EP1215295A1 - Aushärtbare Aluminium-Gussliegerung und Bauteil - Google Patents

Aushärtbare Aluminium-Gussliegerung und Bauteil Download PDF

Info

Publication number
EP1215295A1
EP1215295A1 EP01127698A EP01127698A EP1215295A1 EP 1215295 A1 EP1215295 A1 EP 1215295A1 EP 01127698 A EP01127698 A EP 01127698A EP 01127698 A EP01127698 A EP 01127698A EP 1215295 A1 EP1215295 A1 EP 1215295A1
Authority
EP
European Patent Office
Prior art keywords
component
weight
aluminum
nickel
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01127698A
Other languages
English (en)
French (fr)
Other versions
EP1215295B1 (de
Inventor
Andreas Dr. Barth
Mohamed Dr. Douaoui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1215295A1 publication Critical patent/EP1215295A1/de
Application granted granted Critical
Publication of EP1215295B1 publication Critical patent/EP1215295B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37

Definitions

  • the invention relates to an aluminum casting alloy according to claim 1 and a component according to claim 2.
  • This alloy is particularly suitable for pistons in internal combustion engines thought.
  • the relatively high silicon content leads to a good wear resistance and high strength even at high Temperatures.
  • the other alloy elements prevent that Formation of sharp primary silicon crystals under Alternating loads form the starting points for fatigue fractures.
  • such components only have limited white Elongations at break.
  • the brittleness of the component at higher concentrations elevated.
  • the cobalt in particular shows the functional property here, the adhesive properties of the component on the mold to decrease without increasing the brittleness.
  • the Iron content can be greatly reduced.
  • the object of the invention is therefore an alloy to provide, resulting in components that have a high Heat resistance, high elongation at break, high ductility with a low tendency to corrode.
  • the object is achieved by an alloy according to claim 1 and a component according to claim 2 solved.
  • the alloy according to claim 1 has one Silicon content that is between 5% and 10%. On lower silicon content would increase the castability of the alloy affect. A higher silicon content leads to material embrittlement.
  • the silicon content is particularly preferably between 6.5% and 7.5%.
  • the alloying element magnesium forms together with the silicon Mg 2 Si crystals (magnesium silicide), which increase strength. If the magnesium content is below the lower limit according to the invention, the resulting component is too low in strength; above 0.35% magnesium, the Mg 2 Si crystals lead to too high brittleness.
  • the alloy element nickel forms together with the aluminum intermetallic phases, such as. B. Al 3 Ni (nickel aluminide) which increase the heat resistance and only melt congruently at temperatures above 800 ° C (in contrast to Al 2 Cu (copper aluminide), which forms with copper-containing alloys and melts below 600 ° C).
  • the phases containing aluminum and nickel do not have a negative effect on the ductility of the material.
  • the nickel content of the alloy according to the invention is between 0.3% and 3%, preferably between 0.5% and 2.5%.
  • Cobalt also forms intermetallic Compounds based on aluminum and cobalt, similar to the connections based on aluminum and nickel, which increase the heat resistance.
  • the alloy according to the invention may contain cobalt between 0.6% and 3% by weight.
  • Another object of the invention is a component according to claim 2.
  • the component is cast from an alloy, which is already described in claim 1 and the advantages has that result from this alloy.
  • a heat treatment of the component leads to precipitation hardening (hot curing) of an Al matrix (by which the component is formed) by deliberately intermetallic phases such.
  • the precipitation hardening takes place in a temperature interval between 160 ° C and 240 ° C for a period of 0.2 h to 10 h.
  • Precipitation hardening is particularly preferably carried out in a temperature interval between 180 ° C. and 220 ° C. for a period of 0.5 h to 8 h.
  • the duration of the heat treatment depends on the temperature, at higher temperatures the heat treatment is shortened considerably.
  • the component represented by the alloy according to the invention is preferred as a sand casting or permanent mold component trained as so the heat treatment already mentioned is facilitated.
  • the component according to the invention is particularly expedient as a cylinder head or as a cylinder crankcase in an internal combustion engine designed.
  • these components especially in Cylinder heads experience very high pressures at high temperatures on.
  • these components have very complex geometries have such.
  • a cylinder head of an internal combustion engine is used in the log casting process cast with the alloy according to the invention.
  • the Casting parameters correspond to the usual procedural process control.
  • the component After casting and after cooling, the component has one coarse grain structure of mixed crystals due to aluminum most alloying elements at room temperature has very low solubility. For this reason it is now done solution annealing of the component for approx. 4 -5 h at one temperature of approx. 540 ° C. In this step, the alloying elements loosen in the aluminum matrix. Then that will Component quenched in water, the alloying elements in the aluminum matrix remain solved.
  • precipitation hardening takes place, in which the elements dissolved in the aluminum matrix leave the matrix in a controlled manner with the formation of mixed crystals. This takes place at a temperature of 220 ° C for 0.5 hours. Alternatively, precipitation hardening can take place at 180 ° C for 8 hours.
  • the phases that form during precipitation hardening (precipitations) are intermetallic compounds, these include Mg 2 Si, which increases the strength of the component and Al 3 Ni (or other ternary and / or quaternary intermetallic compounds based on aluminum and nickel) which increases the heat resistance of the component due to its high melting temperature.
  • the strength and ductility of the component can be adjusted by the temperature control and the duration of the temperature treatment, which, as mentioned, is due to the deposited crystal (e.g. the intermetallic compounds Mg 2 Si and Al 3 Ni).
  • the size of the Mg2Si and Al3Ti precipitates also affects which are also influenced by the heat treatment the component properties, which is explained below.
  • the strength ⁇ of the component is shown schematically in FIGS. 1 and 2 (left y-axis) and the elongation at break ⁇ (right y-axis, dotted) as a function of the duration of the heat treatment t.
  • Figures 1 and 2 differ in temperature T of the heat treatments, T of Figure 1 being smaller as T of Figure 2.
  • the solid curves 1 and 3 show schematically the course of the strength ⁇ , the dashed lines 2 and 4 the course of the elongation at break ⁇ .
  • T6 the component points here a very fine structure of the excretions.
  • the elongation at break in the T6 state reaches a minimum.
  • the T7 state has the advantage of being due the rougher structure of the excretions found in this Sets state, the elongation at break increases again.
  • T6 and T7 are fixed technical terms, T does not stand for temperature in these terms.
  • the status T7 is related to the task to strive for high elongation at break.
  • the alloying elements silicon and magnesium increase the strength and a shift of curves 1 and 3 up. In return, these elements make curves 2 and 4 shifted down, which negatively affects the elongation at break effect. Surprisingly, it was found that both nickel and cobalt are the alloying elements Move curves 1 and 3 upwards without a negative impact on the elongation at break.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

9. Die Erfindung betrifft eine aushärtbare Aluminium-Gusslegierung, die neben Aluminium als funktionale Elemente 5 bis 10 Gew.% Silizium, 0,2 bis 0,35 Gew.% Magnesium, 0,3 bis 3 Gew.% Nickel, und/oder 0,6 bis 3 Gew. % Kobalt sowie herstellungsbedingte Verunreinigungen enthält. <IMAGE>

Description

Die Erfindung betrifft eine Aluminium Gußlegierung nach Patentanspruch 1 sowie ein Bauteil nach Patentanspruch 2.
Aus der DE 44 04 420 A1 ist eine aushärtbare Aluminiumlegierung mit einer Zusammensetzung:
  • 8,0 bis 10,9 Gew.% Silizium,
  • 0,8 bis 2,0 Gew.% Magnesium,
  • 4,0 bis 5,9 Gew.% Kupfer
  • 1,0 bis 3,0 Gew.% Nickel,
  • 0,2 bis 0,4 Gew.% Mangan
  •    sowie weniger als 0,5 Gew.% Eisen bekannt.
    (Gew.% = Gewichtsprozent, Anteil der Einzelelemente an der Gesamtmasse der Legierung).
    Diese Legierung ist insbesondere für Kolben in Verbrennungsmotoren gedacht. Der relativ hohe Siliziumanteil führt zu einer guten Verschleißbeständigkeit und hoher Festigkeit auch bei hohen Temperaturen. Die übrigen Legierungselemente verhindern die Ausbildung von scharfen Primärsilizium-Kristallen, die unter Wechselbelastung die Ausgangspunkte von Ermüdungsbrüchen bilden. Allerdings weißen derartige Bauteile lediglich begrenzte Bruchdehnungen auf.
    Die DE 42 15 160 C2 beschreibt eine Aluminiumlegierung für Druckgußanwendungen, die eine gute Entformbarkeit eines Bauteils aus der Druckgußform gewährleistet. Sie weist neben 99,7% reinem Hüttenaluminium folgende Zusammensetzung auf:
  • 5,0 bis 12,0 Gew.% Silizium,
  • 0 bis 0,8 Gew.% Magnesium,
  • weniger als 0,01 Gew.% Kupfer
  • weniger als 0,2 Gew.% Eisen,
  • 0,1 bis 0,5 Gew.% Kobalt.
  • Im Allgemeinen wird für die Herabsetzung der Haftung zwischen dem Bauteil und der Gießform der Legierung Eisen zugegeben, das jedoch bei höheren Konzentrationen die Sprödigkeit des Bauteils erhöht. Insbesondere das Kobalt zeigt hier die funktionale Eigenschaft, die Klebeeigenschaften des Bauteils an der Gießform zu verringern, ohne die Sprödigkeit zu erhöhen. Somit kann der Eisenanteil stark reduziert werden.
    Die bereits angesprochene. Sprödigkeit der Legierung, die auf verschieden Legierungselemente zurückzuführen ist und als Kompromiß in verschiedenen Anwendungen akzeptabel ist, führt bei bestimmten, hochbelasteten Bauteilen zum Versagen. Dies gilt insbesondere für Motorenbauteile wie Zylinderköpfe oder Zylinderkurbelgehäuse. Hier wirken besonders hohe Temperaturen und Drücke und Wechselbelastungen. Hinzu kommt, dass komplexe Geometrien in hohem Maße Kerbwirkungen hervorrufen. In diesen Fällen ist eine außerordentlich hohe Duktilität des Werkstoffes erforderlich, um ein Bauteilversagen zu vermeiden. Dies gilt insbesondere bei modernen Hochleistungsmotoren, bei denen die Belastungen in den Zylinderköpfen stetig am steigen sind.
    Die Aufgabe der Erfindung besteht demnach darin, eine Legierung bereitzustellen, aus der Bauteile resultieren, die eine hohe Warmfestigkeit, eine hohe Bruchdehnung, eine hohe Duktilität bei einer geringen Korrosionsneigung aufweisen.
    Die Aufgabe wird durch eine Legierung nach Patentanspruch 1 und einem Bauteil nach Patentanspruch 2 gelöst.
    Die erfindungsgemäße Legierung nach Patentanspruch 1 weist einen Siliziumanteil auf, der zwischen 5 % und 10 % liegt. Ein niedrigerer Siliziumanteil würde die Gießbarkeit der Legierung beeinträchtigen. Ein höherer Siliziumanteil führt zu einer Materialversprödung. Besonders bevorzugt liegt der SiliziumAnteil zwischen 6,5 % und 7,5 %.
    Das Legierungselement Magnesium bildet zusammen mit dem Silizium Mg2Si-Kristalle (Magnesiumsilizid), die festigkeitssteigernd wirken. Bei einem Magnesiumanteil unterhalb der erfindungsgemäßen Untergrenze weist das resultierende Bauteil eine zu geringe Festigkeit auf, oberhalb von 0,35 % Magnesium führen die Mg2Si-Kristalle zu einer zu hohen Sprödigkeit.
    Das Legierungselement Nickel bildet zusammen mit dem Aluminium intermetallische Phasen, wie z. B. Al3Ni (Nickelaluminid) die die Warmfestigkeit erhöhen und erst bei Temperaturen über 800° C kongruent schmelzen (im Gegensatz zu Al2Cu (Kupferaluminid), das sich bei kupferhaltigen Legierungen bildet und bereits unterhalb von 600° C schmilzt). Zudem wirken sich die Phasen, die Aluminium und Nickel enthalten, nicht negativ auf die Duktilität des Materials aus. Der Nickel-Anteil an der erfindungsgemäßen Legierung liegt zwischen 0,3 % und 3 %, bevorzugt zwischen 0,5 % und 2,5 %.
    Es ist möglich, der erfindungsgemäßen Legierung Kobalt als Legierungselement zuzugeben. Kobalt bildet ebenfalls intermetallische Verbindungen auf der Basis von Aluminium und Kobalt, ähnlich wie die Verbindungen auf Basis von Aluminium und Nickel, die die Warmfestigkeit erhöhen. Die erfindungsgemäße Legierung kann Kobalt zwischen 0,6 Gew. % und 3 Gew. % enthalten.
    Auf Eisen, durch das die Bruchdehnung reduziert wird, kann in der erfindungsgemäßen Legierung verzichtet werden. Das selbe gilt für das Kupfer als Legierungselement, das die Korrosionsbeständigkeit verschlechtert.
    Ein weiterer Gegenstand der Erfindung ist ein Bauteil nach Patentanspruch 2. Das Bauteil wird aus einer Legierung gegossen, die bereits im Patentanspruch 1 beschrieben wird und die Vorteile aufweist, die aus dieser Legierung resultieren.
    Eine Wärmebehandlung des Bauteils vorzugsweise nach einem Lösungsglühen führt zu einer Ausscheidungshärtung (Warmaushärten) einer Al-Matrix (durch die das Bauteil bildet ist) indem gezielt intermetallischen Phasen wie z. B. das genannte Mg2Si oder das Al3Ni ausgeschieden werden. Die Ausscheidungshärtung erfolgt in einem Temperaturintervall zwischen 160° C und 240° C für eine Dauer von 0,2 h bis 10 h. Besonders bevorzugt erfolgt die Ausscheidungshärtung in einem Temperaturintervall zwischen 180° C und 220° C für eine Dauer von 0,5 h bis 8 h. Die Dauer der Temperaturbehandlung hängt von der Temperatur ab, bei höheren Temperaturen verkürzt sich die Wärmebehandlung erheblich.
    Das Bauteil, das durch die erfindungsgemäße Legierung dargestellt wird, ist bevorzugt als Sandguß- oder Kokillenguß-Bauteil ausgebildet, da so die bereits genannte Wärmebehandlung erleichtert wird. Für ein Bauteil, das im Druckgießverfahren hergestellt wird, ist die Wärmebehandlung auf Grund von Lufteinschlüssen nicht ohne Weiteres möglich. In diesem Fall müßte ein, verfahrenstechnisch aufwendigeres Vakuumdruckgießverfahren angewandt werden.
    Besonders zweckmäßig ist das erfindungsgemäße Bauteil als Zylinderkopf oder als Zylinderkurbelgehäuse in einem Verbrennungsmotor ausgestaltet. In diesen Bauteilen, insbesondere in Zylinderköpfen treten sehr hohe Drücke bei hohen Temperaturen auf. Hinzu kommt, dass diese Bauteile sehr komplexe Geometrien aufweisen wie z. B. an den Ventilstegen im Zylinderkopf oder an den Kühlkanälen im Zylinderkurbelgehäuse. Diese Konstruktionen wirken gerade bei den hohen Temperaturen, Drücken und Wechselbelastung als Kerben und Bruchausgangsstellen. Eine besonders hohe Bruchdehnung in Kombination mit einer erhöhten Warmfestigkeit bietet hier einen erheblichen Vorteil.
    Die Ausgestaltung der Erfindung wird im folgenden Ausführungsbeispiel näher erläutert.
    Es zeigen:
    Fig. 1,
    das schematische Aushärtverhalten eines Bauteils als Funktion der Zeit, bei einer Temperatur T1.
    Fig. 2,
    das schematische Aushärtverhalten eines Bauteils als Funktion der Zeit, bei einer Temperatur T2, wobei T2 größer als T1 ist.
    Ein Zylinderkopf eines Verbrennungsmotors wird im Kokollengießverfahren mit der erfindungsgemäßen Legierung gegossen. Die Gießparameter entsprechen der üblichen verfahrensbedingten Prozeßführung.
    Nach dem Gießen und nach dem Abkühlen weist das Bauteil eine grobe Kornstruktur von Mischkristallen auf, da Aluminium gegenüber den meisten Legierungselementen bei Raumtemperatur eine sehr geringe Löslichkeit aufweist. Aus diesem Grund erfolgt nun ein Lösungsglühen des Bauteils für ca. 4 -5 h bei einer Temperatur von ca. 540° C. Bei diesem Schritt lösen sich die Legierungselemente in der Aluminiummatrix. Anschließend wird das Bauteil in Wasser abgeschreckt, wobei die Legierungselemente in der Aluminiummatrix gelöst bleiben.
    Im Weiteren erfolgt ein Auscheidungshärten, bei dem die in der Aluminiummatrix gelösten Elemente unter Bildung von Mischkristallen aus der Matrix kontrolliert ausscheiden. Dies erfolgt bei einer Temperatur von 220° C über 0,5 Stunden. Alternativ hierzu kann das Ausscheidungshärten bei 180° C für 8 Stunden erfolgen. Die Phasen, die sich beim Ausscheidungshärten bilden (Ausscheidungen)sind intermetallische Verbindungen, diese beinhalten unter anderem Mg2Si, das die Festigkeit des Bauteils steigert und Al3Ni (oder andere ternäre und/oder quarternäre intermetallische Verbindungen auf Basis von Aluminium und Nikkel) das auf Grund seiner hohen Schmelztemperatur die Warmfestigkeit des Bauteils erhöht.
    Die Festigkeit und die Duktilität des Bauteils ist durch die Temperaturführung und der Dauer der Temperaturbehandlung einstellbar, was, wie erwähnt, auf die ausgeschiedenen Kristall (z. B. die intermetallische Verbindungen Mg2Si und Al3Ni) zurückzuführen ist.
    Ebenso wirkt sich die Größe der Mg2Si und Al3Ti-Ausscheidungen, die ebenfalls durch die Wärmebehandlung beeinflußt werden auf die Bauteileigenschaften aus, was im Folgenden erläutert wird.
    In Fig. 1 und Fig. 2 ist schematisch die Festigkeit σ des Bauteils (linke y-Achse) und die Bruchdehnung ε (rechte y-Achse, gestrichelt) als Funktion der Dauer der Wärmebehandlung t dargestellt. Die Figuren 1 und 2 unterscheiden sich in der Temperatur T der Wärmebehandlungen, wobei T von Figur 1 kleiner ist als T von Figur 2. Die durchgezogenen Kurven 1 und 3 zeigen schematisch den Verlauf der Festigkeit σ, die gestrichelten Linien 2 und 4 den Verlauf der Bruchdehnung ε.
    Abhängig von der Temperatur erreicht die Bauteilfestigkeit nach einer bestimmten Dauer der Wärmebehandlung ein Maximum. Dieser Zustand wird im Allgemeinen T6 genannt, das Bauteil weist hier eine sehr feine Struktur der Ausscheidungen auf. Gleichzeitig erreicht die Bruchdehnung im T6 Zustand ein Minimum. Wird die Wärmebehandlung nach Erreichen des T6-Zustandes fortgesetzt, tritt eine sogenannte Überhärtung ein, was als T7-Zustand bezeichnet wird. Der T7-Zustand hat den Vorteil, dass auf Grund der gröberen Struktur der Ausscheidungen, die sich in diesem Zustand einstellt, die Bruchdehnung wieder zunimmt.
    Die Bezeichnungen T6 und T7 sind feststehende Fachbegriffe, T steht in diesen Bezeichnungen nicht für Temperatur.
    Bei der Wärmebehandlung des erfindungsgemäßen Bauteils ist darauf zu achten, dass sowohl die Festigkeit als auch die Bruchdehnung den Anforderungen an das Bauteil entsprechen. Im Allgemeinen ist aufgabenbezogen der Zustand T7 mit einer möglichst hohen Bruchdehnung anzustreben.
    Ein Vergleich von Figur 1 und Figur 2 zeigt, dass die Maxima und Minima des T6-Zustandes bei einer höheren Temperatur (Figur 2) deutlich stärker ausgeprägt sind und früher erreicht werden als bei niedrigeren Temperaturen (Figur 1). Die Phasenbildung ist bei höheren Temperaturen jedoch schwerer zu kontrollieren. Die beschriebene Wärmebehandlung von 220° C für 1,2 h stellt einen Kompromiss dieser Aspekte dar.
    Die Legierungselemente Silizium und Magnesium bewirken eine Festigkeitssteigerung und eine Verschiebung der Kurven 1 und 3 nach oben. Im Gegenzug werden durch diese Elemente die Kurven 2 und 4 nach unten verschoben, was sich negativ auf die Bruchdehnung auswirkt. Überraschenderweise konnte festgestellt werden, dass sowohl Nickel als auch Kobalt als Legierungselemente die Kurven 1 und 3 nach oben verschieben, ohne eine negative Auswirkung auf die Bruchdehnung auszuüben.
    Somit führt die Zugabe von Nickel und/oder Kobalt an sich, insbesondere jedoch in Kombination mit einer kontrollierten Wärmebehandlung, durch die sich die gewünschten Ausscheidungen von Verbindungen auf der Basis von Aluminium und Nickel bzw. Aluminium und Kobalt bilden und die vorteilhafte Kornstruktur eingestellt wird, zu der erfindungsgemäßen Lösung der Aufgabe.

    Claims (8)

    1. Außhärtbare Aluminium-Gusslegierung
      dadurch gekennzeichnet, dass
      die Legierung neben Aluminium als funktionale Elemente
      5 bis 10 Gew.% Silizium,
      0,2 bis 0,35 Gew.% Magnesium,
      0,3 bis 3 Gew.% Nickel,
      und/oder 0,6 bis 3 Gew. % Kobalt,
      sowie herstellungsbedingte Verunreinigungen enthält.
    2. Außhärtbare Aluminium-Gusslegierung nach Anspruch 1
      dadurch gekennzeichnet, dass
      die Legierung neben Aluminium als funktionale Elemente
      6,5 bis 7,5 Gew.% Silizium,
      0,2 bis 0,35 Gew.% Magnesium,
      0,5 bis 2,5 Gew.% Nickel,
      sowie herstellungsbedingte Verunreinigungen enthält.
    3. Bauteil aus einer Aluminiumlegierung,
      dadurch gekennzeichnet, dass
      das Bauteil zumindest lokal als Legierungselemente
      5 bis 10 Gew.% Silizium,
      0,2 bis 0,35 Gew.% Magnesium,
      0,3 bis 3 Gew.% Nickel,
         und/oder 0,6 bis 3 Gew. % Kobalt,
      aufweist und
      dass das Bauteil Phasen enthält, die Aluminium und Nickel und/oder Aluminium und Kobalt aufweisen und in Form von binären und/oder ternären und/oder quarternären intermetallischen Verbindungen vorliegen.
    4. Bauteil aus einer Aluminiumlegierung nach Anspruch 3,
      dadurch gekennzeichnet, dass
      das Bauteil zumindest lokal als Legierungselemente
      6,5 bis 7,5 Gew.% Silizium,
      0,2 und 0,35 Gew.% Magnesium und
      0,5 und 2,5 Gew.% Nickel
      aufweist und
      dass das Bauteil Phasen enthält, die Aluminium und Nickel aufweisen und in Form von binären und/oder ternären und/oder quarternären intermetallischen Verbindungen vorliegen.
    5. Bauteil nach Anspruch 3 oder 4,
      dadurch gekennzeichnet, dass
      das Bauteil bei einer Temperatur zwischen 16.0° C und 240° C 0,2 bis 10 h warmausgehärtet ist.
    6. Bauteil nach einem der Ansprüche 3 bis 5,
      dadurch gekennzeichnet, dass
      das Bauteil bei einer Temperatur zwischen 180° C und 220° C 0,5 bis 8 h wärmebehandelt ist.
    7. Bauteil nach einem der Ansprüche 3 bis 6,
      dadurch gekennzeichnet, dass
      das Bauteil in einem Sandgieß- oder Kokillengieß- oder Vakuumdruckgießverfahren herstellbar ist.
    8. Bauteil nach einem der Ansprüche 3 bis 7,
      dadurch gekennzeichnet, dass
      das Bauteil ein Zylinderkopf oder ein Zylinderkurbelgehäuse eines Verbrennungsmotors ist.
    EP01127698A 2000-12-15 2001-11-21 Aushärtbare Aluminium-Gussliegerung und Bauteil Expired - Lifetime EP1215295B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10062547 2000-12-15
    DE10062547A DE10062547A1 (de) 2000-12-15 2000-12-15 Aushärtbare Aluminium-Gusslegierung und Bauteil

    Publications (2)

    Publication Number Publication Date
    EP1215295A1 true EP1215295A1 (de) 2002-06-19
    EP1215295B1 EP1215295B1 (de) 2006-06-14

    Family

    ID=7667285

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01127698A Expired - Lifetime EP1215295B1 (de) 2000-12-15 2001-11-21 Aushärtbare Aluminium-Gussliegerung und Bauteil

    Country Status (3)

    Country Link
    US (1) US6676775B2 (de)
    EP (1) EP1215295B1 (de)
    DE (2) DE10062547A1 (de)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2009010264A2 (de) * 2007-07-18 2009-01-22 Technische Universität Clausthal Aluminium-gusslegierung und deren verwendung
    EP2450463A3 (de) * 2010-07-02 2013-05-29 Vöcklabrucker Metallgießerei Dambauer GmbH Aluminiumlegierung

    Families Citing this family (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102004013777B4 (de) * 2004-03-20 2005-12-29 Hydro Aluminium Deutschland Gmbh Verfahren zur Herstellung eines Gussteils aus einer AL/Si-Gusslegierung
    US8062250B2 (en) * 2004-08-10 2011-11-22 Unomedical A/S Cannula device
    DE102005037738B4 (de) * 2005-08-10 2009-03-05 Daimler Ag Aluminium-Gusslegierung mit hoher dynamischer Festigkeit und Wärmeleitfähigkeit
    AR087892A1 (es) 2011-09-16 2014-04-23 Ball Corp Aleacion de aluminio, proceso para fabricar un recipiente a partir de un tarugo y metodo para formar el tarugo
    CA2908181C (en) 2013-04-09 2018-02-20 Ball Corporation Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys
    US20180044155A1 (en) 2016-08-12 2018-02-15 Ball Corporation Apparatus and Methods of Capping Metallic Bottles
    EP4219780A1 (de) 2016-12-30 2023-08-02 Ball Corporation Aluminiumlegierung für fliessgepresste behälter und verfahren zu ihrer herstellung
    MX2019009745A (es) 2017-02-16 2020-02-07 Ball Corp Aparato y metodo para formar y aplicar tapas a prueba de robo giratorias en cuellos roscados de contenedores de metal.
    US11185909B2 (en) 2017-09-15 2021-11-30 Ball Corporation System and method of forming a metallic closure for a threaded container
    DE102021114484A1 (de) 2021-06-07 2022-12-08 Audi Aktiengesellschaft Aluminium-Gusslegierung
    DE102021131973A1 (de) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Aluminium-Druckgusslegierung
    DE102021131935A1 (de) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Aluminium-Druckgusslegierung

    Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH168202A (de) * 1932-02-05 1934-03-31 Metallgesellschaft Ag Aluminium-Silizium-Legierung.
    US4099314A (en) * 1976-03-10 1978-07-11 Societe De Vente De L'aluminium Pechiney Method of producing hollow bodies in aluminum-silicon alloys by powder-extrusion
    JPH03120334A (ja) * 1989-09-29 1991-05-22 Showa Alum Corp 押出性に優れた低熱膨張アルミニウム合金
    DE4215160A1 (de) * 1992-05-08 1993-11-11 Vaw Ver Aluminium Werke Ag Aluminium-Druckgußlegierung
    EP0861911A1 (de) * 1996-09-03 1998-09-02 Toyota Jidosha Kabushiki Kaisha Legierung, aluminiumlegierung und aluminiumlegierungsteil mit hervorragender thermischer ermüdungsfestigkeit
    JPH1182151A (ja) * 1997-09-11 1999-03-26 Yamaha Motor Co Ltd アルミニウム合金製シリンダブロック

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB394746A (en) * 1932-02-05 1933-07-06 Lightalloys Ltd Aluminium alloys and methods of treating same
    US4243438A (en) 1978-07-21 1981-01-06 Sumitomo Aluminium Smelting Co., Ltd. Production of aluminum impact extrusions
    US4274438A (en) * 1979-02-21 1981-06-23 Westinghouse Electric Corp. Method of diagnostic valve testing
    US5240521A (en) * 1991-07-12 1993-08-31 Inco Alloys International, Inc. Heat treatment for dispersion strengthened aluminum-base alloy
    JP3142659B2 (ja) 1992-09-11 2001-03-07 ワイケイケイ株式会社 高力、耐熱アルミニウム基合金
    DE4404420C2 (de) 1994-02-11 1997-07-17 Alcan Gmbh Aluminium-Silicium-Legierung und ihre Verwendung

    Patent Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH168202A (de) * 1932-02-05 1934-03-31 Metallgesellschaft Ag Aluminium-Silizium-Legierung.
    US4099314A (en) * 1976-03-10 1978-07-11 Societe De Vente De L'aluminium Pechiney Method of producing hollow bodies in aluminum-silicon alloys by powder-extrusion
    JPH03120334A (ja) * 1989-09-29 1991-05-22 Showa Alum Corp 押出性に優れた低熱膨張アルミニウム合金
    DE4215160A1 (de) * 1992-05-08 1993-11-11 Vaw Ver Aluminium Werke Ag Aluminium-Druckgußlegierung
    EP0861911A1 (de) * 1996-09-03 1998-09-02 Toyota Jidosha Kabushiki Kaisha Legierung, aluminiumlegierung und aluminiumlegierungsteil mit hervorragender thermischer ermüdungsfestigkeit
    JPH1182151A (ja) * 1997-09-11 1999-03-26 Yamaha Motor Co Ltd アルミニウム合金製シリンダブロック

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 015, no. 317 (C - 0858) 13 August 1991 (1991-08-13) *
    PATENT ABSTRACTS OF JAPAN vol. 1999, no. 08 30 June 1999 (1999-06-30) *

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2009010264A2 (de) * 2007-07-18 2009-01-22 Technische Universität Clausthal Aluminium-gusslegierung und deren verwendung
    WO2009010264A3 (de) * 2007-07-18 2009-04-09 Univ Clausthal Tech Aluminium-gusslegierung und deren verwendung
    EP2450463A3 (de) * 2010-07-02 2013-05-29 Vöcklabrucker Metallgießerei Dambauer GmbH Aluminiumlegierung

    Also Published As

    Publication number Publication date
    US6676775B2 (en) 2004-01-13
    DE10062547A1 (de) 2002-06-20
    EP1215295B1 (de) 2006-06-14
    DE50110140D1 (de) 2006-07-27
    US20020088509A1 (en) 2002-07-11

    Similar Documents

    Publication Publication Date Title
    DE102016118729B4 (de) Aluminiumlegierung, geeignet für Hochdruckgießen
    DE112004001160B4 (de) Aluminiumlegierung für einen Gussmotorblock, Gusszylinderblock für einen Verbrennungsmotor sowie Verwendung der Aluminiumlegierung
    EP1997924B1 (de) Warmfeste Aluminiumlegierung
    DE102007042099B4 (de) Aluminiumlegierung für Motorbauteile
    DE60100370T2 (de) Druckgussmagnesiumlegierung
    DE602004008934T2 (de) Formteil aus al-si-cu-aluminiumlegierung mit hoher warmverarbeitungsbeständigkeit
    DE102009015316B4 (de) Metallbehandlung zur Eliminierung von Warmrissdefekten in Aluminiumlegierungen mit niedrigem Siliziumgehalt
    EP1215295B1 (de) Aushärtbare Aluminium-Gussliegerung und Bauteil
    EP1057900B1 (de) Zylinderkopf- und Motorblockgussteil
    DE112006001375T5 (de) Hochdruckguss-Magnesiumlegierung
    DE102018130544A1 (de) Hochtemperatur-aluminiumgusslegierung für zylinderköpfe
    DE102009012073A1 (de) Aluminiumgusslegierung
    DE102017114162A1 (de) Hochfeste und hochkriechresistente aluminiumgusslegierungen und hpdc-motorblöcke
    DE10323741B3 (de) Hoch- und warmfeste, zähe Al-Gusslegierungen
    EP1917372B1 (de) Aluminium-gusslegierungen
    DE102009036056A1 (de) Al-Druckgusslegierung für dickwandige Druckgussteile
    DE102004007704A1 (de) Werkstoff auf der Basis einer Aluminium-Legierung, Verfahren zu seiner Herstellung sowie Verwendung hierfür
    WO2017174185A1 (de) Aluminiumlegierung, insbesondere für ein giessverfahren, sowie verfahren zum herstellen eines bauteils aus einer solchen aluminiumlegierung
    DE102013002632B4 (de) Aluminium-Silizium-Druckgusslegierung und Verfahren zur Herstellung eines Druckgussbauteils
    DE60114281T2 (de) Guss- und Schmiedprodukt unter Verwendung einer Kupfer-basis Legierung
    EP2041328B1 (de) Aluminiumlegierung und deren verwendung für ein gussbauteil insbesondere eines kraftwagens
    DE19829047A1 (de) Aluminiumkolbenlegierung und Aluminiumlegierungskolben
    EP2455505A1 (de) Zylinderkopf für Verbrennungsmotoren aus einer Aluminiumlegierung
    DE10249051A1 (de) Aluminiumlegierung für ein Gleitelement
    DE102006027844B4 (de) Kupferlegierung auf der Basis von Kupfer und Zinn

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020223

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid

    Designated state(s): DE FR IT SE

    17Q First examination report despatched

    Effective date: 20050322

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR IT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20060614

    REF Corresponds to:

    Ref document number: 50110140

    Country of ref document: DE

    Date of ref document: 20060727

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060914

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: DAIMLERCHRYSLER AG

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    EN Fr: translation not filed
    26N No opposition filed

    Effective date: 20070315

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070309

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060614

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50110140

    Country of ref document: DE

    Owner name: BURANI CONSULTING LIMITED LIABILITY COMPANY, W, US

    Free format text: FORMER OWNER: DAIMLER AG, 70327 STUTTGART, DE

    Effective date: 20120418

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20201013

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50110140

    Country of ref document: DE