13
    UV/VUV-Licht emittierendes Gasvolumen
    14
    Ionisationskammer
    15
    Gaseinlaßnadel
    16
    erste Abzugselektrode
    17
    zweite Abzugselektrode
    18
    Repeller-Elektrode
    19
    pulsbare Spannungsversorgung für die Elektroden 16,17 und 18 und Steuerung
    20
    gesamte UV/VUV Lichtquelle
    21
    Detektor
    22
    UV/VUV-Strahl
    23
    Ionisationsort
    24
    nicht fokussierender Multimikrokanallichtleiter
    25
    fokussierender Multimikrokanallichtleiter
    26
    Hohllichtwellenleiter
    27
    Quardrupolstäbe
    28
    Steuerung des Quardrupolionenfilters
    29
    kontinuierliche Ionenquelle für das Quadrupol-Massenspektrometer
    30
    Ionendetektor
    31
    Elektrode des Meßkondensators (positive Spannung, Photelektronenfänger)
    32
    Elektrode des Meßkondensators (negative Spannung, Photoio nenfänger)
    33
    Spannungsversorgung
    34
    Elektrometer
    35
    Ablenkelektroden
    36
    UV/VUV Lichtquelle
    Tabelle
  • Tabelle 1
    Gas bzw. Gasmischung Angeregte Spezies Wellenlänge Bandbreite
    He He2* 60 nm /80 nm
    Ne Ne2* 83 nm breitbandig
    Ar Ar2* 128 nm breitbandig
    Kr Kr2* 150 nm breitbandig
    Xe Xe2* 172 nm breitbandig
    Ne/H2 H* 121,57 nm schmalbandig
    Ar/Xe Kr/Xe Xe* 147 nm schmalbandig
    Ar/O2 O* 130 nm schmalbandig
    Ne/Ar/Kr Kr* 124 nm schmalbandig
    Ar/F2 Ne/F2 F2* 157 nm schmalbandig
    Ar/F2 ArF* 193 nm schmalbandig
  • Literaturverzeichnis:
    • [1] El-Habachi, A., K. Schoenbach; Appl. Phys. Lett. 72, 22 (1998)
    • [2] Wieser, J., D.E. Murnick, A. Ulrich, H.A. Huggins, A. Liddle, W.L. Brown; Rev. Sci. Instrum. 68(3), 1360-1364 (1997)
    • [3] Salvermoser, M., D.E. Murnick; Journal of Applied Physics 88(1), 453-459 (2000)
    • [4] Wieser, J., M. Salvermoser, L.H. Shaw, A. Ulrich, D.E. Murick, H. Dahi; 31, 4589-4597 (1998)
    • [5] Butcher, D.J., D.E. Goeringer, G.B. Hurst; Anal. Chem. 71(2), 489-496 (1999)
    • [6] Becker, C.H.; Fresen. J. Anal. Chem. 341, 3-6 (1991)
    • [7] Van Bramer, S.E., M.V. Johnston; J. Am. Soc. Mass Spectr. 1, 419-426 (1990)
    • [8] Shi, Y.J., X.K. Hu, D.M. Mao, S.S. Dimov, R.H. Lipson; Anal. Chem. 70, 4534-4539 (1998)
    • [9] Gellert, B.B., U. Kogelschatz; Applied Physics B 52, 14 (1991)
    • [10] Heger, H.J., R. Zimmermann, R. Dorfner, M. Beckmann, H. Griebel, A. Kettrup, U. Boesl; Anal. Chem. 71, 46-57 (1999)
    • [11] Pepich, B.V., J.B. Callis, J.D.S. Danielson, M. Gouterman; Rev. Sci. Instrum. 57, 878-887 (1986)
    • [12] Fricke, J.; Phys. Unserer Zeit 1, 21-27 (1973)

Claims (10)

  1. Ionenquelle zur selektiven Einphotonenionisation eines Analysengases, mit:
    einem Ionisationsraum (14) zum Aufnehmen des Analysengases; und
    einer elektronenstrahlbetriebenen UV/VUV-Excimerlampe (20) zum Erzeugen von Ionen aus dem Analysengas in dem Ionisationsraum (14) mittels UV/VUV-Licht, wobei die elektronenstrahlbetriebene UV/VUV-Excimerlampe
    - eine Elektronenkanone (1) zum Erzeugen eines Elektronenstrahls (8);
    - eine Elektronenröhre (2) umfassend die Elektronenkanone (1)
    - einen Gasraum (9) mit einem Edelgas oder einer edelgashaltigen Gasmischung in dem Gasraum (9);
    - eine Membran (3) zum Abschließen der Elektronenröhre (2) gegen den Gasraum (9), durch welche der Elektronenstrahl (8) durchtritt wobei der durch die Membran (3) tretende Elektronenstrahl (8) im Gasraum (9) UV/VUV-Licht erzeugt;
    - einen in dem Gasraum (9) angeordneten Parabolspiegel (11) zum Zusammenfassen von in einem Lumineszenzvolumen (13) des Gasraums (9) gebildeten UV/VUV-Lichtes zu einem parallelen Strahlenbündel; und
    - eine in dem Gasraum (9) angeordnete Linse (12) oder einen in dem Gasraum (9) angeordneten Multimikrokanallichtleiter (25) zum Fokussieren des von dem Parabolspiegel (11) zusammengefassten parallelen Strahlenbündels des UV/VUV-Lichtes auf einen Ionisationsort (23) in der Ionisationskammer (14) aufweist.
  2. Ionenquelle nach Anspruch 1, gekennzeichnet durch eine Getter-Pumpe (4) im Raum der Elektronenkanone (1).
  3. Ionenquelle nach Anspruch 1 oder 2, gekennzeichnet durch Gas- Ein- und Auslaß (6, 7) an dem Gasraum (9).
  4. Ionenquelle nach einem der Ansprüche 1 bis 3, gekennzeichnet durch eine Getterpatrone (10), welche mit dem Gasraum (9) verbunden ist.
  5. Ionenquelle nach einem der Ansprüche 1 bis 4, gekennzeichnet durch mindestens eine Elektrode zum Pulsen des Elektronenstrahls (8) der Elektronenkanone (1).
  6. Verwendung der Ionenquelle nach einem der Ansprüche 1 bis 5, zur Erzeugung von Ionen, in Verbindung mit deren Nachweis in einem Ionennachweisgerät.
  7. Verwendung der Ionenquelle nach dem Anspruch 6, wobei das Ionennachweisgerät ein Massenspektrometer ist.
  8. Verwendung der Ionenquelle gemäß Anspruch 7, dadurch gekennzeichnet, daß als Massenspektrometer ein Flugzeitmassenspektrometer (TOFMS) verwendet wird.
  9. Verwendung der Ionenquelle gemäß Anspruch 7, dadurch gekennzeichnet, daß als Massenspektrometer ein Quadrupolmassenspektrometer verwendet wird.
  10. Verwendung der Ionenquelle gemäß Anspruch 8, dadurch gekennzeichnet, daß der Ionisationsraum zusätzlich mit einem Laser bestrahlt wird, um Ionen über einen REMPI (resonance enhanced multi-photon ionisation) Prozeß zu erzeugen.
EP01120299.1A 2000-09-09 2001-08-24 Ionenquelle, bei der UV/VUV-Licht zur Ionisation verwendet wird Expired - Lifetime EP1220285B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000144655 DE10044655A1 (de) 2000-09-09 2000-09-09 Ionenquelle bei der UV-VUV-Licht zur Ionisation verwendet wird
DE10044655 2000-09-09

Publications (3)

Publication Number Publication Date
EP1220285A2 EP1220285A2 (de) 2002-07-03
EP1220285A3 EP1220285A3 (de) 2005-03-16
EP1220285B1 true EP1220285B1 (de) 2014-08-20

Family

ID=7655651

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01120299.1A Expired - Lifetime EP1220285B1 (de) 2000-09-09 2001-08-24 Ionenquelle, bei der UV/VUV-Licht zur Ionisation verwendet wird

Country Status (2)

Country Link
EP (1) EP1220285B1 (de)
DE (1) DE10044655A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236344B4 (de) 2002-08-08 2007-03-29 Bruker Daltonik Gmbh Ionisieren an Atmosphärendruck für massenspektrometrische Analysen
DE102005039269B4 (de) * 2005-08-19 2011-04-14 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Verfahren und Vorrichtung zum massenspektrometrischen Nachweis von Verbindungen
US8721836B2 (en) 2008-04-22 2014-05-13 Micron Technology, Inc. Plasma processing with preionized and predissociated tuning gases and associated systems and methods
CN102103971B (zh) * 2009-12-18 2012-11-07 中国科学院大连化学物理研究所 微型质谱仪中空心阴极放电真空紫外光电离源
DE102012209324A1 (de) * 2012-06-01 2013-12-05 Helmholtz Zentrum München Lichtleitervorrichtung für ein Ionisierungsgerät und Verfahren zum Ionisieren von Atomen und/oder Molekülen
CZ306584B6 (cs) 2015-11-16 2017-03-15 Univerzita Tomáše Bati ve Zlíně Zařízení pro generování UV záření a způsob generování tohoto záření
CN107014892B (zh) * 2017-05-15 2019-06-18 清华大学 一种基于真空紫外激光的微米级空间分辨质谱成像系统
CN111929354B (zh) * 2020-07-02 2021-09-17 东华理工大学 一种稀土矿样顺次电离分析仪器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578953A1 (de) * 1992-07-06 1994-01-19 Heraeus Noblelight GmbH Hochleistungsstrahler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206594A (en) * 1990-05-11 1993-04-27 Mine Safety Appliances Company Apparatus and process for improved photoionization and detection
US6052401A (en) * 1996-06-12 2000-04-18 Rutgers, The State University Electron beam irradiation of gases and light source using the same
DE19754161C2 (de) * 1997-12-06 1999-11-25 Gsf Forschungszentrum Umwelt Verfahren zum Nachweis von Substanzen und Substanzklassen
DE19820626C2 (de) * 1998-05-08 2000-09-07 Deutsch Zentr Luft & Raumfahrt Verfahren und Vorrichtung zum Nachweis von Probenmolekülen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578953A1 (de) * 1992-07-06 1994-01-19 Heraeus Noblelight GmbH Hochleistungsstrahler

Also Published As

Publication number Publication date
EP1220285A2 (de) 2002-07-03
EP1220285A3 (de) 2005-03-16
DE10044655A1 (de) 2002-04-04

Similar Documents

Publication Publication Date Title
EP1297554B1 (de) Luftdruck-photoionisierer für die massenspektrometrie
US6974957B2 (en) Ionization device for aerosol mass spectrometer and method of ionization
EP2428796B1 (de) Verfahren und Vorrichtung zur Ionisierung und Identifizierung von Gasen mittels UV-Strahlung und Elektronen
EP0503748B1 (de) Verfahren zum Erzeugen von Ionen, insbesondere für ein Massenspektrometer, wie Flugzeitmassenspektrometer, aus thermisch instabilen, nichtflüchtigen grossen Molekülen
DE102006050136B4 (de) Verfahren und Vorrichtung zur Erzeugung von positiv und/oder negativ ionisierten Gasanalyten für die Gasanalyse
EP1557667B1 (de) Gasanalyseverfahren und ionisationsdetektor zur ausführung des verfahrens
DE102016124889B4 (de) Massenspektrometer mit Lasersystem zur Erzeugung von Photonen verschiedener Energie
DE102009027516A1 (de) Einheit zur Fotoionisation mit veränderlicher Energie und Verfahren zur Massenspektrometrie
DE112009001323T5 (de) Kollisionszelle
DE10256488A1 (de) Massenspektrometer und Massenanalyseverfahren
DE19523860A1 (de) Ionenfallen-Massenspektrometer mit vakuum-externer Ionenerzeugung
DE102005028930A1 (de) Vorrichtung für die Spektroskopie mit geladenen Analyten
DE102020113976A1 (de) Massenspektrometrisches Hybridsystem
EP1915770B1 (de) Verfahren und vorrichtung zum massenspektrometrischen nachweis von verbindungen
Smith et al. Time‐of‐flight mass spectrometry of aromatic molecules subjected to high intensity laser beams
EP1220285B1 (de) Ionenquelle, bei der UV/VUV-Licht zur Ionisation verwendet wird
DE102004025841A1 (de) Verfahren und Vorrichtung zur massenspektroskopischen Untersuchung von Analyten
EP0000865B1 (de) Ionenquelle mit einer Ionisationskammer zur chemischen Ionisierung
DE69835610T2 (de) Verfahren zum betrieb eines massenspektrometers mit einem eingangssignal niedriger auflösung zur verbesserung des signal / rausch -verhältnisses
CN113383406A (zh) 相位锁定的傅里叶变换线性离子阱质谱分析法
DE2048862C3 (de) Vorrichtung zur spektralphotometrischen Analyse
DE3533364A1 (de) Verfahren und vorrichtung zur untersuchung eines gasgemisches
WO2010031387A1 (de) Unterscheidung von enantiomeren mit hilfe der breitbandigen femtosekunden-circulardichroismus-massenspektrometrie
DE102004006997B4 (de) Ionendetektor
CN112074927A (zh) 用于粒子的质谱分析的装置和方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 01J 49/16 A

Ipc: 7H 01J 27/24 B

17P Request for examination filed

Effective date: 20050219

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES F

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES F

17Q First examination report despatched

Effective date: 20100429

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 683852

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50116419

Country of ref document: DE

Effective date: 20141002

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140829

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50116419

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140824

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 683852

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150824

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140824

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190822

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190821

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190821

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200831

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50116419

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200824