EP0813701B1 - Control system for e.g. primary-industry or manufacturing-industry facilities - Google Patents

Control system for e.g. primary-industry or manufacturing-industry facilities Download PDF

Info

Publication number
EP0813701B1
EP0813701B1 EP96905686A EP96905686A EP0813701B1 EP 0813701 B1 EP0813701 B1 EP 0813701B1 EP 96905686 A EP96905686 A EP 96905686A EP 96905686 A EP96905686 A EP 96905686A EP 0813701 B1 EP0813701 B1 EP 0813701B1
Authority
EP
European Patent Office
Prior art keywords
control system
model
values
optimization
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP96905686A
Other languages
German (de)
French (fr)
Other versions
EP0813701A1 (en
Inventor
Hannes Schulze Horn
Jürgen ADAMY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7756201&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0813701(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0813701A1 publication Critical patent/EP0813701A1/en
Application granted granted Critical
Publication of EP0813701B1 publication Critical patent/EP0813701B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the invention relates to a control system for a plant Basic material or the processing industry or the like, e.g. For a metallurgical plant, for example for the production of strips made of steel or non-ferrous metals, the control system using computer technology, building on previous knowledge, the state of the facility and details of one that is running in the facility Manufacturing process, e.g. a continuous casting process for tapes, automatically recognizing and for achieving safe production success according to the situation giving, is trained.
  • a control system for a plant Basic material or the processing industry or the like e.g.
  • a metallurgical plant for example for the production of strips made of steel or non-ferrous metals
  • the control system using computer technology, building on previous knowledge, the state of the facility and details of one that is running in the facility Manufacturing process, e.g. a continuous casting process for tapes, automatically recognizing and for achieving safe production success according to the situation giving, is trained.
  • Expert systems as so-called intelligent systems, with whom the quality of the manufactured products also in relation on quality features that are difficult to control are also to be improved for plants in the raw materials industry known, e.g. from the article “Process optimization for maximum availability in continuous casting”, published in the journal “Metallurgical Plant and Technologie International 5/1994 ".
  • Such expert systems that can certainly improve the production success however not the principal weaknesses of the conventional scheme. These will be especially then visible when it comes to processes that (such as in the raw materials industry) due to the lack of more suitable ones Sensors, for example inside high-temperature processes, do not can be regulated directly.
  • the task is actually intelligently trained Control system solved, based on the previous knowledge entered, automatically appropriate instructions for a situation safe and as good (optimal) process management as possible. It is therefore a fully trained technical Intelligence that, surprisingly, is already with today available computing resources also for Process control systems of large plants can be realized.
  • Control system the appropriate instructions is computationally optimizing step by step. This will further increase intelligent behavior achieved that lead to a quality of litigation leads that by human operators or not at least not in the short, computationally achievable Time is achievable.
  • the prior knowledge entered that is, the one predefined by humans Process knowledge, preferably automatic, ongoing through on Process during production internally, e.g. in different operating points, knowledge gained improved and this self-generated process knowledge into one, in particular constantly updated, data storage as new Previous knowledge is adopted. So one becomes very advantageous constantly improving basis for further adaptation or Process optimization created.
  • the knowledge gained is not only limited to more precise parameters etc. but also particularly closes the principles of algorithms etc. used.
  • the control system has a basic functional system for the system components, which the instructions from the computational, e.g. from a process model, preferably an overall process model, gained knowledge, safely implemented in the plant management.
  • a process model preferably an overall process model
  • the control system has a basic functional system for the system components, which the instructions from the computational, e.g. from a process model, preferably an overall process model, gained knowledge, safely implemented in the plant management.
  • the situation-appropriate Instructions e.g. in the form of setting values
  • the system components directly in the form of control values, for example of positions or in particular indirectly, e.g. via controller setpoints, for speeds, for example.
  • the Instructions are particularly advantageous directly from the Process model sizes determined. This happens for Time-critical setpoints are advantageous on-line, otherwise off-line. This results in a particularly favorable response from the system to changed process conditions under advantageously possible Saving of setpoint calculators.
  • the basic function system advantageously also has start and Start-up routines that are entered manually or automatically can be, as well as suboptimal normal operating routines, in to those instructions, otherwise determined by calculation can be replaced by constant, safe guidelines.
  • A is such a configuration of the basic function system especially for the commissioning phases, for operation with erratic change of requirements etc. advantageous.
  • function of the intelligent computer part do not always need all model parts in specific adapted form are available. It is also beneficial a company with a partially elaborated and / or adapted overall process model possible.
  • the process model itself is in the form of an overall process model modular structure and describes the behavior between the process input variables and the manipulated variables and the process output variables, e.g. Quality parameters of the product created.
  • the modularity allows one particularly advantageous design and processing of Overall process model, as it is made up of individual, clearly visible, Part models can be assumed.
  • the process model is based advantageous as far as possible on mathematical forms of description. Where such mathematical forms of description are not possible, for example, is formulated on linguistically Model parts used, e.g. through fuzzy systems, Neuro-fuzzy systems, expert systems or similar be realized can. For, e.g.
  • the process model becomes advantageous due to the on the plant collected process data, which is archived in a process database are continuously adapted to the process and further improved, this advantageously using adaptive methods, Learning methods, e.g. through a backpropagation learning process or a selection process for different sub-models, such as neural networks or parts thereof. So results a largely self-taught model, the can be adapted or improved on-line or off-line.
  • the adjustable Process variables by the optimizer on the process model are optimized in such a way that the model output variables, which are in particular quality parameters of the product, as well as possible with given, e.g. the target, Values match.
  • the offline optimization can both on a separate processing unit parallel to the Model adaptation, as well as in breaks, e.g. at the weekend or in the event of repair downtimes on the computer, e.g. in the Operation of the reference variables of the basic functional system issues, take place.
  • the optimization is advantageously carried out using known optimization methods, especially about genetic algorithms.
  • the optimization process is selected according to the situation and problem-dependent. It can be done by a specification, e.g. based on an analysis of the course of the process, or by computational Selection from a collection of optimization methods respectively.
  • a simple "trial and error” procedure can be used for this applied, but it is recommended to reduce it the computing effort, the "trial and error” procedure through convergence criteria, methods of pattern recognition in Support the error acceptance process etc.
  • the respective start values for an optimization are advantageous on the basis of the archived in a process data memory suboptimal operating data determined. So reduced the optimization effort because the optimization calculation starts with pre-optimized values if they are certain recognized intermediate values are used as start values.
  • the overall system is improved at least in three stages.
  • the lowest level is the continuous improvement of the existing process knowledge, stored in the data memory, e.g. in Form of sub-optimal, safe operating points that automatically continuously brought to a better adapted level of knowledge , and from that again it is assumed becomes.
  • the second stage essentially consists of the model adaptation, that adapts the model behavior to the process behavior as well as possible.
  • the third stage is a continuous improvement of the situation-specific instructions from the process optimizer, e.g. about evolutionary strategies, genetic algorithms etc. These strategies require a lot of computing time and preferably run off-line.
  • the system improvement is also advantageous through external simulation calculations, model tests, possibly also through tests on the production plant with new aids etc., continuously supported.
  • control system according to the invention is exemplified below using a steel strip caster.
  • inventive details and Advantages from the drawing and the description of the drawing as well as from the subclaims are further, also inventive details and Advantages from the drawing and the description of the drawing as well as from the subclaims.
  • FIG. 1, 1 denotes the casting rolls of a two-roll casting device
  • the material between the casting rolls 1, liquid steel, from the ladle 4 over the tundish 5 and a dip tube 6 is entered and solidified into a band 3, that in one, through the circles 2 with movement arrows symbolized, rolling mill can be further deformed.
  • the downstream rolling mill can also be easily moved by conveyor rollers, a reel or similar be replaced when rolling out should not be done immediately after pouring.
  • the design the entire system is made according to requirements. Also training the, the pouring device downstream, system as a hot-cold rolling mill is possible and recommended at very high casting speeds because then the cold rolling section of the plant is sufficiently utilized can be.
  • the casting and rolling device preferably also has one only symbolically represented electrodynamic system 8.9 and an induction heating system 10.
  • the electrodynamic System part 8 advantageously serves to relieve weight, the cast, here still very soft and therefore at risk of constriction, Volume 3 and the electrodynamic system part 9 of guiding the tape 3 during the induction heating system 10 compliance with a predetermined temperature profile over the bandwidth if, e.g. a direct one Post-forming in a rolling mill. This is particularly advantageous for crack-sensitive steels.
  • the cast strip 3 is checked for cracks by a camera 73, which can be used to advantage that the crack pattern in the scale is influenced by cracks in the base material becomes.
  • the formation of a measured variable is advantageous through a neuro-fuzzy system.
  • FIG. 2 shows the structure of the intelligent part of the control system. This essentially consists of the parts process optimizer 15, model 20, model adaptation 16 and data storage 17. These parts of the control system interact in such a way that as good as possible via the setpoint output 13, Instructions appropriate to the situation via the data line V for Litigation can be made available. This Instructions are then converted into setpoints for basic automation implemented. The following is the task and the function of the individual parts is described.
  • the model output variables are typical quality parameters of the product.
  • the model description generally does not exactly grasp the process behavior, which is why y i and deviate more or less from each other.
  • the manipulated variables u i and the non-influenceable manipulated variables v i are transmitted via data lines I and II.
  • the model adaptation 16 has the task of improving the model, thus the model behavior as well as the process behavior corresponds. This can - at least for model parts - done online by making these model parts based on continuously recorded process data can be adapted or updated.
  • the adaptation can also be carried out off-line at certain times. This is done on the basis of a number m of process states representing the process ( u k i , v k i , y k i ), which are stored in the data memory 17.
  • the index k quantifies the respective process status.
  • the process optimizer has the task of using an optimization method and the process model to find manipulated variables u i which lead to the best possible process behavior.
  • the process optimizer works off-line at specific times, for example, which can be predetermined manually, as follows:
  • the manipulated variables v i that cannot be influenced, for which the optimization is to take place — for example the current ones — are kept constant and are fed to the model via the data line II.
  • the process optimizer is then connected to the model by means of switch 18. It gives control values u i to the model.
  • the initial values are based on the model certainly. These are compared with target output values y target, i , and it becomes the error certainly.
  • the error E should be minimized.
  • the process optimizer varies the manipulated variables u i in an iterative loop, which contains the calculation of y i and E as well as the new selection of u i , until the error cannot be reduced further or this optimization is terminated. Genetic algorithms, hill climbing methods, etc. can be used as optimization methods.
  • the main task of the data memory is to archive representative process states ( u i , v i , y i ). In doing so, he replaces old process data again and again with newly determined one, in order to enable a current, albeit selective, process description based on this data.
  • the data memory then supplies the model adaptation, as described above.
  • it also supplies start values u i for the process optimizer.
  • the start values are selected, for example, in such a way that the output values y i belonging to these start values correspond as well as possible to the target values y target, i .
  • model 20 and Process optimizer 15 e.g. genetic algorithms for e.g. evolutionary, model improvement
  • Process optimizer 15 works preferably off-line because of the complexity of a plant control model with its many possible Develop the computing time of an evolutionary optimization process becomes comparatively long.
  • Optimization strategies that e.g. based on an analysis of the probable model behavior are selected many optimization processes until a clear one is reached Calculate model improvement.
  • the results from the model calculation are continuously compared with the setpoint values.
  • the difference can be minimized through optimization. Since the difference in technical processes cannot generally become zero, the optimization process must be meaningfully limited, that is, it must be terminated.
  • FIG. 3 shows more precise details of the program structure with which the optimization is terminated and the new setpoint output is started.
  • 58 denotes an error function to be selected in each case, into which the detected errors (setpoint deviations) flow.
  • 61 now examines whether the error function meets the termination criteria of the optimization. If this is the case, further optimized control and regulating variables are output.
  • start values from the data memory continuously enter the start value specification 59, from which, in search steps in 60, not from the optimizer, but from the data memory, for example with the aid of fuzzy interpolation, control and regulating parameters for sub-optional process control are obtained.
  • Switching takes place after reaching the predetermined quality factor, which is adapted to the respective control system knowledge.
  • the minimization which can never be absolute, is stopped when the predetermined quality factor is reached.
  • the model will also be advantageous if it goes to the Process connected, i.e. Switch 1 is closed, too generates an alarm signal that is critical Operating states signaled. Such procedures are already known and can be found in the same way in conventional control systems.
  • FIG 4 which the structure of a model adaptation by means of a Optimization algorithm shows data from the start value specification 61 in a search step unit 62 and are from passed there as model parameters to model 63.
  • the Model 63 forms, together with data storage 64, a parameter improvement loop, the 65 in a known manner the compares formed and stored values.
  • the comparison values are fed to the error function 67, their Passes values to the termination criteria unit 66. Are the If the termination criteria are met, the model will not continue improved and worked with the existing values. Otherwise the optimization with further search steps and the Intermediate values continued in the data storage.
  • the essential sub-models of the overall process model of the embodiment, 46 denotes that Input model in which the external influences, such as the influences summarized from the quality of the material used are.
  • the quality of the steel used results e.g. of the Liquidus value, the solidus value, as well as others, the casting behavior characteristic sizes.
  • 47 denotes the tundish model, into e.g. the steel volume of the tundish, the dip tube position or the like, the stopper position and the steel discharge temperature come in.
  • the input models 46 and 47 are summarized in sub-model 56, which the status of the fed Material.
  • Such partial models can advantageously parallel to other sub-models, such as the casting area model, the rolling range model or similar be optimized.
  • the input model 48 contains the influences that the solidification influence, e.g. the casting roll cooling, the infrared heating etc.
  • the input model 49 contains the values that necessary for the heat balance, such as the steel casting roll temperature difference, the influence of lubricant as a function the amount of lubricant, the rate of crystal formation the respective steel grade and e.g. the roll surface condition.
  • the input model 50 contains e.g. the influences of Casting level characteristics, so the level of the casting level Slag layer thickness and the radiation coefficient.
  • the Input models 48, 49 and 50 are part of a model 54, the reflects the status of the casting area, summarized. This Model area summary is general for production areas advantageous as it is the overall model optimization simplified and improved.
  • the sub-models are among themselves partly still dependent on each other, for example to a considerable extent the input models 49 (input model heat balance) and 50 (Initial model of the mold level characteristic). Secondary dependencies are not shown for simplification.
  • the sub-model 51 contains all influences on the solidification front, i.e. to the area where the on the two chill rolls solidified metal shells meet. Essentially these influences are the forming work done by the casting rolls is achieved, the vibration width of the casting rolls or the emerging tape, the side gap sealing influences and the level of effort of the overall system, this is e.g. a fuzzy model.
  • the sub-model 52 gives the exit values again, e.g. the quality of the tape that Outlet temperature and distribution, but also the tendency to stick and the condition of the scale formed.
  • the sub-model 52 also goes the input model 53 and the input model 74 a, which relates to the temperature profile across Tape and refer to the surface condition of the tape. For the particularly advantageous case that it is a
  • the strip casting and rolling mill also works Rolling mill part models 54 in this special process model a, since the product training after leaving the Roll stands is the decisive criterion.
  • the sub-models are combined to form the product training model 57, which is the thickness profile of the band formed, the strip thickness, a possible error pattern, the grain structure of the tape, the surface structure etc. summarized.
  • the surface structure and especially the grain structure of the tape can only be determined with a considerable time delay. It is therefore advantageous to work with partial models here on the basis of neural networks for qualitative and quantitative determination of influencing variables.
  • 68 denotes the process data archive , 69 the model parameter storage part, 70 the part with the start values for the optimizer and 71 the memory part for the safe operating points. In 68 the respective Model training saved.
  • the basic automation with its regulations, controls, Interlocks etc., an indispensable part of the Control system, because it the safe functioning of the Attachment even if the model part of the Guaranteed control system according to the invention, must Perform a variety of functions.
  • the individual functions are not, finally, due to the symbolized individual "black box” in FIG 7.
  • Here means 21 in the embodiment, the mass flow control over the Single speed controller, 22 the regulation of the tundish heating, 23 the mold level control, 24 the tundish outflow control and 25 the heating power of the infrared or similar.
  • 26 means the regulation of the addition of lubricant, e.g. in shape of loose mold powder or of one applied to the casting rollers Casting powder paste, 27 the cooling water quantity control, 28 if necessary the roller oscillation control, 29 the electrical Drive control and 30 the roll gap setting.
  • 31 means the roller speed control and 32 if necessary the control of the Roller torque, 33 the setting of the cleaning system, consisting for example of a brush and a scraper for the casting rolls and 34 the regulation of the electrodynamic System for balancing the belt weight and the regulation the vibration width of the cast strip.
  • 36 means that Regulation of the individual parts of an electrodynamic system for side gap sealing and 37 the regulation of the heating for the side walls of the space between the casting rolls.
  • 38 means the temperature profile control of the induction heating system 10.
  • 39 as well as indicated other control units refer to regulations of the downstream deformation units, e.g. Rolling stands, the train between them Roll stands etc. On the above actuators, controllers etc. acts the time control 45, which outputs the manipulated variables etc. coordinated in time.
  • interlocks e.g. prevent Liquid steel can flow before the pair of casting rolls and the Deformation rollers are workable, etc.
  • they are further systems, not shown in the schematic, for the band edge separation required, e.g. by Lasers, for influencing scale formation, e.g. by Silicating, roller lubrication etc. available.
  • the manipulated variables VI are generated, over which the system is managed.
  • the casting and rolling process consists of a number of sub-processes, their training and influences are decisive for the End product.
  • Can be influenced and optimized according to the invention are the properties of the end product, e.g. its Thickness, its thickness profile and its surface formation, through a number of adjustable process variables, e.g. the Casting roll gap, the casting roll profile, the casting level etc., which in turn shows the location of the union zone on the Casting rollers affect separated, solidified metal shells.
  • an overall process model according to the invention which the Process behavior describes. Based on this process model can be the influencing factors with which the process influenced, step by step according to the process conditions be adapted and optimized.
  • the intelligent, self-improving, Part of the control system consisting of three essential elements: The process model, the model adaptation and the process optimizer.
  • the process model consists of subsystems (Modules) together, which vary depending on the process knowledge Will be type. With knowledge of the physical Connections can be classic, physical-mathematical Models are created. On the other hand, you only have experience or estimates, so are fuzzy or neuro-fuzzy systems related. In case you have little or nothing about knows the process behavior, such as cracking and At least in the beginning, surface training is set to neural Networks for process formation. Describes overall the model the relationship between the process variables, as in selected example of the mold level, the condition values and the quality of the potted material, the setting values the casting rolls etc. and the quality parameters of the Tape, e.g. the thickness, the profile and the surface formation.
  • the model Since the model may substantial, percentage based on uncertain knowledge, it is not exact. The The model must therefore be adapted and changed based on the process data obtained etc. This happens advantageously on the one hand using the well-known model adaptation based on data from past Process states set up. Based on this data the model parameters or similar so that the model behavior corresponds as closely as possible to that of the process. Also be modifying the models themselves, e.g. through genetic Algorithms, a combinatorial evolution etc. Corresponding Optimization strategies are known, e.g. from Ulrich Hoffmann, Hanns Hofmann "Introduction to Optimization", Verlag Chemie GmbH, 1971 Weinheim / Bergstrasse; H.P.

Abstract

A method for controlling a primary industry plant of the processing industry, for example, in a steel plant or a rolling mill in order to, for instance, produce strips of steel or non-ferrous metals. The control method is designed in terms of computer engineering building on inputted advance knowledge, such that the method can automatically recognize the state of the installation and details of a manufacturing process taking place in the installation, for example in a continuous casting process for strips, and is able to give desired values and setpoints appropriate for the situation to achieve a reliable and successful production.

Description

Die Erfindung betrifft ein Leitsystem für eine Anlage der Grundstoff- oder der verarbeitenden Industrie o.ä., z.B. für eine hüttentechnische Anlage, etwa zur Erzeugung von Bändern aus Stahl oder NE-Metallen, wobei das Leitsystem durch Rechnertechnik, aufbauend auf eingegebenem Vorwissen, den Zustand der Anlage und Einzelheiten eines in der Anlage ablaufenden Herstellungsprozesses, z.B. eines kontinuierlichen Gießprozesses für Bänder, selbsttätig erkennend und zur Erzielung eines sicheren Produktionserfolges situationsgerechte Anweisungen gebend, ausgebildet ist.The invention relates to a control system for a plant Basic material or the processing industry or the like, e.g. For a metallurgical plant, for example for the production of strips made of steel or non-ferrous metals, the control system using computer technology, building on previous knowledge, the state of the facility and details of one that is running in the facility Manufacturing process, e.g. a continuous casting process for tapes, automatically recognizing and for achieving safe production success according to the situation giving, is trained.

Für industrielle Anlagen zur Erzeugung oder Verarbeitung von Gütern oder Energie besteht seit jeher ein Bedürfnis nach einem Leitsystem, das eine optimale und dabei insbesondere kostengünstige, Führung des in der Anlage durchgeführten Prozesses ermöglicht. Diesem Bedürfnis wurde bisher suboptimal durch Einrichtungen der konventionellen Regeltechnik soweit wie möglich Rechnung getragen. Insbesondere bei Produktionsprozessen, die große regeltechnische Probleme mit sich bringen, steigt jedoch der notwendige regeltechnische Aufwand enorm an, ohne daß das erreichte Ergebnis wirklich zufriedenstellend ist. So offenbart z.B. die DE 43 01 130 Al ein Verfahren und eine Einheit zur Regelung eines Walzgerüstes, d.h. einer Einzelkomponente. Eine Optimierung des Prozeßablaufs erfolgt dadurch allenfalls bezogen auf die betrachtete Einzelkomponente.For industrial plants for the production or processing of There has always been a need for goods or energy Control system that provides an optimal and, in particular, inexpensive, Management of the process carried out in the plant enables. This need has so far been less than ideal through facilities of conventional control technology so far taken into account as possible. Especially in production processes, which cause major control problems, however, the necessary regulatory effort increases enormous, without the result really satisfactory is. For example, DE 43 01 130 Al a process and a unit for controlling a rolling stand, i.e. a single component. An optimization of the process flow This is at most based on the individual component under consideration.

Bei Bandgießanlagen für Metall, deren Betrieb besonders große regeltechnische Probleme mit sich bringt und die daher beispielhaft im weiteren behandelt werden, ist es bereits bekannt, mit miteinander verbundenen Einzelreglern oder Regelkreisen zu arbeiten. Beispiele zeigen die EP 0 138 059 A1 und die EP 0 228 038 sowie der Aufsatz "Development of twin-drum strip caster for stainless steel" von K. Yanagi u.a., Metec Conference, Juni 1994, Mitsubishi Heavy Industries, Ltd./Nippon Steel Corp. Die bekannten Regelungen, die suboptimal arbeiten, obwohl sie teilweise bereits mit Reglern ausgerüstet sind, die mathematische Modelle benutzen, führen zur Herstellung von Bändern, deren Maßhaltigkeit und Qualität noch relativ großen Schwankungen unterliegen. Besonders nachteilig ist dabei, daß die Anlagen, die mit den bekannten Reglern und Regelkreisen arbeiten, schnelle, vorzugsweise hydraulische, Stellglieder benötigen, die sehr kostenaufwendig sind.For strip casting systems for metal, the operation of which is particularly large brings technical problems with them and is therefore exemplary to be dealt with further, it is already known with interconnected individual controllers or control loops to work. Examples show the EP 0 138 059 A1 and EP 0 228 038 and the essay "Development of twin-drum strip caster for stainless steel" by K. Yanagi et al., Metec Conference, June 1994, Mitsubishi Heavy Industries, Ltd./Nippon Steel Corp. The well-known Regulations that work suboptimally, although partially are already equipped with regulators, the mathematical Using models leads to the production of tapes whose Dimensional accuracy and quality are still relatively large fluctuations subject to. It is particularly disadvantageous that the systems, who work with the known controllers and control loops, need fast, preferably hydraulic, actuators, which are very expensive.

Um die vorstehenden Nachteile zumindest teilweise zu vermeiden, ist es bekannt, Expertensysteme zu verwenden. Expertensysteme als sogenannte intelligente Systeme, mit denen die Qualität der hergestellten Produkte auch in bezug auf regeltechnisch schlecht beherrschbare Qualitätsmerkmale verbessert werden soll, sind auch für Anlagen der Grundstoffindustrie bekannt, so z.B. aus dem Aufsatz "Process optimization for maximum availability in continuous casting", veröffentlicht in der Zeitschrift "Metallurgical Plant and Technologie International 5/1994". Derartige Expertensysteme, die den Produktionserfolg durchaus verbessern können, beseitigen jedoch nicht die prinzipiellen Schwächen der konventionellen Regelung. Diese werden insbesondere dann sichtbar, wenn es sich um Vorgänge handelt, die (wie etwa in der Grundstoffindustrie) wegen des Fehlens geeigneter Sensoren, etwa im Innern von Hochtemperaturvorgängen, nicht direkt geregelt werden können.To at least partially address the above disadvantages avoid, it is known to use expert systems. Expert systems as so-called intelligent systems, with whom the quality of the manufactured products also in relation on quality features that are difficult to control are also to be improved for plants in the raw materials industry known, e.g. from the article "Process optimization for maximum availability in continuous casting ", published in the journal "Metallurgical Plant and Technologie International 5/1994 ". Such expert systems, that can certainly improve the production success however not the principal weaknesses of the conventional scheme. These will be especially then visible when it comes to processes that (such as in the raw materials industry) due to the lack of more suitable ones Sensors, for example inside high-temperature processes, do not can be regulated directly.

Speziell zur Regelung des Bandgießens von Stahl ist es zur indirekten Regelung aus der EP 0 411 962 A2 weiterhin bekannt, mit einer Kurvenschar zulässiger Eingangsgrößen als Anlagenführungsbasis zu arbeiten. Die Kurvenschar gibt den Verlauf von als sicher erkannten Eingangsgrößen-Konstellationen wieder. Ein derartiges Vorgehen, bei dem Expertenwissen über Sollwertvorgaben in die Anlagenführung umgesetzt wird, erfordert bei Qualitäts- oder Anforderungsänderungen aufwendige Anlagen-Verhaltenstests zur Ermittlung neuer Führungskurven. Darüber hinaus ist nur ein Arbeiten in weitem Abstand vom Prozeßoptimum möglich.It is specially designed to control the strip casting of steel indirect regulation from EP 0 411 962 A2 known, with a family of curves of admissible input variables as Plant management base to work. The family of curves gives that Course of input variable constellations recognized as safe again. Such an approach, based on expert knowledge implemented in the system management via setpoint specifications is required in the event of changes in quality or requirements complex system behavior tests to determine new ones Leadership curves. Beyond that, there is only one working in a distance Distance from the process optimum possible.

Es ist Aufgabe der Erfindung, insbesondere für konventionell schwierig zu regelnde Produktionsprozesse, z.B. für das Bandgießen von Metallbändern, ein Leitsystem anzugeben, mit dem sicher in kostengünstigen Anlagen ein besserer Produktionserfolg erreicht werden kann.It is an object of the invention, especially for conventional difficult to control production processes, e.g. for strip casting of metal strips to indicate a guidance system with which Better production success in low-cost systems can be achieved.

Die Aufgabe wird durch ein tatsächlich intelligent ausgebildetes Leitsystem gelöst, das aufbauend auf eingegebenem Vorwissen, selbsttätig situationsgerechte Anweisungen für eine sichere und möglichst gute (optimale) Prozeßführung gibt. Es handelt sich also um eine vollständig ausgebildete technische Intelligenz, die überraschenderweise bereits mit den heute zur Verfügung stehenden rechentechnischen Mitteln auch für Prozeßleitsysteme von Großanlagen realisiert werden kann.The task is actually intelligently trained Control system solved, based on the previous knowledge entered, automatically appropriate instructions for a situation safe and as good (optimal) process management as possible. It is therefore a fully trained technical Intelligence that, surprisingly, is already with today available computing resources also for Process control systems of large plants can be realized.

In Ausgestaltung der Erfindung ist vorgesehen, daß das erfindungsgemäße Leitsystem die situationsgerechten Anweisungen rechentechnisch schrittweise optimierend ausgebildet ist. Hierdurch wird eine weitere Steigerung des intelligenten Verhaltens erreicht, die zu einer Qualität der Prozeßführung führt, die durch menschliches Bedienungspersonal nicht oder zumindest nicht in der rechentechnisch erreichbaren, kurzen Zeit erzielbar ist. In an embodiment of the invention it is provided that the invention Control system the appropriate instructions is computationally optimizing step by step. This will further increase intelligent behavior achieved that lead to a quality of litigation leads that by human operators or not at least not in the short, computationally achievable Time is achievable.

In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß das eingegebene Vorwissen, also das von Menschen vorgegebene Prozeßwissen, vorzugsweise selbsttätig, laufend durch am Prozeß während der Produktion intern rechentechnisch, z.B. in unterschiedlichen Betriebspunkten, gewonnenes Wissen verbessert und dieses selbstgenerierte Prozeßwissen in einen, insbesondere ständig aktualisierten, Datenspeicher als neues Vorwissen übernommen wird. So wird sehr vorteilhaft eine ständig verbesserte Grundlage für eine weitere Adaption oder Optimierung des Prozesses geschaffen. Das gewonnene Wissen ist dabei nicht nur auf genauere Parameter etc. beschränkt, sondern schließt auch insbesondere die Prinzipien der verwendeten Algorithmen etc. mit ein.In a further embodiment of the invention it is provided that the prior knowledge entered, that is, the one predefined by humans Process knowledge, preferably automatic, ongoing through on Process during production internally, e.g. in different operating points, knowledge gained improved and this self-generated process knowledge into one, in particular constantly updated, data storage as new Previous knowledge is adopted. So one becomes very advantageous constantly improving basis for further adaptation or Process optimization created. The knowledge gained is not only limited to more precise parameters etc. but also particularly closes the principles of algorithms etc. used.

Insbesondere für das Erreichen eines sicheren Produktionserfolges, der die Grundlage des Vertrauens der Kunden in ein derartiges System bildet, ist vorgesehen, daß das Leitsystem ein Basis-Funktionssystem für die Anlagenkomponenten aufweist, welches die Anweisungen aus dem rechentechnisch, z.B. aus einem Prozeßmodell, vorzugsweise einem Prozeßgesamtmodell, gewonnenen Wissen, sicher in die Anlagenführung umsetzt. Durch die Verbindung eines sicheren Basisfunktionssystems, das vorzugsweise als ein die Anlagenkomponenten je für sich oder zusammengefaßt sicher arbeitsfähig machendes Basisautomatisierungssystem ausgebildet ist, mit einem situationsgerecht angepaßten, statischen Prozeßmodell, ergibt sich eine Ausführung, die in bezug auf die Sicherheit der Prozeßführung der herkömmlichen Ausbildung eines Leitsystems mindestens gleichwertig, in bezug auf das Kosten/Nutzenverhältnis und das sicher erreichbare Prozeßergebnis, aber überlegen ist. In particular for achieving a safe production success, which is the basis of customer trust in one forms such a system, it is provided that the control system has a basic functional system for the system components, which the instructions from the computational, e.g. from a process model, preferably an overall process model, gained knowledge, safely implemented in the plant management. By connecting a safe basic function system, preferably as one of the system components each for yourself or in summary, safe to work Basic automation system is designed with an appropriate situation adapted, static process model results an execution related to the security of litigation the conventional training of a control system at least equivalent, in terms of cost / benefit ratio and the safe process result, but superior is.

Von besonderem Vorteil ist dabei, daß die situationsgerechten Anweisungen, z.B. in Form von Einstellwerten, den Anlagenkomponenten direkt in Form von Ansteuerungswerten, etwa von Positionen oder insbesondere indirekt, z.B. über Reglersollwerte, etwa für Drehzahlen, aufgegeben werden. Die Anweisungen werden besonders vorteilhaft direkt aus den Größen des Prozeßmodells bestimmt. Dies geschieht für zeitkritische Sollwerte vorteilhaft on-line, sonst off-line. So ergibt sich eine besonders günstige Reaktion der Anlage auf geänderte Prozeßbedingungen unter vorteilhaft möglicher Einsparung von Sollwertrechnern.It is particularly advantageous that the situation-appropriate Instructions, e.g. in the form of setting values, the system components directly in the form of control values, for example of positions or in particular indirectly, e.g. via controller setpoints, for speeds, for example. The Instructions are particularly advantageous directly from the Process model sizes determined. This happens for Time-critical setpoints are advantageous on-line, otherwise off-line. This results in a particularly favorable response from the system to changed process conditions under advantageously possible Saving of setpoint calculators.

Vorteilhaft wird zur Erhöhung der Betriebssicherheit das Basisautomatisierungssystem als autonomes, einen sicheren Zustand der Anlage oder der Anlagenkomponenten und des Prozesszustandes garantierendes Subsystem, z.B. als Gefahren-Zustands-Rückfallsystem ausgebildet, das ggf. anstelle der rechentechnisch erzeugten Anweisungen, insbesondere auf als sicher erkannte, im Datenspeicher abgelegte, Betriebswerte zurückgreifen kann. So ist ein sicheres, wenn auch suboptimales Arbeiten der Anlage auch bei einem Ausfall oder beim Auftreten von Fehlfunktionen des intelligenten Rechnerteils möglich.This is advantageous for increasing operational safety Basic automation system as an autonomous, a safe one Condition of the system or system components and the process status guaranteeing subsystem, e.g. as a hazard state relapse system trained that, if necessary, instead of computationally generated instructions, especially as safely recognized operating values stored in the data memory can fall back. So that's a safe, if sub-optimal Working the system even in the event of a failure or Malfunction of the intelligent computer part occurs possible.

Das Basisfunktionssystem weist vorteilhaft auch Start- und Hochlaufroutinen auf, die manuell oder automatisch eingegeben werden können, sowie suboptimale Normalbetriebsroutinen, in denen einzelne, sonst rechentechnisch ermittelte, Anweisungen durch konstante, sichere Vorgaben ersetzt werden können. Eine derartige Ausgestaltung des Basisfunktionssystems ist besonders für die Inbetriebnahmephasen, für einen Betrieb mit sprunghaftem Anforderungswechsel etc. vorteilhaft. Zur, wenn auch suboptimalen, Funktion des intelligenten Rechnerteils brauchen auch nicht immer alle Modellteile in spezifisch angepaßter Form zur Verfügung stehen. Es ist vorteilhaft auch ein Betrieb mit einem nur teilweise ausgearbeiteten und/oder angepaßten Prozeßgesamtmodell möglich.The basic function system advantageously also has start and Start-up routines that are entered manually or automatically can be, as well as suboptimal normal operating routines, in to those instructions, otherwise determined by calculation can be replaced by constant, safe guidelines. A is such a configuration of the basic function system especially for the commissioning phases, for operation with erratic change of requirements etc. advantageous. To when also suboptimal, function of the intelligent computer part do not always need all model parts in specific adapted form are available. It is also beneficial a company with a partially elaborated and / or adapted overall process model possible.

Das Prozeßmodell selbst ist in der Form als Prozeßgesamtmodell modular aufgebaut und beschreibt das Verhalten zwischen den Prozeßeingangsgrößen sowie den Stellgrößen und den Prozeßausgangsgrößen, z.B. Qualitätskennwerten des erzeugten Produktes. Die Modularität erlaubt dabei eine besonders vorteilhafte Ausgestaltung und Bearbeitung des Prozeßgesamtmodells, da von einzelnen, gut übersehbaren, Teilmodellen ausgegangen werden kann. Das Prozeßmodell beruht vorteilhaft soweit wie möglich auf mathematischen Beschreibungsformen. Wo derartige mathematische Beschreibungsformen nicht möglich sind, wird etwa auf linguistisch formulierte Modellteile zurückgegriffen, die z.B. durch Fuzzy-Systeme, Neuro-Fuzzy-Systeme, Expertensysteme o.ä. realisiert sein können. Für, z.B. völlig neue, Anlagenkomponenten, für die keine Modellbildung auf Basis mathematisch-physikalischer, chemischer oder metallurgischer Grundlagen o.ä. oder aufgrund von linguistisch beschreibbarem Prozeßwissen möglich ist, werden selbstlernende Systeme, z.B. neuronale Netze verwendet. So ergibt sich für alle Produktionsanlagen, gleichgültig wie groß sie ausgelegt oder wie sie ausgestaltet sind, die Möglichkeit, ein Prozeßgesamtmodell zu erstellen.The process model itself is in the form of an overall process model modular structure and describes the behavior between the process input variables and the manipulated variables and the process output variables, e.g. Quality parameters of the product created. The modularity allows one particularly advantageous design and processing of Overall process model, as it is made up of individual, clearly visible, Part models can be assumed. The process model is based advantageous as far as possible on mathematical forms of description. Where such mathematical forms of description are not possible, for example, is formulated on linguistically Model parts used, e.g. through fuzzy systems, Neuro-fuzzy systems, expert systems or similar be realized can. For, e.g. completely new, system components for which no modeling based on mathematical-physical, chemical or metallurgical basics or similar or due to of linguistically describable process knowledge is possible, self-learning systems, e.g. neural networks used. This results in indifference for all production plants how big they are designed or how they are designed, the possibility to create an overall process model.

Es ist natürlich auch möglich, den Produktionsprozeß mit den Teilen, für die kostengünstige konventionelle Lösungen zur Verfügung stehen, konventionell zu betreiben. Dann wird das sonst notwendig gewesene Modellmodul unter Berücksichtigung der Wirkung des verwendeten konventionellen Teils passend ersetzt. Dieses Vorgehen bietet sich u.U. im Haspelbereich eines Walzwerks an.It is of course also possible to use the production process Parts for which inexpensive conventional solutions for Are available to operate conventionally. Then it will otherwise necessary model module taking into account the effect of the conventional part used replaced. This procedure may be available in the reel area of a rolling mill.

Das Prozeßmodell wird vorteilhaft aufgrund von an der Anlage gesammelten Prozeßdaten, die in einer Prozeßdatenbank archiviert werden, dem Prozeß fortlaufend angepaßt und weiter verbessert, wobei dies vorteilhaft mittels adaptiver Verfahren, Lernverfahren, z.B. durch ein Backpropagation-Lernverfahren oder auch ein Auswahlverfahren für verschiedene Teilmodelle, etwa neuronale Netze oder deren Teile, geschieht. So ergibt sich ein in wesentlichen Teilen selbstgelerntes Modell, das on-line oder off-line angepaßt oder verbessert werden kann.The process model becomes advantageous due to the on the plant collected process data, which is archived in a process database are continuously adapted to the process and further improved, this advantageously using adaptive methods, Learning methods, e.g. through a backpropagation learning process or a selection process for different sub-models, such as neural networks or parts thereof. So results a largely self-taught model, the can be adapted or improved on-line or off-line.

In vorteilhafter Ausgestaltung ist vorgesehen, daß die einstellbaren Prozeßvariablen durch den Optimierer am Prozeßmodell derart optimiert werden, daß die Modellausgangsgrößen, die insbesondere Qualitätskennwerte des Produktes sind, möglichst gut mit vorgegebenen, z.B. den anzustrebenden, Werten übereinstimmen. Durch eine off-line-Bearbeitung der Optimierung wird der hohe Rechenaufwand derartiger Vorgänge kostengünstig beherrschbar. Die off-line-Optimierung kann sowohl auf einer separaten Recheneinheit parallel zu der Modelladaption, als auch in Pausen, z.B. am Wochenende oder bei Reparaturstillständen auf dem Rechner, der z.B. im Betrieb die Führungsgrößen des Basis-Funktionssystems ausgibt, erfolgen.In an advantageous embodiment it is provided that the adjustable Process variables by the optimizer on the process model are optimized in such a way that the model output variables, which are in particular quality parameters of the product, as well as possible with given, e.g. the target, Values match. Through an offline processing of the The high computational effort of such processes becomes optimization manageable at low cost. The offline optimization can both on a separate processing unit parallel to the Model adaptation, as well as in breaks, e.g. at the weekend or in the event of repair downtimes on the computer, e.g. in the Operation of the reference variables of the basic functional system issues, take place.

Die Optimierung erfolgt vorteilhaft mit bekannten Optimierungsverfahren, insbesondere über genetische Algorithmen. Die Auswahl der Optimierungsverfahren erfolgt dabei situations- und problemabhängig. Sie kann sowohl durch eine Vorgabe, z.B. aufgrund einer Analyse des Prozeßverlaufs, oder durch rechentechnische Auswahl aus einer Optimierungs-Methodensammlung erfolgen. Hierfür kann ein einfaches "Trial and Error"- Vorgehen angewendet werden, es empfiehlt sich jedoch zur Verminderung des Rechenaufwandes, das "Trial and Error"-Vorgehen durch Konvergenzkriterien, Methoden der Mustererkennung beim Fehlerabnahmeverlauf etc. zu unterstützen.The optimization is advantageously carried out using known optimization methods, especially about genetic algorithms. The The optimization process is selected according to the situation and problem-dependent. It can be done by a specification, e.g. based on an analysis of the course of the process, or by computational Selection from a collection of optimization methods respectively. A simple "trial and error" procedure can be used for this applied, but it is recommended to reduce it the computing effort, the "trial and error" procedure through convergence criteria, methods of pattern recognition in Support the error acceptance process etc.

Die jeweiligen Startwerte für eine Optimierung werden vorteilhaft auf Basis der in einem Prozeßdatenspeicher archivierten, suboptimalen Betriebsdaten ermittelt. So verringert sich der Optimierungsaufwand, da die Optimierungsrechnung schon mit voroptimierten Werten beginnt, wenn sie als sicher erkannte Zwischenwerte als Startwerte benutzt.The respective start values for an optimization are advantageous on the basis of the archived in a process data memory suboptimal operating data determined. So reduced the optimization effort because the optimization calculation starts with pre-optimized values if they are certain recognized intermediate values are used as start values.

Die Verbesserung des Gesamtsystems erfolgt zumindest dreistufig. Die unterste Stufe bildet die laufende Verbesserung des vorhandene Prozeßwissens, abgelegt im Datenspeicher, z.B. in Form von suboptimalen, sicheren Betriebspunkten, die selbsttätig fortlaufend auf ein besser angepaßtes Wissensniveau gebracht werden, und von dem dann wiederum weiter ausgegangen wird.The overall system is improved at least in three stages. The lowest level is the continuous improvement of the existing process knowledge, stored in the data memory, e.g. in Form of sub-optimal, safe operating points that automatically continuously brought to a better adapted level of knowledge , and from that again it is assumed becomes.

Die zweite Stufe bildet im wesentlichen die Modelladaption, die das Modellverhalten dem Prozeßverhalten möglichst gut anpaßt.The second stage essentially consists of the model adaptation, that adapts the model behavior to the process behavior as well as possible.

Als dritte Stufe erfolgt eine fortlaufende Verbesserung der situationsgerechten Anweisungen durch den Prozeßoptimierer, z.B. über evolutionäre Strategien, genetische Algorithmen etc. Diese Strategien erfordern eine große Rechenzeit und laufen vorzugsweise off-line ab.The third stage is a continuous improvement of the situation-specific instructions from the process optimizer, e.g. about evolutionary strategies, genetic algorithms etc. These strategies require a lot of computing time and preferably run off-line.

Die Systemverbesserung wird vorteilhaft auch noch durch externe Simulationsrechnungen, Modellversuche, evtl. auch durch Versuche an der Produktionsanlage mit neuen Hilfsmitteln etc., laufend unterstützt.The system improvement is also advantageous through external simulation calculations, model tests, possibly also through tests on the production plant with new aids etc., continuously supported.

Das erfindungsgemäße Leitsystem wird im folgenden beispielhaft anhand einer Bandgießanlage für Stahl beschrieben. Dabei ergeben sich weitere, auch erfinderische Einzelheiten und Vorteile aus der Zeichnung und der Zeichnungsbeschreibung ebenso wie aus den Unteransprüchen.The control system according to the invention is exemplified below using a steel strip caster. Here there are further, also inventive details and Advantages from the drawing and the description of the drawing as well as from the subclaims.

Im einzelnen zeigen:

FIG 1
eine schematisierte Darstellung der Bandgießanlage mit Meßdatenerfassung und Stellgrößenausgabe,
FIG 2
die Struktur des "intelligenten" Teils des Leitsystems mit der Sollwert-Vorgabebildung,
FIG 3
Einzelheiten des Prozeßoptimierers,
FIG 4
Einzelheiten des Adaptionsvorgangs,
FIG 5
wesentliche Bestandteile des Prozeßmodells und ihre Grob-Verknüpfungsstruktur,
FIG 6
erfindungswesentliche Teile des Datenspeichers und
FIG 7
ein Komponenten-Schema der Basisautomatisierung.
In detail show:
FIG. 1
a schematic representation of the strip caster with measurement data acquisition and control variable output,
FIG 2
the structure of the "intelligent" part of the control system with the setpoint specification,
FIG 3
Details of the process optimizer,
FIG 4
Details of the adaptation process,
FIG 5
essential components of the process model and their rough link structure,
FIG 6
parts of the data memory essential to the invention and
FIG 7
a component diagram of basic automation.

In FIG 1 bezeichnet 1 die Gießwalzen einer Zweiwalzen-Gießeinrichtung, wobei zwischen den Gießwalzen 1 das Material, etwa flüssiger Stahl, aus der Gießpfanne 4 über den Tundish 5 und ein Tauchrohr 6 eingegeben wird und zu einem Band 3 erstarrt, das in einer, durch die Kreise 2 mit Bewegungspfeilen symbolisierten, Walzanlage weiterverformt werden kann. Die nachgeschaltete Walzanlage kann auch einfach durch Förderrollen, eine Haspel o.ä. ersetzt werden, wenn das Auswalzen nicht unmittelbar nach dem Gießen erfolgen soll. Die Ausgestaltung der Gesamtanlage wird anforderungsspezifisch vorgenommen. Auch eine Ausbildung der, der Gießeinrichtung nachgeschalteten, Anlage als Warm-Kalt-Walzwerk ist möglich und bei sehr hohen Gießgeschwindigkeiten empfehlenswert, da dann auch der Kalzwalzteil der Anlage ausreichend ausgelastet sein kann.In FIG. 1, 1 denotes the casting rolls of a two-roll casting device, the material between the casting rolls 1, liquid steel, from the ladle 4 over the tundish 5 and a dip tube 6 is entered and solidified into a band 3, that in one, through the circles 2 with movement arrows symbolized, rolling mill can be further deformed. The downstream rolling mill can also be easily moved by conveyor rollers, a reel or similar be replaced when rolling out should not be done immediately after pouring. The design the entire system is made according to requirements. Also training the, the pouring device downstream, system as a hot-cold rolling mill is possible and recommended at very high casting speeds because then the cold rolling section of the plant is sufficiently utilized can be.

Zwischen den Gießwalzen und den nachgeschalteten Einrichtungen weist die Gießwalzeinrichtung vorzugsweise ein ebenfalls nur symbolisch dargestelltes elektrodynamisches System 8,9 und ein Induktionsheizsystem 10 auf. Der elektrodynamische Systemteil 8 dient dabei vorteilhaft der Gewichtsentlastung, des gegossenen, hier noch sehr weichen und damit einschnürungsgefährdeten, Bandes 3 und der elektrodynamische Systemteil 9 der Führung des Bandes 3, während dem Induktionsheizsystem 10 die Einhaltung eines vorherbestimmten Temperaturprofils über die Bandbreite obliegt, wenn sich z.B. eine direkte Nachverformung in einer Walzanlage anschließt. Dies ist insbesondere für rißempfindliche Stähle vorteilhaft. Die Kontrolle des gegossenen Bandes 3 auf Risse erfolgt durch eine Kamera 73, wobei vorteilhaft ausgenutzt werden kann, daß das Rißbild im Zunder durch Risse im Grundmaterial beeinflußt wird. Die Bildung einer Meßgröße erfolgt dabei vorteilhaft durch ein Neuro-Fuzzy-System.Between the casting rolls and the downstream equipment the casting and rolling device preferably also has one only symbolically represented electrodynamic system 8.9 and an induction heating system 10. The electrodynamic System part 8 advantageously serves to relieve weight, the cast, here still very soft and therefore at risk of constriction, Volume 3 and the electrodynamic system part 9 of guiding the tape 3 during the induction heating system 10 compliance with a predetermined temperature profile over the bandwidth if, e.g. a direct one Post-forming in a rolling mill. This is particularly advantageous for crack-sensitive steels. The The cast strip 3 is checked for cracks by a camera 73, which can be used to advantage that the crack pattern in the scale is influenced by cracks in the base material becomes. The formation of a measured variable is advantageous through a neuro-fuzzy system.

Da die Oberflächentemperatur der Gießwalzen zur Vermeidung von Temperaturwechselbeanspruchungen im wesentlichen konstant sein soll, werden diese durch ein IR-Heizsystem 7, ein Induktionsheizsystem o.ä. auch in dem, nicht mit flüssigem Stahl in Berührung stehenden Bereich, auf Arbeitstemperatur gehalten. Diese und andere Einzelkomponenten der, nur grob schematisch gezeichneten, Gießwalzeinrichtung werden z.B. über Temperaturregler, Durchflußeinsteller, Drehzahlregler etc. im Rahmen der Basisautomatisierung über eine Stellgrößenausgabe 12 direkt oder geregelt eingestellt. Die Ist-Daten der Stellglieder, der Regler etc. werden in der Meßdatenerfassung 11 für den Datenspeicher und den Modelleingang sowie in nicht gezeigter Weise für die Basisautomatisierung zusammengefaßt und aufbereitet. Durch die Datenübertragungen I,II und VI, die durch Pfeile symbolisiert sind, ist die Gießwalzeinrichtung, in der die auf den beiden Gießwalzen 1 gebildeten Erstarrungsschalen des Stahls nicht nur vereinigt, sondern auch schon walzend vormaßhaltig geformt werden, mit dem intelligenten Teil des Leitsystems verbunden.Because the surface temperature of the casting rolls to avoid of temperature change stresses essentially constant should be, they are through an IR heating system 7, an induction heating system or similar even in that, not with liquid steel area in contact, kept at working temperature. These and other individual components of the, only roughly schematic drawn, casting and rolling device are e.g. via temperature controller, Flow adjuster, speed controller etc. in Framework of basic automation via a manipulated variable output 12 set directly or regulated. Actual data of the actuators, the controller etc. are in the measurement data acquisition 11 for the data storage and the model input as well as in not summarized as shown for the basic automation and processed. Through data transfers I, II and VI, which are symbolized by arrows is the casting and rolling device, in which the formed on the two casting rolls 1 Solidification shells of the steel not only combined, but can also be rolled pre-formed with the intelligent Part of the control system connected.

FIG 2 zeigt die Struktur des intelligenten Teils des Leitsystems. Dieser besteht im wesentlichen aus den Teilen Prozeßoptimierer 15, Modell 20, Modelladaption 16 und Datenspeicher 17. Diese Teile des Leitsystems wirken derart zusammen, daß über die Sollwertausgabe 13 möglichst gute, situationsgerechte Anweisungen über die Datenleitung V zur Prozeßführung zur Verfügung gestellt werden. Diese Anweisungen werden dann in Sollwerte für die Basisautomatisierung umgesetzt. Im folgenden wird die Aufgabe und die Funktion der einzelnen Teile beschrieben.2 shows the structure of the intelligent part of the control system. This essentially consists of the parts process optimizer 15, model 20, model adaptation 16 and data storage 17. These parts of the control system interact in such a way that as good as possible via the setpoint output 13, Instructions appropriate to the situation via the data line V for Litigation can be made available. This Instructions are then converted into setpoints for basic automation implemented. The following is the task and the function of the individual parts is described.

Das Modell 20 bildet das statische Prozeßverhalten yi = fi (ul ,...,ui ,...,vl ,...,vi ,...), d.h. die Abhängigkeit der n Modellausgangsgrößen

Figure 00110001
von den Stellgrößen ui , mit denen der Prozeß beeinflußt werden kann, und von den nichtbeeinflußbaren Prozeßgrößen vi , wie z.B. der Kühlwassertemperatur, nach. Die Modellausgangsgrößen sind dabei, wie schon erwähnt, typische Qualitätsparameter des Produktes. Die Modellbeschreibung
Figure 00110002
erfaßt das Prozeßverhalten im allgemeinen nicht exakt, weshalb yi und mehr oder weniger voneinander abweichen. Übertragen werden die Stellgrößen ui und die nichtbeeinflußbaren Stellgrößen vi über die Datenleitungen I und II.The model 20 forms the static process behavior y i = f i ( u l , ..., u i , ..., v l , ..., v i , ...), ie the dependency of the n model output variables
Figure 00110001
from the manipulated variables u i with which the process can be influenced and from the non-influenceable process variables v i , such as the cooling water temperature. As already mentioned, the model output variables are typical quality parameters of the product. The model description
Figure 00110002
generally does not exactly grasp the process behavior, which is why y i and deviate more or less from each other. The manipulated variables u i and the non-influenceable manipulated variables v i are transmitted via data lines I and II.

Die Modelladaption 16 hat die Aufgabe das Modell zu verbessern, damit das Modellverhalten möglichst gut dem Prozeßverhalten entspricht. Dies kann - zumindest für Modellteile - on-line geschehen, indem diese Modellteile auf der Basis von laufend erfaßten Prozeßdaten adaptiert oder nachgeführt werden.The model adaptation 16 has the task of improving the model, thus the model behavior as well as the process behavior corresponds. This can - at least for model parts - done online by making these model parts based on continuously recorded process data can be adapted or updated.

Für andere Modellteile kann die Adaption auch off-line zu bestimmten Zeitpunkten vorgenommen werden. Dies geschieht auf der Basis einer Anzahl m von den Prozeß repräsentierenden Prozeßzuständen (uk i ,vk i ,yk i ), die im Datenspeicher 17 abgelegt sind. Der Index k beziffert den jeweiligen Prozeßzustand. Bei dieser Art der Adaption wird der Modellfehler

Figure 00120001
minimiert in Abhängigkeit von den Modellparametern oder der Modellstruktur. D.h. man variiert die Modellparameter bzw. die -struktur so, daß ε möglichst klein wird.For other model parts, the adaptation can also be carried out off-line at certain times. This is done on the basis of a number m of process states representing the process ( u k i , v k i , y k i ), which are stored in the data memory 17. The index k quantifies the respective process status. With this type of adaptation, the model error
Figure 00120001
minimized depending on the model parameters or the model structure. This means that the model parameters or structure are varied so that ε becomes as small as possible.

Der Prozeßoptimierer hat die Aufgabe, mittels eines Optimierungsverfahrens und des Prozeßmodells Stellgrößen ui zu finden, die zu einem möglichst guten Prozeßverhalten führen. Der Prozeßoptimierer arbeitet off-line zu bestimmten, beispielsweise manuell vorgebbaren Zeitpunkten und zwar wie folgt:The process optimizer has the task of using an optimization method and the process model to find manipulated variables u i which lead to the best possible process behavior. The process optimizer works off-line at specific times, for example, which can be predetermined manually, as follows:

Zuerst werden die nichtbeeinflußbaren Stellgrößen vi , für die die Optimierung erfolgen soll - z.B. die aktuellen - , konstant gehalten und dem Modell über die Datenleitung II zugeführt. Sodann wird mittels Schalter 18 der Prozeßoptimierer mit dem Modell verbunden. Er gibt Stellwerte ui auf das Modell. Über das Modell werden die Ausgangswerte bestimmt. Diese werden mit Sollausgangswerten ySoll,i verglichen, und es wird der Fehler

Figure 00130001
bestimmt.First, the manipulated variables v i that cannot be influenced, for which the optimization is to take place — for example the current ones — are kept constant and are fed to the model via the data line II. The process optimizer is then connected to the model by means of switch 18. It gives control values u i to the model. The initial values are based on the model certainly. These are compared with target output values y target, i , and it becomes the error
Figure 00130001
certainly.

Der Fehler E soll minimiert werden. Zu diesem Zweck variiert der Prozeßoptimierer die Stellgrößen ui solange in einer iterativen Schleife, die jeweils die Berechnung von yi und E sowie die Neuauswahl von ui enthält, bis der Fehler nicht weiter verringert werden kann oder man diese Optimierung abbricht. Als Optimierungsverfahren können beispielsweise genetische Algorithmen, Hill-Climbing-Methoden etc. eingesetzt werden.The error E should be minimized. For this purpose, the process optimizer varies the manipulated variables u i in an iterative loop, which contains the calculation of y i and E as well as the new selection of u i , until the error cannot be reduced further or this optimization is terminated. Genetic algorithms, hill climbing methods, etc. can be used as optimization methods.

Die so erhaltenen optimalen Stellgrößen uopt,i , die das Ergebnis obiger Minimierung sind, werden dann über die Sollwertvorgabe und die Datenleitung V als Sollwerte zum Basisfunktionssystem transferiert.The optimal manipulated variables u opt, i obtained in this way , which are the result of the above-mentioned minimization, are then transferred to the basic function system via the setpoint specification and the data line V as setpoints.

Der Datenspeicher hat die Hauptaufgabe repräsentative Prozeßzustände (ui ,vi ,yi ) zu archivieren. Hierbei ersetzt er alte Prozeßdaten immer wieder durch neu ermittelte, um anhand dieser Daten eine aktuelle, wenn auch punktuelle, Prozeßbeschreibung zu ermöglichen. Der Datenspeicher versorgt dann einerseits, wie oben beschrieben, die Modelladaption. Andererseits liefert er auch Startwerte ui für den Prozeßoptimierer. Die Startwerte werden hierbei z.B. so ausgewählt, daß die zu diesen Startwerten gehörenden Ausgangswerte yi möglichst gut den Sollwerten ySoll,i entsprechen. The main task of the data memory is to archive representative process states ( u i , v i , y i ). In doing so, he replaces old process data again and again with newly determined one, in order to enable a current, albeit selective, process description based on this data. The data memory then supplies the model adaptation, as described above. On the other hand, it also supplies start values u i for the process optimizer. The start values are selected, for example, in such a way that the output values y i belonging to these start values correspond as well as possible to the target values y target, i .

Die vorzugsweise off-line arbeitende Schleife: Modell 20 und Prozeßoptimierer 15, die sich etwa z.B. genetischer Algorithmen zur z.B. evolutionären, Modellverbesserung bedient, arbeitet vorzugsweise deswegen off-line, weil wegen der Komplexität eines Anlagenleitmodells mit seinen vielen möglichen Ausgestaltungen die Rechenzeit eines evolutionären Optimierungsvorgangs vergleichsweise lang wird. Auch bei guten Optimierungsstrategien, die z.B. aufgrund einer Analyse des wahrscheinlichen Modellverhaltens ausgewählt werden, sind viele Optimierungsvorgänge bis zum Erreichen einer deutlichen Modellverbesserung durchzurechnen.The preferably off-line loop: model 20 and Process optimizer 15, e.g. genetic algorithms for e.g. evolutionary, model improvement, works preferably off-line because of the complexity of a plant control model with its many possible Develop the computing time of an evolutionary optimization process becomes comparatively long. Even with good ones Optimization strategies that e.g. based on an analysis of the probable model behavior are selected many optimization processes until a clear one is reached Calculate model improvement.

Die Erstellung einer erfindungsgemäß zu verwendenden Modellstruktur und eines wesentlichen Teilmodells wird z.B. in dem Aufsatz "Automation Of A Laboratory Plant For Direct Casting Of Thin Steel Strips" von S. Bernhard, M. Enning and H. Rabe in "Control Eng. Practice", Vol.2, No.6, page 961-967, 1994, Elsevier Science Ltd. beschrieben. Aus dieser Veröffentlichung sind u.a. auch die Grundstrukturen geeigneter Basisautomatisierungssysteme und von Startroutinen zu ersehen, auf denen der Fachmann aufbauen kann.The creation of a model structure to be used according to the invention and an essential sub-model is e.g. by doing "Automation Of A Laboratory Plant For Direct Casting Of Thin Steel Strips "by S. Bernhard, M. Enning and H. Rabe in "Control Eng. Practice", Vol.2, No.6, page 961-967, 1994, Elsevier Science Ltd. described. From this publication include also the basic structures of suitable basic automation systems and can be seen from start routines which the specialist can build up.

Als Rechner für die Prozeßoptimierung und die Parameteradaption sind Workstations, z.B. von der Firma Sun, geeignet. Für große Leitsysteme werden vorteilhaft parallel arbeitende Rechner eingesetzt. Dies gilt insbesondere, wenn das Modell in Gruppen von Modell-Modulen aufteilbar ist, die teilabhängig voneinander optimiert werden können.As a computer for process optimization and parameter adaptation are workstations, e.g. from the Sun company. For large control systems, it is advantageous to work in parallel Calculator used. This is especially true if the model can be divided into groups of model modules that are part dependent can be optimized from each other.

Im Vergleichspunkt 19, in den die Sollwerte, im gewählten Ausführungsbeispiel die Sollwerte für die Banddicke, die Profilform, die Oberflächengüte des Bandes etc. einfließen, werden laufend die Ergebnisse aus der Modellrechnung mit den Sollwertvorgaben verglichen. Die Differenz ist durch die Optimierung zum minimieren. Da die Differenz bei technischen Prozessen im allgemeinen nicht Null werden kann, muß der Optimierungsvorgang sinnvoll begrenzt, also vorgegeben abgebrochen werden. Genauere Einzelheiten der Programmstruktur, mit der die Optimierung abgebrochen und jeweils die neue Sollwertausgabe gestartet wird, zeigt FIG 3.
In FIG 3 bezeichnet 58 eine, jeweils auszuwählende, Fehlerfunktion, in die die festgestellten Fehler (Sollwertabweichungen) einfließen. In 61 wird nun untersucht, ob die Fehlerfunktion die Abbruchkriterien der Optimierung erfüllt. Falls dies der Fall ist, werden weiter optimierte Steuer- und Regelgrößen ausgegeben. Vor Erreichen des Abbruchkriteriums gelangen laufend Startwerte vom Datenspeicher in die Startwertvorgabe 59, aus denen in Suchschritten in 60, nicht vom Optimierer, sondern aus dem Datenspeicher, z.B. unter Zuhilfenahme einer Fuzzy-Interpolation, Steuer- und Regelparameter für eine suboptionale Prozeßführung gewonnen werden. Eine Umschaltung erfolgt nach Erreichen des vorherbestimmten Gütefaktors, der dem jeweiligen Leitsystem-Wissensstand angepaßt wird. Wie bereits vorstehend gesagt, wird die Minimierung, die ja niemals absolut sein kann, bei Erreichen des vorgegebenen Gütefaktors abgebrochen.
At comparison point 19, into which the setpoints, in the selected exemplary embodiment the setpoints for the strip thickness, the profile shape, the surface quality of the strip, etc., are incorporated, the results from the model calculation are continuously compared with the setpoint values. The difference can be minimized through optimization. Since the difference in technical processes cannot generally become zero, the optimization process must be meaningfully limited, that is, it must be terminated. FIG. 3 shows more precise details of the program structure with which the optimization is terminated and the new setpoint output is started.
In FIG. 3, 58 denotes an error function to be selected in each case, into which the detected errors (setpoint deviations) flow. 61 now examines whether the error function meets the termination criteria of the optimization. If this is the case, further optimized control and regulating variables are output. Before the termination criterion is reached, start values from the data memory continuously enter the start value specification 59, from which, in search steps in 60, not from the optimizer, but from the data memory, for example with the aid of fuzzy interpolation, control and regulating parameters for sub-optional process control are obtained. Switching takes place after reaching the predetermined quality factor, which is adapted to the respective control system knowledge. As already said above, the minimization, which can never be absolute, is stopped when the predetermined quality factor is reached.

Aus dem Modell wird im übrigen vorteilhaft, wenn es an den Prozeß angeschlossen, d.h. Schalter 1 geschlossen ist, auch ein Alarmsignal generiert, welches das Erreichen kritischer Betriebszustände signalisiert. Derartige Prozeduren sind bereits bekannt und finden sich in gleicher Weise auch in konventionellen Leitsystemen.The model will also be advantageous if it goes to the Process connected, i.e. Switch 1 is closed, too generates an alarm signal that is critical Operating states signaled. Such procedures are already known and can be found in the same way in conventional control systems.

In FIG 4, die die Struktur einer Modelladaption mittels eines Optimierungsalgorithmus zeigt, gelangen Daten aus der Startwertvorgabe 61 in eine Suchschritteinheit 62 und werden von dort als Modellparameter an das Modell 63 weitergegeben. Das Modell 63 bildet zusammen mit dem Datenspeicher 64 eine Parameterverbesserungsschleife, die in 65 in bekannter Weise die gebildeten und gespeicherten Werte vergleicht. Die Vergleichswerte werden der Fehlerfunktion 67 zugeführt, die ihre Werte an die Abbruchkriterieneinheit 66 weitergibt. Sind die Abbruchkriterien erfüllt, wird das Modell nicht mehr weiter verbessert und mit den vorhandenen Werten gearbeitet. Sonst wird die Optimierung mit weiteren Suchschritten und den Zwischenwerten im Datenspeicher weitergeführt.In FIG 4, which the structure of a model adaptation by means of a Optimization algorithm shows data from the start value specification 61 in a search step unit 62 and are from passed there as model parameters to model 63. The Model 63 forms, together with data storage 64, a parameter improvement loop, the 65 in a known manner the compares formed and stored values. The comparison values are fed to the error function 67, their Passes values to the termination criteria unit 66. Are the If the termination criteria are met, the model will not continue improved and worked with the existing values. Otherwise the optimization with further search steps and the Intermediate values continued in the data storage.

In FIG 5, die die wesentlichen Teilmodelle des Prozeßgesamtmodells des Ausführungsbeispiels zeigt, bezeichnet 46 das Eingangsmodell, in dem die Außeneinflüsse, etwa die Einflüsse aus der Qualität des eingesetzten Materials, zusammengefaßt sind. Aus der Stahl-Einsatzqualität ergibt sich z.B. der Liquiduswert, der Soliduswert, sowie weitere, das Gießverhalten kennzeichnende Größen. 47 bezeichnet das Tundishmodell, in das z.B. das Stahlvolumen des Tundish, die Tauchrohrstellung o.ä., die Stopfenstellung und die Stahl-Ausflußtemperatur eingehen. Die Eingangsmodelle 46 und 47 werden im Teilmodell 56 zusammengefaßt, das den Status des zugeführten Materials wiedergibt. Derartige Teilmodelle können vorteilhaft parallel zu anderen Teilmodellen, etwa dem Gießbereichsmodell, dem Walzbereichsmodell o.ä. optimiert werden.In FIG 5, the essential sub-models of the overall process model of the embodiment, 46 denotes that Input model in which the external influences, such as the influences summarized from the quality of the material used are. The quality of the steel used results e.g. of the Liquidus value, the solidus value, as well as others, the casting behavior characteristic sizes. 47 denotes the tundish model, into e.g. the steel volume of the tundish, the dip tube position or the like, the stopper position and the steel discharge temperature come in. The input models 46 and 47 are summarized in sub-model 56, which the status of the fed Material. Such partial models can advantageously parallel to other sub-models, such as the casting area model, the rolling range model or similar be optimized.

Das Eingangsmodell 48 enthält die Einflüsse, die die Erstarrung beeinflussen, z.B. die Gießwalzenkühlung, die Infrarotheizung etc., Das Eingangsmodell 49 enthält die Werte, die für die Wärmebilanz notwendig sind, so die Stahl-Gießwalzen-Temperaturdifferenz, den Schmiermitteleinfluß als Funktion der Schmiermittelmenge, die Kristallbildungsgeschwindigkeit der jeweiligen Stahlsorte sowie z.B. den Walzenoberflächenzustand. Das Eingangsmodell 50 enthält z.B. die Einflüsse der Gießspiegelcharakteristik, so die Gießspiegelhöhe, die Schlackenschichtdicke und den Abstrahlungskoeffizienten. Die Eingangsmodelle 48,49 und 50 sind zu einem Teilmodell 54, das den Status Gießbereich wiedergibt, zusammengefaßt. Diese Modellbereichs-Zusammenfassung ist allgemein für Produktionsbereiche vorteilhaft, da sie die Gesamt-Modelloptimierung vereinfacht und verbessert. Unter sich sind die Teilmodelle z.T. noch voneinander abhängig, so etwa in erheblichem Maß die Eingangsmodelle 49 (Eingangsmodell Wärmebilanz) und 50 (Eingangsmodell Gießspiegelcharakteristik). Sekundärabhängigkeiten sind zur Vereinfachung nicht dargestellt.The input model 48 contains the influences that the solidification influence, e.g. the casting roll cooling, the infrared heating etc., the input model 49 contains the values that necessary for the heat balance, such as the steel casting roll temperature difference, the influence of lubricant as a function the amount of lubricant, the rate of crystal formation the respective steel grade and e.g. the roll surface condition. The input model 50 contains e.g. the influences of Casting level characteristics, so the level of the casting level Slag layer thickness and the radiation coefficient. The Input models 48, 49 and 50 are part of a model 54, the reflects the status of the casting area, summarized. This Model area summary is general for production areas advantageous as it is the overall model optimization simplified and improved. The sub-models are among themselves partly still dependent on each other, for example to a considerable extent the input models 49 (input model heat balance) and 50 (Initial model of the mold level characteristic). Secondary dependencies are not shown for simplification.

Das Teilmodell 51 enthält alle Einflüsse auf die Erstarrungsfront, d.h. auf den Bereich, in dem die auf den beiden Kühlwalzen erstarrten Metallschalen zusammentreffen. Im wesentlichen sind diese Einflüsse die Umformarbeit, die von den Gießwalzen geleistet wird, die Vibrationsweite der Gießwalzen oder des austretenden Bandes, die Seitenspalt-Dichtungseinflüsse und der Anstrengungsgrad des Gesamtsystems, dies ist z.B. ein Fuzzy-Modell. Das Teilmodell 52 gibt die Austrittswerte wieder, so z.B. die Qualität des Bandes, die Austrittstemperatur- und Verteilung, aber auch die Klebeneigung und den Zustand des gebildeten Zunders. In das Teilmodell 52 geht auch das Eingangsmodell 53 und das Eingangsmodell 74 ein, die sich auf den Temperaturverlauf quer zum Band und auf den Oberflächenzustand des Bandes beziehen. Für den besonders vorteilhaften Fall, daß es sich um ein Bandgieß-Walzwerk handelt, gehen auch die Walzwerksteilmodelle 54 mit in dieses spezielle Prozeßmodell ein, da die Produktausbildung nach dem Austritt aus den Walzgerüsten das entscheidende Kriterium ist. The sub-model 51 contains all influences on the solidification front, i.e. to the area where the on the two chill rolls solidified metal shells meet. Essentially these influences are the forming work done by the casting rolls is achieved, the vibration width of the casting rolls or the emerging tape, the side gap sealing influences and the level of effort of the overall system, this is e.g. a fuzzy model. The sub-model 52 gives the exit values again, e.g. the quality of the tape that Outlet temperature and distribution, but also the tendency to stick and the condition of the scale formed. In the sub-model 52 also goes the input model 53 and the input model 74 a, which relates to the temperature profile across Tape and refer to the surface condition of the tape. For the particularly advantageous case that it is a The strip casting and rolling mill also works Rolling mill part models 54 in this special process model a, since the product training after leaving the Roll stands is the decisive criterion.

Die Teilmodelle sind zu dem Produkt-Ausbildungsmodell 57 zusammengefaßt, welches das Dickenprofil des gebildeten Bandes, die Banddicke, ein evtl. auftretendes Fehlerbild, die Kornstruktur des Bandes, die Oberflächenstruktur etc. zusammenfaßt. Die Oberflächenstruktur und insbesondere die Kornstruktur des Bandes sind nur mit erheblicher Zeitverzögerung ermittelbar. Hier arbeitet man daher vorteilhaft mit Teilmodellen auf der Basis von neuronalen Netzen zur qualitativen und quantitativen Einflußgrößenermittlung.The sub-models are combined to form the product training model 57, which is the thickness profile of the band formed, the strip thickness, a possible error pattern, the grain structure of the tape, the surface structure etc. summarized. The surface structure and especially the grain structure of the tape can only be determined with a considerable time delay. It is therefore advantageous to work with partial models here on the basis of neural networks for qualitative and quantitative determination of influencing variables.

Aus der vorstehenden Darstellung ergibt sich der besondere Vorteil, der sich aus der Ausbildung des Modells in Modulform ergibt, da insbesondere so die Teile eines komplexen Gesamtprozeßmodells parallel bearbeitbar werden. Dies ist besonders vorteilhaft für den Inbetriebsetzungszeitraum einer Anlage, in dem die Eingangs- und Teilmodelle den tatsächlichen Verhältnissen angepaßt, miteinander verknüpft etc. werden müssen.From the above illustration, the special one emerges Advantage resulting from the training of the model in module form results, in particular, as the parts of a complex overall process model can be processed in parallel. This is special advantageous for the commissioning period of a plant, in which the input and partial models reflect the actual circumstances adjusted, linked together, etc. must be.

FIG 6 zeigt schließlich den erfindungsgemäß wesentlichen Teil der Datenspeicherstruktur. 68 bezeichnet das Prozeßdatenarchiv , 69 den Modellparameterspeicherteil, 70 den Teil mit den Startwerten für den Optimierer und 71 den Speicherteil für die sicheren Betriebspunkte. In 68 wird auch die jeweilige Modellausbildung gespeichert.6 finally shows the part that is essential according to the invention the data storage structure. 68 denotes the process data archive , 69 the model parameter storage part, 70 the part with the start values for the optimizer and 71 the memory part for the safe operating points. In 68 the respective Model training saved.

Die Basisautomatisierung, die mit ihren Regelungen, Steuerungen, Verriegelungen etc., einen unverzichtbaren Teil des Leitsystems bildet, da sie u.a. das sichere Funktionieren der Anlage auch bei einer Fehlfunktion des Modellteils des erfindungsgemäß arbeitenden Leitsystems garantiert, muß eine Vielzahl von Funktionen erfüllen. The basic automation, with its regulations, controls, Interlocks etc., an indispensable part of the Control system, because it the safe functioning of the Attachment even if the model part of the Guaranteed control system according to the invention, must Perform a variety of functions.

Die einzelnen Funktionen sind, nicht abschließend, durch die einzelnen "black box" in FIG 7 symbolisiert. Dabei bedeutet 21 im Ausführungsbeispiel die Massenflußregelung über die Einzel-Drehzahlregler, 22 die Regelung der Tundish-Heizung, 23 die Gießspiegelregelung, 24 die Tundish-Ausflußregelung und 25 die Heizleistung des Infrarot- o.ä. Schirms 7 für die Aufrechterhaltung der Betriebstemperatur der Gießwalzen. 26 bedeutet die Regelung der Schmiermittelzugabe, z.B. in Form von losem Gießpulver oder von auf die Gießwalzen aufgetragener Gießpulverpaste, 27 die Kühlwassermengenregelung, 28 ggf. die Walzenoszillationsregelung, 29 die elektrische Antriebsregelung und 30 die Walzspalteinstellung. 31 bedeutet die Walzendrehzahlregelung und 32 ggf. die Regelung des Walzendrehmoments, 33 die Einstellung des Reinigungssystems, bestehend beispielsweise aus einer Bürste und einem Schaber für die Gießwalzen und 34 die Regelung des elektrodynamischen Systems zum Ausgleich des Bandgewichtes sowie 35 die Regelung der Vibrationsweite des gegossenen Bandes. 36 bedeutet die Regelung der einzelnen Teile eines elektrodynamischen Systems zur Seitenspaltabdichtung und 37 die Regelung der Heizung für die Seitenwände des Raumes zwischen den Gießwalzen. 38 bedeutet die Temperatur-Profilregelung des Induktionsheizsystems 10. 39 sowie angedeutete weitere Regeleinheiten beziehen sich auf Regelungen der nachgeschalteten Verformungseinheiten, z.B. Walzgerüsten, den Zug zwischen diesen Walzgerüsten etc. Auf die vorstehenden Stellglieder, Regler etc. wirkt die Zeitsteuerung 45, die die Stellgrößenausgaben etc. zeitlich koordiniert. Im Block 40 sind beispielhaft die Hilfs-Steuerungen und die Verriegelungen zusammengefaßt, so bedeuten z.B. 41 die Anfahrautomatik, 42 die Ausschaltautomatik, 43 und 44 Verriegelungen, die z.B. verhindern, daß Flüssigstahl fließen kann, bevor das Gieß-Walzenpaar und die Verformungswalzen arbeitsfähig sind, etc. Darüber hinaus sind weitere, in dem Prinzipbild nicht dargestellte, Systeme für die ggf. erforderliche Bandkantenabtrennung, z.B. durch Laser, für die Zunderausbildungsbeeinflussung, z.B. durch Silikatisierung, die Walzenschmierung etc. vorhanden. In der Basisautomatisierung, in die die Meßdaten I und die Sollwertvorgaben V eingehen, werden die Stellgrößen VI generiert, über die die Anlage geführt wird.The individual functions are not, finally, due to the symbolized individual "black box" in FIG 7. Here means 21 in the embodiment, the mass flow control over the Single speed controller, 22 the regulation of the tundish heating, 23 the mold level control, 24 the tundish outflow control and 25 the heating power of the infrared or similar. Screen 7 for the Maintaining the operating temperature of the casting rolls. 26 means the regulation of the addition of lubricant, e.g. in shape of loose mold powder or of one applied to the casting rollers Casting powder paste, 27 the cooling water quantity control, 28 if necessary the roller oscillation control, 29 the electrical Drive control and 30 the roll gap setting. 31 means the roller speed control and 32 if necessary the control of the Roller torque, 33 the setting of the cleaning system, consisting for example of a brush and a scraper for the casting rolls and 34 the regulation of the electrodynamic System for balancing the belt weight and the regulation the vibration width of the cast strip. 36 means that Regulation of the individual parts of an electrodynamic system for side gap sealing and 37 the regulation of the heating for the side walls of the space between the casting rolls. 38 means the temperature profile control of the induction heating system 10. 39 as well as indicated other control units refer to regulations of the downstream deformation units, e.g. Rolling stands, the train between them Roll stands etc. On the above actuators, controllers etc. acts the time control 45, which outputs the manipulated variables etc. coordinated in time. In block 40 are the example Auxiliary controls and the interlocks summarized so mean e.g. 41 the automatic start-up, 42 the automatic switch-off, 43 and 44 interlocks, e.g. prevent Liquid steel can flow before the pair of casting rolls and the Deformation rollers are workable, etc. In addition, they are further systems, not shown in the schematic, for the band edge separation required, e.g. by Lasers, for influencing scale formation, e.g. by Silicating, roller lubrication etc. available. In the Basic automation in which the measurement data I and the setpoint specifications V are received, the manipulated variables VI are generated, over which the system is managed.

Die Charakteristik des sich selbst optimierenden und wissensmäßig weiterentwickelnden Leitsystems, am Beispiel des Gießwalzprozesses gezeigt, werden im folgenden näher erläutert:The characteristic of self-optimizing and knowledge-based further developing control system, using the example of the Cast rolling process shown are explained in more detail below:

Der Gießwalzprozeß besteht aus einer Anzahl von Teilprozessen, deren Ausbildung und Einflüsse ausschlaggebend für das Endprodukt sind. Erfindungsgemäß beeinflußbar und optimierbar sind dabei die Eigenschaften des Endproduktes, z.B. seiner Dicke, seinem Dickenprofil und seiner Oberflächenausbildung, durch eine Reihe einstellbarer Prozeßgrößen, wie z.B. dem Gießwalzspalt, dem Gießwalzenprofil, der Gießspiegelhöhe etc., die wiederum die Lage der Vereinigungszone der auf den Gießwalzen abgeschiedenen, erstarrten Metallschalen beeinflussen. Für eine Regelung und Optimierung wird vorteilhaft erfindungsgemäß ein Gesamtprozeßmodell erstellt, welches das Prozeßverhalten beschreibt. Auf der Basis dieses Prozeßmodells können die Einflußgrößen, mit denen man den Prozeß beeinflußt, schrittweise entsprechend den Prozeßbedingungen angepaßt und optimiert werden. Die durch diese Optimierung bestimmten situationsgerechten Anweisungen führen dann zu einer Verbesserung des Prozeßgeschehens. Insgesamt ergeben sich trotz der bei der Erstellung relativ aufwendigen, (aber mit geringerem Aufwand auch bei anderen Anlagen weiterverwendbaren), Software erhebliche Kostenvorteile, da die Anlage mit wesentlich einfacheren mechanischen Komponenten, weniger Reglern etc. arbeiten kann, als die bekannten Anlagen. Auch die Sensorik wird wesentlich einfacher, da nur die Prozeßausgangsgrößen laufend genau erfaßt werden müssen.The casting and rolling process consists of a number of sub-processes, their training and influences are decisive for the End product. Can be influenced and optimized according to the invention are the properties of the end product, e.g. its Thickness, its thickness profile and its surface formation, through a number of adjustable process variables, e.g. the Casting roll gap, the casting roll profile, the casting level etc., which in turn shows the location of the union zone on the Casting rollers affect separated, solidified metal shells. For regulation and optimization is advantageous created an overall process model according to the invention, which the Process behavior describes. Based on this process model can be the influencing factors with which the process influenced, step by step according to the process conditions be adapted and optimized. That through this optimization certain situation-specific instructions then lead to an improvement in the process. Total result despite the relatively time-consuming process of creating, ( can also be used with other systems with less effort), Software significant cost advantages because of the System with much simpler mechanical components, fewer controllers etc. can work than the known ones Investments. The sensor technology is also much easier, since only the process output variables must be continuously recorded precisely.

Zusammengesetzt ist der intelligente, sich selbständig verbessernde, Teil des Leitsystems aus drei wesentlichen Elementen: Dem Prozeßmodell, der Modelladaption und dem Prozeßoptimierer. Das Prozeßmodell setzt sich aus Teilsystemen (Modulen) zusammen, die je nach Prozeßkenntnis von unterschiedlichem Typ sein werden. Bei Kenntnis der physikalischen Zusammenhänge können klassische, physikalisch-mathematische Modelle erstellt werden. Verfügt man dagegen nur über Erfahrungswissen oder Schätzungen, so werden Fuzzy- oder Neuro-Fuzzy-Systeme verwandt. Falls man nur wenig oder nichts über das Prozeßverhalten weiß, wie etwa bei der Rißbildung und der Oberflächenausbildung setzt man, zumindest am Anfang, neuronale Netze für die Prozeßbildung ein. Insgesamt beschreibt das Modell den Zusammenhang zwischen den Prozeßgrößen, wie im gewählten Beispiel der Gießspiegelhöhe, den Zustandswerten und der Qualität des vergossenen Materials, den Einstellwerten der Gießwalzen etc. und den Qualitätsparametern des Bandes, z.B. der Dicke, dem Profil und der Oberflächenausbildung.The intelligent, self-improving, Part of the control system consisting of three essential elements: The process model, the model adaptation and the process optimizer. The process model consists of subsystems (Modules) together, which vary depending on the process knowledge Will be type. With knowledge of the physical Connections can be classic, physical-mathematical Models are created. On the other hand, you only have experience or estimates, so are fuzzy or neuro-fuzzy systems related. In case you have little or nothing about knows the process behavior, such as cracking and At least in the beginning, surface training is set to neural Networks for process formation. Describes overall the model the relationship between the process variables, as in selected example of the mold level, the condition values and the quality of the potted material, the setting values the casting rolls etc. and the quality parameters of the Tape, e.g. the thickness, the profile and the surface formation.

Da das Modell zu einem bestimmten, u.U. erheblichen, Prozentsatz auf unsicherem Wissen gründet, ist es nicht genau. Das Modell muß also anhand gewonnener Prozeßdaten adaptiert, verändert etc. werden. Dies geschieht vorteilhaft einerseits mittels der bekannten Modelladaption, die auf Daten vergangener Prozeßzustände aufsetzt. Auf Basis dieser Daten stellt sie die Modellparameter o.ä. so ein, daß das Modellverhalten möglichst gut dem des Prozesses entspricht. Außerdem werden die Modelle selbst verändernd optimiert, so z.B. durch genetische Algorithmen, eine kombinatorische Evolution etc. Entsprechende Optimierungsstrategien sind bekannt, z.B. aus Ulrich Hoffmann, Hanns Hofmann "Einführung in die Optimierung", Verlag Chemie GmbH, 1971 Weinheim / Bergstraße; H.P. Schwefel "Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, Basel, Stuttgart : Birkhäuser 1977; Eberhard Schöneburg "Genetische Algorithmen und Evolutionsstrategien, Bonn, Paris, Reading, Mass, Addison-Wesley, 1994; Jochen Heistermann "Genetische Algorithmen: Theorie und Praxis evolutionärer Optimierung, Stuttgart, Leipzig, Teubner, 1994 (Teubner-Texte zur Informatik; Bd 9)Since the model may substantial, percentage based on uncertain knowledge, it is not exact. The The model must therefore be adapted and changed based on the process data obtained etc. This happens advantageously on the one hand using the well-known model adaptation based on data from past Process states set up. Based on this data the model parameters or similar so that the model behavior corresponds as closely as possible to that of the process. Also be modifying the models themselves, e.g. through genetic Algorithms, a combinatorial evolution etc. Corresponding Optimization strategies are known, e.g. from Ulrich Hoffmann, Hanns Hofmann "Introduction to Optimization", Verlag Chemie GmbH, 1971 Weinheim / Bergstrasse; H.P. sulfur "Numerical optimization of computer models using the Evolution Strategy, Basel, Stuttgart: Birkhäuser 1977; Eberhard Schöneburg "Genetic Algorithms and Evolutionary Strategies, Bonn, Paris, Reading, Mass, Addison-Wesley, 1994; Jochen Heistermann "Genetic Algorithms: Theory and practice of evolutionary optimization, Stuttgart, Leipzig, Teubner, 1994 (Teubner texts on computer science; Vol 9)

Durch das erfindungsgemäße Leitsystem mit dem vorstehend beschriebenen erfindungsgemäßen Vorgehen wird die bisherige Aufbaustruktur eines Leitsystems verlassen. Über einer Basisautomatisierung, die im wesentlichen die Prozeßebene betrifft (Level I), befindet sich ein nur einstufiges, intelligentes Leitsystem, dem die Produktionssollwerte vorgegeben werden und das daraus selbsttätig alle Vorgabegrößen (Stellbefehle) generiert (Level II). In intelligenter Selbstoptimierung sorgt es aufgrund des bereits erreichten Prozeßergebnisses für immer bessere Prozeßergebnisse. Einzelne Feed-Back-Regelkreise können entfallen. Nur für die Kontrolle der Prozeßergebnisse sind qualitätskontrollierende Sensoren notwendig. Das erfindungsgemäße Leitsystem besitzt also nur noch zwei wesentliche Ebenen, von denen die intelligente Ebene außer etwa zur Programmierung keiner Visualisierung bedarf. Zur Kontrolle können aber die Elemente der Basisautomatisierung in bekannter Weise visualisiert werden.By the control system according to the invention with that described above procedure according to the invention becomes the previous one Leave the structure of a control system. About basic automation, which essentially concerns the process level (Level I), there is only one, intelligent Control system to which the production setpoints are specified and from it all default sizes (positioning commands) generated (Level II). In intelligent self-optimization it ensures based on the process result already achieved for ever better process results. Individual feedback loops can be omitted. Just for checking the Process results are quality control sensors necessary. The control system according to the invention therefore only has two more essential levels, of which the intelligent No visualization except for programming requirement. The elements of the basic automation can be used as a control be visualized in a known manner.

Claims (20)

  1. Control system for a primary-industry or processing-industry plant, for example for a metallurgical-engineering plant, for producing strips of steel or non-ferrous metals for instance, wherein the control system is designed by computer technology, building on prior knowledge that is input, automatically identifying the state of the plant and details of a manufacturing process taking place in the plant, for example a continuous casting process for strips (3), and giving setpoint inputs (V) related to the situation in order to achieve production success that is reliable and, if applicable, as high as possible, characterised in that the control system simulates the state of the plant and the individual components of the plant for the purposes of optimization continuously with the aid of a process model (20, 63) that has partial models (48-47) and is set up in a modular fashion and which describes the behaviour between the process input variables and also manipulated variables and the process output variables, for example characteristic quality values of the product produced.
  2. Control system according to claim 1, characterised in that it is designed so as to optimize the setpoint inputs (V) related to the situation, preferably automatically effecting the optimization in given optimization routines.
  3. Control system according to claim 1 or 2, characterised in that the prior knowledge that is input is improved, preferably automatically, continuously by means of knowledge obtained at the process model (20) during production internally by means of computing techniques, for example at different operating points, and this self-generated process knowledge is taken over as new prior knowledge in a data store (17), in particular a data store that is constantly being updated.
  4. Control system according to claim 1, 2 or 3, characterised in that the setpoint inputs (V) related to the situation, for example in the form of set values, are delivered to the plant components directly in the form of selection values, for instance of positions, or in particular indirectly, for example by way of controller setpoints, for instance for rotational speeds.
  5. Control system according to claim 1, 2, 3 or 4, characterised in that it has a basic function system for the plant components that converts the setpoint inputs (V) from the knowledge obtained by means of computing techniques, for example from a process model (20), preferably a total process model, reliably into the plant control.
  6. Control system according to claim 5, characterised in that the basic function system is designed as a basic automation system reliably rendering the plant components operational, either separately or together.
  7. Control system according to claim 5 or 6, characterised in that the basic function system obtains its setpoint values directly from the intelligent portion of the control system that determines these values from the results of adaptation and/or optimization processes at the process model (20).
  8. Control system according to claim 5, 6 or 7, characterised in that the basic automation system is designed as an autonomous subsystem (emergency-condition release system) that guarantees a reliable state of the plant and the process and which, instead of having recourse to the setpoint inputs (V) produced by means of computing techniques, in particular can have recourse to operating values which are identified as being reliable and stored in the data store.
  9. Control system according to claim 5, 6, 7 or 8, characterised in that the basic function system has starting and run-up routines, which can be input manually or automatically, and also suboptimum normal operating routines, in which individual setpoint inputs (V), otherwise determined by means of computing techniques, can be replaced by constant setpoints.
  10. Control system according to claim 1, characterised in that the process model has mathematical descriptive forms at least in part, in so far as it can be modelled on the basis of mathematical-physical, chemical or metallurgical or biological laws.
  11. Control system according to claim 1 or 10, characterised in that for the plant components, for which process knowledge exists that can only be expressed linguistically, the process model has linguistically formulated model portions, which can be realized, for example, by fuzzy systems, neuro-fuzzy systems, expert systems or tabular compilations.
  12. Control system according to claim 1, 10 or 11, characterised in that for the plant components, for which it is not possible to produce a model on the basis of mathematical-physical, chemical or metallurgical or biological fundamental principles or on the basis of process knowledge that can be described linguistically, the process model has self-learning systems, for example neural networks.
  13. Control system according to claim 1, 10, 11 or 12, characterised in that the process model is continuously adapted to the process or corrected on the basis of process data that is collected at the plant and is filed in a process data base and in that this occurs by means of adaptive methods or learning methods, for example by means of a back-propagation learning method or a selection method for various partial models, for instance neural networks.
  14. Control system according to claim 1, 10, 11, 12 or 13, characterised in that the adjustable process variables are optimized off-line by means of an optimizer at the process model in such a way that the model output variables, which in particular are characteristic quality values of the product, correspond, to the greatest possible extent, with given values, for example those to be striven for.
  15. Control system according to claim 1, 10, 11, 12, 13 or 14, characterised in that the optimization is effected with a known optimization method, for example with a genetic algorithm, the Hooke-Jeeves method, a simulated annealing method or the like, and in that the respective optimization methods applied are specified as a function of the situation and the problem or are selected from a data file, for example as a function of the number of variables to be optimized and/or the formation of the minima to be expected.
  16. Control system according to claim 15, characterised in that the criteria for abortion of the optimization methods, for example with neural networks, are determined in accordance with a method of pattern recognition or classical convergence criteria on the basis of the course of optimization.
  17. Control system according to claim 12, 13, 14 15 or 16, characterised in that the starting values for optimization are determined on the basis of the suboptimum operating data that is filed in a process data store.
  18. Control system according to claim 1, 10, 11, 12, 13, 14, 15, 16 or 17, characterised in that the optimization is effected off-line with the aid of the process model, wherein adjustable process variables, which have been determined in such a way that the characteristic values of the product produced, which characteristic values are simulated by the model, correspond, to the greatest possible extent, with the given desired values, are passed as setpoint values to the basic function system of the process and the process is adjusted by the latter in accordance with the setpoint values.
  19. Control system according to claims 1, 10, 11, 12, 13, 14, 15, 16, 17 or 18, characterised in that in the case of a malfunction or the like of the model or the optimizer the setpoint values for the basic function system can be generated directly from the data of the process data base, interpolation being effected for the purpose of improving the setpoint values, in particular between the stored operating data.
  20. Control system according to one of claims 1 or 10 to 18, characterised in that the model, for instance in the case of a rolling casting process for metal strips, takes into account in particular the restrictions of the manipulated variables, the actuator time response and, if applicable, the process dynamics, preferably in and before the region of the casting rollers, for example in relation to the position of the solidification-shell merging zone for the solidification shells deposited on the casting rollers.
EP96905686A 1995-03-09 1996-03-06 Control system for e.g. primary-industry or manufacturing-industry facilities Revoked EP0813701B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19508476 1995-03-09
DE19508476A DE19508476A1 (en) 1995-03-09 1995-03-09 Control system for a plant in the basic material or processing industry or similar
PCT/DE1996/000397 WO1996028772A1 (en) 1995-03-09 1996-03-06 Control system for e.g. primary-industry or manufacturing-industry facilities

Publications (2)

Publication Number Publication Date
EP0813701A1 EP0813701A1 (en) 1997-12-29
EP0813701B1 true EP0813701B1 (en) 1999-10-13

Family

ID=7756201

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96905686A Revoked EP0813701B1 (en) 1995-03-09 1996-03-06 Control system for e.g. primary-industry or manufacturing-industry facilities

Country Status (6)

Country Link
US (1) US5727127A (en)
EP (1) EP0813701B1 (en)
CN (1) CN1244032C (en)
AT (1) ATE185626T1 (en)
DE (2) DE19508476A1 (en)
WO (1) WO1996028772A1 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19508474A1 (en) * 1995-03-09 1996-09-19 Siemens Ag Intelligent computer control system
DE19513801A1 (en) * 1995-04-11 1996-10-17 Siemens Ag Process for the automatic generation of a control
BR9709926A (en) 1996-06-21 1999-08-10 Siemens Ag Process and system for the start-up of facilities in industries, in particular raw material industries
DE19640806C2 (en) * 1996-10-02 2002-03-14 Siemens Ag Method and device for casting a strand of liquid material
DE19704983B4 (en) * 1997-01-29 2006-07-06 Diehl Bgt Defence Gmbh & Co. Kg Autonomous system, especially autonomous platform
DE19706767A1 (en) * 1997-02-20 1998-09-03 Siemens Ag Plant simulation for primary industry, especially for foundry work
JP3802965B2 (en) * 1997-03-21 2006-08-02 ヴイ.ウリヤノフ セルゲイ Self-organizing method and apparatus for optimal control of nonlinear physical control object
DE19715503A1 (en) * 1997-04-14 1998-10-15 Siemens Ag Integrated computer and communication system for the plant area
DE19731980A1 (en) * 1997-07-24 1999-01-28 Siemens Ag Method for controlling and presetting a rolling stand or a rolling train for rolling a rolled strip
DE19744815C1 (en) * 1997-10-02 1999-03-11 Mannesmann Ag Method for determining and controlling material flow during continuous casting of slabs
DE19752548A1 (en) * 1997-11-27 1999-06-10 Schloemann Siemag Ag Adjusting and maintaining the temperature of a steel melt during continuous casting
DE19807114B4 (en) * 1998-02-20 2006-11-23 Sms Demag Ag Method for monitoring the quality of the casting process of a continuous casting plant
AT409229B (en) * 1998-04-29 2002-06-25 Voest Alpine Ind Anlagen METHOD FOR IMPROVING THE CONTOUR OF ROLLED MATERIALS AND INCREASING THE ROLLED MATERIAL LENGTH
DE19832762C2 (en) * 1998-07-21 2003-05-08 Fraunhofer Ges Forschung Casting and rolling mill, in particular thin slab casting and rolling mill
DE19916190C2 (en) * 1998-12-22 2001-03-29 Sms Demag Ag Slab continuous casting method and apparatus
DE10001400C2 (en) * 1999-01-14 2003-08-14 Sumitomo Heavy Industries Device for controlling the pouring level of a continuous casting device
DE10027324C2 (en) * 1999-06-07 2003-04-10 Sms Demag Ag Process for casting a metallic strand and system therefor
DE19931331A1 (en) * 1999-07-07 2001-01-18 Siemens Ag Method and device for producing a strand of metal
US6505475B1 (en) 1999-08-20 2003-01-14 Hudson Technologies Inc. Method and apparatus for measuring and improving efficiency in refrigeration systems
US6564194B1 (en) * 1999-09-10 2003-05-13 John R. Koza Method and apparatus for automatic synthesis controllers
DE19959204A1 (en) * 1999-12-08 2001-07-12 Siemens Ag Method for determining a pickling time of a metal strip having a scale layer
US7216113B1 (en) * 2000-03-24 2007-05-08 Symyx Technologies, Inc. Remote Execution of Materials Library Designs
AT409352B (en) * 2000-06-02 2002-07-25 Voest Alpine Ind Anlagen METHOD FOR CONTINUOUSLY casting a METAL STRAND
US6581672B2 (en) 2000-09-29 2003-06-24 Nucor Corporation Method for controlling a continuous strip steel casting process based on customer-specified requirements
DE60125562T2 (en) * 2000-09-29 2007-10-11 Nucor Corp. METHOD OF MANUFACTURING REQUESTED STEEL BANDS
US7591917B2 (en) * 2000-10-02 2009-09-22 Nucor Corporation Method of producing steel strip
US6801817B1 (en) * 2001-02-20 2004-10-05 Advanced Micro Devices, Inc. Method and apparatus for integrating multiple process controllers
US6615098B1 (en) * 2001-02-21 2003-09-02 Advanced Micro Devices, Inc. Method and apparatus for controlling a tool using a baseline control script
US6915172B2 (en) 2001-11-21 2005-07-05 General Electric Method, system and storage medium for enhancing process control
US7367018B2 (en) * 2002-10-25 2008-04-29 Aspen Technology, Inc. System and method for organizing and sharing of process plant design and operations data
JP4691736B2 (en) 2002-12-09 2011-06-01 ハドソン・テクノロジーズ・インク Refrigeration system optimization method and equipment
US8463441B2 (en) 2002-12-09 2013-06-11 Hudson Technologies, Inc. Method and apparatus for optimizing refrigeration systems
DE10306273A1 (en) * 2003-02-14 2004-09-02 Siemens Ag Mathematical model for a metallurgical plant and optimization method for the operation of a metallurgical plant using such a model
DE10310357A1 (en) * 2003-03-10 2004-09-30 Siemens Ag Casting mill for producing a steel strip
JP2004315949A (en) * 2003-04-21 2004-11-11 Internatl Business Mach Corp <Ibm> Information calculating device for physical state control, information calculating method for physical state control, information calculating program for physical state control and physical state control unit
SE527168C2 (en) * 2003-12-31 2006-01-10 Abb Ab Method and apparatus for measuring, determining and controlling flatness of a metal strip
JP4834988B2 (en) * 2004-12-14 2011-12-14 横河電機株式会社 Continuous process control method and continuous process control system
DE102007025447A1 (en) * 2006-10-09 2008-04-17 Siemens Ag Method for controlling and / or regulating an industrial process
DE102008020381A1 (en) * 2008-04-23 2009-10-29 Siemens Aktiengesellschaft Data collecting system for e.g. industrial system, has interfaces transmitting process samples to central database, and processing mechanism generating knowledge about industrial systems by using samples and optimization potentials
US20110213486A1 (en) * 2008-11-04 2011-09-01 Sms Siemag Aktiengesellschaft Method and device for controlling the solidification of a cast strand in a strand casting plant in startup of the injection process
US8042602B2 (en) * 2009-06-16 2011-10-25 Nucor Corporation High efficiency plant for making steel
KR101130222B1 (en) * 2009-12-24 2012-03-29 주식회사 오토스윙 Method for controlling catridge of inglare shielding helmet
KR101299094B1 (en) * 2010-08-30 2013-08-27 현대제철 주식회사 Method for estimating pollution range of molten steel on laddle change
EP2578333A1 (en) * 2011-10-07 2013-04-10 Nemak Linz GmbH Method for controlling a casting assembly
CN102520705B (en) * 2011-12-31 2014-11-26 中国石油天然气股份有限公司 Refining production process optimal analysis method and system
CN103293951B (en) * 2013-06-14 2015-07-29 湘潭大学 A kind of intelligence goes out steel group stove group and waters device and method
DE102013220657A1 (en) * 2013-07-26 2015-01-29 Sms Siemag Ag Method and device for producing a metallic strip in a continuous casting-rolling process
ITUD20130128A1 (en) * 2013-10-04 2015-04-05 Danieli Off Mecc STEEL PLANT MULTIPLE CO-LAMINATION LINE AND RELATED PRODUCTION METHOD
AT516440B1 (en) * 2014-10-28 2017-03-15 Primetals Technologies Austria GmbH Strand guide segment, strand guiding system and method of configuring such a strand guiding system
CN107003645B (en) * 2014-12-17 2020-12-08 首要金属科技奥地利有限责任公司 Method for operating a metallurgical plant with optimized operating mode
US20160275219A1 (en) * 2015-03-20 2016-09-22 Siemens Product Lifecycle Management Software Inc. Simulating an industrial system
EP3293594A1 (en) * 2016-09-13 2018-03-14 Primetals Technologies Germany GmbH Use of comprehensive artificial intelligence in primary industry plants
EP3318342A1 (en) * 2016-11-07 2018-05-09 Primetals Technologies Austria GmbH Method for operating a casting roller composite system
EP3511784A1 (en) * 2018-01-15 2019-07-17 Covestro Deutschland AG Method for improving a chemical production process
EP3511782A1 (en) * 2018-01-15 2019-07-17 Covestro Deutschland AG Method for improving a chemical production process
EP3511783A1 (en) * 2018-01-15 2019-07-17 Covestro Deutschland AG Method for improving a chemical production process
EP3534278A1 (en) * 2018-02-28 2019-09-04 Siemens Aktiengesellschaft Method and assembly for the computer-assisted design of a factory
US11262734B2 (en) * 2018-08-29 2022-03-01 Siemens Aktiengesellschaft Systems and methods to ensure robustness for engineering autonomy
CN113485267A (en) * 2021-07-12 2021-10-08 湖南先登智能科技有限公司 Automatic control system for nickel-based target production

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368510A (en) * 1980-10-20 1983-01-11 Leeds & Northrup Company Automatic identification system for self tuning process controller
DE3133222A1 (en) * 1981-08-21 1983-03-03 Kraftwerk Union AG, 4330 Mülheim Method for determining the instantaneous state and the future state of a technical process with the aid of nonlinear process models
EP0138059A1 (en) * 1983-09-19 1985-04-24 Hitachi, Ltd. Manufacturing method and equipment for the band metal by a twin roll type casting machine
US4678023A (en) * 1985-12-24 1987-07-07 Aluminum Company Of America Closed loop delivery gauge control in roll casting
JP2697908B2 (en) * 1989-08-03 1998-01-19 新日本製鐵株式会社 Control device of twin roll continuous casting machine
US5212765A (en) * 1990-08-03 1993-05-18 E. I. Du Pont De Nemours & Co., Inc. On-line training neural network system for process control
DE4125176A1 (en) * 1991-07-30 1993-02-04 Lucas Nuelle Lehr Und Messgera CONTROL PANEL OF AN INDUSTRIAL SYSTEM WITH A PROGRAMMABLE CONTROL
JP3136183B2 (en) * 1992-01-20 2001-02-19 株式会社日立製作所 Control method
DE4209746A1 (en) * 1992-03-25 1993-09-30 Siemens Ag Optimisation of neural fuzzy control system - having multi-stage learning process in which three level neural network is used together with fuzzy logic rules
US5412756A (en) * 1992-12-22 1995-05-02 Mitsubishi Denki Kabushiki Kaisha Artificial intelligence software shell for plant operation simulation
DE4310332A1 (en) * 1993-03-31 1994-10-06 Mueller Weingarten Maschf Method for determining optimal parameters of a casting process, especially on die casting machines
US5486998A (en) * 1993-06-14 1996-01-23 Amax Coal West, Inc. Process stabilizing process controller

Also Published As

Publication number Publication date
ATE185626T1 (en) 1999-10-15
DE59603352D1 (en) 1999-11-18
US5727127A (en) 1998-03-10
DE19508476A1 (en) 1996-09-12
CN1179840A (en) 1998-04-22
CN1244032C (en) 2006-03-01
WO1996028772A1 (en) 1996-09-19
EP0813701A1 (en) 1997-12-29

Similar Documents

Publication Publication Date Title
EP0813701B1 (en) Control system for e.g. primary-industry or manufacturing-industry facilities
EP0813700B1 (en) Intelligent computerized control system
DE4338615B4 (en) Method and device for managing a process in a controlled system
DE4338608B4 (en) Method and device for managing a process in a controlled system
DE4008510A1 (en) CONTROL UNIT WITH OPTIMAL DECISION MAKERS
DE19522494C2 (en) Process for rolling a metal strip
EP0591291B1 (en) Regulation in the manufacture of hot rolled strips by means of a multi-stand hot rolling mill
DE4040360A1 (en) Multiple-stand strip rolling control - uses model comparisons and converging parameters to maintain strip profile and flatness
EP0534221B1 (en) Control parameter improvement method for industrial installations
EP2603333B1 (en) Real-time determination method for temperature and geometry of a hot metal strip in a finishing train
DE4417808C2 (en) Process for the continuous casting of a metal strand
EP1200216B1 (en) Method and device for making a metal strand
WO2012159866A1 (en) Control method for a rolling train
EP0756219B1 (en) Method for supervising product properties and method for controlling a manufacturing process
DE19637917C2 (en) Method and device for designing or controlling the process flow of a plant in the raw materials industry
DE4416317A1 (en) Method and control device for controlling a material-processing process
DE2344920A1 (en) DEVICE AND METHOD FOR CONTROLLING A ROLLING MILL
EP0732979B1 (en) Continuous casting and rolling plant for steel strip, and a control system for such a plant
DE102012002774B4 (en) Process and system for the automatic optimal operation of an extrusion press for metals
DE19623671C2 (en) Process and device for carrying out a process in the raw materials industry
EP3733323B1 (en) Method and continuous casting plant for casting a cast strand
WO2021110300A1 (en) Method and computer system for predicting shrinkage of a cast metal product
EP4130895A1 (en) Method for determining a control parameter for controlling a rolling mill
WO2021180719A1 (en) Method for reducing process disruptions in the production of a rolled product
EP4311606A1 (en) Method for regulating a rolling train and rolling train

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE

17Q First examination report despatched

Effective date: 19971229

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE

REF Corresponds to:

Ref document number: 185626

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59603352

Country of ref document: DE

Date of ref document: 19991118

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: ABB PATENT GMBH

Effective date: 20000630

26 Opposition filed

Opponent name: VOEST ALPINE INDUSTRIEANLAGEN GES.M.B.H.

Effective date: 20000712

Opponent name: ABB PATENT GMBH

Effective date: 20000630

R26 Opposition filed (corrected)

Opponent name: ABB PATENT GMBH * 20000712 VOEST-ALPINE INDUSTRIEA

Effective date: 20000630

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ABB PATENT GMBH * 20000712 VOEST-ALPINE INDUSTRIEA

Effective date: 20000630

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050519

Year of fee payment: 10

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060310

Year of fee payment: 11

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20060118