EP1200216A1 - Method and device for making a metal strand - Google Patents

Method and device for making a metal strand

Info

Publication number
EP1200216A1
EP1200216A1 EP00951251A EP00951251A EP1200216A1 EP 1200216 A1 EP1200216 A1 EP 1200216A1 EP 00951251 A EP00951251 A EP 00951251A EP 00951251 A EP00951251 A EP 00951251A EP 1200216 A1 EP1200216 A1 EP 1200216A1
Authority
EP
European Patent Office
Prior art keywords
strand
reduction
solidification
liquid core
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00951251A
Other languages
German (de)
French (fr)
Other versions
EP1200216B1 (en
Inventor
Hans-Herbert Welker
Uwe STÜRMER
Andreas Kemna
Albrecht Sieber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7913934&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1200216(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1200216A1 publication Critical patent/EP1200216A1/en
Application granted granted Critical
Publication of EP1200216B1 publication Critical patent/EP1200216B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1282Vertical casting and curving the cast stock to the horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/14Soft reduction

Definitions

  • the invention relates to methods and a device for producing a strand of metal by means of a continuous casting plant, which has at least one cow device for cooling the strand, the cow device being assigned at least one reduction framework for reducing the thickness of the strand, the strand being a solidified shell during the thickness reduction and has a liquid core.
  • the strand For the production of strands, it is known to associate or assign a reduction framework to a continuous casting plant. A particularly large reduction in thickness is achieved if the strand has a still liquid core when it runs in, the reduction framework. In this process, which is known as so-called soft reduction, it is important that the liquid core is large enough to ensure the necessary reduction in the thickness of the strand, but also not so large that it leads to strand breakthrough and leakage of liquid Metal is coming. To achieve the necessary dimension of the liquid core when the reduction framework is reached, the strand is cooled by means of a cooling device, the necessary cooling being set by an operator after the operator has estimated the dimension of the liquid core.
  • the object of the invention is to provide a method and a device for carrying out the method, which permits a soft reduction which is improved compared to the prior art, in particular also with varying strand speed.
  • the object is achieved according to the invention by a method according to claim 1 or a device according to claim 10.
  • the cooling device is followed by at least one reduction frame for reducing the thickness of the strand, the strand showing a solidified shell and a liquid core in the thickness reduction, and wherein the cooling by means of a temperature and solidification model is set in such a way, in particular automatically, that the
  • the solidification limit between the solidified shell and the liquid core when the strand enters the reduction framework corresponds to a predetermined target solidification limit between the solidified shell and the liquid core.
  • a particularly good soft reduction is achieved in this way.
  • reduction stands in the sense of the invention can be complex roll stands by means of which a certain geometry is rolled into the strand.
  • the temperature and solidification model can be, for example, an analytical model, a neural network or a combination of an analytical model and a neural network.
  • the temperature and solidification model advantageously relates the cooling of the strand and the solidification limit between the solidified shell and the liquid core.
  • Such an embodiment of the invention is particularly advantageous since the temperature and solidification model depicts the solidification limit between the solidified shell and the liquid core as a function of the cooling quantity, the cause-effect relationship between cooling and the solidification limit between the solidified shell and the liquid core ,
  • the solidification limit between the solidified shell and the liquid core is dependent on the cooling of the strand, in particular in real time and continuously, and the necessary cooling of the strand is determined iteratively depending on the predetermined set solidification limit between the solidified shell and the liquid core, iterating as often until the deviation of the solidification limit determined with the temperature and solidification model between of the solidified shell and the liquid core of the predetermined target solidification limit between the solidified shell and the liquid core is smaller than a predetermined tolerance value.
  • the variables strand geometry, strand shell thickness, time, strand material, coolant pressure or volume and coolant temperature are used to determine the necessary cooling of the strand depending on the solidification limit between the solidified shell and the liquid core.
  • the use of these sizes is particularly suitable for achieving particularly precise cooling of the strand.
  • each reduction device is assigned a set solidification limit between the solidified shell and the liquid core of the strand.
  • the effect of the thickness reduction by the reduction framework in particular the position, is shown in the temperature and solidification model the boundary between the solidified shell and the liquid core is also modeled.
  • the reduction in thickness is modeled by the reduction framework by at least one of the large reduction force and degree of reduction.
  • At least one of the large reduction force and degree of reduction in the reduction framework is measured and used to adapt the temperature and solidification model.
  • the quantities reduction force and degree of reduction in the reduction framework are measured and used to adapt the temperature and solidification model.
  • FIG. 1 shows a continuous casting installation
  • FIG. 2 shows a flowchart for iteratively determining a target cooling of the strand using a temperature and solidification model
  • FIG. 3 shows a flowchart for iteratively determining an adaptation coefficient.
  • Reference numeral 1 designates the cast strand which has a solidified shell 21 within a solidification limit 22 and a liquid core 2.
  • the strand is moved with drive or guide rollers 4 and cooled on its way through cow devices 5. These are advantageously designed as water spray devices.
  • cow devices 5 are divided into cooling segments. This division is not necessary in the new and inventive method, but can be taken into account.
  • Both the drive rollers 4 and the cow devices 5 are connected in terms of data technology to a computing device. In the present exemplary embodiment, both are technically connected to one and the same automation device 7.
  • the automation device 7 optionally also has a terminal, not shown, and a keyboard, not shown.
  • the automation device 7 is connected to a superordinate computing system 8.
  • the material required for continuous casting, in this case liquid steel, is fed via a feed device 20.
  • the manipulated variables for the cow devices 5 are calculated by means of a temperature and solidification model, ie a thermal model of the strand, which is implemented on the superordinate computer system 8 in the exemplary embodiment.
  • Reference numerals 9, 10 and 11 designate reduction frameworks assigned to the cooling device 5. In an advantageous embodiment of the invention, these are connected to the programmable logic controller 7 in terms of data technology, the rolling force and the degree of reduction, for example in the form of the roll gap, being transmitted to the automation device 7.
  • three reduction frameworks 9, 10 and 11 are provided.
  • so-called soft reduction is carried out only in the reduction frameworks 9 and 10.
  • the strand to be reduced is not completely solidified, but has a liquid core 2 and a solidified shell 21 when it enters a reduction framework.
  • only a soft reduction in the reduction frameworks 9 and 10 is provided for the strand 1.
  • the cooling with the cow devices 5 is set by means of the automation device 7 in such a way that that the solidification limit 22 between the solidified shell 21 and the liquid core 2 of the strand 1 corresponds to a desired set solidification limit between the liquid core 2 and the solidified shell 21 when it enters the reduction frames 9 and 10.
  • the reduction frame 9 is arranged in a particularly advantageous manner within the cooling section, i.e. cooling devices 5 are provided in front of and behind the reduction frame 9. It can also be provided in an advantageous manner to also provide 10 cooling devices behind the second reduction frame.
  • the cooling device 9 is advantageously not arranged in the bend of the strand 1, as is indicated for reasons of clarity in FIG. 1, but is arranged in front of the bend of the strand or behind the bend of the strand 1.
  • the solidification limits e x in the strand are determined in the temperature and solidification model 13 from a given cooling of the strand k ⁇ by means of the temperature and solidification model 13.
  • This solidification limit e x is compared in a comparator 14 with the set solidification limit eo in the strand.
  • the comparator 14 asks whether I ⁇ i-eol ⁇ ⁇ e max , where ⁇ e max is a predetermined tolerance value.
  • the function block 12 determines a new proposal k for improved cooling of the strand.
  • a value for the cooling is used as the initial value for the iteration, which has proven to be a tried and tested experience in the long-term average. If the magnitude of the difference between e ⁇ and e 0 is less than or equal to the tolerance value ⁇ e max , the target value k 0 for the cow the string is set equal to the value.
  • the values e lf e 0 , ⁇ e max , k ⁇ r k 0 are not necessarily scalars, but column matrices with one or more values. For example, B.
  • the iteration circuit shown in FIG. 2 takes place on the basis of genetic algorithms. This is particularly useful when k x or k 0 are column matrices with many elements.
  • the temperature and solidification model 13 can be implemented both as a one-dimensional model and as a two-dimensional model.
  • the thermal conduction equation is the basis of the temperature and solidification model, shown here for the two-dimensional case
  • T is the temperature
  • t is the time
  • a is the temperature conductivity
  • x and y are the two-dimensional spatial coordinates.
  • the cross-section of the strand skin is divided into small rectangles of the size ⁇ x times ⁇ y and the temperature is calculated in small time steps ⁇ t.
  • is assumed to be constant and Tu is equated to the temperature of the cooling water in the mold.
  • Tu is equated to the temperature of the coolant and ⁇ is, for example, according to
  • V is the coolant volume in - ⁇ .
  • D min at V can be specified differently for each point on the strand surface, which means that the model can also be used to describe nozzle characteristics.
  • the model also calculates the course of the solidification limit from the course of the temperature distribution in the strand.
  • the individual model parameters include:
  • the solidification limits e x in the strand are determined in the temperature and solidification model 13 from a given cooling of the strand by means of the temperature and solidification model 13.

Abstract

A method and device for producing a strand of metal by means of a continuous-casting installation which has at least one cooling device for cooling the strand, the cooling device being assigned at least one reduction stand for reducing the thickness of the strand, the strand, during the thickness reduction, having a solidified skin and a liquid core. The cooling is set, by means of a temperature and solidification model, in such a manner that the solidification boundary between the solidified skin and the liquid core when the strand enters the reduction stand corresponds to a predetermined set solidification boundary between the solidified skin and the liquid core.

Description

Beschreibungdescription
Verfahren und Einrichtung zum Herstellen eines Stranges aus MetallMethod and device for producing a strand of metal
Die Erfindung betrifft Verfahren und eine Einrichtung zum Herstellen eines Stranges aus Metall mittels einer Stranggießanlage, die zumindest eine Kuhleinrichtung zur Kühlung des Stranges aufweist, wobei der Kuhleinrichtung zumindest ein Reduktionsgerust zur Dickenreduktion des Stranges zugeordnet ist, wobei der Strang bei der Dickenreduktion eine erstarrte Hülle und einen flussigen Kern aufweist.The invention relates to methods and a device for producing a strand of metal by means of a continuous casting plant, which has at least one cow device for cooling the strand, the cow device being assigned at least one reduction framework for reducing the thickness of the strand, the strand being a solidified shell during the thickness reduction and has a liquid core.
Zum Herstellen von Strängen ist es bekannt, einer Stranggieß- anläge ein Reduktionsgerust nach- oder zuzuordnen. Dabei wird eine besonders große Dickenreduktion dann erreicht, wenn der Strang beim Einlaufen m das Reduktionsgerust einen noch flussigen Kern aufweist. Bei diesem Verfahren, das als sogenannte Soft-Reduction bekannt ist, ist es wichtig, daß der flussige Kern groß genug ist, um die notwendige Dickenreduktion des Stranges zu gewährleisten, jedoch auch nicht so groß ist, daß es zu einem Strangdurchbruch und Austritt von flussigem Metall kommt. Zum Erreichen der notwendigen Abmessung des flussigen Kerns bei Erreichen des Reduktionsgerustes wird der Strang mittels einer Kuhlemπchtung gekühlt, wobei die notwendige Kühlung von einem Bediener nach dessen Abschätzung der Abmessung des flüssigen Kerns eingestellt wird.For the production of strands, it is known to associate or assign a reduction framework to a continuous casting plant. A particularly large reduction in thickness is achieved if the strand has a still liquid core when it runs in, the reduction framework. In this process, which is known as so-called soft reduction, it is important that the liquid core is large enough to ensure the necessary reduction in the thickness of the strand, but also not so large that it leads to strand breakthrough and leakage of liquid Metal is coming. To achieve the necessary dimension of the liquid core when the reduction framework is reached, the strand is cooled by means of a cooling device, the necessary cooling being set by an operator after the operator has estimated the dimension of the liquid core.
Aufgabe der Erfindung ist es, ein Verfahren sowie eine Em- richtung zur Durchfuhrung des Verfahrens anzugeben, das eine gegenüber dem Stand der Technik verbesserte Soft-Reduction, insbesondere auch bei variierender Stranggeschwindigkeit, erlaubt. Die Aufgabe wird erfindungsgemäß durch ein Verfahren gemäß Anspruch 1 bzw. eine Einrichtung gemäß Anspruch 10 gelöst. Dabei ist zum Herstellen eines Stranges aus Metall mittels einer Stranggießanlage, die zumindest eine Kühleinrichtung zur Kühlung des Stranges aufweist, der Kühleinrichtung zumindest ein Reduktionsgerüst zur Dickenreduktion des Stranges nachgeordnet, wobei der Strang bei der Dickenreduktion eine erstarrte Hülle und einen flüssigen Kern ausweist, und wobei die Kühlung mittels eines Temperatur- und Erstarrungsmodells derart, insbesondere automatisch, eingestellt wird, daß dieThe object of the invention is to provide a method and a device for carrying out the method, which permits a soft reduction which is improved compared to the prior art, in particular also with varying strand speed. The object is achieved according to the invention by a method according to claim 1 or a device according to claim 10. To produce a strand of metal by means of a continuous casting plant, which has at least one cooling device for cooling the strand, the cooling device is followed by at least one reduction frame for reducing the thickness of the strand, the strand showing a solidified shell and a liquid core in the thickness reduction, and wherein the cooling by means of a temperature and solidification model is set in such a way, in particular automatically, that the
Erstarrungsgrenze zwischen der erstarrten Hülle und dem flüssigen Kern bei Einlauf des Stranges in das Reduktionsgerust einer vorgegebenen Soll-Erstarrungsgrenze zwischen der erstarrten Hülle und dem flüssigen Kern entspricht. Auf diese Weise wird eine besonders gute Soft-Reduction erreicht. Reduktionsgerüste im Sinne der Erfindung können dabei neben einfachen Walzgerüsten komplexe Walzgerüste sein, mittels denen dem Strang eine bestimmte Geometrie eingewalzt wird. Das Temperatur- und Erstarrungsmodell kann beispielsweise ein analytisches Modell, ein neuronales Netz oder eine Kombination aus analytischem Modell und neuronalem Netz sein.The solidification limit between the solidified shell and the liquid core when the strand enters the reduction framework corresponds to a predetermined target solidification limit between the solidified shell and the liquid core. A particularly good soft reduction is achieved in this way. In addition to simple roll stands, reduction stands in the sense of the invention can be complex roll stands by means of which a certain geometry is rolled into the strand. The temperature and solidification model can be, for example, an analytical model, a neural network or a combination of an analytical model and a neural network.
Das Temperatur- und Erstarrungsmodell setzt vorteilhafterweise die Kühlung des Stranges und die Erstarrungsgrenze zwi- sehen der erstarrten Hülle und dem flüssigen Kern in Beziehung. Eine derartige Ausgestaltung der Erfindung ist von besonderem Vorteil, da das Temperatur- und Erstarrungsmodell die Erstarrungsgrenze zwischen der erstarrten Hülle und dem flüssigen Kern in Abhängigkeit von der Kühlmenge die Ursache Wirkung-Beziehung zwischen Kühlung und die Erstarrungsgrenze zwischen der erstarrten Hülle und dem flüssigen Kern abbildet.The temperature and solidification model advantageously relates the cooling of the strand and the solidification limit between the solidified shell and the liquid core. Such an embodiment of the invention is particularly advantageous since the temperature and solidification model depicts the solidification limit between the solidified shell and the liquid core as a function of the cooling quantity, the cause-effect relationship between cooling and the solidification limit between the solidified shell and the liquid core ,
In vorteilhafter Ausgestaltung der Erfindung wird mit dem Temperatur- und Erstarrungsmodell die Erstarrungsgrenze zwischen der erstarrten Hülle und dem flüssigen Kern in Abhängigkeit von der Kühlung des Stranges, insbesondere in Echt- zeit und ständig, ermittelt und die notwendige Kühlung des Stranges auf iterative Weise in Abhängigkeit der vorgegebenen Soll-Erstarrungsgrenze zwischen der erstarrten Hülle und dem flüssigen Kern bestimmt, wobei so oft iteriert wird, bis die Abweichung der mit dem Temperatur- und Erstarrungsmodell ermittelten Erstarrungsgrenze zwischen der erstarrten Hülle und dem flüssigen Kern von dem vorgegebenen Soll-Erstarrungsgrenze zwischen der erstarrten Hülle und dem flüssigen Kern kleiner ist als ein vorgegebener Toleranzwert.In an advantageous embodiment of the invention, with the temperature and solidification model, the solidification limit between the solidified shell and the liquid core is dependent on the cooling of the strand, in particular in real time and continuously, and the necessary cooling of the strand is determined iteratively depending on the predetermined set solidification limit between the solidified shell and the liquid core, iterating as often until the deviation of the solidification limit determined with the temperature and solidification model between of the solidified shell and the liquid core of the predetermined target solidification limit between the solidified shell and the liquid core is smaller than a predetermined tolerance value.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird zur Bestimmung der notwendigen Kühlung des Stranges in Abhängigkeit von der vorgegebenen Soll-Erstarrungsgrenze zwischen der erstarrten Hülle und dem flüssigen Kern zumindest eine weitere Größe der Größen Stranggeschwindigkeit, Stranggeometrie, Strangschalendicke, Kokillenlänge, Zeit, Strangmaterial, Kühlmitteldruck bzw. -volu en, Tröpfchengröße des Kühlmittels und Kühlmitteltemperatur verwendet.In a further advantageous embodiment of the invention, in order to determine the necessary cooling of the strand depending on the predetermined set solidification limit between the solidified shell and the liquid core, at least one further size of the strand speed, strand geometry, strand shell thickness, mold length, time, strand material, coolant pressure or - Volumes, coolant droplet size, and coolant temperature used.
In weiterhin vorteilhafter Ausgestaltung der Erfindung werden zur Bestimmung der notwendigen Kühlung des Stranges in Abhängigkeit der Erstarrungsgrenze zwischen der erstarrten Hülle und dem flüssigen Kern die Größen Stranggeometrie, Strangschalendicke, Zeit, Strangmaterial, Kühlmitteldruck bzw. -volumen und Kühlmitteltemperatur verwendet. Die Verwendung dieser Größen ist besonders geeignet, eine besonders präzise Kühlung des Stranges zu erzielen.In a further advantageous embodiment of the invention, the variables strand geometry, strand shell thickness, time, strand material, coolant pressure or volume and coolant temperature are used to determine the necessary cooling of the strand depending on the solidification limit between the solidified shell and the liquid core. The use of these sizes is particularly suitable for achieving particularly precise cooling of the strand.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird jeder Reduktionseinrichtung eine Soll-Erstarrungsgrenze zwischen der erstarrten Hülle und dem flüssigen Kern des Stranges zugeordnet.In a further advantageous embodiment of the invention, each reduction device is assigned a set solidification limit between the solidified shell and the liquid core of the strand.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird im Temperatur- und Erstarrungsmodell die Wirkung der Dickenreduktion durch das Reduktionsgerüst, insbesondere die Lage der Grenze zwischen erstarrter Hülle und flussigem Kern mit modelliert .In a further advantageous embodiment of the invention, the effect of the thickness reduction by the reduction framework, in particular the position, is shown in the temperature and solidification model the boundary between the solidified shell and the liquid core is also modeled.
In weiterhin vorteilhafter Ausgestaltung der Erfindung er- folgt die Modellierung der Dickenreduktion durch das Reduktionsgerust durch zumindest eine der Großen Reduktionskraft und Reduktionsgrad.In a further advantageous embodiment of the invention, the reduction in thickness is modeled by the reduction framework by at least one of the large reduction force and degree of reduction.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird zumindest eine der Großen Reduktionskraft und Reduktionsgrad im Reduktionsgerüst gemessen und zur Adaption des Temperatur- und Erstarrungsmodells verwendet.In a further advantageous embodiment of the invention, at least one of the large reduction force and degree of reduction in the reduction framework is measured and used to adapt the temperature and solidification model.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung werden die Größen Reduktionskraft und Reduktionsgrad im Reduktionsgerüst gemessen und zur Adaption des Temperatur- und Erstarrungsmodells verwendet.In a further advantageous embodiment of the invention, the quantities reduction force and degree of reduction in the reduction framework are measured and used to adapt the temperature and solidification model.
Weitere Vorteile und erfinderische Einzelheiten ergeben sich aus der nachfolgenden Beschreibung eines Ausfuhrungsbeispiels, anhand der Zeichnungen und m Verbindung mit den Un- teranspruchen. Im einzelnen zeigen:Further advantages and inventive details emerge from the following description of an exemplary embodiment, using the drawings and in conjunction with the subclaims. In detail show:
FIG 1 eine Stranggießanlage, FIG 2 ein Ablaufdiagramm zur iterativen Bestimmung einer Soll-Kuhlung des Stranges mittels eines Temperatur- und Erstarrungsmodells, FIG 3 ein Ablaufdiagramm zur iterativen Bestimmung eines Adaptionskoeffizienten.1 shows a continuous casting installation, FIG. 2 shows a flowchart for iteratively determining a target cooling of the strand using a temperature and solidification model, FIG. 3 shows a flowchart for iteratively determining an adaptation coefficient.
FIG 1 zeigt eine Stranggießanlage. Dabei bezeichnet Bezugszeichen 1 den gegossenen Strang, der eine erstarrte Hülle 21 innerhalb einer Erstarrungsgrenze 22 und einen flüssigen Kern 2 aufweist. Der Strang wird mit Antriebs- bzw. Fuhrungs- rollen 4 bewegt und auf seinem Weg durch Kuhleinrichtungen 5 gekühlt. Diese sind vorteilhafterweise als Wasserspruhem- richtungen ausgebildet. Aus Gründen der Übersichtlichkeit sind nicht alle Antriebs- bzw. Fuhrungsrollen 4 und Kuhleinrichtungen 5 mit Bezugszeichen versehen. Bei bekannten Verfahren sind die Kuhleinrichtungen 5 in Kuhlsegmente aufgeteilt. Diese Aufteilung ist beim neuen und erfinderischen Verfahren nicht notwendig, kann aber berücksichtigt werden. Sowohl die Antriebsrollen 4 als auch die Kuhleinrichtungen 5 sind datentechnisch mit einer Recheneinrichtung verbunden. Im vorliegenden Ausfuhrungsbeispiel sind beide datentechnisch mit ein und demselben Automatisierungsgerat 7 verbunden. Das Automatisierungsgerat 7 weist optional außerdem ein nicht dargestelltes Terminal und eine nicht dargestellte Tastatur auf. Außerdem ist das Automatisierungsgerat 7 mit einem übergeordneten Rechensystem 8 verbunden. Das zum Stranggießen notwendige Material, in diesem Fall flüssiger Stahl, wird über eine Zuführvorrichtung 20 zugeführt. Die Stellgroßen für die Kuhleinrichtungen 5 werden mittels eines Temperatur- und Erstarrungsmodells, d.h. eines thermischen Modells des Stranges berechnet, das in der beispielhaften Ausgestaltung auf dem übergeordneten Rechensystem 8 implementiert ist.1 shows a continuous caster. Reference numeral 1 designates the cast strand which has a solidified shell 21 within a solidification limit 22 and a liquid core 2. The strand is moved with drive or guide rollers 4 and cooled on its way through cow devices 5. These are advantageously designed as water spray devices. For the sake of clarity not all drive or guide rollers 4 and cow devices 5 are provided with reference numerals. In known methods, the cow devices 5 are divided into cooling segments. This division is not necessary in the new and inventive method, but can be taken into account. Both the drive rollers 4 and the cow devices 5 are connected in terms of data technology to a computing device. In the present exemplary embodiment, both are technically connected to one and the same automation device 7. The automation device 7 optionally also has a terminal, not shown, and a keyboard, not shown. In addition, the automation device 7 is connected to a superordinate computing system 8. The material required for continuous casting, in this case liquid steel, is fed via a feed device 20. The manipulated variables for the cow devices 5 are calculated by means of a temperature and solidification model, ie a thermal model of the strand, which is implemented on the superordinate computer system 8 in the exemplary embodiment.
Bezugszeichen 9, 10 und 11 bezeichnen der Kühleinrichtung 5 zugeordnete Reduktionsgeruste . Diese sind in vorteilhafter Ausgestaltung der Erfindung datentechnisch mit der speicherprogrammierbaren Steuerung 7 verbunden, wobei an die Automa- tisierungsgerät 7 die Walzkraft und der Reduktionsgrad, z.B. in Form des Walzspaltes, übertragen werden. Im vorliegenden Ausfuhrungsbeispiel sind drei Reduktionsgeruste 9, 10 und 11 vorgesehen. Im m FIG 1 dargestellten Ausfuhrungsbeispiel ist vorgesehen, daß nur m den Reduktionsgerusten 9 und 10 eine sogenannte Soft-Reduction durchgeführt wird. Bei der sogenannten Soft-Reduction ist der zu reduzierende Strang nicht durcherstarrt, sondern weist einen flussigen Kern 2 und eine erstarrte Hülle 21 auf, wenn er m ein Reduktionsgerust einläuft. Im Ausfuhrungsbeispiel gemäß FIG 1 ist für den Strang 1 lediglich eine Soft-Reduction m den Reduktionsgerusten 9 und 10 vorgesehen. Die Kühlung mit den Kuhleinrichtungen 5 wird mittels des Automatisierungsgerats 7 derart eingestellt, daß die Erstarrungsgrenze 22 zwischen der erstarrten Hülle 21 und dem flüssigen Kern 2 des Stranges 1 bei Einlauf in die Reduktionsgerüste 9 und 10 einer gewünschten Soll- Erstarrungsgrenze zwischen dem flüssigen Kern 2 und der er- starrten Hülle 21 entspricht.Reference numerals 9, 10 and 11 designate reduction frameworks assigned to the cooling device 5. In an advantageous embodiment of the invention, these are connected to the programmable logic controller 7 in terms of data technology, the rolling force and the degree of reduction, for example in the form of the roll gap, being transmitted to the automation device 7. In the present exemplary embodiment, three reduction frameworks 9, 10 and 11 are provided. In the exemplary embodiment shown in FIG. 1, it is provided that so-called soft reduction is carried out only in the reduction frameworks 9 and 10. In the so-called soft reduction, the strand to be reduced is not completely solidified, but has a liquid core 2 and a solidified shell 21 when it enters a reduction framework. In the exemplary embodiment according to FIG. 1, only a soft reduction in the reduction frameworks 9 and 10 is provided for the strand 1. The cooling with the cow devices 5 is set by means of the automation device 7 in such a way that that the solidification limit 22 between the solidified shell 21 and the liquid core 2 of the strand 1 corresponds to a desired set solidification limit between the liquid core 2 and the solidified shell 21 when it enters the reduction frames 9 and 10.
Das Reduktionsgerüst 9 ist in besonders vorteilhafter Weise innerhalb der Kühlstrecke angeordnet, d.h. es sind vor und hinter dem Reduktionsgerüst 9 Kühleinrichtungen 5 vorgesehen. Es kann in weiterhin vorteilhafter Weise vorgesehen werden, auch hinter dem zweiten Reduktionsgerüst 10 Kühleinrichtungen vorzusehen. Die Kühleinrichtung 9 ist vorteilhafterweise nicht in der Biegung des Stranges 1 angeordnet, wie dies aus Gründen der Übersichtlichkeit in FIG 1 angedeutet ist, son- dern vor der Biegung des Stranges oder hinter der Biegung des Stranges 1 angeordnet.The reduction frame 9 is arranged in a particularly advantageous manner within the cooling section, i.e. cooling devices 5 are provided in front of and behind the reduction frame 9. It can also be provided in an advantageous manner to also provide 10 cooling devices behind the second reduction frame. The cooling device 9 is advantageously not arranged in the bend of the strand 1, as is indicated for reasons of clarity in FIG. 1, but is arranged in front of the bend of the strand or behind the bend of the strand 1.
FIG 2 zeigt dabei ein Ablaufdiagramm zur iterativen Bestimmung eines Sollwertes k0 für die Kühlung des Stranges mittels eines Temperatur- und Erstarrungsmodells 13, wobei das Temperatur- und Erstarrungsmodell 13 und die übrigen dargestellten iterativen Abläufe auf dem übergeordneten Rechensystem 8 implementiert sind. Dazu wird im Temperatur- und Erstarrungsmodell 13 aus einer gegebenen Kühlung des Stranges kλ mittels des Temperatur- und Erstarrungsmodells 13 die Erstarrungsgrenzen ex im Strang ermittelt. Diese Erstarrungsgrenze ex wird in einem Vergleicher 14 mit der Soll-Erstarrungsgrenze eo im Strang verglichen. Im Vergleicher 14 erfolgt die Abfrage, ob Iθi-eol≤ Δemax, wobei Δemax ein vorgegebener Toleranz- wert ist. Ist der Betrag der Differenz von e und e0 zu groß, so ermittelt der Funktionsblock 12 einen neuen Vorschlag k für eine verbesserte Kühlung des Stranges. Als Anfangswert für die Iteration wird ein Wert für die Kühlung verwendet, der sich im langzeitlichen Durchschnitt als bewährter Erfah- rungswert erwiesen hat. Ist der Betrag der Differenz von e± und e0 kleiner oder gleich dem Toleranzwert Δemax, so wird mit einer Sollkühlungsfestsetzung 15 der Sollwert k0 für die Kuh- lung des Stranges gleich dem Wert gesetzt. Die Werte el f e0, Δemax, kι r k0 sind nicht unbedingt Skalare, sondern Spaltenmatrizen mit ein oder mehr Werten. So enthält z. B. die Spaltenmatrix k0 die verschiedenen Stell- bzw. Führungsgrößen für die Kühleinrichtungen 5 der einzelnen Kühlsegmente 6 einer Strangkühlanlage oder die Spaltenmatrix e0, die Soll- Erstarrungsgrenzen an verschiedenen Stellen des Stranges. In vorteilhafter Ausgestaltung erfolgt der in FIG 2 dargestellte Iterationskreislauf auf der Basis genetischer Algorithmen. Dies bietet sich insbesondere dann an, wenn kx bzw. k0 Spaltenmatrizen mit vielen Elementen sind.2 shows a flow chart for the iterative determination of a target value k 0 for the cooling of the strand by means of a temperature and solidification model 13, the temperature and solidification model 13 and the other iterative processes shown being implemented on the superordinate computer system 8. For this purpose, the solidification limits e x in the strand are determined in the temperature and solidification model 13 from a given cooling of the strand k λ by means of the temperature and solidification model 13. This solidification limit e x is compared in a comparator 14 with the set solidification limit eo in the strand. The comparator 14 asks whether Iθi-eol≤ Δe max , where Δe max is a predetermined tolerance value. If the amount of the difference between e and e 0 is too large, the function block 12 determines a new proposal k for improved cooling of the strand. A value for the cooling is used as the initial value for the iteration, which has proven to be a tried and tested experience in the long-term average. If the magnitude of the difference between e ± and e 0 is less than or equal to the tolerance value Δe max , the target value k 0 for the cow the string is set equal to the value. The values e lf e 0 , Δe max , k ι r k 0 are not necessarily scalars, but column matrices with one or more values. For example, B. the column matrix k 0, the various actuating or command variables for the cooling devices 5 of the individual cooling segments 6 of a strand cooling system or the column matrix e 0 , the target solidification limits at different points on the strand. In an advantageous embodiment, the iteration circuit shown in FIG. 2 takes place on the basis of genetic algorithms. This is particularly useful when k x or k 0 are column matrices with many elements.
Das Temperatur- und Erstarrungsmodell 13 kann sowohl als eindimensionales Modell als auch als zweidirαensionales Modell implementiert werden. Basis des Temperatur- und Erstarrungs- modells stellt, hier für den zweidimensionalen Fall dargestellt, die Wärmeleitungs-GleichungThe temperature and solidification model 13 can be implemented both as a one-dimensional model and as a two-dimensional model. The thermal conduction equation is the basis of the temperature and solidification model, shown here for the two-dimensional case
dar, die für das Temperatur- und Erstarrungsmodell 13 in Differenzform, d.h. in der Formrepresents for the temperature and solidification model 13 in differential form, i.e. in the shape
verwendet wird. Dabei ist T die Temperatur, t die Zeit und a die Temperaturleitfähigkeit, x und y sind die zweidimensionalen Raumkoordinaten.is used. T is the temperature, t is the time and a is the temperature conductivity, x and y are the two-dimensional spatial coordinates.
Der Querschnitt der Stranghaut wird in kleine Rechtecke der Größe Δx mal Δy unterteilt und die Temperatur wird in kleinen Zeitschritten Δt berechnet. Als Ausgangspunkt für die Temperaturverteilung wird angenommen, daß die Temperatur beim Eintritt in die Kokille (in allen Rechtecken) die Verteilertemperatur des Stahls besitzt. Der an der Strangoberfläche abzuführende Wärmestrom Q berechnet sich aus der Oberflächentemperatur T0 des Strangs, der Umgebungstemperatur Tu, der Oberfläche A und dem Wärmeübergangskoeffizienten α mit Q = α (Tu - T0) A.The cross-section of the strand skin is divided into small rectangles of the size Δx times Δy and the temperature is calculated in small time steps Δt. As a starting point for the temperature distribution, it is assumed that the temperature when entering the mold (in all rectangles) has the distribution temperature of the steel. The heat flow Q to be dissipated on the strand surface is calculated from the surface temperature T 0 of the strand, the ambient temperature Tu, the surface A and the heat transfer coefficient α with Q = α (Tu - T 0 ) A.
Für die Kühlung in der Kokille wird α als konstant angenommen und Tu der Temperatur des Kühlwassers in der Kokille gleichgesetzt. Für die Kühlung durch die Kühleinrichtungen 5 wird Tu der Temperatur des Kühlmittels gleichgesetzt und α wird beispielsweise gemäßFor cooling in the mold, α is assumed to be constant and Tu is equated to the temperature of the cooling water in the mold. For cooling by the cooling devices 5, Tu is equated to the temperature of the coolant and α is, for example, according to
berechnet, wobei V das Kühlmittelvolumen in — ~ ist. Da- m min bei kann V für jeden Punkt an der Strangoberfläche unterschiedlich angegeben werden, wodurch mit dem Modell auch Dü- sencharakteristika beschrieben werden können.calculated, where V is the coolant volume in - ~. D min at V can be specified differently for each point on the strand surface, which means that the model can also be used to describe nozzle characteristics.
Aus dem Verlauf der Temperaturverteilung im Strang berechnet das Modell auch den Verlauf der Erstarrungsgrenze.The model also calculates the course of the solidification limit from the course of the temperature distribution in the strand.
Die einzelnen Modellparameter sind u.a.:The individual model parameters include:
• Kokillenlänge • Stranggeometrie (Höhe und Breite)• mold length • strand geometry (height and width)
• Stranggeschwindigkeit• line speed
• Wärmeübergangskoeffizient α in der Kokille• Heat transfer coefficient α in the mold
• Kühlmitteltemperatur in der Kokille• Coolant temperature in the mold
• Schmelztemperatur • Erstarrungsenthalpie • Wärmeleitkoeffizient λ• melting temperature • enthalpy of solidification • Thermal conductivity coefficient λ
• Spezifische Wärmekapazität c• Specific heat capacity c
• Dichte p• density p
• Länge jeder Kühlzone • Kühlmittelvolumen V in jeder Kühlzone• Length of each cooling zone • Coolant volume V in each cooling zone
• Strangmaterial• strand material
Die Temperatur- und Materialabhängigkeit von λ, c, Enthalpie und p wird im Modell berücksichtigt.The temperature and material dependence of λ, c, enthalpy and p is taken into account in the model.
FIG 3 zeigt ein Ablaufdiagramm zur iterativen Bestimmung eines Adaptionskoeffizienten d0 zur Adaption des Wärmeübergangskoeffizienten α mittels eines Temperatur- und Erstarrungsmodells 13, wobei der adaptierte Wärmeübergangskoeffizi- ent αa durch a = d0 * α aus dem Wärmeübergangskoeffizienten α ermittelt wird. Dazu wird im Temperatur- und Erstarrungsmodell 13 aus einer gegebenen Kühlung des Stranges mittels des Temperatur- und Er- starrungsmodells 13 die Erstarrungsgrenzen ex im Strang ermittelt. Diese Erstarrungsgrenze e wird in einem Vergleicher 17 mit den auftretenden Anstellungswegen ΔW-,,y,u (unten) und ΔW-,y,o (oben) in den Reduktionsgerüsten sowie den Walzkräften F:,u (unten) und F-,,0 (oben) in den Reduktionsgerüsten vergli- chen. Falls die für eine Geometrieveränderung typischen Werte der Anstellungswege unterschritten und/oder die für eine Geometrieveränderung typischen Werte der Walzkräfte überschritten werden, ermittelt der Funktionsblock 16 einen neuen Vorschlag für einen verbesserten Adaptionsfaktor dλ . Dadurch wird die Erstarrungsgrenze solange verschoben, bis die entsprechenden Grenzwerte über- bzw. unterschritten werden. Als Anfangswert für die Iteration wird ein Wert d0 = 1 verwendet. Der Abschluß der Iteration wird durch den Funktionsblock 18 d0 = da. gesetzt. Anschließend wird in Gleichung 3 der Wärme- ubergangskoefflzient α durch den adaptierten Wärmeübergangskoeffizienten αa ersetzt.3 shows a flow chart for iteratively determining an adaptation coefficient d 0 for adapting the heat transfer coefficient α by means of a temperature and solidification model 13, the adapted heat transfer coefficient α a being determined from the heat transfer coefficient α by a = d 0 * α. For this purpose, the solidification limits e x in the strand are determined in the temperature and solidification model 13 from a given cooling of the strand by means of the temperature and solidification model 13. This solidification boundary E is in a comparator 17 ,, y with the employment occurring Because ΔW-, u (below) and ΔW-, y, o (above) in the reduction stands, and the rolling forces F: u (below) and F ,, Compare 0 (above) in the reduction frameworks. If the values of the adjustment paths that are typical for a geometry change are undershot and / or the values of the rolling forces that are typical for a geometry change are exceeded, the function block 16 determines a new proposal for an improved adaptation factor d λ . As a result, the solidification limit is shifted until the corresponding limit values are exceeded or undershot. A value d 0 = 1 is used as the initial value for the iteration. The completion of the iteration is done by the function block 18 d 0 = da. set. Subsequently, the heat Transition coefficient α replaced by the adapted heat transfer coefficient α a .
Es ist besonders vorteilhaft, eine Vorsteuerung der Kuhlem- richtung vorzusehen, wobei die Vorstrahlenabhangigkeit von bekannten Zeitpunkten der Änderungen von Anlagenwerten wie z.B. der Gießgeschwindigkeit und/oder des Strangmaterials erfolgt . It is particularly advantageous to provide a feedforward control of the cooling device, the beam dependence on known times of changes in system values such as e.g. the casting speed and / or the strand material takes place.

Claims

Patentanspr che Claims
1. Verfahren zum Herstellen eines Stranges (1) aus Metall mittels einer Stranggießanlage, die zumindest eine Kuhlein- richtung (5) zur Kühlung des Stranges (1) aufweist, wobei der Kuhleinrichtung (5) zumindest ein Reduktionsgerust (9,10,11) zur Dickenreduktion des Stranges (1) zugeordnet ist, wobei der Strang (1) bei der Dickenreduktion eine erstarrte Hülle1. Method for producing a strand (1) from metal by means of a continuous casting installation which has at least one cow device (5) for cooling the strand (1), the cow device (5) having at least one reduction framework (9, 10, 11) assigned to the thickness reduction of the strand (1), the strand (1) being a solidified shell during the thickness reduction
(21) und einen flussigen Kern (2) aufweist, d a d u r c h g e k e n n z e i c h n e t, daß die Kühlung mittels eines Temperatur- und Erstarrungsmo- dells (13) derart eingestellt wird, daß die Erstarrungsgrenze(21) and has a liquid core (2), so that the cooling is adjusted by means of a temperature and solidification model (13) in such a way that the solidification limit
(22) zwischen der erstarrten Hülle (21) und dem flussigen Kern (2) bei Einlauf des Stranges (1) m das Reduktionsgerust (9,10,11) einer vorgegebenen Soll-Erstarrungsgrenze zwischen der erstarrten Hülle (21) und dem flussigen Kern (2) entspricht .(22) between the solidified shell (21) and the liquid core (2) at the entry of the strand (1) m the reduction framework (9, 10, 11) of a predetermined set solidification limit between the solidified shell (21) and the liquid core (2) corresponds.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß mit dem Temperatur- und Erstarrungsmodell (13) die Erstarrungsgrenze (22) zwischen der erstarrten Hülle (21) und dem flussigen Kern (2) m Abhängigkeit von der Kühlung des Stranges (1), insbesondere m Echtzeit und standig, ermittelt wird und daß die notwendige Kühlung des Stranges (1) auf iterative Weise in Abhängigkeit der vorgegebenen Soll- Erstarrungsgrenze (eo) zwischen der erstarrten Hülle (21) und dem flussigen Kern (2) bestimmt wird, wobei so oft iter ert wird, bis die Abweichung der mit dem Temperatur- und Erstar- rungsmodell (13) ermittelten Erstarrungsgrenze (eλ) zwischen der erstarrten Hülle (21) und dem flüssigen Kern (2) von der vorgegebenen Soll-Erstarrungsgrenze (ex) zwischen der erstarrten Hülle (21) und dem flussigen Kern (2) kleiner ist als ein vorgegebener Toleranzwert.2. The method according to claim 1, characterized in that with the temperature and solidification model (13), the solidification limit (22) between the solidified shell (21) and the liquid core (2) m depending on the cooling of the strand (1), in particular m Real time and constant, is determined and that the necessary cooling of the strand (1) is determined iteratively depending on the predetermined set solidification limit (eo) between the solidified shell (21) and the liquid core (2), so often it is ert until the deviation of the solidification limit (e λ ) between the solidified shell (21) and the liquid core (2) determined with the temperature and solidification model (13) from the specified set solidification limit (e x ) between the solidified shell (21) and the liquid core (2) is smaller than a predetermined tolerance value.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß zur Bestimmung der notwendigen Kühlung des Stranges (1) in Abhängigkeit von der vorgegebenen Soll-Erstarrungsgrenze zwischen der erstarrten Hülle (21) und dem flussigen Kern (2) zumindest eine weitere Große der Großen Stranggeschwmdig- keit, Stranggeometrie, Strangschalendicke, Kokillenlange, Zeit, Strangmaterial, Kuhlmitteldruck bzw. -volumen, Tropf- chengroße des Kuhlmittels und Kuhlmitteltemperatur verwendet wird.3. The method according to claim 1 or 2, characterized in that to determine the necessary cooling of the strand (1) as a function of the predetermined set solidification limit between the solidified shell (21) and the liquid core (2), at least one other size of the large strand speed, strand geometry, strand shell thickness, mold length, time , Strand material, coolant pressure or volume, droplet size of the coolant and coolant temperature is used.
4. Verfahren nach Anspruch 1, 2 oder 3, d a d u r c h g e k e n n z e i c h n e t, daß zur Bestimmung der notwendigen Kühlung des Stranges (1) in Abhängigkeit der Erstarrungsgrenze (22) zwischen der erstarrten Hülle (21) und dem flussigen Kern (2) auch die Gro- ßen Stranggeometrie, Strangschalendicke, Zeit, Strangmaterial, Kühlmitteldruck bzw. -volumen und Kuhlmitteltemperatur verwendet werden.4. The method according to claim 1, 2 or 3, characterized in that for determining the necessary cooling of the strand (1) depending on the solidification limit (22) between the solidified shell (21) and the liquid core (2) also the sizes Line geometry, line shell thickness, time, line material, coolant pressure or volume and coolant temperature are used.
5. Verfahren nach Anspruch 1, 2, 3 oder 4, wobei der Kuhlem- richtung (5) zumindest zwei Reduktionsgerusten (9,10,11) nachgeordnet sind, d a d u r c h g e k e n n z e i c h n e t, daß zumindest zwei Reduktionsgerusten (9,10,11) eine Soll- Erstarrungsgrenze zwischen der erstarrten Hülle (21) und dem flüssigen Kern (2) des Stranges (1) bei Einlauf in das jeweilige Reduktionsgerüst (9,10,11) zugeordnet wird.5. The method according to claim 1, 2, 3 or 4, wherein the cooling device (5) is followed by at least two reduction scaffolds (9, 10, 11), characterized in that at least two reduction scaffolds (9, 10, 11) have a desired Solidification limit between the solidified shell (21) and the liquid core (2) of the strand (1) is assigned when it enters the respective reduction framework (9, 10, 11).
6. Verfahren nach Anspruch 1, 2, 3, 4 oder 5, d a d u r c h g e k e n n z e i c h n e t, daß im Temperatur- und Erstarrungsmodell (13) die Wirkung der Dickenreduktion durch das Reduktionsgerust (9,10,11), insbesondere die Lage der Erstarrungsgrenze (22) zwischen erstarrter Hülle (21) und flussigem Kern (2), mit berücksichtigt wird.6. The method according to claim 1, 2, 3, 4 or 5, characterized in that in the temperature and solidification model (13), the effect of the thickness reduction by the reduction framework (9,10,11), in particular the position of the solidification limit (22) between solidified shell (21) and liquid core (2), is also taken into account.
7. Verfahren nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß die Modellierung der Dickenreduktion durch das Reduktionsgerüst (9,10,11) durch zumindest eine der Größen Reduktionskraft und Dickenreduktionsgrad erfolgt.7. The method according to claim 5, characterized in that the modeling of the thickness reduction by the reduction framework (9, 10, 11) is carried out by at least one of the variables reduction force and degree of thickness reduction.
8. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß zumindest eine der Größen Reduktionskraft und Reduktionsgrad im Reduktionsgerüst (9,10,11) gemessen und zur Adaption des Temperatur- und Erstarrungsmodells (13) verwendet wird.8. The method according to any one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that at least one of the variables reducing force and degree of reduction in the reduction framework (9, 10, 11) is measured and used to adapt the temperature and solidification model (13).
9. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, daß die Größen Reduktionskraft und Reduktionsgrad im Reduktionsgerüst (9,10,11) gemessen und zur Adaption des Temperatur- und Erstarrungsmodells (13) verwendet werden.9. The method of claim 8, d a d u r c h g e k e n n z e i c h n e t that the sizes reduction force and degree of reduction in the reduction framework (9,10,11) are measured and used to adapt the temperature and solidification model (13).
10. Stranggießanlage zum Herstellen eines Stranges (1), insbesondere nach einem Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Stranggießanlage zumindest eine Kühlein- richtung (5) zur Kühlung des Stranges (1) und zumindest ein zugeordnetes Reduktionsgerüst (9,10,11) zur Dickenreduktion des Stranges (1) sowie eine Recheneinrichtung zur Steuerung der Kühlung des Stranges mittels der Kühleinrichtung (5) aufweist, d a d u r c h g e k e n n z e i c h n e t, daß auf der Recheneinrichtung ein Temperatur- und Erstarrungsmodell (13) zur derartigen Einstellung der Erstarrungsgrenze (22) zwischen einer erstarrten Hülle (21) und einem flüssigen Kern (2) des Stranges (1) bei Einlauf des Stranges (1) in das Reduktionsgerüst (9,10,11) implementiert ist, daß die Erstarrungsgrenze (22) einer vorgegebenen Soll- Erstarrungsgrenze zwischen der erstarrten Hülle (21) und dem flüssigen Kern (2) entspricht. 10. Continuous casting installation for producing a strand (1), in particular according to a method according to one of the preceding claims, wherein the continuous casting installation has at least one cooling device (5) for cooling the strand (1) and at least one associated reduction frame (9, 10, 11) ) for reducing the thickness of the strand (1) and a computing device for controlling the cooling of the strand by means of the cooling device (5), characterized in that on the computing device a temperature and solidification model (13) for setting the solidification limit (22) in this way between a solidified one Shell (21) and a liquid core (2) of the strand (1) when the strand (1) enters the reduction frame (9, 10, 11) is implemented such that the solidification limit (22) is a predetermined set solidification limit between the solidified Shell (21) and the liquid core (2) corresponds.
EP00951251A 1999-07-07 2000-06-29 Method and device for making a metal strand Expired - Lifetime EP1200216B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19931331A DE19931331A1 (en) 1999-07-07 1999-07-07 Method and device for producing a strand of metal
DE19931331 1999-07-07
PCT/DE2000/002117 WO2001003867A1 (en) 1999-07-07 2000-06-29 Method and device for making a metal strand

Publications (2)

Publication Number Publication Date
EP1200216A1 true EP1200216A1 (en) 2002-05-02
EP1200216B1 EP1200216B1 (en) 2002-12-11

Family

ID=7913934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00951251A Expired - Lifetime EP1200216B1 (en) 1999-07-07 2000-06-29 Method and device for making a metal strand

Country Status (6)

Country Link
US (1) US6880616B1 (en)
EP (1) EP1200216B1 (en)
AT (1) ATE229392T1 (en)
DE (2) DE19931331A1 (en)
RU (1) RU2245214C2 (en)
WO (1) WO2001003867A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1412111B1 (en) * 2001-06-01 2004-12-01 SMS Demag Aktiengesellschaft Method for adjusting the dynamic soft reduction of continuous casting systems
DE102004002783A1 (en) * 2004-01-20 2005-08-04 Sms Demag Ag Method and device for determining the position of the sump tip in the casting strand in the continuous casting of liquid metals, in particular of liquid steel materials
DE102006056683A1 (en) * 2006-01-11 2007-07-12 Sms Demag Ag Continuous casting of metal profiles, first cools cast strip then permits thermal redistribution to re-heat surface before mechanical deformation
US20090084517A1 (en) 2007-05-07 2009-04-02 Thomas Brian G Cooling control system for continuous casting of metal
DE102007058109A1 (en) * 2007-12-03 2009-06-04 Sms Demag Ag Device for controlling or regulating a temperature
AT507590A1 (en) 2008-11-20 2010-06-15 Siemens Vai Metals Tech Gmbh METHOD AND CONTINUOUS CASTING SYSTEM FOR MANUFACTURING THICK BRAMMS
DE102009010034A1 (en) * 2009-02-21 2010-09-23 Actech Gmbh Method and casting plant for the directional solidification of a casting made of aluminum or an aluminum alloy
JP5476959B2 (en) * 2009-12-08 2014-04-23 Jfeスチール株式会社 Continuous casting method under light pressure
PL2543454T3 (en) * 2011-07-08 2020-02-28 Primetals Technologies Germany Gmbh Process and apparatus for the manufacturing of long steel products in a continuous casting
RU2494834C1 (en) * 2012-06-27 2013-10-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Method of producing continuously-cast steel billets
RU2564192C1 (en) * 2014-04-02 2015-09-27 Открытое акционерное общество "Уральский завод тяжелого машиностроения" Soft reduction of continuously cast billet
JP6252674B2 (en) * 2014-05-14 2017-12-27 新日鐵住金株式会社 Continuous casting method for slabs
AT519277A1 (en) * 2016-11-03 2018-05-15 Primetals Technologies Austria GmbH Casting and rolling plant
EP3338914A1 (en) 2016-12-22 2018-06-27 Primetals Technologies Austria GmbH Method for the endless manufacture of a coiled hot rolled sheet in a combined casting and rolling installation, method for starting up a combined casting and rolling installation, and a combined casting and rolling installation
DE102017213842A1 (en) * 2017-08-08 2019-02-14 Sms Group Gmbh Method and plant for continuous casting of a metallic product
DE102018216529A1 (en) * 2018-09-27 2020-04-02 Sms Group Gmbh Process and plant for the continuous casting of a metallic product
CN109500371A (en) * 2018-12-20 2019-03-22 南京钢铁股份有限公司 A kind of slab dynamic secondary cooling and slighter compress control system
CN110508765A (en) * 2019-09-09 2019-11-29 东北大学 A kind of bloom continuous casting manufacturing method for being conducive to eliminate core defect
CN111360221B (en) * 2020-04-03 2021-05-25 中天钢铁集团有限公司 Method for eliminating central shrinkage cavity and controlling central segregation of high-carbon steel with 280mm x 320mm section
CN113695548B (en) * 2021-08-26 2023-01-31 宝武杰富意特殊钢有限公司 Production process of continuous casting billet and continuous casting billet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422777B2 (en) 1973-09-17 1979-08-09
DE3818077A1 (en) * 1988-05-25 1989-11-30 Mannesmann Ag METHOD FOR CONTINUOUS CASTING ROLLERS
US5488987A (en) * 1991-10-31 1996-02-06 Danieli & C. Officine Meccaniche Spa Method for the controlled pre-rolling of thin slabs leaving a continuous casting plant, and relative device
AT408197B (en) * 1993-05-24 2001-09-25 Voest Alpine Ind Anlagen METHOD FOR CONTINUOUSLY casting a METAL STRAND
DE19508476A1 (en) * 1995-03-09 1996-09-12 Siemens Ag Control system for a plant in the basic material or processing industry or similar
US5734329A (en) 1995-07-13 1998-03-31 Dell Usa L.P. Method and apparatus for superimposing self-clocking multifunctional communications on a static digital signal line
AT410875B (en) 1996-01-10 2003-08-25 Frequentis Nachrichtentechnik Gmbh METHOD AND SYSTEM FOR TRANSMITTING DATA
DE19612420C2 (en) * 1996-03-28 2000-06-29 Siemens Ag Method and device for controlling the cooling of a strand in a continuous caster

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0103867A1 *

Also Published As

Publication number Publication date
DE50000941D1 (en) 2003-01-23
US6880616B1 (en) 2005-04-19
RU2245214C2 (en) 2005-01-27
ATE229392T1 (en) 2002-12-15
WO2001003867A1 (en) 2001-01-18
DE19931331A1 (en) 2001-01-18
EP1200216B1 (en) 2002-12-11

Similar Documents

Publication Publication Date Title
EP1200216B1 (en) Method and device for making a metal strand
DE19612420C2 (en) Method and device for controlling the cooling of a strand in a continuous caster
EP0813701B1 (en) Control system for e.g. primary-industry or manufacturing-industry facilities
EP2346631B1 (en) Method and device for controlling the solidification of a cast strand in a continuous casting plant at startup of the casting process
EP3184202A1 (en) Method for continuously casting a metal strand and casting strand obtained by this process
AT408197B (en) METHOD FOR CONTINUOUSLY casting a METAL STRAND
WO2012159866A1 (en) Control method for a rolling train
EP3318342A1 (en) Method for operating a casting roller composite system
DE19618995C2 (en) Method and device for influencing relevant quality parameters, in particular the profile or the flatness of a rolled strip
EP1601479A1 (en) Continuous casting and rolling installation for producing a steel strip
EP1448330B1 (en) Method for continuous casting
EP0732979B1 (en) Continuous casting and rolling plant for steel strip, and a control system for such a plant
EP3733323B1 (en) Method and continuous casting plant for casting a cast strand
WO2004048016A2 (en) Method and device for continuously casting slab bars, thin slab bars, blooms, pre-profiled billets, billets, and similar made of liquid metal, particularly steel material
EP3173166B1 (en) Method and device for setting the width of a continuously cast metal strand
DE102009048567B4 (en) Method and arrangement for cooling a cast strand in a continuous casting plant
WO1998049354A1 (en) Method and device for cooling metals in a steel works
AT403351B (en) METHOD FOR CONTINUOUSLY casting a METAL STRAND
EP1100639B1 (en) Method and device for casting a strand of liquid metal
WO2011036060A1 (en) Method and device for casting metal melt in a continuous casting machine
WO2020177937A1 (en) Method for producing a metallic strip or plate
EP3944910A1 (en) Method for producing a cast strand in a continuous casting machine
EP3831511A1 (en) Method and computer system for predicting a shrinkage of a cast metal product
EP1046443A1 (en) Method and apparatus for forming metal strands

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020618

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FI GB IT

REF Corresponds to:

Ref document number: 229392

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50000941

Country of ref document: DE

Date of ref document: 20030123

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1200216E

Country of ref document: IE

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SMS DEMAG AG

Effective date: 20030908

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20080214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120618

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20130613

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50000941

Country of ref document: DE

Effective date: 20130814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130710

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R085

Ref document number: 50000941

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R085

Ref document number: 50000941

Country of ref document: DE

Effective date: 20140214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50000941

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 229392

Country of ref document: AT

Kind code of ref document: T

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Effective date: 20170227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170622

Year of fee payment: 18

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 229392

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190619

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50000941

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50000941

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE