EP1212325A2 - Nouvelle forme cristalline de disodium n-[4-[2-(2-amino-4,7-dihydro-4-oxo-3h-pyrrolo 2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-l- sel d'acide glutamique et procedes de preparation - Google Patents

Nouvelle forme cristalline de disodium n-[4-[2-(2-amino-4,7-dihydro-4-oxo-3h-pyrrolo 2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-l- sel d'acide glutamique et procedes de preparation

Info

Publication number
EP1212325A2
EP1212325A2 EP00957261A EP00957261A EP1212325A2 EP 1212325 A2 EP1212325 A2 EP 1212325A2 EP 00957261 A EP00957261 A EP 00957261A EP 00957261 A EP00957261 A EP 00957261A EP 1212325 A2 EP1212325 A2 EP 1212325A2
Authority
EP
European Patent Office
Prior art keywords
disodium
ethyl
benzoyl
oxo
acid salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00957261A
Other languages
German (de)
English (en)
Inventor
Erik Christopher Chelius
Linda Marie Osborne
Sharon Van Den Berghe Snorek
Gregory Alan Stephenson
Anne Marie Warner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eli Lilly and Co
Original Assignee
Eli Lilly and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eli Lilly and Co filed Critical Eli Lilly and Co
Publication of EP1212325A2 publication Critical patent/EP1212325A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0031Rectum, anus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0095Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/02Suppositories; Bougies; Bases therefor; Ovules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2059Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/485Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4866Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to the field of pharmaceutical and organic chemistry and provides for a novel crystal form of the multi-targeted antifolate disodium N-[4-[2-(2-amino-4,7-dihydro-4-oxo-3H-pyrrolo[2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-L- glutamic acid salt (hereinafter MTA) and processes therefor.
  • MTA multi-targeted antifolate disodium N-[4-[2-(2-amino-4,7-dihydro-4-oxo-3H-pyrrolo[2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-L- glutamic acid salt
  • Pyrrolo[2,3-d]pyrimidine based antifolates have been used for a number of years as chemotherapeutic agents in the treatment of cancer.
  • a number of such pyrrolo[2,3-d]pyrimidine based antifolates are known (see: for example, U.S. Patents 4,997,838; 5,106,974; 5,939,420; and 5,877,178, incorporated by reference herein), as are processes for preparing the same (see for example, U.S. Patents 5,416,211, 5,344,932 and 5,539,113, incorporated by reference herein and hereinafter referred to as '211 Patent, '932 Patent, and '113 Patent).
  • the pyrrolo[2,3-d]pyrimidine disodium salt as represented by formula I:
  • MTA is a potent inhibitor of several folate -requiring enzymes, including thymidine synthase, dihydrofolate reductase and glycinamide ribonucleotide formyltransferase. MTA is currently in clinical trials for use as an anticancer treatment in patients exhibiting a wide variety of solid tumors.
  • MTA mass transfer spectrometry
  • the process by which MTA is produced needs to be one that is amenable to large scale production. Additionally, it is desirable that the product should be in a form that is readily filterable and easily dried. Finally, it is economically desirable that the product be stable for extended periods of time without the need for specialized storage conditions.
  • MTA can be prepared in crystalline form.
  • the present invention provides MTA in the new crystalline form designated disodium MTA Hydrate Form I.
  • the present invention provides a process for preparing disodium N-[4-[2-(2-amino-4,7-dihydro-4-oxo-3H-pyrrolo[2,3-d]-pyrimidin-5- yl)ethyl]benzoyl]-L-glutamic acid salt .
  • the process described in the '211 Patent teaches preparing the disodium salt of formula I by treating the acid of formula II with a base (Scheme I).
  • Scheme I There are several disadvantages with this process.
  • the acid of formula ⁇ is highly toxic requiring special handling measures and equipment.
  • isolation of the acid of formula U requires a difficult pH operation and a filtration, which is time-consuming and costly.
  • the disodium salt form of MTA may be prepared by a process which avoids the toxicity problem, a difficult pH operation, and a costly, time-consuming filtration process.
  • the present improved process for making MTA provides a number of advantages, e.g. it avoids the isolation and subsequent dispensing of the acid of formula ⁇ , thus avoiding the problems previously discussed. Also, the amount of solvent used in the present process is reduced by about 30 percent over the process described in Patent '211.
  • the improved process of the present invention for preparing MTA comprises reacting the 5-substituted pyrrolo[2,3-d]pyrimidine intermediate of the formula in with sodium hydroxide and an appropriate solvent according to Scheme ⁇ , where R is a carboxy protecting group.
  • Scheme ⁇ where R is a carboxy protecting group.
  • the present invention provides a novel hydrate crystal form of disodium N-[4-[2-(2-amino-4,7-dihydro-4-oxo-3H-pyrrolo[2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-L- glutamic acid salt ("disodium MTA Hydrate Form I”), having a characteristic X-ray diffraction pattern, which comprises the following intensities corresponding to d spacings: 18.66 ⁇ 0.04 and/or 9.33 ⁇ 0.04 when obtained at 22 ⁇ 2°C at ambient % relative humidity from a copper radiation source.
  • the present invention further contemplates a process for preparing a compound of formula I:
  • the invention further provides a method of use of the compound of disodium MTA Hydrate Form I for the manufacture of a medicament for the treatment of cancer.
  • the invention further provides for a process for preparing a medicament comprising combining crystalline disodium N-[4-[2-(2-amino-4,7-dihydro-4-oxo-3H- pyrrolo[2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid salt in an aqueous solution.
  • the invention further provides for a formulation comprising crystalline disodium N-[4-[2-(2-amino-4,7-dihydro-4-oxo-3H-pyrrolo[2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-L- glutamic acid salt in association with a pharmaceutically acceptable carrier.
  • the invention further provides for a process for the preparation of crystalline disodium N-[4-[2-(2-amino-4,7-dihydro-4-oxo-3H-pyrrolo[2,3-d]-pyrimidin-5- yl)ethyl]benzoyl]-L-glutamic acid salt comprising crystallizing disodium N-[4-[2-(2- amino-4,7-dihydro-4-oxo-3H-pyrrolo[2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid salt from an appropriate solvent.
  • the invention further provides for the preparation of disodium MTA Hydrate
  • Form I which comprises adjusting the pH of an aqueous solution of disodium N-[4-[2-(2- amino-4,7-dihydro-4-oxo-3H-pyrrolo[2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid salt from about 6.5 to about 9.5 and precipitating disodium MTA Hydrate Form I from the pH adjusted aqueous solution.
  • the invention further provides an article of manufacture comprising packaging material and a composition comprising crystalline disodium N-[4-[2-(2-amino-4,7- dihydro-4-oxo-3H-pyrrolo[2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid salt contained within said packaging material, wherein said crystalline salt is effective in the treatment of cancer and a label which indicates that said crystalline salt can be used in the treatment of cancer.
  • Figure 1 depicts a representative XRD pattern of disodium MTA Hydrate Form I.
  • Figure 2 is a representative solid state NMR spectrum of disodium MTA Hydrate Form I.
  • Figures 3 depicts a representative FT-IR spectra for disodium MTA Hydrate Form I.
  • hydrate as used herein describes the crystalline lattice of disodium N-[4-[2-(2-amino-4,7-dihydro-4-oxo-3H-pyrrolo[2,3-d]-pyrimidin-5- yl)ethyl]benzoyl]-L-glutamic acid salt, which can contain variable amounts of water, from about 0.01 to about 3 equivalents of water, depending upon the relative humidity in the storage conditions.
  • disodium MTA Hydrate Form I contains from about 2 to about 3 equivalents of water, most preferred is 2.4-2.6 equivalents of water.
  • cancer as used herein describes a disease state well known in the art wherein the tumor responds to treatment with an antifolate drug.
  • disease states include, but are not limited to, colorectal, breast, cervical, acute myeloid leukemia (ALM), acute lymphoblastic leukemia (ALL), nonsmall-cell lung cancer, bladder, head and neck, non-Hodgkin's lymphoma, sarcoma, prostate, melanoma, mesothelioma, gastrointestinal tract, stomach, rectal, colorectal, ovarian, pancreatic, lung, hepatoma, malignant fibrous histiocytoma, and oropharyngeal.
  • ALM acute myeloid leukemia
  • ALL acute lymphoblastic leukemia
  • nonsmall-cell lung cancer bladder, head and neck
  • non-Hodgkin's lymphoma sarcoma
  • prostate melanoma
  • mesothelioma mesothelioma
  • an effective amount refers to an amount of a compound or drug, which is capable of performing the intended result.
  • an effective amount of disodium MTA Hydrate Form I that is administered in an effort to reduce tumor growth is that amount which is required to reduce tumor growth.
  • ambient % relative humidity as used herein describes a range of humidity of about 20% to about 50% relative humidity.
  • carboxy protecting group refers to one of the ester derivatives of the carboxylic acid group commonly employed to block or protect the carboxylic acid group while reactions are carried out on other functional groups on the compound.
  • the species of carboxy-protecting group employed is not critical so long as the derivatized carboxylic acid is labile accessible and is stable to conditions up to its removal and can be removed by the action on sodium hydroxide. See E. Haslam, Protective Groups in Organic Chemistry, J.G.W. McOmie, Ed., Plenum Press, New York, N.Y., 1973, Chapter 5, and T.W. Greene, Protective Groups in Organic Synthesis. John Wiley and Sons, New York, N.Y., 1981, Chapter 5.
  • a related term is "protected carboxy,” which refers to a carboxy-protecting groups.
  • Preferred esters include, straight or branched Ci-C ⁇ alkyl esters, preferably methyl ester or ethyl ester.
  • the compounds of formula HI exist as acid addition salts formed with a wide variety of inorganic and organic acids.
  • the acid salts of the formula HJ can be prepared by methods known in the art, for example, according to the '211 Patent, incorporated by reference herein.
  • Typical acids which can be used include sulfuric, hydrochloric, hydrobromic, phosphoric, hypophosphoric, hydroiodic, sulfamic, citric, acetic, maleic, malic, succinic, tartaric, cinnamic, benzoic, ascorbic, mandelic, p-toluenesulfonic, benzenesulfonic, methanesulfonic, trifluoroacetic, hippuric and the like.
  • the preferred salts are those formed with p-toluenesulfonic acid, hydrochloric acid or acetic acid.
  • the process of Scheme II may be performed by reacting a 5-substituted pyrrolo[2,3-d]pyrimidine acid and formula HI, wherein R is carboxy protecting groups or a salt thereof with sodium hydroxide.
  • At least 2 w/v (g mL) equivalents of sodium hydroxide are needed when using Form II and the salt of Form LLT.
  • the salt of Form HI an additional equivalence of sodium hydroxide is required.
  • Preferably from about 3 to 5 equivalents of the sodium hydroxide is required.
  • about 3 to 10 equivalents are employed, preferably from about 4 to about 6 equivalents. More preferred is from about 3 to about 10 equivalents, most preferably from about 4 to about 7 equivalents are employed.
  • a typical reaction is carried out in the presence of an appropriate solvent.
  • an aqueous solvent is suitable.
  • the process of Scheme II could be carried out under anhydrous conditions, however, water or an aqueous solution is preferable.
  • Such aqueous solutions contain water and a water miscible solvent such as acetone, acetonitrile, dimethyl formamide, ethanol, methanol, isopropanol, and tetrahydrofuran.
  • the process can be can be carried out at ambient or elevated temperatures, preferably maintaining the solution from about 40 to 70°C.
  • a crystalline form can be collected by lypho zation, evaporation and recrystallization
  • the present invention provides a process for the preparation of crystalline disodium N-[4-[2-(2-am ⁇ no-4,7-d ⁇ hydro-4-oxo-3H-pyrrolo[2,3-d]-pynm ⁇ dm-5- yl)ethyl]benzoyl]-L-glutam ⁇ c acid salt which comp ⁇ ses crystallizing MTA from a solution under conditions which yield crystalline disodium N-[4-[2-(2-am ⁇ no-4,7-d ⁇ hydro- 4-oxo-3H-pyrrolo[2,3-d]-py ⁇ m ⁇ d ⁇ n-5-yl)ethyl]benzoyl]-L-glutam ⁇ c acid salt
  • Crystalline disodium N-[4-[2-(2-am ⁇ no-4,7-d ⁇ hydro-4-oxo-3H-pyrrolo[2,3-d]- py ⁇ m ⁇ dm-5-yl)ethyl]benzoyl]-L-glutam ⁇ c acid salt may be prepared by adjusting the pH of an aqueous solution of disodium N-[4-[2-(2-am ⁇ no-4,7-d ⁇ hydro-4-oxo-3H-pyrrolo[2,3- d]-py ⁇ m ⁇ d ⁇ n-5-yl)ethyl]benzoyl]-L-glutam ⁇ c acid salt from about 5 to about 12 and precipitating crystalline disodium N-[4-[2-(2-am ⁇ no-4,7-d ⁇ hydro-4-oxo-3H-pyrrolo[2,3- d]-py ⁇ m ⁇ d ⁇ n-5-yl)ethyl]benzoyl]-L-glutam ⁇ c
  • an aqueous solution is defined as about 1 to about 20, preferably, 3 to about 10 volumes, more preferably from about 4 to about 7 volumes, of water and an approp ⁇ ate solvent
  • solvents include, but are not limited to alcohols, dimethylsulfoxide, acetonitrile, dimethyl formamide, tetrahydrofuran and acetone
  • the temperature of the solution should be maintained at about room temperature to about the boiling point of the solution, preferably from about 60°C to about 70°C.
  • the pH of the solution may be adjusted to the desired pH through the use of acid and base buffers
  • Acid and base buffers are well known to the skilled artisan and are commercially available
  • the methods in which crystals are precipitated from the solution are well known to the skilled artisan and are not c ⁇ tical to the process of the present invention
  • an anti-solvent may be added, the solution may be cooled, or the solution may be seeded.
  • the precise conditions under which crystalline disodium MTA Hydrate Form I is formed may be empirically determined and it is only possible to give a number of methods that have been found to be suitable in practice.
  • the crystalline disodium MTA Hydrate Form I can be prepared by adjusting the pH of an aqueous solution of the disodium MTA salt from about 6.5 to about 9.5, preferably about 7.5 to about 8.5, most preferably about 8.0 and precipitating crystalline disodium MTA Hydrate Form I from the pH adjusted aqueous solution.
  • an aqueous solution is defined as about 1 to about 20, preferably, 3 to about 10 volumes, more preferably from about 4 to about 7 volumes, of water and an approp ⁇ ate solvent.
  • an approp ⁇ ate solvent The skilled artisan will appreciate that numerous solvents may be employed so long as the solvent in conjunction with the water dissolves the disodium MTA salt.
  • the temperature of the solution should be maintained at about room temperature to about the boiling point of the solution, preferably from about 60°C to about 70°C .
  • crystals are precipitated from the solution are well known to the skilled artisan and are not c ⁇ tical to the process of the present invention.
  • an anti-solvent may be added, the solution may be cooled, or the solution may be seeded.
  • additional methods of precipitating crystals see, for example, A.E. Nielsen, Treatise on Analytical Chemistry, 2 nd ed., Part I, vol. 3, Chapter 27, 1983.
  • an anti-solvent such as ethanol, isopropanol, acetonitrile, or acetone, is added to the pH adjusted aqueous solution.
  • the salt form of the 5-substituted pyrrolo[2,3-d]py ⁇ m ⁇ d ⁇ ne depends on the base used For example sodium hydroxide with convert the compound of formula HI to the disodium salt, whereas potassium hydroxide will form the dipotassium salt form of the compound of formula EQ.
  • the relative intensities of the diffraction peaks may vary due to a number of factors, including the effects of preferred orientation which result from a particular crystal morphology, and particle size. Where the effects of prefe ⁇ ed orientation and/or particle size are present, peak intensities (that is, the I/Io value) are altered, but the characteristic peak positions of the polymorph are unchanged. See, e.g., The United States Pharmacopoeia #23, National Formulary #18, pages 1843-1844, 1995. X-ray powder diffraction analysis can be readily performed as follows.
  • the sample After lightly g ⁇ ndmg the sample with an agate mortar and pestle, the sample is loaded into a sample holder for the x-ray powder diffraction measurement.
  • Disodium MTA Hydrate Form I has a typical XRD pattern with interplanar spacings (d) in Angstroms and typical relative intensities (I/I 0 ) as shown in Table I. The error of measurement is +/- 0.04 A. X-ray peaks with I/Ij of 10% or greater were reported m
  • Disodium MTA Hydrate Form I is characte ⁇ zed by X-ray diffraction pattern which comp ⁇ ses intensities corresponding to the following d spacings: 18.66 and/or 9.33 +/-0.04 A when obtained at 22 ⁇ 2°C and at ambient % relative humidity using a copper radiation source.
  • a properly prepared sample of disodium MTA Hydrate Form I may be characte ⁇ zed as having an X-ray diffraction pattern which comp ⁇ ses peaks co ⁇ esponding to the following d spacings: 18.66, 9.33 and/or 4.92 +/- 0.04 A when obtained at 22 ⁇ 2°C and 31 ⁇ 10% relative humidity from a copper radiation source.
  • disodium MTA Hydrate Form I may also be characterized by solid state NMR spectroscopy.
  • Solid state NMR (l ⁇ C) analysis can be carried out using a Varian Unity 400 MHz spectrometer operating at a carbon frequency of 100.580 MHz, equipped with a complete solids accessory and Varian 7 mm VT CP/MAS probe. Acquisition parameters were as follows: 90° proton r.f. pulse width 4.0 ⁇ s, contact time 1.0 ms, pulse repetition time 5 s, MAS frequency 7.0 kHz, spectral width 50 kHz, and acquisition time 50 ms.
  • Solid state ⁇ C chemical shifts reflect not only the molecular structure of disodium MTA Hydrate Form I, but also the electronic environment of the molecule in the crystal.
  • the diagnostic ⁇ C resonances for disodium MTA Hydrate Form I were processed in D2O and are reported in Table 2.
  • Table 2 Solid State 13 C NMR Data for disodium MTA Hydrate Form I
  • the formulations are preferably formulated in a unit dosage form, each dosage containing from about 5 to about 100 mg, more usually about 10 to about 30 mg, of the active ingredient.
  • unit dosage form refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
  • the crystals are effective over a wide dosage range.
  • dosages per day normally fall within the range of about 0.5 to about 30 mg/kg of body weight.
  • the amount of the crystal actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual crystal administered, the age, weight, and response of the individual patient, and the severity of the patient's symptoms, and therefore the above dosage ranges are not intended to limit the scope of the invention in any way.
  • dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect, provided that such larger doses are first divided into several smaller doses for administration throughout the day.
  • the crystals of the present invention can be administered alone or in the form of a pharmaceutical composition in combination with pharmaceutically acceptable carriers or excipients, the proportion and nature of which are determined by the solubility and chemical properties of the compound selected, the chosen route of administration, and standard pharmaceutical practice.
  • the present invention provides pharmaceutical compositions comprising a therapeutically effective amount of the crystal in admixture or otherwise in association with one or more pharmaceutically acceptable carriers or excipients.
  • the tablets, pills, capsules, troches and the like may also contain one or more of the following adjuvants: binders such as microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch or lactose, disintegrating agents such as alginic acid, Primogel, com starch and the like; lubricants such as magnesium stearate or Sterotex; glidants such as colloidal silicon dioxide; and sweetening agents such as sucrose or saccharin may be added or a flavoring agent such as peppermint, methyl salicylate or orange flavoring.
  • a liquid carrier such as polyethylene glycol or a fatty oil.
  • compositions and preparations are able to be determined by one skilled in the art.
  • the crystals of the present invention may also be administered by inhalation, such as by aerosol or dry powder. Delivery may be by a liquefied or compressed gas or by a suitable pump system, which dispenses the compounds of the present invention or a formulation thereof. Formulations for administration by inhalation of compounds of formula (1) may be delivered in single phase, bi-phasic, or tri-phasic systems. A variety of systems are available for the administration by aerosol of the compounds of formula (1). Dry powder formulations are prepared by either pelletizing or milling the compound of formula (1) to a suitable particle size or by admixing the pelletized or milled compound of formula (1) with a suitable carrier material, such as lactose and the like. Delivery by inhalation includes the necessary container, activators, valves, subcontainers, and the like. Preferred aerosol and dry powder formulations for administration by inhalation can be determined by one skilled in the art.
  • the crystals of the present invention may also be administered topically, and when done so the carrier may suitably comprise a solution, ointment or gel base.
  • the base for example, may comprise one or more of the following: petrolatum, lanolin, polyethylene glycols, bee wax, mineral oil, diluents such as water and alcohol, and emulsifiers and stabilizers.
  • Topical formulations may contain a concentration of the formula (1) or its pharmaceutical salt from about 0.1 to about 10% w/v (weight per unit volume).
  • Quantity Ingredient (mg/capsule)
  • Formulation Example 3 A dry powder inhaler formulation is prepared containing the following components:
  • the active ingredient is mixed with the lactose and the mixture is added to a dry powder inhaling appliance.
  • Formulation Example 4 Tablets, each containing 30 mg of active ingredient, are prepared as follows: Quantity
  • the active ingredient, starch and cellulose are passed through a No. 20 mesh U.S. sieve and mixed thoroughly.
  • the solution of polyvinylpy ⁇ olidone is mixed with the resultant powders, which are then passed through a 16 mesh U.S. sieve.
  • the granules so produced are dried at 50-60°C and passed through a 16 mesh U.S. sieve.
  • the sodium carboxymethyl starch, magnesium stearate, and talc previously passed through a No. 30 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 120 mg.
  • Capsules each containing 40 mg of medicament are made as follows:
  • Quantity Ingredient (mg/capsule)
  • the active ingredient, cellulose, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 150 mg quantities.
  • Formulation Example 6 Suppositories, each containing 25 mg of active ingredient are made as follows: Ingredient Amount Active ingredient 25 mg
  • the active ingredient, sucrose and xanthan gum are blended, passed through a No. 10 mesh U.S. sieve, and then mixed with a previously made solution of the microcrystalline cellulose and sodium carboxymethyl cellulose in water.
  • the sodium benzoate, flavor, and color are diluted with some of the water and added with stirring. Sufficient water is then added to produce the required volume.
  • the active ingredient, cellulose, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 425 mg quantities.
  • An intravenous formulation may be prepared as follows:
  • a topical formulation may be prepared as follows: Ingredient Quantity Active ingredient 1-10 g Emulsifying Wax 30 g Liquid Paraffin 20 g
  • Subl gual or buccal tablets each containing 10 mg of active ingredient, may be prepared as follows: Quantity
  • the glycerol, water, sodium citrate, polyvmyl alcohol, and polyvinylpyrro done are admixed together by continuous stir ⁇ ng and maintaining the temperature at about 90°C.
  • the solution is cooled to about 50-55°C and the active ingredient is slowly admixed.
  • the homogenous mixture is poured into forms made of an inert mate ⁇ al to produce a drug-containing diffusion mat ⁇ x having a thickness of about 2-4 mm This diffusion mat ⁇ x is then cut to form individual tablets having the approp ⁇ ate size.
  • transdermal delivery devices Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts
  • transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Patent 5,023,252, issued June 11, 1991, herein inco ⁇ orated by reference.
  • patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Otolaryngology (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

L'invention relève du domaine de la chimie pharmaceutique et organique, et concerne un meilleur procédé de préparation de l'antifolique multicible N-[4-[2-(2-amino-4,7-dihydro-4-oxo-3H-pyrrolo[2,3-d]-pyrimidin-5-yl)éthyl]benzoyl]-L-acide glutamique et des cristaux de ce dernier.
EP00957261A 1999-08-23 2000-08-15 Nouvelle forme cristalline de disodium n-[4-[2-(2-amino-4,7-dihydro-4-oxo-3h-pyrrolo 2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-l- sel d'acide glutamique et procedes de preparation Withdrawn EP1212325A2 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15025499P 1999-08-23 1999-08-23
US150254P 1999-08-23
US18496400P 2000-02-25 2000-02-25
US184964P 2000-02-25
PCT/US2000/020777 WO2001014379A2 (fr) 1999-08-23 2000-08-15 Nouvelle forme cristalline de disodium n-[4-[2-(2-amino-4,7-dihydro-4-oxo-3h-pyrrolo[2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-l- sel d'acide glutamique et procedes de preparation

Publications (1)

Publication Number Publication Date
EP1212325A2 true EP1212325A2 (fr) 2002-06-12

Family

ID=26847471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00957261A Withdrawn EP1212325A2 (fr) 1999-08-23 2000-08-15 Nouvelle forme cristalline de disodium n-[4-[2-(2-amino-4,7-dihydro-4-oxo-3h-pyrrolo 2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-l- sel d'acide glutamique et procedes de preparation

Country Status (5)

Country Link
EP (1) EP1212325A2 (fr)
AU (1) AU6890800A (fr)
CO (1) CO5200767A1 (fr)
PE (1) PE20010489A1 (fr)
WO (1) WO2001014379A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185797A1 (fr) 2013-05-17 2014-11-20 Instytut Farmaceutyczny Procédé pour la préparation de pemetrexed disodique amorphe de haute pureté et formes cristallines de l'acide n-[4-[2-(2-amino-4,7-dihydro-4-oxo-3h-pyrrolo[2,3-d]pyrimidin-5-yl)éthyl]benzoyl]-l-glutamique

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DZ3283A1 (fr) * 2000-02-25 2001-08-30 Lilly Co Eli Nouvelle forme cristalline de l'acide n-[4-[2-(2-amino-4,7-dihydro-4-oxo-3h-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-l-glutaminique et son procede de preparation
US20050208139A1 (en) 2004-03-22 2005-09-22 Ascend Therapeutics, Inc. Chemically stable compositions of 4-hydroxy tamoxifen
ATE492547T1 (de) 2006-08-14 2011-01-15 Sicor Inc Verfahren zur herstellung lipophiler pharmazeutisch akzeptabler salze aus pemetrexed- disäure
JP2008543975A (ja) 2006-08-14 2008-12-04 シコール インコーポレイティド 高度に純粋なペメトレキセド二酸およびその調製方法
JP2008543974A (ja) * 2006-08-14 2008-12-04 シコール インコーポレイティド ペメトレキセド二酸の結晶形およびその調製方法
US7994180B2 (en) 2006-08-14 2011-08-09 Sicor Inc. Processes for preparing intermediates of pemetrexed
MX2009010568A (es) * 2007-04-03 2009-10-22 Reddys Lab Ltd Dr Formas solidas de pemetrexed.
CN101417998B (zh) 2007-10-24 2012-10-24 重庆医药工业研究院有限责任公司 一种培美曲塞盐的纯化方法
EP2072518A1 (fr) * 2007-12-23 2009-06-24 Sun Pharma Advanced Research Company Limited Forme amorphe stable de Pemextred disodium
LT2985025T (lt) * 2008-06-06 2018-04-10 Boehringer Ingelheim International Gmbh Farmacinis derinys
WO2010028105A2 (fr) * 2008-09-08 2010-03-11 Dr. Reddy's Laboratories Ltd. Disodium de pemetrexed amorphe
WO2010030598A2 (fr) * 2008-09-11 2010-03-18 Dr. Reddy's Laboratories Limited Formulations pharmaceutiques comprenant du pemetrexed
CN101684121B (zh) 2008-09-22 2013-04-03 重庆医药工业研究院有限责任公司 培美曲塞二酸的新晶型及其制备方法
TW201118098A (en) * 2009-08-13 2011-06-01 Reddy S Lab Liimited Dr Processes for preparing pemetrexed
CN102050825B (zh) * 2009-11-05 2014-12-17 上海创诺制药有限公司 制备培美曲塞二钠2.5水结晶的方法
WO2011064256A1 (fr) 2009-11-24 2011-06-03 Azad Pharmaceutical Ingredients Ag Nouvelle forme cristalline du pemetrexed disodique
RU2552519C2 (ru) * 2010-08-02 2015-06-10 Неон Лэборэторис Лтд. Способ получения высокочистого диалкилпеметрекседа
KR101308767B1 (ko) 2011-01-20 2013-12-31 에스티팜 주식회사 고 순도 페메트렉세드 디에틸 에스테르의 제조방법 및 이 방법을 포함하는 페메트렉세드 이나트륨염의 제조방법
EP2675808A4 (fr) * 2011-02-15 2014-07-09 Hetero Research Foundation Procédé d'obtention de pemetrexed disodique
US9051322B2 (en) 2011-03-23 2015-06-09 Scinopharm Taiwan, Ltd. Process for the production of a pemetrexed salt
ES2639639T3 (es) * 2011-03-25 2017-10-27 Scinopharm Taiwan, Ltd. Proceso para la producción de pemetrexed disódico
EP2909208A4 (fr) * 2012-10-17 2016-07-13 Shilpa Medicare Ltd Procédé pour préparer du dipotassium de pémetrexed et ses hydrates
US20150359898A1 (en) 2013-02-06 2015-12-17 Cipla Limited Pemetrexed Complexes and Pharmaceutical Compositions Containing Pemetrexed Complexes
JP2016527227A (ja) 2013-07-16 2016-09-08 ドクター レディズ ラボラトリーズ リミテッド ペメトレキセドトロメタミン塩の新規な結晶形
NZ630292A (en) 2013-11-25 2015-02-27 Shilpa Medicare Ltd Process for crystalline pemetrexed dipotassium salt
CN103784454B (zh) * 2014-01-22 2015-11-18 海南锦瑞制药有限公司 一种含有培美曲塞二钠化合物的药物组合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9812524A (pt) * 1997-09-26 2000-07-25 Lilly Co Eli Processos e intermediários utilizáveis para produzir antifolatos

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0114379A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185797A1 (fr) 2013-05-17 2014-11-20 Instytut Farmaceutyczny Procédé pour la préparation de pemetrexed disodique amorphe de haute pureté et formes cristallines de l'acide n-[4-[2-(2-amino-4,7-dihydro-4-oxo-3h-pyrrolo[2,3-d]pyrimidin-5-yl)éthyl]benzoyl]-l-glutamique

Also Published As

Publication number Publication date
CO5200767A1 (es) 2002-09-27
WO2001014379A2 (fr) 2001-03-01
WO2001014379A3 (fr) 2001-09-07
AU6890800A (en) 2001-03-19
PE20010489A1 (es) 2001-04-27

Similar Documents

Publication Publication Date Title
WO2001014379A2 (fr) Nouvelle forme cristalline de disodium n-[4-[2-(2-amino-4,7-dihydro-4-oxo-3h-pyrrolo[2,3-d]-pyrimidin-5-yl)ethyl]benzoyl]-l- sel d'acide glutamique et procedes de preparation
EP1648889B1 (fr) Sel d'isethionate d'un inhibiteur selectif de la cdk4
EP1557415B1 (fr) Composes heterocycliques et medicaments antitumoraux contenant ces derniers en tant qu'ingredient actif
JP2003530321A (ja) N−[4−[2−(2−アミノ−4,7−ジヒドロ−4−オキソ−3H−ピロロ[2,3−d]ピリミジン−5−イル)エチル]ベンゾイル]−L−グルタミン酸の新規結晶形およびその製造方法
IL178097A (en) Polymorphs of IMATINIB acid addition salts with tensulfonic acid
KR20180069132A (ko) 결정질의 (8s,9r)-5-플루오로-8-(4-플루오로페닐)-9-(1-메틸-1h-1,2,4-트리아졸-5-일)-8,9-디하이드로-2h-피리도[4,3,2-de]프탈라진-3(7h)-온 토실레이트 염
TWI732431B (zh) 多形體
EP1853232B1 (fr) Forme cristalline stable de bifeprunox mesylate, formes posologiques et methodes d'utilisation
US20090181990A1 (en) Stable amorphous form of pemetrexed disodium
NZ541500A (en) Polymorph of {6,7-Bis(2-methoxy-ethoxy)-quinazolin-4-yl}-(3e)
AU2003280958B2 (en) Crystalline 2,5-dione-3-(1-methyl-1H-indol-3-yl)-4- [1-(pyridin-2-ylmethyl)piperidin-4-yl]- 1H-indol-3-yl]-1H-pyrrole mono-hydrochloride
EP4029863A1 (fr) Maléate de dérivé d'éther d'alcool nicotinylique, forme cristalline de celui-ci et utilisation associée
US8772488B2 (en) Crystals of prasugrel hydrobromate
WO2023174400A1 (fr) Sel de composé hétérocyclique nitrique à six chaînons amino substitué, forme cristalline de celui-ci, procédé de préparation correspondant et utilisation associée
JP2022523385A (ja) アクリル含有核輸送モジュレーターおよびその使用
CN113382997A (zh) 盐酸罗加替尼的一水合物及其固体状态
EP1493734B1 (fr) Nouvelle forme cristalline de 5-hydroxy-1-methylhydantoine
SK15002000A3 (sk) Oxazolchinolónové deriváty, farmaceutický prostriedok s ich obsahom a ich použitie na inhibíciu mrp1 u cicavcov
MXPA02008665A (es) Mesilato de 4-amino-6, 7-dimetoxi-2- (5-metanolsulfonamido-1, 2, 3, 4- tetrahidroisoquinol-2-il)-5-(2-piridil) quinazolina y poliformos.
EP0785191B1 (fr) Derives de fusion de l'indane et leurs sels
WO2002102374A1 (fr) Sel amine d'un antagoniste du recepteur de l'integrine
MX2008014483A (es) Formas cristalinas de sales de 5-cloro-6-(2,6-difluoro-4-[3-(metil amino)propoxi]fenil)-n-[(1s)-2,2,2-trifluoro-1-metiletil][1,2,4]t riazolo[1,5-a]pirimidin-7-amina.
WO2007005863A1 (fr) Formes cristallines de monohydrochlorure de (2r-trans)-6-chloro-5[[4-[(4-fluorophenyl)methyl]-2,5-dimethyl-1-piperazinyl]carbonyl]-n,n, 1-trimethyl-alpha-oxo-1h-indole-3-acetamide
AU2015392050B2 (en) Fumarate of pyridylamine compound and crystals thereof
CN110903291B (zh) 一种杂芳基并[4,3-c]嘧啶-5-胺类衍生物的盐、盐的晶型及制备方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020325

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20021015

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030226

RTI1 Title (correction)

Free format text: A NOVEL CRYSTALLINE FORM OF DISODIUM N-??4-??2-(2-AMINO-4,7-DIHYDRO-4-OXO-3H-PYRROLO??2,3-D -PYRIMIDIN-5-YL)ETHYL BENZOYL -L-GLUTAMIC ACID SALT AND PROCESSES THEREFOR