EP1206588B1 - Iron-nickel alloy with creep resistance and low thermal expansion - Google Patents

Iron-nickel alloy with creep resistance and low thermal expansion Download PDF

Info

Publication number
EP1206588B1
EP1206588B1 EP00909178A EP00909178A EP1206588B1 EP 1206588 B1 EP1206588 B1 EP 1206588B1 EP 00909178 A EP00909178 A EP 00909178A EP 00909178 A EP00909178 A EP 00909178A EP 1206588 B1 EP1206588 B1 EP 1206588B1
Authority
EP
European Patent Office
Prior art keywords
alloy
iron
thermal expansion
nickel
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP00909178A
Other languages
German (de)
French (fr)
Other versions
EP1206588A1 (en
Inventor
Bodo Gehrmann
Burkhard Erpenbeck
Ulrich Brill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals GmbH
Original Assignee
ThyssenKrupp VDM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7915681&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1206588(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ThyssenKrupp VDM GmbH filed Critical ThyssenKrupp VDM GmbH
Publication of EP1206588A1 publication Critical patent/EP1206588A1/en
Application granted granted Critical
Publication of EP1206588B1 publication Critical patent/EP1206588B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/06Screens for shielding; Masks interposed in the electron stream
    • H01J29/07Shadow masks for colour television tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/07Shadow masks
    • H01J2229/0727Aperture plate
    • H01J2229/0733Aperture plate characterised by the material

Definitions

  • the invention relates to the use of a creep-resistant and low-expansion iron-nickel alloy.
  • iron-based alloys with about 36% nickel have low coefficients of thermal expansion in the temperature range between 20 and 100 ° C.
  • these alloys have been used where constant lengths are required, even with temperature changes, such as precision instruments, watches, bimetals.
  • temperature changes such as precision instruments, watches, bimetals.
  • color television sets and computer monitors in the direction of higher resolution, color fidelity and contrast strength even under unfavorable lighting conditions and especially in view of the trend towards ever flatter and larger screens, iron-nickel materials are increasingly being used for shadow masks.
  • Shadow masks pre-stressed in frames a low-expansion is used Material with an improved compared to the previously used alloy Creep resistance required.
  • the shadow masks and the frame parts for the Shadow masks become a so-called at temperatures up to about 580 ° C Blackening annealing. This creates a dark iron oxide layer with which a better visual image quality is achieved.
  • the previously used iron-based alloy with approximately 36% nickel achieved a creep resistance A 80 of approximately 2.6% under the following test conditions: 1 hour at 580 ° C under a load of 138 MPa.
  • the prestressing of the shadow masks in the vertical direction is generated with the vertical frame parts.
  • iron-nickel alloys with approximately 41% nickel have been used as the material, these alloys being known as materials for, for example, metal glass melting or for lead frames.
  • the technological properties are as follows:
  • the creep resistance A 80 is about 0.5%, measured under the same test conditions as previously described for the 36% nickel-containing alloy, ie 1 hour at 580 ° C under a load of 138 MPa.
  • the vertical frame parts made of this alloy expand according to a thermal expansion coefficient of about 4.8 x 10 -6 / K in the temperature range of 20 to 100 ° C more than the shadow mask made of the iron-nickel alloy with about 36% nickel is made.
  • the horizontal frame parts should be the same Have thermal expansion properties, such as the shadow masks, so that the same iron-nickel alloy for the horizontal frame parts and for the shadow masks with about 36% nickel is used.
  • suitable additives to iron-nickel alloys can lead to the formation of precipitates.
  • additives for example Titanium and aluminum used in combination.
  • the formation of a ⁇ (Ni 3 Ti / Ni 3 Al) phase increases the yield strength and strength.
  • a hardenable nickel-iron casting alloy with a linear expansion coefficient ⁇ 5 x 10 -6 / ° C at 20 to 300 ° C and a yield strength of over 350 N / mm 2 at 20 ° C has become, consisting of 35-45% by weight of nickel, less than 4% by weight of free titanium, 0-1% by weight of niobium, 1.5-2.5% by weight of cobalt, the remainder iron and melting-related impurities ,
  • This alloy is suitable for mechanically and thermally highly stressed machine parts, for example rotors of gas-dynamic pressure wave machines.
  • JP 10310845 is a high strength alloy with low Thermal expansion coefficients, the following (in mass%) Composition has: ⁇ 0.15% C, ⁇ 0.5% Si, ⁇ 0.5% Mn, 0.5-4% Ti, ⁇ 0.2% Al, 30.7 - 43.0% Ni and ⁇ 14% Co.
  • the following can be used within limits of ⁇ 1.0% Elements are alloyed, namely V, W, Nb and Mo and further within limits ⁇ 0.5% S, Pb, Ca, Se, balance iron. This alloy is said to be preferred for tools and machine fixtures, such as lathe beds.
  • JP 09268348 discloses an iron-nickel alloy which is suitable for electronic Components to be used and the following composition (in mass%) has: 30 - 55% Ni, ⁇ 1.2% Si, ⁇ 1.5% Mn, balance Fe. The C content within the Impurities should be ⁇ 0.02%.
  • the alloy can also ⁇ 12% Co include.
  • a preferred alloy also has the following Elements on: 1.0-3.0% of one or ⁇ 2 of the elements W, Mo, V, Al, Ti, Nb as well 0.05 - 1.0% Zr and / or Be on.
  • JP 04202642 describes an Fe-Ni alloy of high strength and low thermal expansion coefficient used for plating and soldering can be.
  • the alloy has the following composition (in mass%): 39-45% Ni, ⁇ 1% Co, 0.1-07% Mn, ⁇ 0.30% Si, 0.1-0.2% Al, ⁇ 0.01% P, ⁇ 0.003% S, ⁇ 0.004% O, ⁇ 0.003% N, ⁇ 0.001% C, 1.0-3.0% Ti, balance Fe.
  • An austenitic alloy has become known from US Pat. No. 4,006,012 can preferably be used for composite materials and (in mass%) has the following elements: 36-54% Ni, up to 12% Co, up to 15% Cr, up to 10% Mo, 1.0-3.75% Ti, up to 2% Al, up to 0.1% C, up to 2% Mn, up to 1% Si, up to 0.05% B, balance Fe, whereby the Fe content should be at least 24%.
  • the object of the invention is to provide a creep-resistant and low-expansion iron-nickel alloy to optimize the no longer has disadvantages mentioned in the prior art, inexpensive in Manufacturing is and also for components of television sets and monitors can be used.
  • This goal is achieved by using a creep-resistant and low-expansion iron-nickel alloy, which (in mass%) in addition to max. 0.02% C, max. 0.05% Mn, and max. 0.05% Si has an Al content of 0.05 to 0.3%, a Ti content of 1.5 to 2.5%, 0.2-1.0% Nb, and a Ni content of 39.0 to 45 , 0%, Co as optional component ⁇ 0.5%, rest iron and manufacturing-related admixtures and has a thermal expansion coefficient ⁇ 6.0 x 10 -6 / K in the temperature range from 20 to 100 ° C for frame parts for screen and monitor shadow masks.
  • the required technological properties for the application as Material, especially for vertical frame parts for shadow masks, can be used with the iron-nickel alloys according to the invention are adjusted, the one Contain nickel content between 42.0 and 45.0 mass percent.
  • the alloy used according to the invention is characterized by an excellent Processability and does not require any additional during production Process steps. It also shows one that meets your needs Long-term stability of their thermal properties.
  • Nickel alloy T2 with 41% nickel, significantly improved creep resistance.
  • the mechanical properties which were determined in the hot tensile test with and without load at the test temperature 580 ° C, as well as the magnetic coercive field strength and the thermal expansion coefficients, are for alloy E1 compared to the properties of alloys T1 and T2, which are state of the art correspond, listed in Table 1.
  • the test specimens were made from 1.4 mm cold-rolled strip.
  • test specimens were soft-annealed and cured (load 200 MPa when testing creep resistance).
  • the coercive field strengths H c of the alloy E1 and the alloys T1 and T2, which correspond to the prior art, are almost the same after a heat treatment of 15 minutes at 580 ° C. After a one-hour heat treatment at 580 ° C, the coercive field strengths H c of alloy E1 are sufficiently low for use as a material for the frame parts for the shadow mask.
  • the thermal expansion coefficients in the temperature range of 20 to 100 ° C with about 4.8 x 10 -6 / K in the case of alloy E1 meet the requirements for use as materials for the vertical frame parts.
  • the temperature-dependent course of the expansion coefficients of the alloy E1 according to the invention is similar to the course of the expansion coefficients of the alloy T2, which corresponds to the prior art. This is shown in Figure 1, whereby it can also be seen that the expansion coefficients of the alloys E1 and T2 intersect with the expansion coefficient of the alloy T1 in the temperature profile between 270 ° C and 320 ° C, so that the thermal expansion coefficients of the alloy with the lower nickel content below the crossing temperature are lower than that of the thermal expansion coefficient of the alloys with the higher nickel contents. Behavior reverses above the crossing temperature.
  • the break point temperature of the thermal expansion coefficient corresponds approximately to the Curie temperature T c of the corresponding alloy.
  • Figure 1 Temperature-dependent expansion coefficients. the Alloys E1 and E2 and those of alloys T1 and T2, which the State of the art.
  • Exemplary chemical compositions of the alloys E1 and E2 are listed in Table 2 in comparison to the compositions of the alloys T1 and T2, which correspond to the prior art. Exemplary chemical compositions of alloys E1 and E2 compared to exemplary compositions of alloys T1 and T2 which correspond to the prior art.
  • E1 E2 T1 T2 (Dimensions-%) C 0,002 0,020 0,003 0,007 S 0.0014 0.0006 0.0002 0.0030 N 0.001 0.001 0.0025 0,002 Cr 0.01 0.06 0.03 0.03 Ni 42,95 42.2 36.15 40,80 Mn 0.01 0.12 0.24 0.55 Si 0.01 0.16 0.06 0.17 Mo 0.05 0.01 Ti ⁇ 0.01 1.85 ⁇ 0.01 0.005 Nb 0.52 0.01 ⁇ 0.01 Cu 0.02 0.05 0.04 Fe rest rest 63.3 58.30 P 0,002 0.009 0,002 0,003 al 1.88 0.13 0,007 0,002 mg 0.0002 0,002 ⁇ 0.001 pb ⁇ 0.001 0.001 0.001 Ca 0.0007 Zr ⁇ 0.01 ⁇ 0.01 Co 0.01 0.02 0.04 0.04 O 0.001 0,002 0,002 0,002 0,002
  • alloy E 2 Another embodiment of the alloy is variant E 2.
  • the preferred composition contains 39.0-45.0% Ni, 1.5-2.5% Ti, 0.05-0.3% Al and 0.2 - 1.0% Nb as well as the rest iron and manufacturing-related admixtures according to Table 4.
  • Alloy E2 can first be formed into frame parts in the soft annealed condition. It then meets the high requirements in the hardened state (eg 30 min at 750 ° C) with A 80 ⁇ 0.1% in the creep resistance test at 580 ° C for 1 hour with the increased load of 200 MPa. Values for the mechanical, magnetic and thermal expansion properties are listed in Table 1. A typical composition of alloy E1 is known in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

Die Erfindung betrifft die Verwendung einer kriechbeständigen und ausdehnungsarmen Eisen-Nickel-Legierung.The invention relates to the use of a creep-resistant and low-expansion iron-nickel alloy.

Es ist bekannt, daß Eisenbasislegierungen mit etwa 36 % Nickel niedrige Wärmeausdehnungskoeffizienten im Temperaturbereich zwischen 20. und 100°C haben. Diese Legierungen werden deshalb schon seit einigen Jahrzehnten dort eingesetzt, wo auch bei Temperaturänderungen konstante Längen gefordert werden, wie bei Präzisionsinstrumenten, Uhren, Bimetallen. Mit der Entwicklung der Farbfemsehgeräte und Computer-Monitore in Richtung höherer Auflösung, Farbtreue und Kontraststärke auch bei ungünstigen Lichtverhältnissen und insbesondere im Hinblick des Trends zu immer flacheren und größeren Bildschirmen werden zunehmend Eisen-Nickel-Werkstoffe für Lochmasken eingesetzt. Technische Eisen-Nickel-Legierungen mit etwa 36 % Nickel haben im Temperaturbereich von 20 bis 100°C, wie sie in herkömmlichen Bildschirmröhren vorherrschen, im weichgeglühten Zustand einen thermischen Ausdehnungskoeffizienten zwischen 1,2 und 1,8 x 10-6/K, wie dies im Stahl-Eisen-Werkstoffblatt (SEW-385, Ausgabe 1991) bezeichnet ist. Insbesondere für Schattenmasken sind auch weiterentwickelte Werkstoffe mit etwa 36 % Nickel im Einsatz, die niedrigere Wärmeausdehnungskoeffizienten im Temperaturbereich von 20 bis 100°C zwischen 0,6 und 1,2 x 10-6/K erreichen.It is known that iron-based alloys with about 36% nickel have low coefficients of thermal expansion in the temperature range between 20 and 100 ° C. For some decades now, these alloys have been used where constant lengths are required, even with temperature changes, such as precision instruments, watches, bimetals. With the development of color television sets and computer monitors in the direction of higher resolution, color fidelity and contrast strength even under unfavorable lighting conditions and especially in view of the trend towards ever flatter and larger screens, iron-nickel materials are increasingly being used for shadow masks. Technical iron-nickel alloys with about 36% nickel have a thermal expansion coefficient between 1.2 and 1.8 x 10 -6 / K in the temperature range from 20 to 100 ° C, as they prevail in conventional display tubes, in the soft-annealed state, such as this is referred to in the steel-iron material sheet (SEW-385, 1991 edition). For shadow masks in particular, further developed materials with around 36% nickel are used, which achieve lower thermal expansion coefficients in the temperature range from 20 to 100 ° C between 0.6 and 1.2 x 10 -6 / K.

Für in Rahmen vorgespannte Schattenmasken wird ein ausdehnungsarmer Werkstoff mit einer gegenüber der bisher verwendeten Legierung verbesserten Kriechbeständigkeit gefordert. Die Schattenmasken und die Rahmenteile für die Schattenmasken werden bei Temperaturen bis zu etwa 580°C einer sogenannten Schwärzungsglühung unterzogen. Hierbei wird eine dunkle Eisenoxidschicht erzeugt, mit der eine bessere visuelle Bildqualität erzielt wird. For shadow masks pre-stressed in frames, a low-expansion is used Material with an improved compared to the previously used alloy Creep resistance required. The shadow masks and the frame parts for the Shadow masks become a so-called at temperatures up to about 580 ° C Blackening annealing. This creates a dark iron oxide layer with which a better visual image quality is achieved.

Die bisher verwendete Eisenbasislegierung mit etwa 36 % Nickel erzielt eine Kriechfestigkeit A80 von etwa 2,6 % bei folgenden Prüfbedingungen: 1 Stunde bei 580°C bei einer Belastung von 138 MPa.The previously used iron-based alloy with approximately 36% nickel achieved a creep resistance A 80 of approximately 2.6% under the following test conditions: 1 hour at 580 ° C under a load of 138 MPa.

Die Vorspannung der Schattenmasken in vertikaler Richtung wird mit den vertikalen Rahmenteilen erzeugt. Als Werkstoff kommen bisher Eisen-Nickel-Legierungen mit etwa 41 % Nickel zur Anwendung, wobei diese Legierungen bekannt sind als Werkstoffe für z.B. Metallglasanschmelzungen oder für Leadframes. Die technologischen Eigenschaften sind wie folgt: Die Kriechfestigkeit A80 beträgt etwa 0,5 %, gemessen unter den gleichen Prüfbedingungen wie zuvor für die 36 % nickelhaltige Legierung beschrieben, d.h. 1 Stunde bei 580°C bei einer Belastung von 138 MPa. Die vertikalen Rahmenteile aus dieser Legierung dehnen sich gemäß eines Wärmeausdehnungskoeffizienten von etwa 4,8 x 10-6/K im Temperaturbereich von 20 bis 100°C stärker aus, als die Schattenmaske, die aus der Eisen-Nickel-Legierung mit etwa 36 % Nickel gefertigt ist.The prestressing of the shadow masks in the vertical direction is generated with the vertical frame parts. Up to now, iron-nickel alloys with approximately 41% nickel have been used as the material, these alloys being known as materials for, for example, metal glass melting or for lead frames. The technological properties are as follows: The creep resistance A 80 is about 0.5%, measured under the same test conditions as previously described for the 36% nickel-containing alloy, ie 1 hour at 580 ° C under a load of 138 MPa. The vertical frame parts made of this alloy expand according to a thermal expansion coefficient of about 4.8 x 10 -6 / K in the temperature range of 20 to 100 ° C more than the shadow mask made of the iron-nickel alloy with about 36% nickel is made.

Die horizontalen Rahmenteile sollen die gleichen Wärmeausdehnungseigenschaften aufweisen, wie die Schattenmasken, so daß für die horizontalen Rahmenteile und für die Schattenmasken die gleiche Eisen-Nickel-Legierung mit etwa 36 % Nickel verwendet wird.The horizontal frame parts should be the same Have thermal expansion properties, such as the shadow masks, so that the same iron-nickel alloy for the horizontal frame parts and for the shadow masks with about 36% nickel is used.

Ebenso wie für die Schattenmasken werden auch für die Rahmenteile Werkstoffe gefordert, die gegenüber den bisher verwendeten Legierungen eine verbesserte Kriechbeständigkeit bei Temperaturen bis 580°C aufweisen. Die Größe und der temperaturabhängige Verlauf der Ausdehnungskoeffizienten sollen denen der bisher verwendeten Werkstoffe nahezu entsprechen.Just like for the shadow masks, materials are also used for the frame parts required an improved compared to the previously used alloys Have creep resistance at temperatures up to 580 ° C. The size and the temperature-dependent course of the expansion coefficients should that of materials used so far almost correspond.

Es ist weiterhin bekannt, daß geeignete Zusätze zu Eisen-Nickel-Legierungen zur Entstehung von Ausscheidungen führen können. Als solche Zusätze werden z.B.
Titan und Aluminium in Kombination miteinander angewendet. Die Bildung einer γ (Ni3Ti / Ni3Al) Phase erhöht die Streckgrenze und Festigkeit.
It is also known that suitable additives to iron-nickel alloys can lead to the formation of precipitates. As such additives, for example
Titanium and aluminum used in combination. The formation of a γ (Ni 3 Ti / Ni 3 Al) phase increases the yield strength and strength.

Allerdings können zu hohe Summengehalte der Elemente Titan und Aluminium die Wärmeausdehnungskoeffizienten zu sehr erhöhen.However, the total contents of the elements titanium and aluminum can be too high Too much increase in coefficient of thermal expansion.

Durch die DE-C 29 40 532 ist eine aushärtbare Nickel-Eisen-Gußlegierung mit einem linearen Ausdehnungskoeffizienten < 5 x 10-6/°C bei 20 bis 300°C und einer Streckgrenze von über 350 N/mm2 bei 20°C bekannt geworden, bestehend aus 35 - 45 Gew.-% Nickel, weniger als 4 Gew.-% freies Titan, 0 - 1 Gew.-% Niob, 1,5 - 2,5 Gew.-% Kobalt, Rest Eisen und erschmelzungsbedingte Verunreinigungen. Diese Legierung ist geeignet für mechanisch und thermisch hoch belastete Maschinenteile, beispielsweise Rotoren von gasdynamischen Druckwellenmaschinen.From DE-C 29 40 532 a hardenable nickel-iron casting alloy with a linear expansion coefficient <5 x 10 -6 / ° C at 20 to 300 ° C and a yield strength of over 350 N / mm 2 at 20 ° C is known has become, consisting of 35-45% by weight of nickel, less than 4% by weight of free titanium, 0-1% by weight of niobium, 1.5-2.5% by weight of cobalt, the remainder iron and melting-related impurities , This alloy is suitable for mechanically and thermally highly stressed machine parts, for example rotors of gas-dynamic pressure wave machines.

Der JP 10310845 ist eine hochfeste Legierung mit geringem Wärmeausdehnungskoeffizienten zu entnehmen, die (in Masse %) folgende Zusammensetzung aufweist: ≤ 0,15% C, ≤ 0,5% Si, ≤ 0,5% Mn, 0,5-4% Ti, ≤ 0,2% Al, 30,7 - 43,0% Ni sowie ≤ 14% Co. Es können in Grenzen von ≤ 1,0% folgende Elemente zulegiert werden, nämlich V, W, Nb und Mo und femer in Grenzen ≤ 0,5% S, Pb, Ca, Se, Rest Eisen. Diese Legierung soll bevorzugt für Werkzeuge und Maschinenaufspannungen, wie Drehbankbetten, zum Einsatz gelangen.JP 10310845 is a high strength alloy with low Thermal expansion coefficients, the following (in mass%) Composition has: ≤ 0.15% C, ≤ 0.5% Si, ≤ 0.5% Mn, 0.5-4% Ti, ≤ 0.2% Al, 30.7 - 43.0% Ni and ≤ 14% Co. The following can be used within limits of ≤ 1.0% Elements are alloyed, namely V, W, Nb and Mo and further within limits ≤ 0.5% S, Pb, Ca, Se, balance iron. This alloy is said to be preferred for tools and machine fixtures, such as lathe beds.

In der JP 09268348 ist eine Eisen-Nickel-Legierung offenbart, die für elektronische Bauteile verwendet werden soll und folgende Zusammensetzung (in Masse %) aufweist: 30 - 55% Ni, ≤ 1,2% Si, ≤ 1,5% Mn, Rest Fe. Der C-Gehalt innerhalb der Verunreinigungen soll ≤ 0,02% sein. Die Legierung kann ferner ≤ 12% Co beinhalten. Eine bevorzugte Legierung weist darüber hinaus noch folgende Elemente auf: 1,0-3,0% eines oder ≥ 2 der Elemente W, Mo, V, Al, Ti, Nb sowie 0,05 - 1,0% Zr und/oder Be auf.JP 09268348 discloses an iron-nickel alloy which is suitable for electronic Components to be used and the following composition (in mass%) has: 30 - 55% Ni, ≤ 1.2% Si, ≤ 1.5% Mn, balance Fe. The C content within the Impurities should be ≤ 0.02%. The alloy can also ≤ 12% Co include. A preferred alloy also has the following Elements on: 1.0-3.0% of one or ≥ 2 of the elements W, Mo, V, Al, Ti, Nb as well 0.05 - 1.0% Zr and / or Be on.

Die JP 04202642 beschreibt eine Fe-Ni-Legierung hoher Festigkeit und geringem thermischen Ausdehnungskoeffizienten, die zum Plattieren und Löten eingesetzt werden kann. Die Legierung hat folgende Zusammensetzung (in Masse %): 39-45% Ni, ≤ 1% Co, 0,1-07% Mn, ≤ 0,30% Si, 0,1-0,2% Al, ≤ 0,01% P, ≤ 0,003% S, ≤ 0,004% O, ≤ 0,003% N, ≤ 0,001% C, 1,0-3,0% Ti, Rest Fe.JP 04202642 describes an Fe-Ni alloy of high strength and low thermal expansion coefficient used for plating and soldering can be. The alloy has the following composition (in mass%): 39-45% Ni, ≤ 1% Co, 0.1-07% Mn, ≤ 0.30% Si, 0.1-0.2% Al, ≤ 0.01% P, ≤ 0.003% S, ≤ 0.004% O, ≤ 0.003% N, ≤ 0.001% C, 1.0-3.0% Ti, balance Fe.

Durch die US-A 4,006,012 ist eine austenitische Legierung bekannt geworden, die bevorzugt für Verbundwerkstoffe verwendet werden kann und (in Masse %) folgende Elemente aufweist: 36-54% Ni, bis zu 12% Co, bis zu 15% Cr, bis zu 10% Mo, 1,0-3,75% Ti, bis zu 2% Al, bis zu 0,1% C, bis zu 2% Mn, bis zu 1% Si, bis zu 0,05% B, Rest Fe, wobei der Fe-Gehalt mindestens 24% sein soll.An austenitic alloy has become known from US Pat. No. 4,006,012 can preferably be used for composite materials and (in mass%) has the following elements: 36-54% Ni, up to 12% Co, up to 15% Cr, up to 10% Mo, 1.0-3.75% Ti, up to 2% Al, up to 0.1% C, up to 2% Mn, up to 1% Si, up to 0.05% B, balance Fe, whereby the Fe content should be at least 24%.

Schließlich ist in der DE-A 2162596 eine austenitische Legierung beschrieben, die eine ähnliche Zusammensetzung, wie sie der US-A 4,006,012 zu entnehmen ist, aufweist. Als Einsatzbereiche werden Befestigungs- und Verbindungsmittel angegeben.Finally, an austenitic alloy is described in DE-A 2162596, which a composition similar to that shown in US Pat. No. 4,006,012, having. Fastening and connecting means are used as areas of application specified.

Sämtliche der vorab beschriebenen Legierungen weisen große Spreizungsbereiche insbesondere für das Element Ni auf, wobei hohe Co-Gehalte möglich sein sollen. Konkrete Angaben zu Wärmeausdehnungskoeffizienten werden nicht gemacht, so daß eine Vielzahl von Kombinationen möglich sind, geeignete Zusammensetzungen für den jeweiligen Anwendungsfall zu entwickeln.All of the alloys described above have large ones Spreading ranges in particular for the element Ni, with high Co contents should be possible. Specific information on thermal expansion coefficients are not made so that a variety of combinations are possible to develop suitable compositions for the respective application.

Ziel des Erfindungsgegenstandes ist es, eine kriechbeständige und ausdehnungsarme Eisen-Nickel-Legierung dahingehend zu optimieren, daß sie die im Stand der Technik angeführten Nachteile nicht mehr besitzt, preiswert in der Herstellung ist und auch für Bauteile von Fernsehgeräten sowie Monitoren einsetzbar ist.The object of the invention is to provide a creep-resistant and low-expansion iron-nickel alloy to optimize the no longer has disadvantages mentioned in the prior art, inexpensive in Manufacturing is and also for components of television sets and monitors can be used.

Dieses Ziel wird erreicht durch die Verwendung einer kriechbeständigen und ausdehnungsarmen Eisen-Nickel-Legierung, die (in Masse-%) neben max. 0,02% C, max. 0,05% Mn, und max. 0,05% Si einen Al-Gehalt von 0,05 bis 0.3%, einen Ti-Gehalt von 1,5 bis 2,5%, 0.2-1,0% Nb, sowie einen Ni-Gehalt von 39,0 bis 45,0%, Co als Wahlkomponente ≤ 0,5%, Rest Eisen und herstellungsbedingte Beimengungen beinhaltet und im Temperaturbereich von 20 bis 100°C einen Wärmeausdehnungskoeffizienten < 6,0 x 10-6/K aufweist für Rahmenteile für Bildschirm- und Monitorschattenmasken.This goal is achieved by using a creep-resistant and low-expansion iron-nickel alloy, which (in mass%) in addition to max. 0.02% C, max. 0.05% Mn, and max. 0.05% Si has an Al content of 0.05 to 0.3%, a Ti content of 1.5 to 2.5%, 0.2-1.0% Nb, and a Ni content of 39.0 to 45 , 0%, Co as optional component ≤ 0.5%, rest iron and manufacturing-related admixtures and has a thermal expansion coefficient <6.0 x 10 -6 / K in the temperature range from 20 to 100 ° C for frame parts for screen and monitor shadow masks.

Überraschenderweise wurde nun gefunden, daß die Eisen-Nickel-Legierungen, denen nur definierte Gehalte des Elements Aluminium bzw. Titan allein zulegiert werden, die geforderte Verbesserung der Kriechfestigkeit bei 580°C unter der Belastung von 138 MPa im hartgewalzten Zustand erreicht.Surprisingly, it has now been found that the iron-nickel alloys to which only defined contents of the element aluminum or titanium alone are alloyed be, the required improvement in creep resistance at 580 ° C below the Load of 138 MPa in the hard-rolled state reached.

Die erforderlichen technologischen Eigenschaften für die Anwendung als Werkstoff insbesondere für vertikale Rahmenteile für Schattenmasken können mit den erfindungsgemäßen Eisen-Nickel-Legierungen eingestellt werden, die einen Nickelgehalt zwischen 42,0 und 45,0 Masseprozent beinhalten.The required technological properties for the application as Material, especially for vertical frame parts for shadow masks, can be used with the iron-nickel alloys according to the invention are adjusted, the one Contain nickel content between 42.0 and 45.0 mass percent.

Die erfindungsgemäß verwendeten Legierung zeichnet sich durch eine hervorragende Verarbeitbarkeit aus und verlangt bei der Produktion keine zusätzlichen Verfahrensschritte. Sie zeigt darüber hinaus eine den Bedürfnissen entsprechende Langzeitstabilität ihrer thermischen Eigenschaften.The alloy used according to the invention is characterized by an excellent Processability and does not require any additional during production Process steps. It also shows one that meets your needs Long-term stability of their thermal properties.

Eine Legierung E1, die durch ihren Aluminiumgehalt ausgehärtet werden kann, erzielt mit A80 = 0,17 % bei der Prüftemperatur 580°C, wobei die Belastung von 138 MPa 1 Stunde lang wirkt, eine gegenüber der normalen dem Stand der Technik entsprechenden Eisen-Nickel-Legierung T2 mit 41 % Nickel, wesentlich verbesserte Kriechfestigkeit.An alloy E1, which can be hardened by its aluminum content, achieves with A 80 = 0.17% at the test temperature 580 ° C, whereby the load of 138 MPa is effective for 1 hour, an iron compared to the normal state of the art. Nickel alloy T2 with 41% nickel, significantly improved creep resistance.

Die mechanischen Eigenschaften, die im Warmzugversuch ohne und mit Belastung bei der Prüftemperatur 580°C bestimmt wurden, als auch die magnetische Koerzitivfeldstärke sowie die Wärmeausdehnungskoeffizienten, sind für die Legierung E1 im Vergleich zu den Eigenschaften der Legierungen T1 und T2, die dem Stand der Technik entsprechen, in der Tabelle 1 aufgeführt. Mechanische Eigenschaften Dehngrenze, Zugfestigkeit, Bruchdehnung bei 580°C, bestimmt im Warmzugversuch, als auch die Kriechfestigkeit bei 1h bei 580°C bei der Belastung von 138 MPa, die Koerzitivfeldstärke und die Wärmeausdehnungskoeffizienten der Legierung E1 im Vergleich zu den Legierungen T1 und T2, die dem Stand der Technik entsprechen. Die Prüfkörper wurden aus an 1,4 mm kaltgewalztem Band gefertigt. Legierung E1 E2 T1 T2 Warmzugversuch bei 580°C Dehngrenze Rp0,005 (N/mm2) 369 261 189 Rp0,2 (N/mm2) 574 206 322 312 Zugfestigkeit Rm (N/mm2) 613 566 381 411 Bruchdehnung A80 (%) 4,3 18 6,4 7,5 Kriechfestigkeit (Belastung 138 N/mm2)
A80 (580°C / 1h) (%)
0,17 0.06 2,61 0,54
Koerzitivfeldstärke Hc (580°C / 15min) (A/m) 433 424 405 Hc (580°C / 1h) (A/m) 327 154 170 Wärmeausdehnungskoeffizienten (von 20°C bis zur Prüftemperatur T in 10-6/K) T (°C) 50 4,78 4,11 0,63 4,98 100 4,81 3,99 1,26 4,88 150 4,83 3,95 1,76 4,62 200 4,95 4,04 2,45 4,49 250 5,09 4,28 3,69 4,42 300 5,74 5,15 5,47 4,52 350 6,94 6,38 7,01 5,18 400 8,01 7,49 8,28 6,31 450 8,92 9,43 9,34 7,28 500 9,60 9,22 10,23 8,14 550 10,30 9,89 10,98 8,91 600 11,09 10,47 11,61 9,69
The mechanical properties, which were determined in the hot tensile test with and without load at the test temperature 580 ° C, as well as the magnetic coercive field strength and the thermal expansion coefficients, are for alloy E1 compared to the properties of alloys T1 and T2, which are state of the art correspond, listed in Table 1. Mechanical properties Yield strength, tensile strength, elongation at break at 580 ° C, determined in the hot tensile test, as well as the creep strength at 1 hour at 580 ° C under a load of 138 MPa, the coercive field strength and the thermal expansion coefficients of alloy E1 compared to alloys T1 and T2, which correspond to the state of the art. The test specimens were made from 1.4 mm cold-rolled strip. alloy E1 E2 T1 T2 Warm tensile test at 580 ° C yield strength R p0.005 (N / mm 2 ) 369 261 189 R p0.2 (N / mm 2 ) 574 206 322 312 tensile strenght R m (N / mm 2 ) 613 566 381 411 elongation A 80 (%) 4.3 18 6.4 7.5 creep (Load 138 N / mm 2 )
A 80 (580 ° C / 1h) (%)
0.17 00:06 2.61 0.54
coercivity H c (580 ° C / 15min) (A / m) 433 424 405 H c (580 ° C / 1h) (A / m) 327 154 170 Thermal expansion coefficient (from 20 ° C to the test temperature T in 10 -6 / K) T (° C) 50 4.78 4.11 0.63 4.98 100 4.81 3.99 1.26 4.88 150 4.83 3.95 1.76 4.62 200 4.95 4.04 2.45 4.49 250 5.09 4.28 3.69 4.42 300 5.74 5.15 5.47 4.52 350 6.94 6.38 7.01 5.18 400 8.01 7.49 8.28 6.31 450 8.92 9.43 9.34 7.28 500 9.60 9.22 10.23 8.14 550 10.30 9.89 10.98 8.91 600 11.09 10.47 11.61 9.69

Im Fall der Legierung E2 wurden vor der Prüfung die Testkörper weichgelüht und ausgehärtet (Belastung 200 MPa bei Prüfung der Kriechfestigkeit). In the case of alloy E2, the test specimens were soft-annealed and cured (load 200 MPa when testing creep resistance).

Die Koerzitivfeldstärken Hc der Legierung E1 sowie der Legierungen T1 und T2, die dem Stand der Technik entsprechen, sind nach einer Wärmebehandlung von 15 Minuten bei 580°C nahezu gleich. Nach einer einstündigen Wärmebehandlung bei 580°C sind die Koerzitivfeldstärken Hc der Legierung E1 für die Anwendung als Werkstoff für die Rahmenteile für die Schattenmaske ausreichend niedrig.The coercive field strengths H c of the alloy E1 and the alloys T1 and T2, which correspond to the prior art, are almost the same after a heat treatment of 15 minutes at 580 ° C. After a one-hour heat treatment at 580 ° C, the coercive field strengths H c of alloy E1 are sufficiently low for use as a material for the frame parts for the shadow mask.

Die Wärmeausdehnungskoeffizienten im Temperaturbereich von 20 bis 100°C genügen mit etwa 4,8 x 10-6/K im Fall der Legierung E1 den Anforderungen der Anwendung als Werkstoffe für die vertikalen Rahmenteile. Der temperaturabhängige Verlauf der Ausdehnungskoeffizienten der erfindungsgemäßen Legierung E1 ähnelt dem Verlauf der Ausdehnungskoeffizienten der Legierung T2, die dem Stand der Technik entspricht. Dies zeigt die Abbildung 1, wobei auch zu erkennen ist, daß sich die Ausdehnungskoeffizienten der Legierungen E1 und T2 im Temperaturverlauf zwischen 270°C und 320°C mit dem Ausdehnungskoeffizienten der Legierung T1 kreuzen, so daß die Wärmeausdehnungskoeffizienten der Legierung mit dem niedrigeren Nickelgehalt unterhalb der Kreuzungstemperatur niedriger sind, als die der Wärmeausdehnungskoeffizienten der Legierungen mit den höheren Nickelgehalten. Oberhalb der Kreuzungstemperatur kehrt sich das Verhalten um. Die Knickpunkttemperatur der Wärmeausdehnungskoeffizienten entspricht etwa der Curie-Temperatur Tc der entsprechenden Legierung.The thermal expansion coefficients in the temperature range of 20 to 100 ° C with about 4.8 x 10 -6 / K in the case of alloy E1 meet the requirements for use as materials for the vertical frame parts. The temperature-dependent course of the expansion coefficients of the alloy E1 according to the invention is similar to the course of the expansion coefficients of the alloy T2, which corresponds to the prior art. This is shown in Figure 1, whereby it can also be seen that the expansion coefficients of the alloys E1 and T2 intersect with the expansion coefficient of the alloy T1 in the temperature profile between 270 ° C and 320 ° C, so that the thermal expansion coefficients of the alloy with the lower nickel content below the crossing temperature are lower than that of the thermal expansion coefficient of the alloys with the higher nickel contents. Behavior reverses above the crossing temperature. The break point temperature of the thermal expansion coefficient corresponds approximately to the Curie temperature T c of the corresponding alloy.

Abbildung 1: Temperaturabhängige Ausdehnungskoeffizienten. der Legierungen E1 und E2 und die der Legierungen T1 und T2, die dem Stand der Technik entsprechen.Figure 1: Temperature-dependent expansion coefficients. the Alloys E1 and E2 and those of alloys T1 and T2, which the State of the art.

Beispielhafte chemische Zusammensetzungen der Legierungen E1 und E2 sind im Vergleich zu den Zusammensetzungen der Legierungen T1 und T2, die dem Stand der Technik entsprechen, in der Tabelle 2 aufgeführt. Beispielhafte chemische Zusammensetzungen der Legierungen E1 und E2 im Vergleich zu beispielhafte Zusammensetzungen von Legierungen T1 und T2, die dem Stand der Technik entsprechen. Element E1 E2 T1 T2 (Masse-%) C 0,002 0,020 0,003 0,007 S 0,0014 0,0006 0,0002 0,0030 N 0,001 0,001 0,0025 0,002 Cr 0,01 0,06 0,03 0,03 Ni 42,95 42,2 36,15 40,80 Mn 0,01 0,12 0,24 0,55 Si 0,01 0,16 0,06 0,17 Mo 0,05 0,01 Ti <0,01 1,85 <0,01 0,005 Nb 0,52 0,01 <0,01 Cu 0,02 0,05 0,04 Fe Rest Rest 63,3 58,30 P 0,002 0,009 0,002 0,003 Al 1,88 0,13 0,007 0,002 Mg 0,0002 0,002 <0,001 Pb <0,001 0,001 0,001 Ca 0,0007 Zr <0,01 <0,01 Co 0,01 0,02 0,04 0,04 O 0,001 0,002 0,002 0,002 Exemplary chemical compositions of the alloys E1 and E2 are listed in Table 2 in comparison to the compositions of the alloys T1 and T2, which correspond to the prior art. Exemplary chemical compositions of alloys E1 and E2 compared to exemplary compositions of alloys T1 and T2 which correspond to the prior art. element E1 E2 T1 T2 (Dimensions-%) C 0,002 0,020 0,003 0,007 S 0.0014 0.0006 0.0002 0.0030 N 0.001 0.001 0.0025 0,002 Cr 0.01 0.06 0.03 0.03 Ni 42,95 42.2 36.15 40,80 Mn 0.01 0.12 0.24 0.55 Si 0.01 0.16 0.06 0.17 Mo 0.05 0.01 Ti <0.01 1.85 <0.01 0.005 Nb 0.52 0.01 <0.01 Cu 0.02 0.05 0.04 Fe rest rest 63.3 58.30 P 0,002 0.009 0,002 0,003 al 1.88 0.13 0,007 0,002 mg 0.0002 0,002 <0.001 pb <0.001 0.001 0.001 Ca 0.0007 Zr <0.01 <0.01 Co 0.01 0.02 0.04 0.04 O 0.001 0,002 0,002 0,002

In der folgenden Tabelle sind die Grenzwerte der chemischen Zusammensetzungen der Legierung E1 beschrieben. Grenzwerte für die chemische Zusammensetzung der Legierung E1. Element (Masse-%) E1 minimal maximal C 0,2 S 0,005 Cr 0,2 Ni 39,0 45,0 Mn 0,3 Si 0,3 Mo 0,1 Ti 0,1 Nb 0,01 Cu 0,1 Fe R100,0 P 0,005 Al 0,1 3,0 Mg 0,005 Zr 0,10 Co 0,3 O 0,001 The limit values for the chemical compositions of alloy E1 are described in the following table. Limit values for the chemical composition of alloy E1. Element (mass%) E1 minimal maximum C 0.2 S 0.005 Cr 0.2 Ni 39.0 45.0 Mn 0.3 Si 0.3 Mo 0.1 Ti 0.1 Nb 0.01 Cu 0.1 Fe R100,0 P 0.005 al 0.1 3.0 mg 0.005 Zr 0.10 Co 0.3 O 0.001

Eine weitere Ausführung der Legierung stellt die Variante E2 dar. Die bevorzugte Zusammensetzung enthält neben 39,0 - 45,0 % Ni, 1,5 - 2,5 % Ti, 0,05 - 0,3 % Al und 0,2 - 1,0 % Nb sowie Rest Eisen und herstellungsbedingte Beimengungen gemäß der Tabelle 4.Another embodiment of the alloy is variant E 2. The preferred composition contains 39.0-45.0% Ni, 1.5-2.5% Ti, 0.05-0.3% Al and 0.2 - 1.0% Nb as well as the rest iron and manufacturing-related admixtures according to Table 4.

In der folgenden Tabelle sind die Grenzwerte der chemischen Zusammensetzungen der erfindungsgemäß verwendeten Legierung E2 beschrieben. Grenzwerte für die chemische Zusammensetzung der erfindungsgemäß verwendeten Legierung E2. Element (Masse-%) E2 minimal maximal C 0,2 S 0,005 Cr 0,2 Ni 39,0 45,0 Mn 0,3 Si 0,3 Mo 0,3 Al 0,05 0,3 Nb 0,2 1,0 Cu 0,3 Fe R100,0 P 0,01 Ti 0,5 2,5 Mg 0,005 Zr 0,10 Co 0,5 O 0,003 The following table describes the limit values of the chemical compositions of the alloy E2 used according to the invention. Limit values for the chemical composition of the alloy E2 used according to the invention. Element (mass%) E2 minimal maximum C 0.2 S 0.005 Cr 0.2 Ni 39.0 45.0 Mn 0.3 Si 0.3 Mo 0.3 al 0.05 0.3 Nb 0.2 1.0 Cu 0.3 Fe R100,0 P 0.01 Ti 0.5 2.5 mg 0.005 Zr 0.10 Co 0.5 O 0,003

Die Legierung E2 kann zunächst im weichgeglühten Zustand zu Rahmenteilen umgeformt werden. Sie erfüllt dann im ausgehärtetem Zustand (z.B. 30 min bei 750°C) mit A80 < 0,1 % im Test der Kriechfestigkeit bei 580°C während 1 Stunde bei der erhöhten Belastung von 200 MPa die hohen Anforderungen. Werte für die mechanischen, magnetischen und Wärmeausdehnungseigenschaften sind in Tabelle 1 aufgeführt. Eine typische Zusammensetzung der Legierung E1 ist in Tabelle 2 bekannt.Alloy E2 can first be formed into frame parts in the soft annealed condition. It then meets the high requirements in the hardened state (eg 30 min at 750 ° C) with A 80 <0.1% in the creep resistance test at 580 ° C for 1 hour with the increased load of 200 MPa. Values for the mechanical, magnetic and thermal expansion properties are listed in Table 1. A typical composition of alloy E1 is known in Table 2.

Claims (1)

  1. Use of a creep resistant and low expansive iron-nickel alloy, which contains (in % by mass), besides max. 0.02% C, max. 0.05% Mn and max. 0.05% Si, also an Al content of 0.05 to 0.3%, a Ti content of 1.5 to 2.5%, 0.2-1.0% Nb as well as a Ni content of 39.0 to 45.0%, ≤ 0.5% cobalt as optional component, rest iron and manufacture dependent impurities, wherein the alloy has a thermal coefficient of expansion of < 6.0 x 10-6/K in the temperature range comprised between 20 and 100°C, for frame parts of screen and monitor shadow masks.
EP00909178A 1999-07-22 2000-02-16 Iron-nickel alloy with creep resistance and low thermal expansion Revoked EP1206588B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19934401A DE19934401A1 (en) 1999-07-22 1999-07-22 Creep-resistant, low-expansion iron-nickel alloy
DE19934401 1999-07-22
PCT/EP2000/001236 WO2001007673A1 (en) 1999-07-22 2000-02-16 Iron-nickel alloy with creep resistance and low thermal expansion

Publications (2)

Publication Number Publication Date
EP1206588A1 EP1206588A1 (en) 2002-05-22
EP1206588B1 true EP1206588B1 (en) 2004-10-27

Family

ID=7915681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00909178A Revoked EP1206588B1 (en) 1999-07-22 2000-02-16 Iron-nickel alloy with creep resistance and low thermal expansion

Country Status (9)

Country Link
EP (1) EP1206588B1 (en)
JP (1) JP2003505594A (en)
KR (1) KR100531951B1 (en)
CN (1) CN1140644C (en)
DE (2) DE19934401A1 (en)
HK (1) HK1047772B (en)
PL (1) PL195127B1 (en)
TW (1) TWI234588B (en)
WO (1) WO2001007673A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005250B4 (en) * 2006-02-02 2010-04-29 Thyssenkrupp Vdm Gmbh Iron-nickel alloy
CN102888557B (en) * 2011-07-18 2014-10-29 宝钢特钢有限公司 High-strength and low-expansion coefficient alloy wire and manufacturing method thereof
CN103084753B (en) * 2013-01-23 2016-07-27 宝山钢铁股份有限公司 A kind of ferronickel Precise Alloy welding wire
CN103074523B (en) * 2013-01-31 2015-05-13 安徽工业大学 Mould material for detecting high-temperature fatigue performance and preparation method of mould material
JP6536535B2 (en) * 2016-03-31 2019-07-03 Tdk株式会社 Composite magnetic sealing material
US9818518B2 (en) 2016-03-31 2017-11-14 Tdk Corporation Composite magnetic sealing material
US9972579B1 (en) * 2016-11-16 2018-05-15 Tdk Corporation Composite magnetic sealing material and electronic circuit package using the same
CN108539354B (en) * 2018-03-21 2019-07-23 东莞市冠顺实业有限公司 A kind of resonant rod with long service life and preparation method thereof
CN112962033B (en) * 2021-02-01 2021-11-19 山西太钢不锈钢股份有限公司 High-strength invar alloy and processing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH155830A (en) * 1931-01-12 1932-07-15 Res Inst Of Iron Steel & Other Alloy with a low expansion coefficient.
US2266481A (en) * 1939-10-27 1941-12-16 Int Nickel Co Age hardenable, low expansion, nickel-iron-titanium alloy
US3843332A (en) * 1970-12-21 1974-10-22 Allegheny Ludlum Ind Inc Composite article with a fastener of an austenitic alloy
US4006012A (en) * 1973-10-15 1977-02-01 Allegheny Ludlum Industries, Inc. Austenitic alloy
US3971677A (en) * 1974-09-20 1976-07-27 The International Nickel Company, Inc. Low expansion alloys
DE3017044C2 (en) * 1980-05-03 1983-08-18 G. Rau GmbH & Co, 7530 Pforzheim Thermal bimetal with a high application limit and manufacturing process for this
JP2941504B2 (en) * 1990-10-26 1999-08-25 インコ、アロイス、インターナショナル、インコーポレーテッド Welding material for low thermal expansion coefficient alloy
JPH0826429B2 (en) * 1990-11-30 1996-03-13 日本鋼管株式会社 High strength and low thermal expansion Fe-Ni alloy excellent in plating property, soldering property and cyclic bending property and method for producing the same
DE4402684C2 (en) * 1993-05-27 2001-06-21 Krupp Vdm Gmbh Use of a low-expansion iron-nickel alloy
JPH09268348A (en) * 1996-04-03 1997-10-14 Hitachi Metals Ltd Fe-ni alloy sheet for electronic parts and its production
JP3730360B2 (en) * 1997-05-13 2006-01-05 東北特殊鋼株式会社 High strength low thermal expansion alloy

Also Published As

Publication number Publication date
CN1140644C (en) 2004-03-03
WO2001007673A1 (en) 2001-02-01
HK1047772B (en) 2004-08-20
KR20020016649A (en) 2002-03-04
JP2003505594A (en) 2003-02-12
HK1047772A1 (en) 2003-03-07
PL195127B1 (en) 2007-08-31
PL353027A1 (en) 2003-10-06
KR100531951B1 (en) 2005-12-02
DE19934401A1 (en) 2001-03-22
TWI234588B (en) 2005-06-21
CN1357056A (en) 2002-07-03
EP1206588A1 (en) 2002-05-22
DE50008438D1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
DE3107490C2 (en) A method for producing a niobium-containing chromium ferrite stainless steel sheet
WO2009135469A1 (en) Iron-nickel alloy
EP1206588B1 (en) Iron-nickel alloy with creep resistance and low thermal expansion
EP0626462B1 (en) Iron-nickel alloy with low thermal expansion coefficient
DE68926768T2 (en) Super magnetostrictive alloy
DE19944578C2 (en) Use of a low-expansion iron-nickel alloy with special mechanical properties
DE10159408B4 (en) Fe-Cr-Ni-Al alloy having excellent oxidation resistance and high strength, and plate made of this alloy
EP1173628B1 (en) Iron-nickel alloy
DE3309365C1 (en) Use of a hardenable copper-nickel-manganese alloy as a material for the manufacture of spectacle parts
DE19934400C2 (en) Use of a creep-resistant, low-expansion iron-nickel alloy
WO2018219514A1 (en) Fe-mn-si shape memory alloy
EP1255873B1 (en) Maraging type spring steel
DE10262032B4 (en) Iron-nickel-cobalt alloy, method of making and using same
DE3854682T2 (en) Iron-copper-chromium alloy for a high-strength lead frame or a pin grid and process for their production.
DE10146301C1 (en) Production of a strip made from an iron-nickel alloy, used for shadow masks in flat monitors and TV screens, comprises continuous or batch-type annealing a strip made from an iron alloy containing nickel, molybdenum and chromium
DE102013104935A1 (en) CoNiCrMo alloy and method for producing a CoNiCrMo alloy
DE3421198C1 (en) Copper-nickel-tin-titanium alloy, process for the production thereof, and use thereof
EP0608692A1 (en) Process for making a material based on a doped intermetallic compound
EP0519311A1 (en) Shape memory alloy iron-nickel-cobalt-titanium, and process for producing this alloy
DE10242322A1 (en) Golf club head used in golf club manufacture is made from a rust-free age-hardened maraging steel containing alloying additions of nickel, chromium, titanium, beryllium
DE102008022854A1 (en) Creep-resistant, readily processed, low thermal expansion iron-nickel alloy with minimized manganese and silicon contents, is useful e.g. in wires for overhead power lines
DE9207088U1 (en) Age-hardenable cobalt-nickel-based alloy
DE102008022855A1 (en) Creep-resistant, readily processed, low thermal expansion iron-nickel alloy with minimized manganese and silicon contents, is useful e.g. in wires for overhead power lines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011121

17Q First examination report despatched

Effective date: 20020621

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP VDM GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041027

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50008438

Country of ref document: DE

Date of ref document: 20041202

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: IMPHY ALLOYS

Effective date: 20050726

NLR1 Nl: opposition has been filed with the epo

Opponent name: IMPHY ALLOYS

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAG Information modified related to despatch of communication that opposition is rejected

Free format text: ORIGINAL CODE: EPIDOSCREJ1

R26 Opposition filed (corrected)

Opponent name: IMPHY ALLOYS

Effective date: 20050726

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

NLR1 Nl: opposition has been filed with the epo

Opponent name: IMPHY ALLOYS

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080219

Year of fee payment: 9

Ref country code: GB

Payment date: 20080220

Year of fee payment: 9

Ref country code: IT

Payment date: 20080223

Year of fee payment: 9

Ref country code: NL

Payment date: 20080214

Year of fee payment: 9

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080214

Year of fee payment: 9

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20090125

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20090125

NLR2 Nl: decision of opposition

Effective date: 20090125